

General Information

The TBU-DT Series of Bourns® TBU® (Transient Blocking Unit) products are very low capacitance dual unidirectional high speed surge protection components designed to protect against faults caused by short circuits, AC power cross, induction and lightning surges.

The TBU-DT series is a unidirectional TBU[®] device; the TBU[®] protector will trip in less than 1 μ s when the current reaches the maximum value in one direction only, that is when Pin 1 is positive in voltage with respect to Pin 2, and Pin 4 is positive with respect to Pin 3. No current limiting exists in the opposite polarity, and the TBU[®] device appears as resistive in nature. The reverse current should not exceed the maximum trip current level of the TBU[®] device. An external diode may be used to prevent reverse current in DC biased applications.

The TBU[®] protector blocks surges and provides an effective barrier behind which sensitive electronics will not be exposed to large voltages or currents during surge events. After the surge, the TBU[®] device resets when the voltage across the TBU[®] device falls to the V_{reset} level. The TBU[®] device will automatically reset on lines which have no DC bias or have DC bias below Vreset (such as unpowered signal lines).

The TBU[®] device is provided in a surface mount DFN package and meets industry standard requirements such as RoHS and Pb Free solder reflow profiles.

Absolute Maximum Ratings (@ T_A = 25 °C Unless Otherwise Noted)

Agency Approval

Description						
UL	File Number: E315805					

Symbol	Parameter	Part Number	Value	Unit
V	Deals impulse valtage withstand with duration less than 10 me	TBU-DT065-xxx-WH	650	M
V _{imp}	Peak impulse voltage withstand with duration less than 10 ms	TBU-DT085-xxx-WH	850	v
	Continuous A.C. DMS voltage	TBU-DT065-xxx-WH	300	M
V _{rms}	Continuous A.C. RMS voltage	TBU-DT085-xxx-WH	425	v
Т _{ор}	Operating temperature range	-40 to +85	°C	
T _{stg}	Storage temperature range		-65 to +150	°C

Electrical Characteristics (@ T_A = 25 °C Unless Otherwise Noted)

Symbol	Parameter		Min.	Тур.	Max.	Unit	
		100	150	200			
	Current required for th	ne device to go from operating state to	TBU-DTxxx-200-WH	200	300	400	mA
Itrigger	protected state		TBU-DTxxx-300-WH	300	450	600	ma
			TBU-DTxxx-500-WH	500	750	1000	
		V _{imp} = 650 V I _{trigger} (min.) = 100 mA	TBU-DT065-100-WH		8.5	10.0	
		$V_{imp} = 650 \text{ V} \text{ I}_{trigger} (min.) = 200 \text{ mA}$	TBU-DT065-200-WH		5.6	6.6	
		$V_{imp} = 650 \text{ V} \text{ I}_{trigger} (min.) = 300 \text{ mA}$	TBU-DT065-300-WH		4.6	5.6	
R _{device}	Series resistance of	$V_{imp} = 650 \text{ V} \text{ I}_{trigger} (min.) = 500 \text{ mA}$	TBU-DT065-500-WH		4.0	4.8	
	the TBU® device						Ω
	the TBO- device	$V_{imp} = 850 V I_{trigger}$ (min.) = 100 mA	TBU-DT085-100-WH		10.3	12.1	
		$V_{imp} = 850 \text{ V} \text{ I}_{trigger} (min.) = 200 \text{ mA}$	TBU-DT085-200-WH		7.4	8.7	
		$V_{imp} = 850 \text{ V} I_{trigger} (min.) = 300 \text{ mA}$	TBU-DT085-300-WH		6.5	7.7	
		$V_{imp} = 850 \text{ V} \text{ I}_{trigger} (min.) = 500 \text{ mA}$			5.8	6.9	
R _{match}	Package resistance m	natching of the TBU® device #1 - TBU® de	-0.5		+0.5	Ω	
t _{block}	Time for the device to	go from normal operating state to protect			1	μs	
l0	Current through the tr	iggered TBU [®] device with 50 Vdc circuit	0.25	0.50	1.00	mA	
V _{reset}	Voltage below which t	he triggered TBU® device will transition t	12	16	20	V	
R _{th(j-l)}	Junction to package p	oads - FR4 using recommended pad layo		116		°C/W	
R _{th(j-l)}		bads - FR4 using heat sink on board (6 cr		96		°C/W	

*RoHS Directive 2002/95/EC Jan 27, 2003 including Annex.

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

BOURNS

Reference Application

The TBU[®] device can be used to protect against excessive voltage surges in transformer coupled equipment, as shown in the figure below. The TBU[®] protector prevents any surges from causing damage. An overvoltage protection device, such as an MOV or GDT, may be used to provide additional overvoltage protection if the surge voltage is likely to be above the maximum rating of the TBU[®] device.

Basic TBU Operation

The TBU[®] device is a silicon-based, solid-state, resettable device which is placed in series with a signal path. The TBU[®] device operates in approximately 1 μ s - once line current exceeds the TBU[®] device's trigger current I_{trigger}. When operated, the TBU[®] device restricts line current to less than 1 mA typically. When operated, the TBU[®] device will block all system voltages and any other voltages including the surge up to rated limits.

After the surge, the TBU[®] device resets when the voltage across the TBU[®] device falls to the V_{reset} level. The TBU[®] device will automatically reset on lines which have no DC bias or have DC bias below V_{reset} (such as unpowered signal lines).

If the line has a normal DC bias above V_{reset} , the voltage across the TBU[®] device may not fall below V_{reset} after the surge. In such cases, special care needs to be taken to ensure that the TBU[®] device will reset, otherwise an automatic or manual power down will be required. Bourns application engineers can provide further assistance.

Performance Graphs

V-I Characteristic - TBU-DT085-300-WH (Pin 2-1 & Pin 3-4)

Typical Trigger Current vs. Temperature

BOURNS

Performance Graphs (Continued)

Power Derating Curve

Reflow Profile

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Tsmax to Tp)	3 °C/sec. max.
Preheat - Temperature Min. (Tsmin) - Temperature Max. (Tsmax) - Time (tsmin to tsmax)	150 °C 200 °C 60-180 sec.
Time maintained above: - Temperature (TL) - Time (tL)	217 °C 60-150 sec.
Peak/Classification Temperature (Tp)	260 °C
Time within 5 °C of Actual Peak Temp. (tp)	20-40 sec.
Ramp-Down Rate	6 °C/sec. max.
Time 25 °C to Peak Temperature	8 min. max.

BOURNS

Product Dimensions

Recommended Pad Layout

TBU[®] protectors have matte-tin termination finish. The suggested layout should use Non-Solder Mask Define (NSMD). The recommended stencil thickness is 0.10-0.12 mm (.004-.005 in.) with a stencil opening size 0.025 mm (.0010 in.) less than the device pad size. As when heat sinking any power device, it is recommended that wherever possible, extra PCB copper area is allowed. For minimum parasitic capacitance, do not allow any signal, ground or power signals beneath any of the pads of the device.

Pad Designation						
Pad #	Pin Out					
1	Line Side 1					
2	Line Load 1					
3	Line Load 2					
4	Line Side 2					

Dark grey areas show added PCB copper area for better thermal resistance.

Thermal Resistance vs. Additional PCB Cu Area

Bourns

Packaging Specifications

DIMENSIONS: (INCHES)

QUANTITY: 3000 PIECES PER REEL

USER DIRECTION OF FEED

A	4	В		С		D		G	N
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Ref.	Ref.
<u>326</u> (12.835)	<u>330</u> (13.002)	<u>1.5</u> (.059)	<u>2.5</u> (.098)	<u>12.8</u> (.504)	<u>13.5</u> (.531)	<u>20.2</u> (.795)	-	<u>16.5</u> (.650)	<u>102</u> (4.016)

A0		B0		D		D1		E		F	
Min.	Max.										
5.4	5.6	5.4	5.6	1.5	1.6	1.5	_	1.65	1.85	7.4	7.6
(.212)	(.220)	(.212)	(.220)	(.059)	(.063)	(.059)	_	(.065)	(.073)	(.291)	(.299)
K	K0		2	F	P0		P2		t		v
Min.	Max.										
1.1	1.3	7.9	8.1	3.9	4.1	1.9	2.1	0.25	0.35	15.7	16.3
(.043)	(.051)	(.311)	(.319)	(.159)	(.161)	(.075)	(.083)	(.010)	(.014)	(.618)	(.642)

Asia-Pacific: Tel: +886-2 2562-4117 • Fax: +886-2 2562-4116 Europe: Tel: +41-41 768 5555 • Fax: +41-41 768 5510 The Americas: Tel: +1-951 781-5500 • Fax: +1-951 781-5700 www.bourns.com

12/10 "TBU" is a registered trademark of Bourns, Inc. in the U.S., Taiwan and European Community. Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А