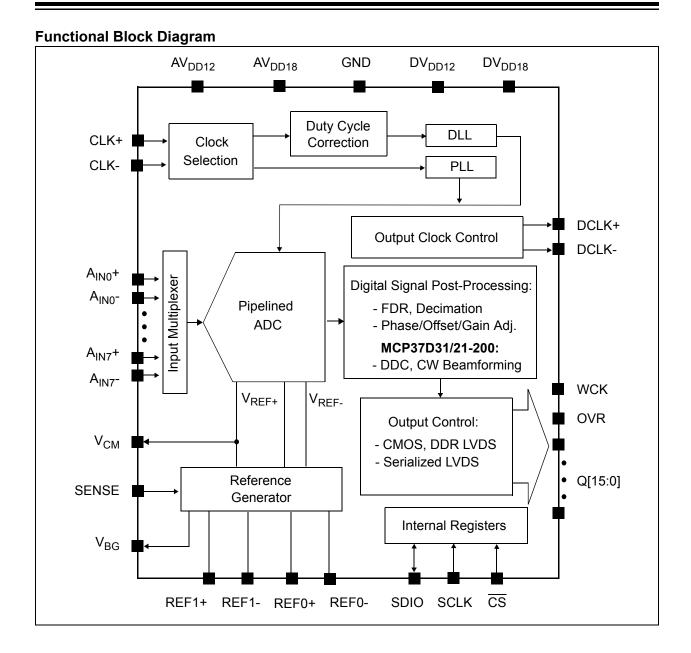


200 Msps, 16-/14-Bit Low-Power ADC with 8-Channel MUX

Features:

- · Sample Rates:
 - 200 Msps for single-channel mode
- 200 Msps/Number of channel used
- SNR with f_{IN} = 15 MHz and -1 dBFS:
 >74 dBFS for 200 Msps
- SFDR with f_{IN} = 15 MHz and -1 dBFS:
- >90 dBFS at 200 Msps
- Power Dissipation with LVDS Digital I/O:
 - 490 mW for 200 Msps
- Power Dissipation with CMOS Digital I/O:
 - 436 mW for 200 Msps, Output Clock = 100 MHz
- Power Dissipation Excluding Digital I/O:
- 390 mW for 200 Msps
- Power Saving Modes:
 - 80 mW during Standby
 - 33 mW during Shutdown
- · Supply Voltage:
 - Digital Section: 1.2V, 1.8V
 - Analog Section: 1.2V, 1.8V
- Selectable Input Range: up to 2.975 V_{P-P}
- Input Channel Bandwidth: 500 MHz
- Channel-to-Channel Crosstalk: >95 dB in Multi-Channel mode (Input = 15 MHz, -1 dBFS)
- Output Data Format:
 - Parallel CMOS, DDR LVDS
 - Serialized DDR LVDS (16-bit, octal-channel mode)
- · Optional Output Data Randomizer

- Digital Signal Post-Processing (DSPP) Options:
 Decimation Filters for improved SNR
 - Fractional Delay Recovery (FDR) for timedelay corrections in multi-channel operations (dual/octal-channel modes)
 - Phase, Offset and Gain adjust of individual channels
 - Digital Down-Conversion (DDC) with I/Q or f_S/8 output (MCP37D31/21-200)
 - Continuous Wave Beamforming for octalchannel mode (MCP37D31/21-200)
- Built-In ADC Linearity Calibration Algorithms:
 - Harmonic Distortion Correction (HDC)
 - DAC Noise Cancellation (DNC)
 - Dynamic Element Matching (DEM)
 - Flash Error Calibration
- Serial Peripheral Interface (SPI)
- · Package Options:
 - VTLA-124 (9 mm x 9 mm x 0.9 mm)
 - TFBGA-121 (8 mm x 8 mm x 1.08 mm)
- No external reference decoupling capacitor required for TFBGA Package
- Industrial Temperature Range: -40°C to +85°C


Typical Applications:

- Communication Instruments
- Cellular Base Stations
- Radar
- · Ultrasound and Sonar Imaging
- · Scanners and Low-Power Portable Instruments
- · Industrial and Consumer Data Acquisition System

Device	Offering	(Note):

Part Number	Sample Rate	Resolution	Digital Decimation	Digital Down-Conversion	CW Beamforming
MCP37231-200	200 Msps	16	Yes	No	No
MCP37221-200	200 Msps	14	Yes	No	No
MCP37D31-200	200 Msps	16	Yes	Yes	Yes
MCP37D21-200	200 Msps	14	Yes	Yes	Yes

Note: For TFBGA package, contact Microchip Technology Inc. for availability. The devices in the same package type are pin-compatible.

Description:

The MCP37231/21-200 is Microchip's baseline 16-/14bit 200 Msps pipelined ADC family, featuring built-in high-order digital decimation filters, gain and offset adjustment per channel, and fractional delay recovery.

The MCP37D31/21-200 device family features a digital down-conversion and CW beamforming capability, in addition to the features offered by the MCP37231/21-200.

All devices feature harmonic distortion correction and DAC noise cancellation that enable high-performance specifications with SNR of greater than 74 dBFS, and SFDR of greater than 90 dBFS.

These A/D converters exhibit industry leading lowpower performance with only 490 mW operation while using the LVDS interface at 200 Msps. This superior low-power operation coupled with high dynamic performance makes these devices ideal for various high-performance, high-speed data acquisition systems including communications equipment, radar and portable instrumentation.

The output decimation filter option improves SNR performance up to 93.5 dBFS with the 512x decimation setting. The digital down-conversion option in conjunction with the decimation and quadrature output options offer great flexibility in digital communication system design, including cellular base-stations and narrow-band communications. Gain, phase and DC offset can be adjusted independently for each input channel, allowing for simplified implementation of CW beamforming and ultrasound Doppler imaging applications.

These devices can have up to eight differential input channels through an input MUX. The sampling rate is up to 200 Msps when a single channel is used, or 25 Msps per channel when all 8-input channels are used.

The differential full-scale analog input range is programmable up to 2.975 V_{P-P} . The ADC output data can be coded in two's complement or offset binary representation, with or without the data randomizer option. The output data is available as full rate CMOS or double data rate (DDR) LVDS. Additionally, a serialized LVDS option is also available for the 16-bit octal-channel mode.

The device is available in a Pb-free VTLA-124 and TFBGA-121 packages. The device operates over the commercial temperature range of -40°C to +85°C.

Package Types

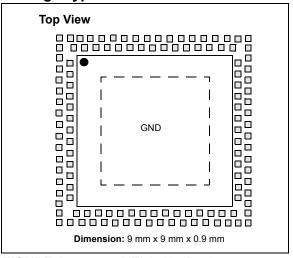


FIGURE 1:

VTLA-124 Package.

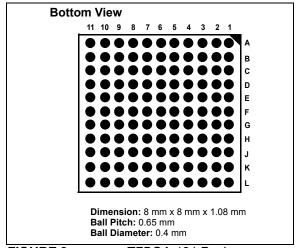
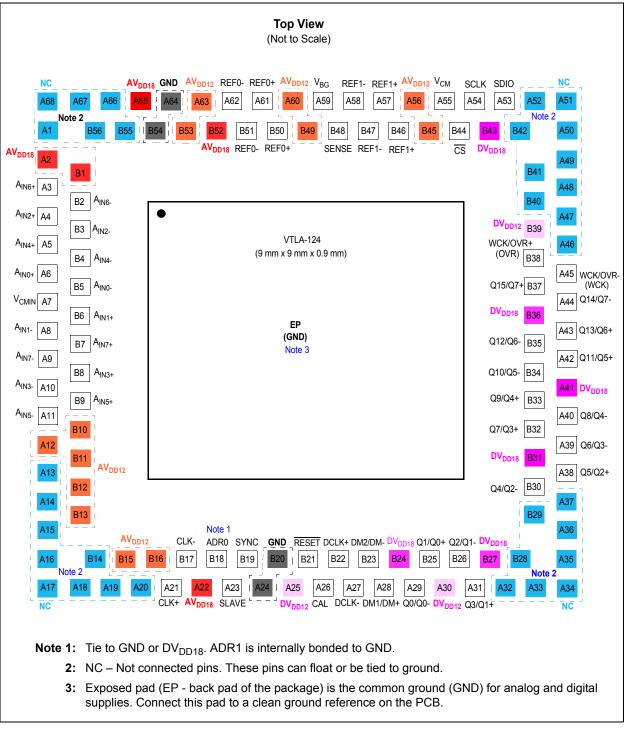



FIGURE 2: TFBGA-121 Package. (Contact Microchip Technology Inc. for availability)

NOTES:

1.0 PACKAGE PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

FIGURE 1-1: VTLA-124 Package. See Table 1-1 for the pin descriptions and Table 1-3 for active and inactive ADC output pins for various ADC resolution modes.

Pin No.	Name	I/O Type	Description
Power Supply Pin	s		·
A2, A22, A65, B1, B52	AV _{DD18}	Supply	Supply voltage input (1.8V) for analog section
A12, A56, A60, A63, B10, B11, B12, B13, B15, B16, B45, B49, B53	AV _{DD12}		Supply voltage input (1.2V) for analog section
A25, A30, B39	DV _{DD12}		Supply voltage input (1.2V) for digital section
A41, B24, B27, B31, B36, B43	DV _{DD18}		Supply voltage input (1.8V) for digital section and all digital I/O
EP	GND		Exposed pad: Common ground pin for digital and analog sections
ADC Analog Input	Pins		·
A3	A _{IN6+}	Analog	Channel 6 differential analog input (+)
B2	A _{IN6-}	Input	Channel 6 differential analog input (-)
A4	A _{IN2+}		Channel 2 differential analog input (+)
B3	A _{IN2-}		Channel 2 differential analog input (-)
A5	A _{IN4+}		Channel 4 differential analog input (+)
B4	A _{IN4-}		Channel 4 differential analog input (-)
A6	A _{IN0+}		Channel 0 differential analog input (+)
B5	A _{IN0-}		Channel 0 differential analog input (-)
B6	A _{IN1+}		Channel 1 differential analog input (+)
A8	A _{IN1-}		Channel 1 differential analog input (-)
B7	A _{IN7+}		Channel 7 differential analog input (+)
A9	A _{IN7-}		Channel 7 differential analog input (-)
B8	A _{IN3+}		Channel 3 differential analog input (+)
A10	A _{IN3-}		Channel 3 differential analog input (-)
B9	A _{IN5+}		Channel 5 differential analog input (+)
A11	A _{IN5-}		Channel 5 differential analog input (-)
A21	CLK+		Differential clock input (+)
B17	CLK-		Differential clock input (-)
Reference Pins (N	ote 1)		·
A57, B46	REF1+	Analog	Differential reference 1 (+) voltage
A58, B47	REF1-	Output	Differential reference 1 (-) voltage
A61, B50	REF0+		Differential reference 0 (+) voltage
A62, B51	REF0-		Differential reference 0 (-) voltage
SENSE, Bandgap	and Commo	n Mode Volta	ge Pins
B48	SENSE	Analog Input	Analog input full-scale range selection. See Table 4-2 for SENSE voltage settings.
A59	V_{BG}	Analog Output	Internal bandgap output voltage Connect a decoupling capacitor (2.2 μF)
A7	V _{CMIN}	Analog Input	Common-Mode voltage input for auto-calibration Connect V _{CM} voltage (Note 2)
A55	V_{CM}		Common-Mode output voltage (900 mV) for analog input signal Connect a decoupling capacitor (0.1 μ F) (Note 3)

TABLE 1-1: PIN FUNCTION TABLE FOR VTLA-124

TABLE 1-1:		ON TABLE F	OR VTLA-124 (CONTINUED)
Pin No.	Name	I/O Type	Description
Digital I/O Pins		•	
B18	ADR0	Digital Input	SPI address selection pin (A0 bit). Tie to GND or DV _{DD18} . (Note 4)
A23	SLAVE	-	Not used. Tie to GND.
B19	SYNC	Digital Input/ Output	Not used. Leave this pin floating.
B21	RESET	Digital Input	Reset control input: High: Normal operating mode Low: Reset mode (Note 5)
A26	CAL	Digital Output	Calibration status flag digital output: High: Calibration is complete Low: Calibration is not complete (Note 6)
B22	DCLK+		LVDS: Differential digital clock output (+) CMOS: Digital clock output (Note 7)
A27	DCLK-		LVDS: Differential digital clock output (-) CMOS: Unused (leave floating)
ADC Output Pins	6 (Note 8)		
B23	DM2/DM-	Digital	18-bit mode: Digital data output (last two LSB bits) (Note 9)
A28	DM1/DM+	Output	Other modes: Not used
A29	Q0/Q0-		Digital data output: CMOS = Q0 DDR LVDS = Q0- (Even bit first), Q8- (MSB byte first) Serialized LVDS = Q- for the last selected channel (n=8)
B25	Q1/Q0+		Digital data output: CMOS = Q1 DDR LVDS = Q0+ (Even bit first), Q8+ (MSB byte first) Serialized LVDS = Q+ for the last selected channel (n=8)
B26	Q2/Q1-		Digital data output: CMOS = Q2 DDR LVDS = Q1- (Even bit first), Q9- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 7
A31	Q3/Q1+		Digital data output: CMOS = Q3 DDR LVDS = Q1+ (Even bit first), Q9+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 7
B30	Q4/Q2-	-	Digital data output: CMOS = Q4 DDR LVDS = Q2- (Even bit first), Q10- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 6
A38	Q5/Q2+		Digital data output: CMOS = Q5 DDR LVDS = Q2+ (Even bit first), Q10+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 6
A39	Q6/Q3-		Digital data output: CMOS = Q6 DDR LVDS = Q3- (Even bit first), Q11- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 5
B32	Q7/Q3+		Digital data output: CMOS = Q7 DDR LVDS = Q3+ (Even bit first), Q11+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 5
A40	Q8/Q4-		Digital data output: CMOS = Q8 DDR LVDS = Q4- (Even bit first), Q12- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 4
B33	Q9/Q4+		Digital data output: CMOS = Q9 DDR LVDS = Q4+ (Even bit first), Q12+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 4
B34	Q10/Q5-		Digital data output: CMOS = Q10 DDR LVDS = Q5- (Even bit first), Q13- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 3

TABLE 1-1: PIN FUNCTION TABLE FOR VTLA-124 (CONTINUED)

Pin No.	Name	I/O Type	Description
A42	Q11/Q5+	Digital Output	Digital data output: CMOS = Q11 DDR LVDS = Q5+ (Even bit first), Q13+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 3
B35	Q12/Q6-		Digital data output: CMOS = Q12 DDR LVDS = Q6- (Even bit first), Q14- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 2
A43	Q13/Q6+		Digital data output: CMOS = Q13 DDR LVDS = Q6+ (Even bit first), Q14+ (MSB byte first) Serialized LVDS = Q+ for channel order (n) = 2
A44	Q14/Q7-		Digital data output: CMOS = Q14 DDR LVDS = Q7- (Even bit first), Q15- (MSB byte first) Serialized LVDS = Q- for the first selected channel (n = 1)
B37	Q15/Q7+		Digital data output: CMOS = Q15 DDR LVDS = Q7+ (Even bit first), Q15+ (MSB byte first) Serialized LVDS = Q+ for the first selected channel (n = 1)
B38	WCK/OVR+ (OVR)		WCK: Word clock sync digital output OVR: Input over-range indication digital output (Note 10).
A45	WCK/OVR- (WCK)		
SPI Interface Pins	;		
A53	SDIO	Digital Input/ Output	SPI data input/output
A54	SCLK	Digital	SPI serial clock input
B44	CS	Input	SPI Chip Select input
Not Connected Pi	ins		
A1, A13 - A20, A32 - A37, A46 - A52, A66 - A68, B14, B28, B29, B40, B41, B42, B55, B56	NC		These pins can be tied to ground or left floating.
Pins that need to	be grounded		
A24, A64, B20, B54	GND		These pins are not supply pins, but need to be tied to ground.

Notes:

- These pins are for the internal reference voltage outputs. They should not be driven. External decoupling circuits are required. See Section 4.5.3 "Decoupling Circuits for Internal Voltage Reference and Band Gap Output" for details.
- V_{CMIN} is used for Auto-Calibration only. V_{CMIN}+ and V_{CMIN}- should be tied together always. There should be no voltage difference between the two pins. Typically both V_{CMIN}+ and V_{CMIN}- are tied to the V_{CM} output pin together, but they can be tied to another common mode voltage if external V_{CM} is used. This pin has High Z input in Shutdown, Standby and Reset modes.
- When V_{CM} output is used for the common-mode voltage of analog inputs (i.e. by connecting to the center-tap of a balun), V_{CM} pin should be decoupled with a 0.1 µF capacitor, and should be directly tied to V_{CMIN}+ and V_{CMIN}pins.
- 4. ADR1 (for A1 bit) is internally bonded to GND ('0'). If ADR0 is dynamically controlled, ADR0 must be held constant while CS is "Low".

- 5. The device is in Reset mode while this pin stays "Low". On the rising edge of RESET, the device exits the Reset mode, initializes all internal user registers to default values, and begins power-up calibration.
- 6. CAL pin stays "Low" at power-up until the first power-up calibration is completed. When the first calibration has completed, this pin has "High" output. It stays "High" until the internal calibration is restarted by hardware or Soft Reset command. In Reset mode, this pin is "Low". In Standby and Shutdown modes, this pin will maintain the prior condition.
- The phase of DCLK relative to the data output bits may be adjusted depending on the operating mode. This is controlled differently depending on the configuration of the DSPP, PLL and/or DLL. See also Addresses 0x52, 0x64 and 0x6D (Registers 5-7, 5-21 and 5-27) for more details.
- 8. DDR LVDS: Two data bits are multiplexed onto each differential output pair. The output pins shown here are for the "Even bit first", which is the default setting of OUTPUT_MODE<1:0> in Address 0x62 (Register 5-19). The even data bits (Q0, Q2, Q4, Q6, Q8, Q10, Q12, Q14) appear when DCLK+ is "High". The odd data bits (Q1, Q3, Q5, Q7, Q9, Q11, Q13, Q15) appear when DCLK+ is "Low". See Addresses 0x65 (Register 5-22) and 0x68 (Register 5-25) for output polarity control. See Figures 2-2 to 2-4 for LVDS output timing diagrams.
- Available for the MCP37231-200 and MCP37D31-200 devices only. Leave these pins floating (No Connect) if not used.
 18-bit mode: DM1/DM+ and DM2/DM- are the last LSB bits. DM2/DM- is the LSB. In LVDS output, DM1/DM+ and DM2/DM- are the LSB pair. DM1/DM+ appears at the falling edge and DM2/DM- is at the rising edge of the DCLK+. Other than 18-bit mode: DM1/DM+ and DM2/DM- are High Z in LVDS mode.
- CMOS output mode: WCK/OVR+ is OVR and WCK/OVR- is WCK.
 DDR LVDS output mode: The rising edge of DCLK+ is OVR and the falling edge is WCK.
 OVR: OVR will be held "High" when analog input over-range is detected. Digital post-processing will cause OVR to assert early relative to the output data. See Figure 2-2 for LVDS timing of these bits.
 WCK: Normally "Low". "High" while data from the first channel is sent out. In serialized LVDS (octal) output mode, the WCK output is asserted "High" on the MSB bit.

	1	2	3	4	5	6	7	8	9	10	11
Α	SDIO	V _{CM}	REF1+	REF1-	V _{BG}	REF0+	REF0-	GND	GND	A _{IN4-}	A _{IN2+}
в	SCLK	cs	GND	GND	SENSE	AV _{DD12}	AV _{DD12}	AV _{DD18}	AV _{DD18}	A _{IN4+}	A _{IN2-}
С	WCK/ OVR- (WCK)	WCK/ OVR+ (OVR)	GND	GND	AV _{DD12}	AV _{DD12}	AV _{DD12}	GND	GND	A _{IN6-}	A _{IN0+}
D	Q14/Q7-	Q15/Q7+	GND	GND	AV _{DD12}	AV _{DD12}	AV _{DD12}	GND	GND	A _{IN6+}	A _{IN0-}
Е	Q12/Q6-	Q13/Q6+	GND	GND	AV _{DD12}	AV _{DD12}	AV _{DD12}	GND	GND	A _{IN5+}	A _{IN1+}
F	Q10/Q5-	Q11/Q5+	DV _{DD18}	DV _{DD18}	AV _{DD12}	AV _{DD12}	AV _{DD12}	GND	GND	A _{IN5-}	A _{IN1-}
G	Q8/Q4-	Q9/Q4+	DV _{DD18}	DV _{DD18}	GND	GND	AV _{DD12}	AV _{DD12}	GND	A _{IN7-}	A _{IN3+}
н	Q6/Q3-	Q7/Q3+	DV _{DD12}	DV _{DD12}	GND	GND	GND	GND	GND	A _{IN7+}	A _{IN3-}
J	Q4/Q2-	Q5/Q2+	DV _{DD12}	DV _{DD12}	GND	GND	GND	GND	GND	V _{CMIN} +	V _{CMIN} -
Κ	Q2/Q1-	Q3/Q1+	DM1/DM+	DCLK-	CAL	GND	SLAVE	ADR0	ADR1	GND	GND
L	Q0/Q0-	Q1/Q0+	DM2/DM-	DCLK+	RESET	SYNC	GND	CLK+	CLK-	GND	AV _{DD18}
				All oth		Analog Digital Supply `	Voltage				
1	2:	Ball d	imensio	on: (a) E	Ball Pito		5 mm, ((b) Ball Ag 1.8%		er = 0.4	mm.

FIGURE 1-2: TFBGA-121 Package. See Table 1-2 for the pin descriptions and Table 1-3 for active and inactive ADC output pins for various ADC resolution modes. Decoupling capacitors for reference pins and V_{BG} are embedded in the package.

TABLE 1-2: PIN FUNCTION TABLE FOR TFBGA-121

Ball No.	Name	I/O Type	Description
A1	SDIO	Digital Input/ Output	SPI data input/output
A2	V _{CM}	Analog Output	Common-Mode output voltage (900 mV) for analog input signal Connect a decoupling capacitor (0.1 μ F) (Note 1)
A3	REF1+	'	Differential reference voltage 1 (+/-). Decoupling capacitors are embedded in
A4	REF1-	-	the TFBGA package. Leave these pins floating.
A5	V _{BG}		Internal bandgap output voltage A decoupling capacitor (2.2 μ F) is embedded in the TFBGA package. Leave this pin floating.
A6	REF0+	-	Differential reference 0 (+/-) voltage. Decoupling capacitors are embedded ir
A7	REF0-		the TFBGA package. Leave these pins floating.
A8 A9	GND	Supply	Common ground for analog and digital sections
A10	A _{IN4-}	Analog Input	Channel 4 differential analog input (-)
A11	A _{IN2+}	-	Channel 2 differential analog input (+)
B1	SCLK	Digital Input	SPI serial clock input
B2	CS	1	SPI Chip Select input
B3 B4	GND	Supply	Common ground for analog and digital sections
B5	SENSE	Analog Input	Analog input range selection. See Table 4-2 for SENSE voltage settings.
B6	AV _{DD12}	Supply	Supply voltage input (1.2V) for analog section
B7			
B8	AV _{DD18}		Supply voltage input (1.8V) for analog section
B9			
B10	A _{IN4+}	Analog Input	Channel 4 differential analog input (+)
B11	A _{IN2-}		Channel 2 differential analog input (-)
C1	WCK/OVR-	Digital	WCK: Word clock sync digital output
C2	(WCK) WCK/OVR+	Output	OVR: Input over-range indication digital output (Note 2)
	(OVR)		
C3 C4	GND	Supply	Common ground for analog and digital sections
C5	AV _{DD12}	-	Supply voltage input (1.2V) for analog section
C6			
C7			
C8	GND		Common ground pin for analog and digital sections
C9			
C10	A _{IN6-}	Analog Input	Channel 6 differential analog input (-)
C11	A _{IN0+}		Channel 0 differential analog input (+)
D1	Q14/Q7-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q14 DDR LVDS = Q7- (Even bit first), Q15- (MSB byte first)
			Serialized LVDS = Q- for the first selected channel (n = 1)
D2	Q15/Q7+		Digital data output: (Note 3) CMOS = Q15 DDR LVDS = Q7+ (Even bit first), Q15+ (MSB byte first)
I			
D3	GND	Supply	Serialized LVDS = Q+ for the first selected channel (n = 1) Common ground for analog and digital sections

TABLE 1-	2: PIN F	UNCTION TA	ABLE FOR TFBGA-121 (CONTINUED)
Ball No.	Name	I/O Type	Description
D5	AV _{DD12}	Supply	Supply voltage input (1.2V) for analog section
D6			
D7			
D8	GND		Common ground for analog and digital sections
D9			
D10	A _{IN6+}	Analog Input	Channel 6 differential analog input (+)
D11	A _{IN0-}	, and og input	Channel 0 differential analog input (-)
E1	Q12/Q6-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q12
			DDR LVDS = Q6- (Even bit first), Q14- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 2
E2	Q13/Q6+	_	Digital data output: (Note 3)
	Q10/Q01		CMOS = Q13
			DDR LVDS = Q6+ (Even bit first), Q14+ (MSB byte first)
			Serialized LVDS = Q + for channel order (n) = 2
E3	GND	Supply	Common ground for analog and digital sections
E4		_	
E5	AV _{DD12}		Supply voltage input (1.2V) for analog section
E6	-		
E7 E8	GND	-	Common ground for analog and digital sections
E9	GND		
E10	۸		Channel 5 differential analog input (+)
	A _{IN5+}	Analog Input	
E11	A _{IN1+}	D: 11	Channel 1 differential analog input (+)
F1	Q10/Q5-	Digital Output	Digital data output: (Note 3) CMOS = Q10
		Output	DDR LVDS = Q5- (Even bit first), Q13- (MSB byte first)
			Serialized LVDS = Q- for channel order (n) = 3
F2	Q11/Q5+	-	Digital data output: (Note 3)
			CMOS = Q11
			DDR LVDS = Q5+ (Even bit first), Q13+ (MSB byte first)
F3		Supply	Serialized LVDS = Q+ for channel order (n) = 3 Supply voltage input (1.8V) for digital section.
F3	DV _{DD18}	Supply	All digital input pins are driven by the same DV _{DD18} potential.
F5	AV _{DD12}	1	Supply voltage input (1.2V) for analog section
F6	12		
F7			
F8	GND	1	Common ground for analog and digital sections
F9			
F10	A _{IN5-}		Channel 5 differential analog input (-)
F11	A _{IN1-}	Analog Input	Channel 1 differential analog input (-)
G1	Q8/Q4-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q8
			DDR LVDS = Q4- (Even bit first), Q12- (MSB byte first)
<u></u>	00/04:	-	Serialized LVDS = Q- for channel order (n) = 4
G2	Q9/Q4+		Digital data output: (Note 3) CMOS = Q9
			DDR LVDS = Q4+ (Even bit first), Q12+ (MSB byte first)
			Serialized LVDS = Q + for channel order (n) = 4
G3	DV _{DD18}	Supply	Supply voltage input (1.8V) for digital section
G4	22.0	_	All digital input pins are driven by the same DV _{DD18} potential
G5	GND	1	Common ground for analog and digital sections
G6			

TABLE 1-	2: PIN F	UNCTION TA	ABLE FOR TFBGA-121 (CONTINUED)
Ball No.	Name	I/O Type	Description
G7	AV _{DD12}	Supply	Supply voltage input (1.2V) for analog section
G8			
G9	GND		Common ground for analog and digital sections
G10	A _{IN7-}	Analog Input	Channel 7 differential analog input (-)
G11	A _{IN3+}		Channel 3 differential analog input (+)
H1	Q6/Q3-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q6 DDD LVDS = Q2 (Even bit first) Q11 (MSD byte first)
			DDR LVDS = Q3- (Even bit first), Q11- (MSB byte first) Serialized LVDS = Q- for channel order (n) = 5
H2	Q7/Q3+		Digital data output: (Note 3)
			CMOS = Q7 DDR LVDS = Q3+ (Even bit first), Q11+ (MSB byte first)
			Serialized LVDS = $Q+$ for channel order (n) = 5
H3	DV _{DD12}	Supply	Supply voltage input (1.2V) for digital section
H4			
H5	GND	_	Common ground for analog and digital sections
H6			
H7			
H8 H9			
H10	Δ		Channel 7 differential analog input (+)
H11	A _{IN7+} A _{IN3-}	Analog Input	Channel 3 differential analog input (-)
J1	Q4/Q2-	Digital	Digital data output: (Note 3)
51	Q , , QZ-	Output	CMOS = Q4
			DDR LVDS = Q2- (Even bit first), Q10- (MSB byte first)
		_	Serialized LVDS = Q- for channel order (n) = 6
J2	Q5/Q2+		Digital data output: (Note 3) CMOS = Q5
			DDR LVDS = Q2+ (Even bit first), Q10+ (MSB byte first)
			Serialized LVDS = Q + for channel order (n) = 6
J3	DV _{DD12}	Supply	DC supply voltage input pin for digital section (1.2V)
J4			
J5	GND		Common ground for analog and digital sections
J6 J7			
J8			
J9			
J10	V _{CMIN+}	Analog Input	
J11	V _{CMIN} -	-	These two pins should be tied together and connected to V_{CM} voltage.
K1	Q2/Q1-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q2
			DDR LVDS = Q1- (Even bit first), Q9- (MSB byte first)
К2	Q3/Q1+	-	Serialized LVDS = Q- for channel order (n) = 7 Digital data output: (Note 3)
112			CMOS = Q3
			DDR LVDS = Q1+ (Even bit first), Q9+ (MSB byte first)
			Serialized LVDS = Q+ for channel order (n) = 7
K3	DM1/DM+		18-bit mode: Digital data output. DM1 and DM2 are the last two LSB bits (Note 5) Other modes: Not used
K4	DCLK-		LVDS: Differential digital clock output (-)
			CMOS: Unused (leave floating)

TABLE 1-2: PIN FUNCTION TABLE FOR TFBGA-121 (CONTINUED)

IABLE 1-		1	ABLE FOR IFBGA-121 (CONTINUED)
Ball No.	Name	I/O Type	Description
K5	CAL	Digital	Calibration status flag digital output (Note 6):
		Output	High: Calibration is complete
			Low: Calibration is not complete
K6	GND	Supply	Common ground pin for analog and digital sections
K7	SLAVE	Digital Input	Not used. Tie this pin to GND
K8	ADR0		SPI address selection pin (A0 bit). Tie to GND or DVDD18 (Note 7)
K9	ADR1		SPI address selection pin (A1 bit). Tie to GND or DVDD18 (Note 7)
K10	GND	Supply	Common ground for analog and digital sections
K11			
L1	Q0/Q0-	Digital	Digital data output: (Note 3)
		Output	CMOS = Q0
			DDR LVDS = Q0- (Even bit first), Q8- (MSB byte first)
			Serialized LVDS = Q- for the last selected channel (n=8)
L2	Q1/Q0+		Digital data output: (Note 8)
			CMOS = Q1
			DDR LVDS = Q0+ (Even bit first), Q8+ (MSB byte first)
		_	Serialized LVDS = Q+ for the last selected channel (n=8)
L3	DM2/DM-		18-bit mode: Digital data output. DM1 and DM2 are the last two LSB bits (Note 5)
		_	Other modes: Not used
L4	DCLK+		LVDS: Differential digital clock output (+)
			CMOS: Digital clock output (Note 8)
L5	RESET	Digital Input	Reset control input:
			High: Normal operating mode
			Low: Reset mode (Note 9)
L6	SYNC	Digital Input/	Not used. Leave this pin floating
		Output	
L7	GND	Supply	Common ground for analog and digital sections
L8	CLK+	Analog Input	Differential clock input (+)
L9	CLK-		Differential clock input (-)
L10	GND	Supply	Common ground for analog and digital sections
L11	AV _{DD18}	Analog Input	Supply voltage input (1.8V) for analog section

TABLE 1-2: PIN FUNCTION TABLE FOR TFBGA-121 (CONTINUED)

Notes:

- When V_{CM} output is used for the common-mode voltage of analog inputs (i.e. by connecting to the center-tap of a balun), V_{CM} pin should be decoupled with a 0.1 μF capacitor, and should be directly tied to V_{CMIN}+ and V_{CMIN}pins.
- 2. CMOS output mode: WCK/OVR- is WCK and WCK/OVR+ is OVR.

DDR LVDS output mode: The rising edge of DCLK+ is OVR and the falling edge is WCK.
OVR: OVR will be held "High" when analog input over-range is detected. Digital post-processing will cause OVR to assert early relative to the output data. See Figure 2-2 for LVDS timing of these bits.
WCK: Normally "Low". "High" while data from the first channel is sent out. In serialized LVDS (octal) output mode, the WCK output is asserted "High" on the MSB bit.

- 3. DDR LVDS: Two data bits are multiplexed onto each differential output pair. The output pins shown here are for the "Even bit first", which is the default setting of OUTPUT_MODE<1:0> in Address 0x62 (Register 5-19). The even data bits (Q0, Q2, Q4, Q6, Q8, Q10, Q12, Q14) appear when DCLK+ is "High". The odd data bits (Q1, Q3, Q5, Q7, Q9, Q11, Q13, Q15) appear when DCLK+ is "Low". See Addresses 0x65 (Register 5-22) and 0x68 (Register 5-25) for output polarity control. See Figures 2-2 to 2-4 for LVDS output timing diagrams.
- 4. V_{CMIN} is used for Auto-Calibration only. V_{CMIN}+ and V_{CMIN}- should be tied together always. There should be no voltage difference between the two pins. Typically both V_{CMIN}+ and V_{CMIN}- are tied to the V_{CM} output pin together, but they can be tied to another common mode voltage if external V_{CM} is used. This pin has High Z input in Shutdown, Standby and Reset modes.
- Available for the MCP37231-200 and MCP37D31-200 devices only. Leave these pins floating (No Connect) if not used.
 18-bit mode: DM1/DM+ and DM2/DM- are the last LSB bits. DM2/DM- is the LSB. In LVDS output, DM1/DM+ and DM2/DM- are the LSB pair. DM1/DM+ appears at the falling edge and DM2/DM- is at the rising edge of the DCLK+.

Other than 18-bit mode: DM1/DM+ and DM2/DM- are High Z in LVDS mode.

- 6. CAL pin stays "Low" at power-up until the first power-up calibration is completed. When the first calibration has completed, this pin has "High" output. It stays "High" until the internal calibration is restarted by hardware or Soft Reset command. In Reset mode, this pin is "Low". In Standby and Shutdown modes this pin will maintain the prior condition.
- 7. If the SPI address is dynamically controlled, the Address pin must be held constant while CS is "Low".
- 8. The phase of DCLK relative to the data output bits may be adjusted depending on the operating mode. This is controlled differently depending on the configuration of the digital post-processing, PLL and/or DLL. See also Addresses 0x52, 0x64 and 0x6D (Registers 5-7, 5-21 and 5-27) for more details.
- 9. The device is in Reset mode while this pin stays "Low". On the rising edge of RESET, the device exits the Reset mode, initializes all internal user registers to default values, and begins power-up calibration.

TABLE 1-3: DATA OUTPUT PINS FOR EACH RESOLUTION OPTION

ADC		Output Pin Name																
Resolution	Q15/ Q7+	Q14/ Q7-	Q13/ Q6+	Q12/ Q6-	Q11/ Q5+	Q10/ Q5-	Q9/ Q4+	Q8/ Q4-	Q7/ Q3+	Q6/ Q3-	Q5/ Q2+	Q4/ Q2-	Q3/ Q1+	Q2/ Q1-	Q1/ Q0+	Q0/ Q0-	DM1/ DM+	DM2 /DM-
18-bit mode		Q15 pin is MSB (bit 17), and DM2 is LSB (bit 0)																
16-bit mode		Q15 pin is MSB, and Q0 is LSB Not used (1)																
14-bit mode ⁽²⁾		Q15 pin is MSB, and Q2 is LSB Not used ⁽¹⁾																
12-bit mode		Q15 pin is MSB, and Q4 is LSB Not used ⁽¹⁾																
10-bit mode		Q15 pin is MSB, and Q6 is LSB Not used ⁽¹⁾																

Note 1: Output condition at "not-used" output pin:

'0' in CMOS mode. These pins can be grounded or left floating.
High Z state in LVDS mode.

2: The MCP37221-200 and MCP37D21-200 devices have 14-bit mode option only, while the MCP37231-200 and MCP37D31-200 have all listed resolution options.

NOTES:

2.0 ELECTRICAL SPECIFICATIONS

2.1 Absolute Maximum Ratings†

Analog and Digital Supply Voltage (AV _{DD12} , DV _{DD12})0.3V to 1.32V
Analog and Digital Supply Voltage (AV _{DD18} , DV _{DD18})
-0.3V to 1.98V
All inputs and outputs w.r.t GND–0.3V to AV_{DD18} + 0.3V
Differential Input Voltage AV _{DD18} - GND
Current at Input Pins±2 mA
Current at Output and Supply Pins±250 mA
Storage Temperature65°C to +150°C
Ambient Temp. with power applied (T _A)55°C to +125°C
Maximum Junction Temperature (T _J)+150°C
ESD protection on all pins2 kV HBM
Solder Reflow Profile

Notice†: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2.2 Electrical Specifications

TABLE 2-1: ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}$ C to +85°C, AV_{DD18} = DV_{DD18} = 1.8V, AV_{DD12} = DV_{DD12} = 1.2V, GND = 0V, SENSE = AV_{DD12}, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25°C is applied for typical value.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Power Supply Requirem	ents					·
Analog Supply Voltage	AV _{DD18}	1.71	1.8	1.89	V	
	AV _{DD12}	1.14	1.2	1.26	V	
Digital Supply Voltage	DV _{DD18}	1.71	1.8	1.89	V	Note 1
	DV _{DD12}	1.14	1.2	1.26	V	
Analog Supply Current						
Analog Supply Current	I _{DD_A18}	—	27	46	mA	at AV _{DD18} Pin
during Conversion	I _{DD_A12}		185	252	mA	at AV _{DD12} Pin
Digital Supply Current						
Digital Supply Current during Conversion	I _{DD_D12}	_	97	226	mA	at DV _{DD12} Pin
Digital I/O Current in CMOS Output Mode	I _{DD_D18}		27	—	mA	at DV _{DD18} Pin DCLK = 100 MHz
Digital I/O Current in	I _{DD D18}	Ν	leasured at	<u>.</u>	+	
LVDS Mode			55	81	mA	3.5 mA mode
		—	39	—	mA	1.8 mA mode
			69			5.4 mA mode
Supply Current during P	ower Saving Mo	odes				
During Standby Mode	I _{STANDBY_AN}		21	—	mA	Address 0x00<4:3> = 1, 1
	I _{STANDBY_DIG}	_	41	_		(Note 2)
During Shutdown Mode	I _{DD_SHDN}	—	25	_	mA	Address 0x00<7,0> = 1,1 (Note 3)

TABLE 2-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}$ C to +85°C, AV_{DD18} = DV_{DD18} = 1.8V, AV_{DD12} = DV_{DD12} = 1.2V, GND = 0V, SENSE = AV_{DD12}, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25°C is applied for typical value.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
PLL Circuit			1			
PLL Circuit Current	I _{DD_PLL}	-	21	_	mA	PLL enabled. Included in analog supply current specification.
Total Power Dissipation (lote 4)		1		1	
Power Dissipation during conversion, excluding digital I/O	P _{DISS_ADC}	_	387	689.2	mW	
Total Power Dissipation during conversion with CMOS output mode	P _{DISS_CMOS}	—	436	—	mW	f _S = 200 Msps, DCLK = 100 MHz
Total Power Dissipation	P _{DISS_LVDS}		486	842.3	mW	3.5 mA mode
during conversion with	_	—	457	_		1.8 mA mode
LVDS output mode			511			5.4 mA mode
During Standby Mode	P _{DISS_} - standby	—	80.4	—	mW	Address 0x00<4:3> = 1, 1 (Note 2)
During Shutdown Mode	P _{DISS_SHDN}	—	33	—	mW	Address 0x00<7,0> = 1, 1 (Note 3)
Power-On Reset (POR) Vo	oltage					
Threshold Voltage	VPOR		800	—	mV	Applicable to AV _{DD12} only
Hysteresis	VPOR_HYST		40	—	mV	(POR tracks AV _{DD12})
SENSE Input (Note 5), (Not	e 7)					
SENSE Input Voltage	V _{SENSE}	GND	—	AV_{DD12}	V	V _{SENSE} selects reference
SENSE Pin Input Resistance	R _{IN_SENSE}	—	500	—	Ω	To virtual ground at 0.55V. 400 mV < V _{SENSE} < 800 mV
Current Sink into SENSE Pin	I _{SENSE}	—	500	—	μΑ	SENSE = 0.8V
Reference and Common I	Node Voltages		-			
Internal Reference Voltage	V _{REF}	_	0.74	_	V	V _{SENSE} = GND
(Selected by V _{SENSE})			1.49	_		V _{SENSE} = AV _{DD12}
		_	1.86 x V _{SENSE}	_		400 mV < V _{SENSE} < 800 mV
Common Mode Voltage Output	V _{CM}	_	0.9	—	V	Available at V_{CM} pin
Reference Voltage Output	VREF1	_	0.4	_	V	V _{SENSE} = GND
(Note 7, Note 8)			0.8	—		V _{SENSE} = AV _{DD12}
			0.4 - 0.8	_		400 mV < V _{SENSE} < 800 mV
	VREF0	_	0.7	_	V	V _{SENSE} = GND
		_	1.4	—		V _{SENSE} = AV _{DD12}
		_	0.7 - 1.4	_		400 mV < V _{SENSE} < 800 mV
Bandgap Voltage Output	V _{BG}	_	0.55	_	V	Available at V _{BG} pin
Analog Inputs						
Full Scale Differential	A _{FS}		1.4875		V _{P-P}	V _{SENSE} = GND
Analog Input Range			2.975	_		V _{SENSE} = AVDD12
(Note 5, Note 7)		_	3.71875 x V _{SENSE}	_		400 mV < V _{SENSE} < 800 mV

TABLE 2-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}$ C to +85°C, AV_{DD18} = DV_{DD18} = 1.8V, AV_{DD12} = DV_{DD12} = 1.2V, GND = 0V, SENSE = AV_{DD12}. Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK PHDLY DEC<2:0> = 000, +25°C is applied for typical value.

DCLK_PHDLY_DEC<2:0> = 000, +25°C is applied for typical value.											
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions					
Analog Input Bandwidth	f _{IN_3dB}		500	_	MHz	A _{IN} = -3 dBFS					
Differential Input Capacitance	C _{IN}	5	6	7	pF	(Note 5, Note 9)					
Analog Input Channel Cross-Talk	Xtalk	—	100	—	dBc	(Note 10)					
Analog Input Leakage	I _{LI_AH}	—	—	+1	μA	V _{IH} = AV _{DD12}					
Current (A _{IN} +, A _{IN} - pins)	I _{LI_AL}	-1	_		μA	V _{IL} = GND					
ADC Conversion Rate (N	ote 11)										
Conversion Rate	f _S	40	_	200	Msps	Tested at 200 Msps					
Clock Inputs (CLK+, CLK	-) (Note 12)			•		•					
Clock Input Frequency	f _{CLK}			250	MHz	Note 5					
Differential Input Voltage	V _{CLK_IN}	300	_	800	mV _{P-P}	Note 5					
Clock Jitter	CLK _{JITTER}		175	_	f _{SRMS}	Note 5					
Clock Input Duty Cycle		49	50	51	%	Duty cycle correction disabled					
(Note 5)	-	30	50	70	%	Duty cycle correction enabled					
Input Leakage Current at CLK input pin	I _{LI_CLKH}	_		+110	μA	V _{IH} = AV _{DD12}					
	I _{LI CLKL}	-10	_	_	μA	V _{IL} = GND					
Converter Accuracy (Note	ə 6)		1								
ADC Resolution		_	_	16	bits	MCP37231/MCP37D31					
(with no missing code)		_		14	bits	MCP37221/MCP37D21					
Offset Error			±5	±61	LSB	MCP37231/MCP37D31					
	-		±1.25	±15.25	LSB	MCP37221/MCP37D21					
Gain Error	G _{ER}		±0.5	_	% of FS						
Integral Nonlinearity	INL	_	±2	_	LSB	MCP37231/MCP37D31					
			±0.5	_	LSB	MCP37221/MCP37D21					
Differential Nonlinearity	DNL	_	±0.4	_	LSB	MCP37231/MCP37D31					
			±0.1	_	LSB	MCP37221/MCP37D21					
Analog Input Common-Mode Rejection Ratio	CMRR _{DC}	_	70	_	dB	DC measurement					
DC Power Supply Rejection Ratio (PSRR)	PSRR _{DC}	—	-117	—	dB	DC measurement					
Dynamic Accuracy (Note	6)										
Spurious Free Dynamic		78	90	_	dBc	f _{IN} = 15 MHz					
Range (for all resolutions)	SFDR	77	85		dBc	f _{IN} = 70 MHz					
Signal-to-Noise Ratio	SNR	73.3	74.7	—	dBFS	MCP37231/MCP37D31					
(for all resolutions)	f _{IN} = 15 MHz		74.2		dBFS	MCP37221/MCP37D21					
	SNR		74.2	_	dBFS	MCP37231/MCP37D31					
	f _{IN} = 70 MHz	_	73.7		dBFS	MCP37221/MCP37D21					

TABLE 2-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $AV_{DD18} = DV_{DD18} = 1.8V$, $AV_{DD12} = DV_{DD12} = 1.2V$, GND = 0V, $SENSE = AV_{DD12}$, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25^{\circ}C is applied for typical value.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Effective Number of Bits	ENOB	_	12.1	_	bits	MCP37231/MCP37D31
(ENOB) (Note 13)	f _{IN} = 15 MHz	_	12	_	bits	MCP37221/MCP37D21
	ENOB	_	12	_	bits	MCP37231/MCP37D31
	f _{IN} = 70 MHz	_	11.7	_	bits	MCP37221/MCP37D21
Total Harmonic Distortion		78	89	_	dBc	f _{IN} = 15 MHz
(for all resolutions, first 13 harmonics)	THD	77	82	—	dBc	f _{IN} = 70 MHz
Worst Second or			90		dBc	f _{IN} = 15 MHz
Third Harmonic Distortion	HD2 or HD3	—	83		dBc	f _{IN} = 70 MHz
Two-Tone Intermodulation Distortion $f_{IN_1} = 15 \text{ MHz},$	IMD	_	90.5	_	dBc	A _{IN} = -7 dBFS, with two input frequencies
$f_{IN_2} = 17 \text{ MHz}$						
Digital Logic Input and O		-	ut)	1	-	1
Schmitt Trigger High- Level Input voltage	V _{IH}	0.7 DV _{DD18}		DV _{DD18}	V	
Schmidt Trigger Low- Level input voltage	V _{IL}	GND		0.3 DV _{DD18}	V	
Hysteresis of Schmitt Trigger Inputs (All digital inputs)	V _{HYST}	—	0.05 DV _{DD18}		V	
Low-Level output voltage	V _{OL}			0.3	V	I _{OL} = -3 mA, all digital I/O pins
High-Level output voltage	V _{OH}	DV _{DD18} - 0.5	1.8		V	I _{OL} = + 3mA, all digital I/O pins
Digital Data Output (CMO	S Mode)		1			
Maximum External Load Capacitance	C _{LOAD}	_	10	_	pF	From output pin to GND
Internal I/O Capacitance	C _{INT}	_	4	_	pF	Note 5
Digital Data Output (LVDS	S Mode) (Note s	5)				I
LVDS High Level Differential Output Voltage	V _{H_LVDS}	200	300	400	mV	100 Ω differential termination, LVDS bias = 3.5 mA
LVDS Low Level Differential Output Voltage	V _{L_LVDS}	-400	-300	-200	mV	100 Ω differential termination, LVDS bias = 3.5 mA
LVDS Common Mode Voltage	V _{CM_LVDS}	1	1.15	1.4	V	
Output Capacitance	C _{INT_LVDS}	_	4	_	pF	Internal capacitance from output pin to GND
Differential Load Resistance (LVDS)	R _{LVDS}	—	100	—	Ω	Across LVDS output pairs

TABLE 2-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $AV_{DD18} = DV_{DD18} = 1.8V$, $AV_{DD12} = DV_{DD12} = 1.2V$, GND = 0V, $SENSE = AV_{DD12}$, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25^{\circ}C is applied for typical value.

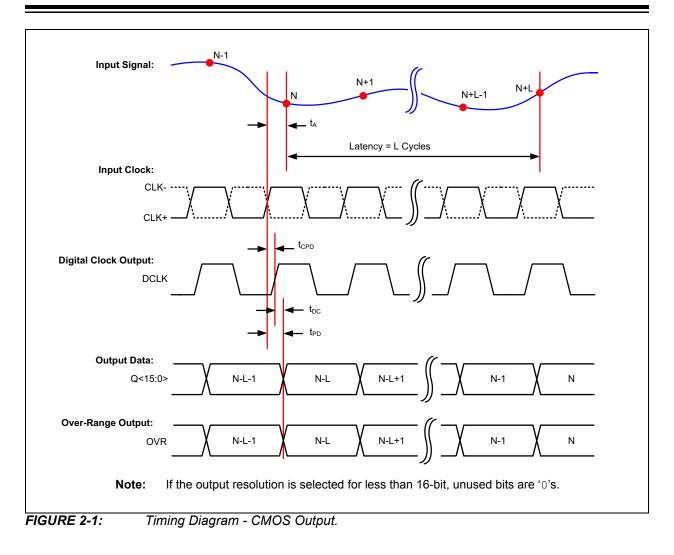
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Input Leakage Current on Digital I/O Pins								
Data Output Pins	I _{LI_DH}	—	_	+1	μA	V _{IH} = DV _{DD18}		
	I _{LI_DL}	-1		—	μA	V _{IL} = GND		
I/O Pins except Data	I _{LI_DH}	—	—	+6	μA	V _{IH} = DV _{DD18}		
Output Pins	I _{LI_DL}	-35		—	μA	V _{IL} = GND (Note 14)		

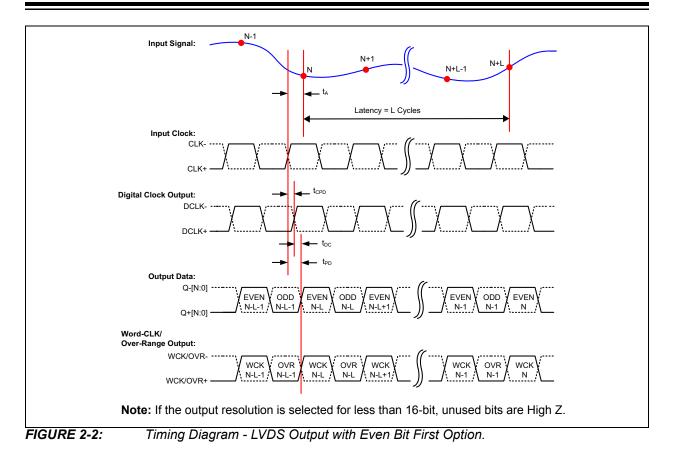
Notes:

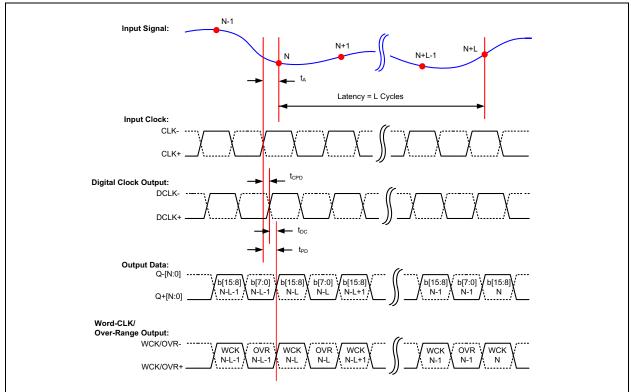
- 1. This 1.8V digital supply voltage is used for the digital I/O circuit, including SPI, CMOS and LVDS data output drivers.
- 2. Standby Mode: Most of the internal circuits are turned off except internal reference, clock, bias circuits and SPI interface.
- 3. Shutdown Mode: All circuits including reference and clock are turned-off except the SPI interface.
- 4. The total power dissipation is calculated by using the following equation:
- P_{DISS} = 1.8V x (I_{DD_A18} + I_{DD_D18}) + 1.2V x (I_{DD_A12} + I_{DD_D12}), where I_{DD_D18} is the digital I/O current for LVDS or CMOS output.
- 5. This parameter is ensured by design, and not 100% tested.
- 6. This parameter is ensured by characterization, and not 100% tested.
- 7. See Table 4-2 for details.
- 8. Differential reference voltage output at REF1+/- and REF0+/- pins. $V_{REF1} = V_{REF1} + -V_{REF1}$ -. $V_{REF0} = V_{REF0} + -V_{REF0}$ -. These references should not be driven.
- 9. Input capacitance refers to the effective capacitance between one differential input pin pair.
- 10. Channel Cross-talk is measured when A_{IN} = -1 dBFS at 12 MHz is applied on one channel while other channel(s) are terminated with 50 Ω . See Figure 3-39 for details.
- 11. ADC core conversion rate. In multi-channel mode, the conversion rate of an individual channel is f_S/N, where N is the number of input channels used.
- 12. See Figure 4-8 for details of clock input circuit.
- 13. ENOB = (SINAD 1.76)/6.02.
- 14. This leakage current is due to internal pull-up resistor.

TABLE 2-2: TIMING REQUIREMENTS - LVDS AND CMOS OUTPUTS

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}C$ to +85°C, AV_{DD18} = DV_{DD18} = 1.8V, AV_{DD12} = DV_{DD12} = 1.2V, GND = 0V, SENSE = AV_{DD12}, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25°C is applied for typical value.


Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
Aperture Delay	t _A	_	1		ns	Note 1
Out-of-Range Recovery Time	t _{OVR}	_	1	—	Clocks	Note 1
Output Clock Duty Cycle		_	50		%	Note 1
Pipeline Latency	TLATENCY		28	_	Clocks	Note 2, Note 4
System Calibration (Note 1)		L				1
Power-Up Calibration Time	T _{PCAL}		2 ²⁷	_	Clocks	First 2 ²⁷ sample clocks after power-up
Background Calibration Update Rate	T _{BCAL}		2 ³⁰	—	Clocks	Per 2 ³⁰ sample clocks after T _{PCAL}
RESET Low Time	T _{RESET}	5 — —		ns	See Figure 2-8 for details. (Note 1)	
LVDS Data Output Mode		I				
Input Clock to Output Clock Propagation Delay	t _{CPD}			3.2	ns	
Output Clock to Data Propagation Delay	t _{DC}	-0.25		+0.25	ns	Note 1
Input Clock to Output Data Propagation Delay	t _{PD}		_	3.25	ns	
Rise Time (20% to 80% of	t _{RISE_DATA}		0.25	0.5	ns	
output amplitude) (Note 2, Note 3)	t _{RISE_CLK}		0.25	0.5	ns	
Fall Time (80% to 20% of output	t _{FALL} DATA	_	0.25	0.5	ns	
amplitude) (Note 2, Note 3)	t _{FALL_CLK}	_	0.25	0.5	ns	
CMOS Data Output Mode	_					
Input Clock to Output Clock Propagation Delay	t _{CPD}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps
Output Clock to Data Propagation Delay	t _{DC}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps
Input Clock to Output Data Propagation Delay	t _{PD}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps
Rise Time (20% to 80% of output amplitude)	t _{RISE_DATA}	TBD			ns	DCLK=100 MHz, f _s = 200 Msps
	t _{RISE_CLK}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps
Fall Time (80% to 20% of output amplitude)	t _{FALL_DATA}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps
	t _{FALL_CLK}		TBD		ns	DCLK=100 MHz, f _s = 200 Msps


Note 1: This parameter is ensured by design, but not tested 100% in production.


2: This parameter is ensured by characterization, but not tested 100% in production.

3: t_{RISE} = approximately less than 10% of duty cycle.

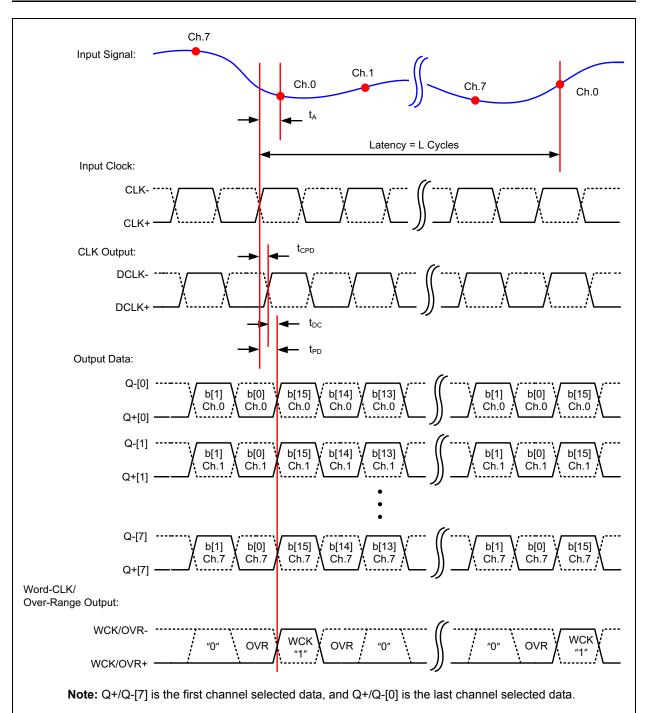

4: Output latency is measured without using decimation filter and digital down-converter options.

FIGURE 2-3: Timing Diagram - LVDS Output with MSB Byte First Option. This output option is available for 16-bit mode only.

FIGURE 2-4: Timing Diagram - LVDS Serial Output in Octal-Channel Mode. This output is available for octal-channel with 16-bit mode only. Note that although the eight input channels are sampled sequentially (auto-scan with 1 cycle separation), all channels are output simultaneously with the MSB (bit 15) synchronized with the rising edge of WCK.

TABLE 2-3: SPI SERIAL INTERFACE TIMING SPECIFICATIONS

Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $AV_{DD18} = DV_{DD18} = 1.8V$, $AV_{DD12} = DV_{DD12} = 1.2V$, GND = 0V, $SENSE = AV_{DD12}$, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25^{\circ}C is applied for typical value. All timings are measured at 50%.

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions				
Serial Clock frequency, f _{SCK} = 50 MHz										
CS setup time	t _{CSS}	10	_	_	ns					
CS hold time	t _{CSH}	20	_	_	ns					
CS disable time	t _{CSD}	20			ns					
Data setup time	t _{SU}	2	_		ns					
Data hold time	t _{HD}	4		—	ns					
Serial Clock high time	t _{HI}	8	—	—	ns					
Serial Clock low time	t _{LO}	8	_	—	ns	Note 1				
Serial Clock delay time	t _{CLD}	20		—	ns					
Serial Clock enable time	t _{CLE}	20		—	ns					
Output valid from SCK low	t _{DO}	_	_	20	ns					
Output disable time	t _{DIS}	_	—	10	ns	Note 1				

Note 1: This parameter is ensured by design, and not 100% tested.

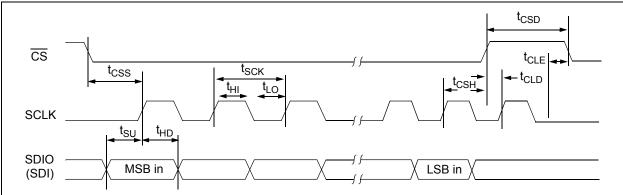


FIGURE 2-5: SPI Serial Input Timing Diagram.

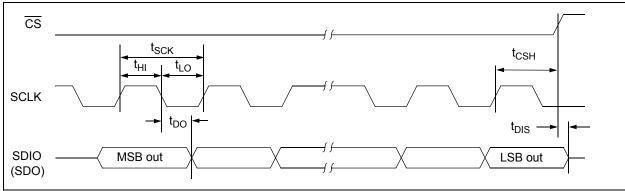
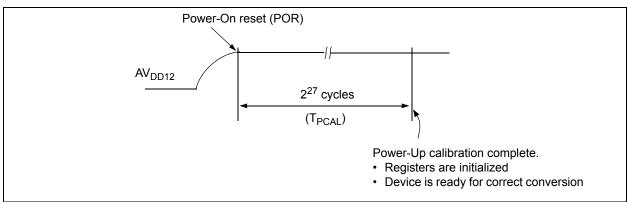
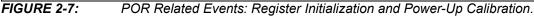
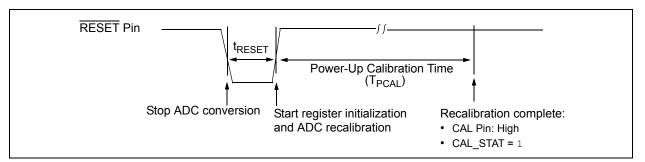





FIGURE 2-6: SPI Serial Output Timing Diagram.

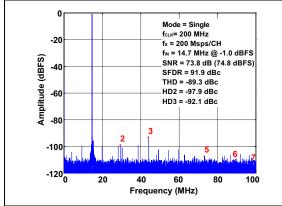
FIGURE 2-8: RESET Pin Timing Diagram.

TABLE 2-4: TEMPERATURE CHARACTERISTICS

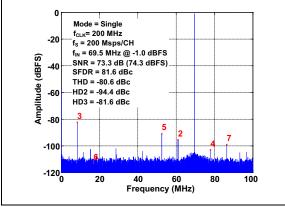
Electrical Specifications: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}$ C to +85°C, AV_{DD18} = DV_{DD18} = 1.8V, AV_{DD12} = DV_{DD12} = 1.2V, GND = 0V, SENSE = AV_{DD12}, Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100 Ω termination, LVDS driver current setting = 3.5 mA, DCLK_PHDLY_DEC<2:0> = 000, +25°C is applied for typical value.

	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ran	ges (Note 1)						
Operating Temperating	ature Range	T _A	-40	—	+85	°C	
Thermal Package							
121L Ball-TFBGA	Junction-to-Ambient Thermal Resistance	θ_{JA}		40.2	_	°C/W	
(8mm x 8mm) Ju	Junction-to-Case Thermal Resistance	θ_{JC}		8.4	_	°C/W	
124L – VTLA	Junction-to-Ambient Thermal Resistance	θ_{JA}		21		°C/W	
(9mm x 9mm)	Junction-to-Case (top) Thermal Resistance	θ^{JC}		8.7	_	°C/W	

Note 1: Maximum allowed power-dissipation (P_{DMAX}) = ($T_{JMAX} - T_A$)/ θ_{JA} .

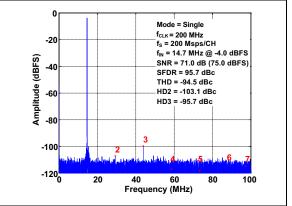

2: This parameter value is achieved by package simulations.

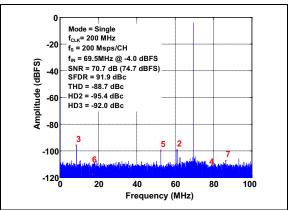
NOTES:

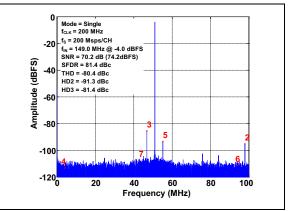

3.0 TYPICAL PERFORMANCE CURVES

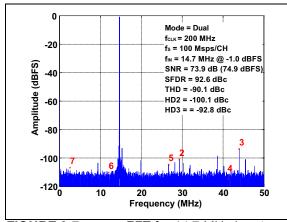
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

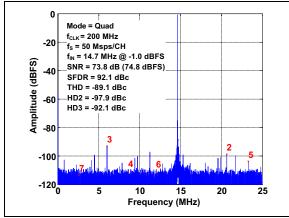
Note: Unless otherwise specified, all parameters apply for $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $AV_{DD18} = DV_{DD18} = 1.8V$, $AV_{DD12} = DV_{DD12} = 1.2V$, GND = 0V, SENSE = AV_{DD12} , Single-channel mode, Differential Analog Input (A_{IN}) = Sine wave with amplitude of -1 dBFS, $f_{IN} = 70$ MHz, Clock Input = 200 MHz, $f_S = 200$ Msps (ADC Core), Resolution = 16-bit, PLL and decimation filters are disabled.

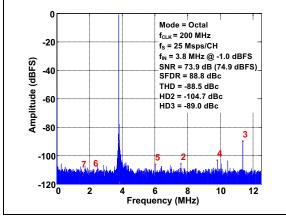

FIGURE 3-1: FFT for 14.7 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -1$ dBFS.

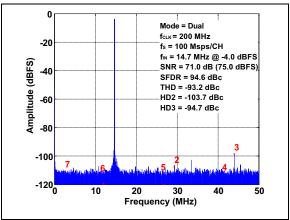

FIGURE 3-2: FFT for 69.5 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -1$ dBFS.

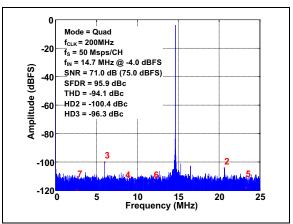

FIGURE 3-3: FFT for 149 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -1$ dBFS.

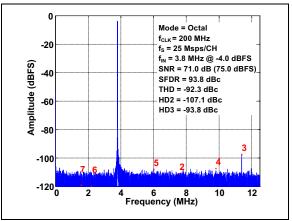

FIGURE 3-4: FFT for 14.7 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -4$ dBFS.

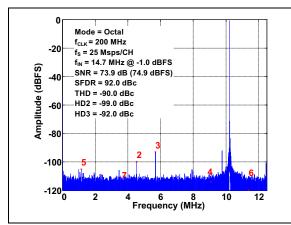

FIGURE 3-5: FFT for 69.5 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -4$ dBFS.

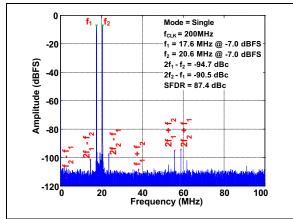

FIGURE 3-6: FFT for 149 MHz Input Signal: $f_S = 200$ Msps/Ch., $A_{IN} = -4$ dBFS.


FIGURE 3-7: FFT for 14.7 MHz Input Signal: $f_S = 100$ Msps/Ch., Dual, $A_{IN} = -1$ dBFS.


FIGURE 3-8: FFT for 14.7 MHz Input Signal: $f_S = 50$ Msps/Ch., Quad, $A_{IN} = -1$ dBFS.


FIGURE 3-9: FFT for 3.8 MHz Input Signal: $f_S = 25$ Msps/Ch., Octal, $A_{IN} = -1$ dBFS.


FIGURE 3-10: FFT for 14.7 MHz Input Signal: $f_S = 100$ Msps/Ch., Dual, $A_{IN} = -4$ dBFS.


FIGURE 3-11: FFT for 14.7 MHz Input Signal: $f_S = 50$ Msps/Ch., Quad, $A_{IN} = -4$ dBFS.

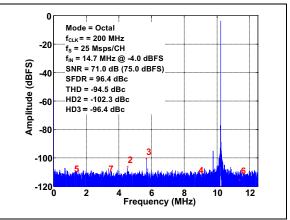
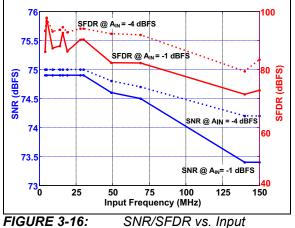
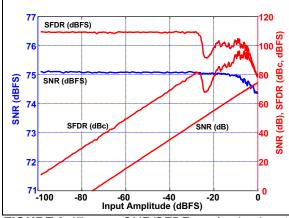
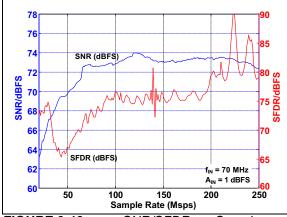
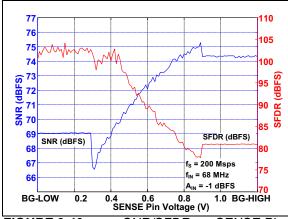

FIGURE 3-12: FFT for 3.8 MHz Input Signal: $f_S = 25$ Msps/Ch., Octal, $A_{IN} = -4$ dBFS.

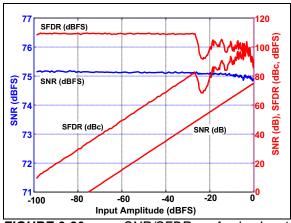
FIGURE 3-13: FFT for 14.7 MHz Input Signal: $f_S = 25$ Msps/Ch., Octal, $A_{IN} = -1$ dBFS.

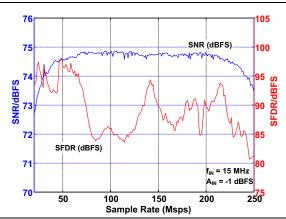
FIGURE 3-14: Two-Tone FFT: $f_{IN1} = 17.6 \text{ MHz}$ and $f_{IN2} = 20.6 \text{ MHz}$, $A_{IN} = -7 \text{ dBFS}$ per Tone, $f_{S} = 200 \text{ Msps}$.

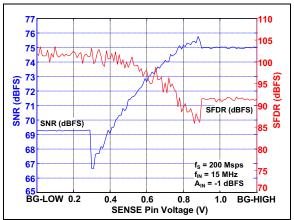
FIGURE 3-15: FFT for 14.7 MHz Input Signal: $f_S = 25$ Msps/Ch., Octal, $A_{IN} = -4$ dBFS.

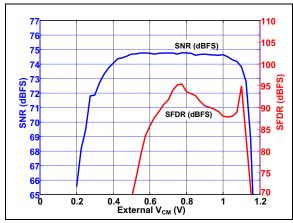




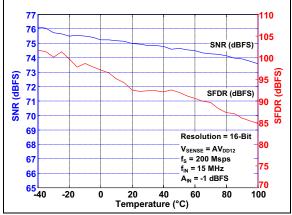

FIGURE 3-16: SNR/SFDR vs. Inpl Frequency.

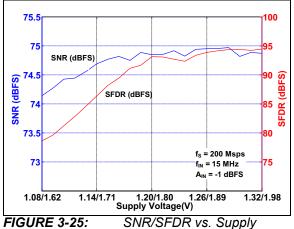

FIGURE 3-17: SNR/SFDR vs. Analog Input Amplitude: f_S = 200 Msps, f_{IN} = 70 MHz.

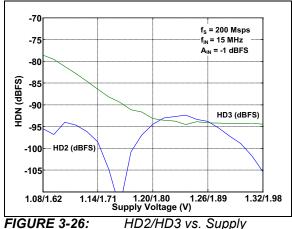

FIGURE 3-18: SNR/SFDR vs. Sample Rate (Msps): $f_{IN} = 70$ MHz.

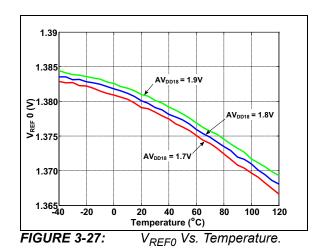

FIGURE 3-19: SNR/SFDR vs. SENSE Pin Voltage: f_S = 200 Msps, f_{IN} = 68 MHz.

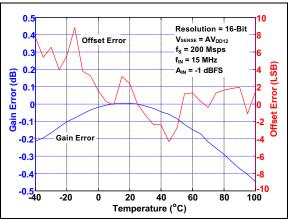

FIGURE 3-20: SNR/SFDR vs. Analog Input Amplitude: f_S = 200 Msps, f_{IN} = 15 MHz.


FIGURE 3-21: SNR/SFDR vs. Sample Rate (Msps): $f_{IN} = 15$ MHz.


FIGURE 3-22: SNR/SFDR vs. SENSE Pin Voltage: f_S = 200 Msps, f_{IN} = 15 MHz.


FIGURE 3-23: SNR/SFDR vs. V_{CM} Voltage (Externally Applied): $f_S = 200$ Msps, $f_{IN} = 15$ MHz.


FIGURE 3-24: SNR/SFDR vs. Temperature: $f_S = 200$ Msps, $f_{IN} = 15$ MHz.



Voltage: $f_S = 200 \text{ Msps}$, $f_{IN} = 15 \text{ MHz}$.

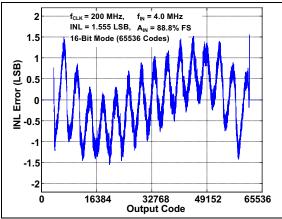
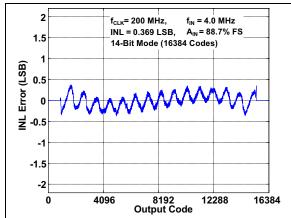
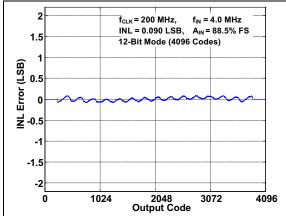
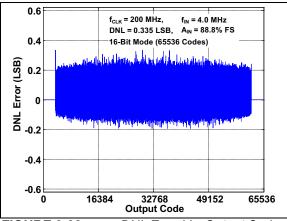
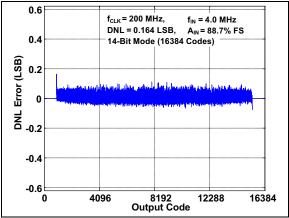


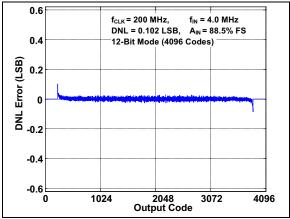
FIGURE 3-26: HD2/HD3 vs. Supply Voltage: f_S = 200 Msps, f_{IN} = 15 MHz.




FIGURE 3-28: Gain and Offset Error Drifts Vs. Temperature Using Internal Reference, with Respect to $25 \,^{\circ}$ C: $f_{S} = 200 \,$ Msps.


FIGURE 3-29: INL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 16-bit Mode.$


FIGURE 3-30: INL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 14-bit Mode.$


FIGURE 3-31: INL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 12-bit \text{ Mode}.$

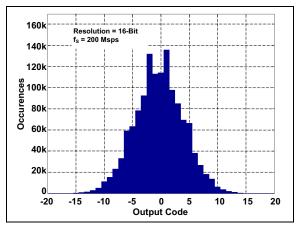
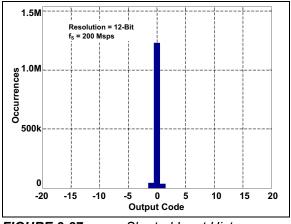
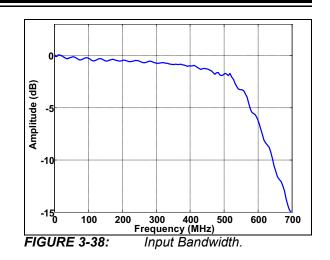

FIGURE 3-32: DNL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 16-bit Mode.$

FIGURE 3-33: DNL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 14-bit Mode.$


FIGURE 3-34: DNL Error Vs. Output Code: $f_S = 200 \text{ Msps}, f_{IN} = 4 \text{ MHz}, 12\text{-bit Mode}.$


FIGURE 3-35: Shorted Input Histogram: $f_S = 200$ Msps, Resolution = 16-Bit Shorted Input.

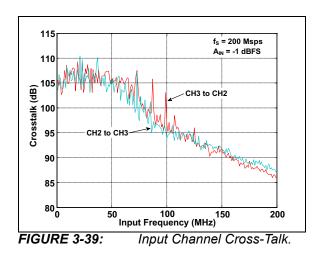


FIGURE 3-36: Shorted Input Histogram: $f_S = 200$ Msps, Resolution = 14-Bit.

FIGURE 3-37: Shorted Input Histogram: $f_S = 200$ Msps, Resolution = 12-bit.

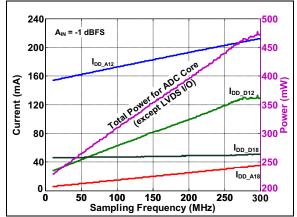


FIGURE 3-40: Power Consumption vs. Sampling Frequency (LVDS Mode).

NOTES:

4.0 THEORY OF OPERATION

The MCP37231/21-200 and MCP37D31/21-200 device family is a low-power, 16/14-bit, 200 Msps analog-to-digital converter (ADC) with built-in features including harmonic distortion correction (HDC), DAC noise cancellation (DNC), dynamic element matching (DEM) and flash error calibration.

Depending on the product number selection, the device offers various built-in digital signal post-processing features, such as FIR decimation filters, digital downconversion (DDC), fractional delay recovery (FDR), continuous CW beamforming, and digital gain and offset correction. These built-in advanced digital signal post-processing sub-blocks, which are individually controlled, can be used for various special applications such as I/Q demodulation, digital down-conversion, and ultrasound imaging.

The device's operational modes and feature sets are configured using the user-programmable internal registers. All user registers, except the factory controlled registers, are re-programmable using the SPI interface. When the device is first powered-up, the device is running with default settings. The user can select external clock input or on-board phase-locked loop (PLL) output as the input-sampling frequency by setting the clock source selection bit. In multi-channel mode, the input channel selection and MUX scan order are user-configurable, and the inputs are sequentially multiplexed by the input MUX defined by the scan order.

The device samples the analog input on the rising edge of the clock. The digital output code is available after 28 clock cycles of data latency. Latency will increase if any of the various digital signal post-processing (DSPP) options are enabled. The output data can be coded in two's complement or offset binary format, and randomized using the user option. Data can be output using either the CMOS or LVDS (Low Voltage Differential Signaling) interface. Serialized LVDS output is also available in 16-bit octalchannel mode. In this mode, each input channel is output serially over a unique LVDS pair.

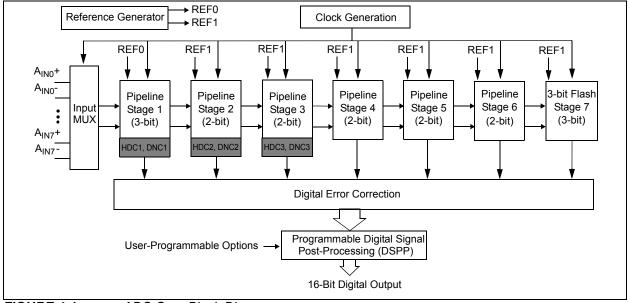

4.1 ADC Core Architecture

Figure 4-1 shows the simplified block diagram of the ADC core. The first stage consists of a 17-level flash ADC, multi-level digital-to-analog converter (DAC) and a residue amplifier with a gain of 8. Stages 2 to 6 consist of a 9-level (3-bit) flash ADC, multi-level DAC and a residue amplifier with a gain of 4. The last stage is a 9-level 3-bit flash ADC. Dither is added in each of the first three stages. The digital outputs from all seven stages are combined in a digital error correction logic block and digitally processed for the final output.

The first three stages include patented digital calibration features:

- Harmonic Distortion Correction (HDC) algorithm that digitally measures and cancels ADC errors arising from distortions introduced by the residue amplifiers
- DAC Noise Cancellation (DNC) algorithm that corrects DAC's nonlinearity errors
- Dynamic Element Matching (DEM) which randomizes DAC errors thereby converting harmonic distortion to white noise

These digital correction algorithms are first applied during the power-on reset sequence, and then operate in the background during normal operation of the pipelined ADC. These algorithms automatically track and correct any environmental changes in the ADC. More details of the system correction algorithms are shown in **Section 4.16 "System Calibration"**.

4.2 Supply Voltage (DV_{DD}, AV_{DD}, GND)

The device operates from two sets of supplies and a common ground:

- Digital Supplies (DV_{DD}) for the digital section: 1.8V and 1.2V
- Analog Supplies (AV_{DD}) for the analog section: 1.8V and 1.2V
- Ground (GND): Common ground for both digital and analog sections.

The supply pins require an appropriate bypass capacitor (ceramic) to attenuate high-frequency noise present in most application environments. The ground pins provide the current return path. These ground pins must connect to the ground plane of the PCB through a low-impedance connection. A ferrite bead can be used to separate analog and digital supply lines if a common power supply is used for both analog and digital sections.

4.3 Input Sample Rate

In single-channel mode, the device samples the input at full speed. In multi-channel mode, the core ADC is multiplexed between the selected channels. The resulting effective sample rate per channel is given by:

EQUATION 4-1: SAMPLE RATE PER CHANNEL

Sample Rate/Channel=	Full ADC Sample Rate(fs) Number of Channel Used
	Number of Chunnel Oseu

For example, with 200 Msps operation, the input is sampled at the full 200 Msps rate if a single channel is used, or at 25 Msps per channel if all eight channels are used.

4.4 Analog Input Channel Selection

The analog input is auto-multiplexed sequentially as defined by the channel-order selection bit setting. The user can configure the input MUX using the following registers:

- SEL_NCH<2:0> in Address 0x01 (Register 5-2): Select the total number of input channels to be used.
- Address 0x7D 0x7F (Registers 5-38 5-40): Select auto-scan channel order.

The user can select up to eight input channels. If all eight input channels are to be used, SEL_NCH<2:0> is set to 000, and the input channel sampling order is set using Addresses 0x7D - 0x7F (Registers 5-38 - 5-40).

Regardless of how many channels are selected, all eight channels must be programmed in Addresses 0x7D - 0x7F (Registers 5-38 - 5-40) without duplication: Program the addresses of the selected channels in sequential order followed by unused channels. The order of unused channels has no meaning. The device samples the first N-Channels listed in Addresses 0x7D - 0x7F (Registers 5-38 - 5-40) sequentially, where N is the total number of channels to be used, defined by the SEL_NCH<2:0>. Table 4-1 shows examples of input channel selection using Addresses 0x7D - 0x7F (Registers 5-38 - 5-40).

No. of Channels (Note 1)	Selected Channels	Channel Order (Note 2)	Address 0x7F			Address 0x7E						Address 0x7D														
			b 7							b 0	b 7							b 0	b 7							b 0
			Channel Order Bit Settings																							
			5t	h C	h.	4t	h C	h.	6t	h C	h.	3r	d C	h.	7t	h C	h.	2n	d C	h.	8t	h C	h.	15	st C	h.
8	[0 1 2 3 4 5 6 7]	[0 1 2 3 4 5 6 7] (Default)	1	0	0	0	1	1	1	0	1	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0
_	[76543210]	[76543210]	0	1	1	1	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	0	0	1	1	1
	[0 2 4 6 1 3 5 7]	[0 2 4 6 1 3 5 7]	0	0	1	1	1	0	0	1	1	1	0	0	1	0	1	0	1	0	1	1	1	0	0	0
	[1 3 5 7 0 2 4 6]	[1 3 5 7 0 2 4 6]	0	0	0	1	1	1	0	1	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0	1

TABLE 4-1: EXAMPLE: CHANNEL ORDER SELECTION USING ADDRESSES 0X7D – 0X7F

Note 1: Defined by SEL_NCH<2:0> in Address 0x01 (Register 5-2).

2: Individual channel order should not be repeated. Unused channels are still assigned after the selected channel address. The order of the unused channel address has no meaning since they are not used.

TABLE 4-1: EXAMPLE: CHANNEL ORDER SELECTION USING ADDRESSES 0X7D – 0X7F (CONTINUED)

No. of Channels (Note 1)Channels (Note 2)Address 0xrFAddress 0xrFAddress 0xrFAddress 0xrFAddress 0xrFAddress 0xrFAddress 0xrFAddress 0xrF7 </th <th></th> <th>(CONT</th> <th>INUED)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th>		(CONT	INUED)									1															
rrr	Channels		Order			Ado	Ires	s ()x7I	=				Add	lres	s 0	x7E	3				Add	lres	ss 0	x7C)	
Term Channel Order Bit Settings V Channel Order Bit Settings Term Order Bit Settings Note: Settings 10 12 3 4 5 6 (7) 1 1 1 Settings Note: Settings Channel Order Bit Settings Note: Settings Note: Settings Channel Order Bit Settings Settings Channel Order Bit Settings Channel Order Bit Settings Channel Order Bit Settings Channel Order Bit Settings Settings Channel Order Bit Settings Order Bit Settings Channel Order Bit Settings Chanel Order Bit Settings																											
Immune thmme <				1							U	1	C	har	ne		rdei	r Bi			nas						0
11				U	Inused 4			4th Ch. 5th Ch.		h.							-				h.	15	t C	h.			
Image: Image	7	[0 1 2 3 4 5 6]	[0 1 2 3 4 5 6 7]	-					1					1						1	1				_	-	
Image: marting and state in the state		[0 2 4 6 1 3 5]	[0 2 4 6 1 3 5 7]										1			0	1		0	1		1		1	0	0	0
6 10 12346 10 123467 1 <													С	har	nne	10	rde	r Bi	t S	etti	ngs	;					_
Image:	0			Uı	nus	ed	Ur	านร	ed	4t	h C	h.	3r	d C	h.	5t	h C	h.	2r	nd C	Ch.	6t	h C	h.	1s	t C	h.
b b	6	[0 1 2 3 4 5]	[0 1 2 3 4 5 6 7]	1	1	1	1	1	0	0	1	1	0	1	0	1	0	0	0	0	1	1	0	1	0	0	0
Image Image <t< td=""><td></td><td>[0 2 4 6 1 3]</td><td>[0 2 4 6 1 3 5 7]</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td></t<>		[0 2 4 6 1 3]	[0 2 4 6 1 3 5 7]	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0
 													С	har	nne	10	rde	r Bi	t S	etti	ngs	;					
	5			Uı	nus	ed	Ur	านร	ed	Ur	านร	ed	3r	d C	h.	4t	h C	h.	2r	nd C	Ch.	5t	h C	h.	1s	t Cl	h.
A I	5	[0 1 2 3 4]	[0 1 2 3 4 5 6 7]	1	1	0	1	0	1	1	1	1	0	1	0	0	1	1	0	0	1	1	0	0	0	0	0
A interval interv		[0 2 4 6 1]	[0 2 4 6 1 3 5 7]	1	0	1	0	1	1	1	1	1	1	0	0	1	1	0	0	1	0	0	0	1	0	0	0
4 [[0123] [01234567] [1] [1] [1] [0] [0246] [0																			-		-	-					
A			1	-	nus	ed	Ur	านร	ed	Ur	านร	ed	Ur	านร	ed	3r	d C	h.	2r	nd C	Ch.	4t	h C	h.	1s	r	n.
1 0 2 4 6 1 0 2 4 6 1 3 5 7 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1	4						-			-						-			Ť			Ť			_		-
I I </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>				-		-	-						-					-								-	-
3 Image: bold for the formation of the formation o					-		-			_			-			1	0	0	0	1	0	1	1	0	-		0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[1357]	[1 3 5 7 0 2 4 6]	1	0	0	0	1	0	1	1	0	Ŭ	Ŭ	Ŭ		0	1	0	1	1	1	1	1	0	0	1
3 [012] [01234567] 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1					2110	ad	11,		od	11,		od	_			-					<u> </u>	-	4 0	'n	10		h
I I	3	[0 1 2]	[0 1 2 3 4 5 6 7]	-				1	1								1	1		1						r	
Image: condition of the state of t										-			-							-		-			-		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11	[]	0	-	-	U	U	-	-	U	-	_	_	-	_			÷		Ŭ	-	U	U	0	U	0
2 [0 1] [0 12 3 4 5 6 7] 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1				Uı	nus	ed	Ur	านร	ed	Ur	านร	ed											d C	ch.	1s	t C	h.
[23] [23014567] 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 <		[0 1]	[0 1 2 3 4 5 6 7]		1	1	1	0	0	1	1	0	0	1	1	1	1	1		1	1			1		- 1	
Image: Second	2	[2 3]	[23014567]	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1	0	0	0	0	1	1	0	1	0
Image: Notation of the state index in		[4 5]	[45012367]	0	1	1	0	1	0	1	1	0	0	0	1	1	0	1	0	0	0	1	0	1	1	0	0
Image: Normal bar		[6 7]	[6 7 0 1 2 3 4 5]	0	1	1	0	1	0	1	0	0	0	0	1	1	0	1	0	0	0	1	1	1	1	1	0
[0] [01234567] 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>С</th><th>har</th><th>nne</th><th>10</th><th>rde</th><th>r Bi</th><th>t S</th><th>etti</th><th>ngs</th><th>;</th><th></th><th></th><th></th><th></th><th></th></t<>													С	har	nne	10	rde	r Bi	t S	etti	ngs	;					
[1] [10234567] 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 <t< th=""><th></th><th></th><th></th><th>Uı</th><th>nus</th><th>ed</th><th>Ur</th><th>nus</th><th>ed</th><th>Ur</th><th>านร</th><th>ed</th><th>Ur</th><th>านร</th><th>ed</th><th>Ur</th><th>nus</th><th>ed</th><th>U</th><th>านร</th><th>ed</th><th>U</th><th>านร</th><th>ed</th><th>1s</th><th>t Cl</th><th>h.</th></t<>				Uı	nus	ed	Ur	nus	ed	Ur	านร	ed	Ur	านร	ed	Ur	nus	ed	U	านร	ed	U	านร	ed	1s	t Cl	h.
[2] [20134567] 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 <t< td=""><td></td><td>[0]</td><td>[0 1 2 3 4 5 6 7]</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td></t<>		[0]	[0 1 2 3 4 5 6 7]	1	0	0	0	1	1	1	0	1	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0
1 [30124567] 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1				1	0	0	0	1	1	1	0	1	0	1	0	1	1	0	0	0	0	1	1	1	0	0	1
[3] [30124567] 1 0 0 1 0 1 0 1 1 1 1 0 0 1 <t< td=""><td>1</td><td></td><td>• •</td><td></td><td></td><td>0</td><td>0</td><td></td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td></t<>	1		• •			0	0		1	1	0	1	0	0	1	1	1	0	0	0	0		1	1	0	1	0
[5] [50123467] 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 <t< td=""><td rowspan="3"></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>							-				-		-					-		-	-				-		
[6] [60123457] 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1							-		-		-		-							-							-
				-																-							
				Ŭ																							
Note 1: Defined by SEL NCH<2:0> in Address 0x01 (Register 5-2).	Noto 1:												υ	υ	1	Ţ	U	1	0	0	0	1		0	1	1	1

Note 1: Defined by SEL_NCH<2:0> in Address 0x01 (Register 5-2).

2: Individual channel order should not be repeated. Unused channels are still assigned after the selected channel address. The order of the unused channel address has no meaning since they are not used.

4.5 Analog Input Circuit

The analog input of the MCP37231/21-200 and MCP37D31/21-200 is a differential CMOS switched capacitor sample-and-hold circuit. Figure 4-2 shows the equivalent input structure of the device.

The input impedance of the device is mostly governed by the input sampling capacitor ($C_S = 6 \text{ pF}$) and input sampling frequency (f_S). The performance of the device can be affected by the input signal conditioning network (see Figure 4-3). The analog input signal source must have sufficiently low output impedance to charge the sampling capacitors ($C_S = 6 \text{ pF}$) within one clock cycle. A small external resistor (e.g. 5Ω) in series with each input is recommended as it helps reducing transient currents and dampens ringing behavior. A small differential shunt capacitor at the chip side of the resistors may be used to provide dynamic charging currents and may improve performance. The resistors form a low-pass filter with the capacitor, and their values must be determined by application requirements and input frequency.

The V_{CM} pin provides a common-mode voltage reference (0.9V), which can be used for a center-tap voltage of an RF transformer or balun. If the V_{CM} pin voltage is not used, the user may create a common mode voltage at mid-supply level (AV_{DD18}/2).

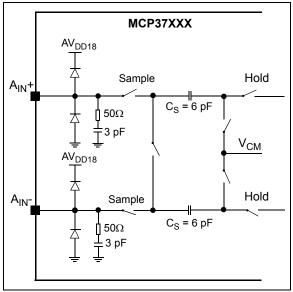


FIGURE 4-2:

Equivalent Input Circuit.

4.5.1 ANALOG INPUT DRIVING CIRCUIT4.5.1.1 Differential Input Configuration

The device achieves optimum performance when the input is driven differentially, where common-mode noise immunity and even-order harmonic rejection are significantly improved. If the input is single ended, it must be converted to a differential signal in order to properly drive the ADC input. The differential conversion and common mode application can be accomplished by using an RF transformer or balun with a center-tap. Additionally, one or more anti-aliasing filters may be added for optimal noise performance and should be tuned such that the corner frequency is appropriate for the system.

Figure 4-3 shows an example of the differential input circuit with transformer. Note that the input driving circuits are terminated by 50Ω near the ADC side through a pair of 25Ω resistors from each input to the common-mode (V_{CM}) from the device. The RF transformer must be carefully selected to avoid artificial high harmonic distortion. The transformer can be damaged due to excessive input power, or due to an RF input being applied while the MCP37XXX is powered off. Figure 4-4 shows an input configuration example when a differential output amplifier is used.

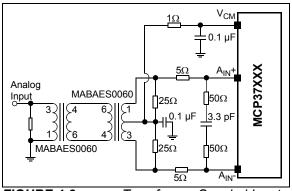
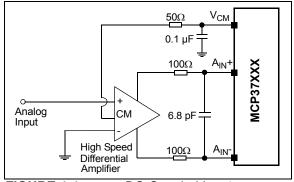



FIGURE 4-3: Transformer Coupled Input Configuration.

FIGURE 4-4: DC-Coupled Input Configuration with Preamplifier: the external signal conditioning circuit and associated component values are for reference only. Typically the amplifier manufacturer provides reference circuits and component values.

4.5.1.2 Single-Ended Input Configuration

SNR and SFDR performance degrades significantly when the device is operated in a single-ended configuration. The unused negative side of the input should be AC coupled to ground using a capacitor. Figure 4-5 shows an example of a single-ended input configuration.

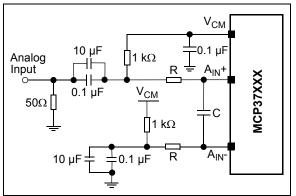
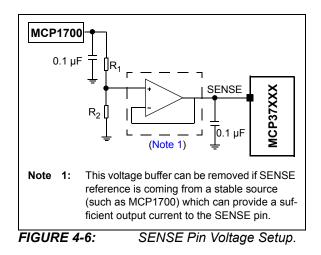



FIGURE 4-5: Singled-Ended Input Configuration.

4.5.2 SENSE VOLTAGE AND INPUT FULL-SCALE RANGE

The device has a bandgap-based differential internal reference voltage. The SENSE pin voltage is used to select the internal reference voltage source and configures the input full-scale range. A comparator detects the SENSE pin voltage and configures the full-scale input range into one of the possible three modes which are summarized in Table 4-2. Figure 4-6 shows an example of how the SENSE pin should be driven.

The SENSE pin can sink or source currents as high as $500 \ \mu$ A across all operational conditions. Therefore, it may require a driver circuit, unless the SENSE reference source provides sufficient output current.

TABLE 4-2: SENSE PIN VOLTAGE AND INPUT FULL-SCALE RANGE

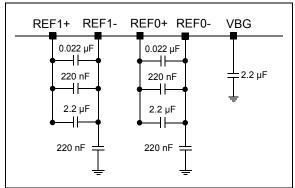
SENSE Pin Voltage (V _{SENSE})	Selected Reference Voltage (V _{REF})	Full-Scale Input Voltage Range (A _{FS})	Condition
Tied to GND	0.74375V	1.4875 V _{P-P} (Note 1)	Low Reference Mode (Note 4)
0.4V – 0.8 V	0.74375V – 1.4875V	1.4875 V _{P-P} to 2.975 V _{P-P} (<mark>Note 2</mark>)	Bandgap Mode (Note 5)
Tied to AV _{DD} 12	1.4875V	2.975 V _{P-P} (Note 3)	High Reference Mode (Note 4)

Note 1: $A_{FS} = (17/16) \times 1.4 V_{P-P} = 1.487 V_{P-P}$

2: $A_{FS} = (17/16) \times 2.8 V_{P-P} \times (V_{SENSE})/0.8 = 1.4875 V_{P-P}$ to 2.975 V_{P-P} .

3: A_{FS} = (17/16) x 2.8 V_{P-P} = 2.975 V_{P-P}.

4: Based on internal bandgap voltage.


5: Based on V_{SENSE}.

4.5.3 DECOUPLING CIRCUITS FOR INTERNAL VOLTAGE REFERENCE AND BAND GAP OUTPUT

The device has two internal voltage references: REF0 and REF1. REF0 is the internal voltage reference for the ADC input stage, and REF1 is for all remaining stages. These internal references require external capacitors for stable operation. These capacitors are embedded in the TFBGA-121 package. In the VTLA-124 package, the user must provide these external capacitors on the PCB at the REF1+/REF1- and REF0+/REF0- pins.

Figure 4-7 shows the recommended circuit for the REF1 and REF0 pins for VTLA-124 package. Three parallel capacitors are recommended between the positive and negative reference pins. The negative reference pin is then grounded through a 220 nF capacitor. The values for the parallel capacitors are 22 nF, 220 nF and 2.2 μ F. The capacitors should be placed as close to the ADC as possible with short and thick traces. Vias on the PCB are not recommended for this reference pin circuit.

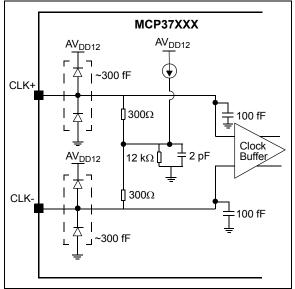
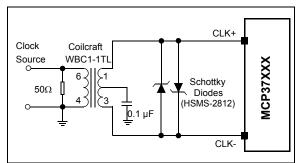

The internal band gap voltage output, which is a part of the reference circuit, is also available at the V_{BG} pin. This pin needs an external decoupling capacitor (2.2 μ F) for VTLA-124 package as shown in Figure 4-7. In the TFBGA-121 package, the decoupling capacitor is also embedded the same as the reference. Therefore, this circuit is not required.

FIGURE 4-7: External Circuit for Voltage Reference and V_{BG} pins for VTLA-124 Package. Note that this external circuit is not required for TFBGA-121 package.


4.6 External Clock Input

For optimum performance, the MCP37XXX requires a low jitter differential clock input at CLK+ and CLK- pins. Figure 4-8 shows the equivalent clock input circuit.

FIGURE 4-8: Equivalent Clock Input Circuit.

The clock input amplitude range is between 300 mV_{P-P} and 800 mV_{P-P}. When a single-ended clock source is used, an RF transformer or balun can be used to convert the clock into a differential signal for the best ADC performance. Figure 4-9 shows an example clock input circuit. The common-mode voltage is internally generated, and a center-tap is not required. The back-to-back Schottky diodes across the transformer secondary limit the clock amplitude to approximately 0.8 V_{P-P} differential. This limiter helps preventing large voltage swings of the clock while preserving the high slew rate that is critical for low jitter.

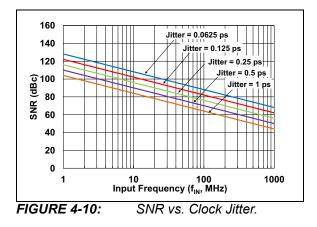
FIGURE 4-9: Transformer-Coupled Differential Clock Input Configuration.

4.6.1 CLOCK JITTER AND SNR PERFORMANCE

In a high speed-pipelined ADC, the SNR performance is directly limited by linearity, thermal noise and clock jitter. Thermal noise is independent of input clock and dominant at low input frequency. On the other hand, the clock jitter becomes a dominant term as input frequency increases. Equation 4-2 shows the SNR jitter component, which is expressed in terms of the input frequency ($f_{\rm IN}$) and the total amount of clock jitter ($T_{\rm Jitter}$), where $T_{\rm Jitter}$ is a sum of two components:

- Input clock jitter (phase noise)
- Internal aperture jitter (due to noise of the clock input buffer).

EQUATION 4-2: SNR VS.CLOCK JITTER


$$SNR_{Jitter}(dBc) = -20 \times log_{10}(2\pi \times f_{IN} \times T_{Jitter})$$

where the total jitter term (T_{iitter}) is given by:

$$T_{Jitter} = \sqrt{(t_{Jitter, Clock Input)}^2 + (t_{Aperture, ADC})^2}$$

The clock jitter and aperture jitter are not statistically correlated to each other. The clock jitter can be minimized by using a high-quality clock source and jitter cleaners as well as a band-pass filter at the external clock input, while a faster clock slew rate improves the ADC aperture jitter.

With a fixed amount of clock jitter, the SNR degrades as the input frequency increases. This is illustrated in Figure 4-10. If the input frequency increases from 10 MHz to 20 MHz, the maximum achievable SNR degrades about 6 dB. For every decade (e.g. 10 MHz to 100 MHz), the maximum achievable SNR due to clock jitter is reduced by 20 dB.

4.6.2 CLOCK DUTY CYCLE

The ADC performance is sensitive to the clock duty cycle. The ADC achieves optimum performance with 50% duty cycle and all performance characteristics are ensured when the duty cycle is 50% with \pm 1% tolerance. This device has an internal clock duty cycle correction circuit, which can be enabled by using the EN_DUTY bit setting in Address 0x52 (Register 5-7). However, the duty cycle correction process adds additional jitter noise to the clock signal, and therefore using this option is only recommended when an asymmetrical input clock source causes significant performance degradation or the input clock source is not stable. See more details of setting EN_DUTY in Address 0x52 (Register 5-7).

4.7 ADC Clock Selection and PLL Output Frequency Control

4.7.1 ADC CLOCK SELECTION

The user can select the ADC timing source (internal PLL or external clock) using the clock source selection bit setting: See CLK_SOURCE in Address 0x53 (Register 5-8).

4.7.1.1 External Clock for ADC Timing

When CLK_SOURCE = 0, the external clock input (at CLK+ and CLK- pins) becomes the sampling frequency (f_S) of the ADC core and also the input frequency for the DLL circuit. See Figure 4-11 for the details of the DLL block. The user can control the phase of the DLL output using DLL_PHDLY<2:0> in Address 0x52 (Register 5-7).

Note: The on-board phase-locked loop (PLL) is not used for this setting.

4.7.1.2 Phase-Locked Loop (PLL) Output for ADC Timing:

When CLK_SOURCE = 1, the PLL output frequency is used as the sampling frequency (f_S) of the ADC core. The recommended PLL output clock range is from 80 MHz to 250 MHz. The external clock input is used as the PLL reference frequency. The range of the clock input frequency is from 5 MHz to 250 MHz.

Note:	The PLL	mode is only	supported for
	sampling	frequencies	greater than
	80 Msps.		

4.7.2 PLL OUTPUT FREQUENCY AND CONTROL PARAMETERS

The internal PLL can provide a stable timing output ranging from 80 MHz to 250 MHz. Figure 4-11 shows the charge-pump based integer-N PLL and output control. The PLL includes various user control parameters for the desired output frequency. Table 4-3 summarizes the PLL control register bits and Table 4-4 shows an example of settings for the PLL charge pump and loop filter.

The PLL block consists of:

- Reference Frequency Divider (R)
- Prescaler which is a feedback divider (N)
- Phase/Frequency Detector (PFD)
- Current Charge-Pump
- Loop Filter a 3rd order RC low-pass filter
- Voltage-Controlled Oscillator (VCO)

The final ADC core sampling frequency (f_S) is then obtained by dividing down the VCO output using PLL_OUTDIV<3:0>.

The external clock at the CLK+ and CLK- pins is the input frequency to the PLL. The range of input frequency (f_{REF}) is from 5 MHz to 250 MHz. This input frequency is divided by the reference frequency divider (R) which is controlled by the 10-bit wide PLL_REFDIV<9:0> setting. In the feedback loop, the VCO frequency is divided by the prescaler (N) using PLL_PRE<11:0>.

The final ADC core sampling frequency (f_S), ranging from 80 MHz to 250 MHz, is obtained after the output frequency divider (PLL_OUTDIV<3:0>). For stable operation, the user needs to configure the PLL with the following limits:

• Input cock frequency (f_{REF}) = 5 MHz to 250 MHz

•	Maximum frequency at	=	50 MHz
	charge pump input (after PLL reference divider)		

- VCO output frequency = 1.075 to 1.325 GHz
- PLL output frequency after = 80 MHz to 250 MHz output divider

The charge pump is controlled by the PFD, and forces sink (DOWN) or source (UP) current pulses onto the loop filter. The charge pump bias current is controlled by the PLL_CHAGPUMP<3:0> bits, approximately 25 μ A per step. The loop filter consists of a 3rd order passive RC filter. Table 4-4 shows the recommended settings of the charge pump and loop filter parameters, depending on the charge pump input frequency range (output of the reference frequency divider).

When the PLL is locked, it tracks the input frequency (f_{REF}) with the ratio of dividers (N/R). The PLL operating status is monitored by the PLL status indication bits: <PLL_VCOL_STAT> and <PLL_VCOH_STAT> in Address 0xD1 (Register 5-81). Equation 4-3 shows the VCO output frequency (f_{VCO}) as a function of the two dividers and reference frequency:

EQUATION 4-3: VCO OUTPUT FREQUENCY

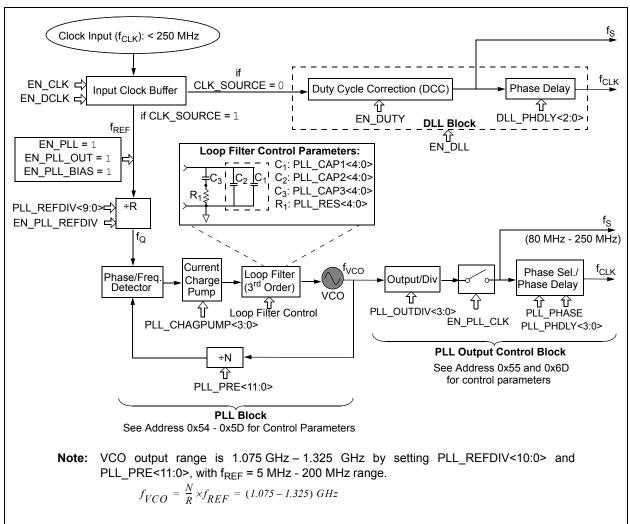
$$f_{VCO} = \left(\frac{N}{R}\right) f_{REF} = 1.075 \text{ (GHz) to } 1.325 \text{ (GHz)}$$

Where:

N = 1 to 4095 controlled by PLL_PRE<11:0>

R = 1 to 1023 controlled by PLL_REFDIV<9:0>

See Address 0x54 to 0x57 (Register 5-9 to 5-12) for these bits settings.


The tuning range of the VCO is 1.075 GHz to 1.325 GHz. N and R values must be chosen such that the VCO is within this range. In general, lower values of the VCO frequency (f_{VCO}) and higher values of the charge pump frequency (f_Q) should be chosen to optimize the clock jitter. Once the VCO output frequency is determined to be within this range, the user needs to set the final ADC sampling frequency (f_S) with the PLL output divider using PLL_OUTDIV<3:0>.

EQUATION 4-4: SAMPLING FREQUENCY

$$f_{S} = \left(\frac{f_{VCO}}{PLL_OUTDIV}\right) = 80 \text{ MHz to } 250 \text{ MHz}$$

Table 4-5 shows an example of generating $f_S = 200 \text{ MHz}$ output using the PLL control parameters.

- Note 1: In normal operation, the PLL maintains lock across all temperature ranges. It is not necessary to actively monitor the PLL unless extreme variations in the supply voltage are expected or the chip input frequency has been changed.
 - 2: PLL recalibration is recommended when PLL control parameter settings are changed.

FIGURE 4-11:	PLL and DLL Control Blocks.

TABLE 4-3: CONTROL PARAMETERS FOR PLL AND CLK

Control Parameter	Register	Descriptions
Clock Source Control		
CLK_SOURCE	0x53	Select internal timing source CLK_SOURCE = 1 selects the PLL output as the ADC clock source.
EN_DUTY	0x52	Enable duty cycle correction of the clock input when external clock input is selected as timing source (Note 1)
PLL Calibration and Stat	us Indicatio	n Bits
PLL_CALTRIG	0x6B	PLL circuit calibration (Note 2)
PLL_CAL_STAT	0xD1	PLL auto-calibration status indication
PLL_VCOL_STAT	0xD1	PLL drifts out-of-lock with low VCO frequency
PLL_VCOH_STAT	0xD1	PLL drifts out-of-lock with high VCO frequency

Note 1: Duty cycle correction is not recommended when high quality external clock is used.

2: PLL recalibration is needed after reprogramming of the PLL block.

TABLE 4-3:	CONTROL PARAMETERS FOR PLL AND CLK (CONTINUED)
------------	--

Control Parameter	Register	Descriptions			
PLL Global Variable Sett	ing Bits				
EN_PLL	0x59	Master enable bit for the PLL circuit			
EN_PLL_OUT	0x5F	Master enable bit for the PLL output			
EN_PLL_BIAS	0x5F	Master enable bit to enable the PLL bias			
EN_PLL_REFDIV	0x59	Master enable bit for the PLL circuit. Enable PLL reference divider			
EN_PLL_CLK	0x6D	EN_PLL_CLK = 1 enable PLL output clock to the ADC circuits			
PLL_PHDLY<3:0>	0x6D	Delay PLL Output up to 15 cycles of VCO clocks			
PLL_PHASE	0x6D	Select PLL phase for delay line			
PLL Block and PLL Outp	out Control S	Settings			
PLL_REFDIV<9:0>	0x54-0x55	PLL Reference Divider (R) (See Table 4-5)			
PLL_PRE<11:0>	0x56-0x57	PLL Prescaler (N) (See Table 4-5)			
PLL_OUTDIV<3:0>	0x55	PLL Output Divider (See Table 4-5)			
PLL_CHAGPUMP<3:0>	0x58	PLL charge pump bias current control: from 25 μA to 375 $\mu A,$ 25 μA per step			
PLL_RES<4:0>	0x5A	PLL loop filter resistor value selection (See Table 4-4)			
PLL_CAP3<4:0>	0x5A	PLL loop filter capacitor 3 value selection (See Table 4-4)			
PLL_CAP2<4:0>	0x5D	PLL loop filter capacitor 2 value selection (See Table 4-4)			
PLL_CAP1<4:0>	0x5C	PLL loop filter capacitor 1 value selection (See Table 4-4)			

Note 1: Duty cycle correction is not recommended when high quality external clock is used.

2: PLL recalibration is needed after reprogramming of the PLL block.

TABLE 4-4:RECOMMENDED PLL CHARGE PUMP AND LOOP FILTER PARAMETER VALUE
SETTINGS EXAMPLE

PLL Charge Pump and Loop Filter	f _Q = f _{REF} /PLL_REFDIV									
Parameter (Note 1)	5 MHz > f _Q	5 MHz \leq f _Q < 25 MHz	25 MHz ≤ f _Q							
PLL_CHAGPUMP<3:0>	0x04	0x04	0x04							
PLL_RES<4:0>	0x1F	0x1F	0x07							
PLL_CAP3<4:0>	0x07	0x02	0x07							
PLL_CAP2<4:0>	0x07	0x01	0x08							
PLL_CAP1<4:0>	0x07	0x01	0x08							

Note 1: See Table 4-3 for the parameter details.

TABLE 4-5:EXAMPLE PLL CONTROL PARAMETERS FOR GENERATING $f_S = 200$ MHz WITH
 $f_{REF} = 100$ MHz

PLL Control Parameter	Value	Descriptions
f _{REF}	100 MHz	f _{REF} is coming from the external clock input
Target f _{VCO}	1.2 GHz	Range of f _{VCO} = 1.0375 GHz – 1.325 GHz
Target f _S	200 MHz	ADC sampling frequency (Note 2)
Target f _Q	10 MHz	f _Q = f _{REF} /PLL_REFDIV (See Table 4-4)
PLL Reference Divider (R)	10	PLL_REFDIV<9:0> = 0x0A (Note 1)
PLL Prescaler (N)	120	PLL_PRE<11:0> = 0x78 (Note 1)
PLL Output Divider	6	PLL_OUTDIV<3:0> = 0x06 (Note 2)

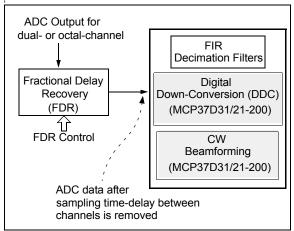
Note 1: $f_{VCO} = (N/R) \times f_{REF} = (12) \times 100 \text{ MHz} = 1.2 \text{ GHz}$

2: $f_S = f_{VCO}/PLL_OUTDIV = 1.2 GHz/6 = 200 MHz$

4.8 Digital Signal Post-Processing (DSPP) Options

While the device converts the analog input signals to digital output codes, the user can enable various digital signal post-processing options for special applications.

These options are individually enabled or disabled by setting the configuration bits. Table 4-6 summarizes the digital signal post-processing (DSPP) options that are available for each device family.


TABLE 4-6: DIGITAL SIGNAL POST PROCESSING (DSPP) OPTIONS

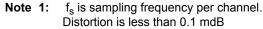
Digital Signal Post Processing Option	Available Operating Mode	Offering Device
Fractional Delay Recovery (FDR)	Dual and octal-channel modes	
FIR Decimation Filters	Single and dual-channel modes	MCP37231/21-200 MCP37D31/21-200
	CW octal-channel mode	
	DDC for I and Q data	
Digital Gain and Offset correction per channel	Available for all channels	
Digital-Down Conversion (DDC)	Single and dual-channel modes	
	CW octal-channel mode	MCP37D31/21-200
Continuous Wave (CW) Beamforming	CW octal-channel mode	

4.8.1 FRACTIONAL DELAY RECOVERY FOR DUAL AND OCTAL-CHANNEL MODES

When the device is used in multi-channel mode, it samples the channel inputs sequentially using a MUX while the ADC core is operating at a constant full speed. This sequential sampling of multiple channels introduces a time delay between the sampling of different input channels relative to a multi-core ADC which would sample all inputs at the same instant. The fractional delay recovery (FDR) option digitally compensates the time delay of the sampling events.

This FDR feature is available in dual and octal-channel modes only. When the FDR is enabled, a high-order, band-limited interpolation filter de-skews the sampling instant within a limited input bandwidth and synthetically removes the time delay of the input sampling. Figure 4-12 shows the simplified block diagram for the ADC output data path with FDR. The related configuration register bits are listed in Table 4-7.

FIGURE 4-12: Simplified Block Diagram for ADC Output Data Path with Fractional Delay Recovery Option. Note that Fractional Delay Recovery occurs prior to other DSPP features.


Channel Operation	Control Parameter	Register	Descriptions
Global Control for both	EN_FDR = 1	0x7A	Enable FDR features
dual and octal-channel modes	FDR_BAND	0x81	Select 1 st or 2 nd Nyquist band
Dual-Channel	SEL_FDR = 0	0x81	Select FDR for dual-channel mode
	SEL_DSPP = 0	0x81	Select digital signal post-processing (DSPP) feature for dual-channel mode
	EN_DSPPDUAL = 1	0x79	Enable all digital post-processing functions for dual-channel operation
Octal-Channel	SEL_FDR = 1	0x81	Select FDR for octal-channel mode
	SEL_DSPP = 1	0x81	Select digital signal post-processing (DSPP) feature for octal-channel mode

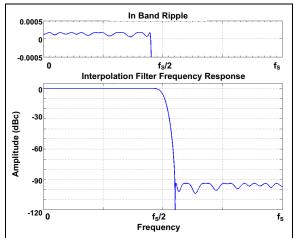
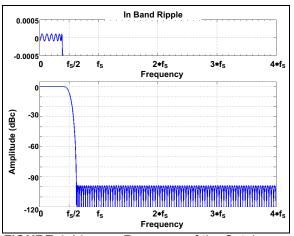

TARIE 4_7	CONTROL PARAMETERS FOR FRACTIONAL DELAY RECOVERY (FDR)
IADEE = 1.	CONTINUE L'ANAMETERO I ORTINACTIONAL DELAT RECOVERT (

Table 4-8 shows the input bandwidth limits of the FDR feature for distortion less than 0.1 mdB (0.1×10^{-3} dB), where f_S is the sampling frequency per channel. Figures 4-13 and 4-14 show the responses of the dual-channel and octal-channel FDRs, respectively.


TABLE 4-8:INPUT BANDWIDTH
REQUIREMENT FOR FDR

Bandwidth in percentage of f _S ⁽¹⁾	Nyquist Band				
Dual-Channe	I Mode				
0 - 45%	1 st Nyquist Band				
55 – 100%	2 nd Nyquist Band				
45 – 55%	Avoid				
Octal-Channel Mode					
0 – 38%	1 st Nyquist Band				

FIGURE 4-13: Response of the Dual-Channel Fractional Delay Recovery. f_S is the Sampling Frequency.

FIGURE 4-14: Response of the Octal-Channel Fractional Delay Recovery. f_S is the Sampling Frequency.

4.8.2 DECIMATION FILTERS

The decimation feature is available in single and dualchannel modes. Figure 4-15 shows a simplified decimation filter block, and Table 4-10 shows the Register settings. The decimation rate is controlled by FIR_A<8:0> and FIR_B<7:0> settings in Addresses 0x7A - 0x7C (Registers 5-35 to 5-37). These registers are thermometer encoded.

In single-channel mode, FIR B is disabled and only FIR A is used. In this mode, the maximum programmable decimation rate is 512x using nine cascaded decimation stages.

In dual-channel mode or when using the Digital Down-Conversion (DDC) in I/Q mode, both FIR A and FIR B are used (see Figure 4-15). In this case, both channels are set to the same decimation rate. Note that stage 1A in FIR A is unused: the user must clear FIR_A<0> in Address 0x7A (Register 5-35). In dual-channel mode, the maximum programmable decimation rate is up to 256x, which is $\frac{1}{2}$ of the single channel decimation rate (512x).

The overall SNR performance can be improved with higher decimation rate. In theory, 3 dB improvement is expected with each successive stage of decimation (2x per stage), but the actual improvement is approximately 2.5 dB per stage due to finite attenuation in the FIR filters.

When using a high decimation rate option (128x or above), the user may consider enabling two additional output bits using DM1DM2 bit setting in Address 0x68 (Register 5-26).

Table 4-9 summarizes the decimation rate versus SNR performance in 16-bit and 18-bit output modes. The results indicate that the SNR is marginally improved with higher decimation rates. Therefore, the user may have a benefit with the 18-bit output mode when high

decimation rate is used. When a low decimation rate is used, there is no benefit to SNR or SFDR of the ADC by enabling the 18-bit output.

When decimation is used, it also reduces the output clock rate and output bandwidth by a factor equal to the decimation rate applied: the output clock rate is therefore no longer equal to the ADC sampling clock. The user needs to adjust the output clock and data rates in Address 0x02 (Register 5-3) based on the decimation applied. The DLL should also be disabled in this mode. This allows the output data to be synchronized to the output data clock.

Phase shifts in the output clock can be achieved using DCLK_PHDLY_DEC<2:0> in Address 0x64 (Register 5-22). When decimation of 2x is used, only four output sampling phases are available, while all eight clock phases are available for other decimation rates. Table 4-10 summarizes the related control parameters for using decimation filters.

4.8.2.1 Using Decimation with CW beamforming and Digital Down-Conversion

Decimation can be used in conjunction with CW octalchannel mode or DDC. In CW octal-channel mode operation, the 8-input channels are summed into a single channel prior to entering the decimation filters. When DDC is enabled, the I and Q outputs can be decimated using the same signal path for the dualchannel mode: I and Q data are fed into Channel A and B, respectively. In DDC mode, the half-band filter already includes a 2x decimation. Therefore, the maximum decimation rate setting for I/Q filtering is 128x for the FIR_A<8:1> and FIR_B<7:0>. See Section 4.8.3 "Digital Down-Conversion (MCP37D31/21-200 only)" for details.

Note:			Recovery,				
	Gain/Offset	adjustm	ent and DDC	for I/Q			
	data options occur prior to the decimation						
	filters if they	/ are ena	bled.				

TABLE 4-9: DECIMATION RATE VS. SNR PERFORMANCE

Decimation	SNR (dBFS)					
Rate	16-Bit Output Mode	18-Bit Output Mode (Note 1)				
8x	82.3					
16x	84.8	—				
32x	87.1	87.4				
64x	89.2	89.7				
128x	91.0	91.8				
256x	92.0	93.2				
512x	92.3	93.5				

Note 1: DM1DM2 bit is enabled.

TABLE 4-10: REGISTER CONTROL PARAMETERS FOR USING DECIMATION FILTERS

Control Parameter	Register	Descriptions				
Decimation Filter Settings						
FIR_A<8:0>	0x7A, 0x7B	Channel A FIR configuration for single or dual-channel mode				
FIR_B<7:0>	0x7C	Channel B FIR configuration for single or dual-channel mode				
Output Data Rate and Clock Rate Settings (Note 1)						
OUT_DATARATE<3:0>	0x02	Output data rate: Equal to decimation rate				
OUT_CLKRATE<3:0>	0x02	Output clock rate: Equal to decimation rate				
Output Clock Phase Control Settings (Note 2)						
EN_PHDLY_DEC	0x64	Enable digital output phase delay when decimation filter is used				
DCLK_PHDLY_DEC<2:0>	0x64	Digital output clock phase delay control				
Digital Signal Post-Process	ing (DSPP) Function	on Block Settings				
EN_DSPPDUAL	0x79	Enable dual-channel decimation.				

Note 1: The output data and clock rates must be updated when decimation rates are changed.

2: Output clock (DCLK) phase control is used when the output clock is divided by OUT_CLKRATE<3:0> bit settings.

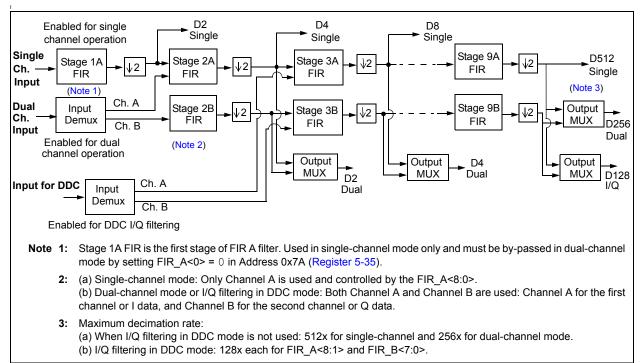
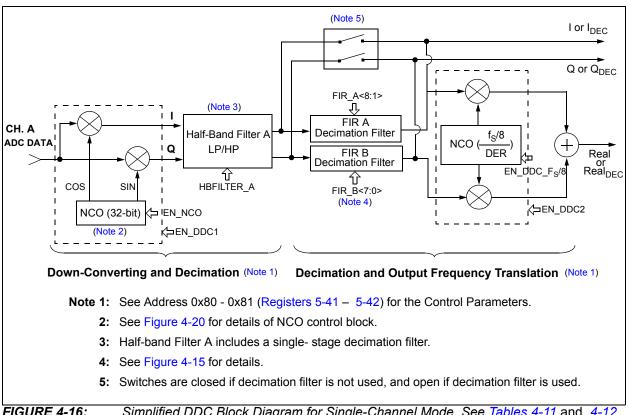


FIGURE 4-15: Simplified Block Diagram of Decimation Filters.

4.8.3 DIGITAL DOWN-CONVERSION (MCP37D31/21-200 ONLY)

The Digital Down-Conversion (DDC) feature is available in single, dual and CW octal-channel modes in MCP37D31/21-200. This feature can be optionally combined with the decimation filter and used to:


- translate a portion of the input frequency spectrum to lower frequencies
- remove the unwanted out-of-band portion
- output the resulting signal as either I/Q data or a real signal centered at 1⁄4 of the output data rate.

For example, if the ADC is sampling a single-channel input at 200 Msps, but the user is only interested in a 5 MHz span which is centered at 67 MHz, the digital down-conversion may be used to mix the sampled ADC data with 67 MHz to convert it to DC. The resulting signal can then be decimated by 16x such that the bandwidth of the ADC output is 6.25 MHz (200 Msps/16x decimation gives 12.5 Msps with 6.25 MHz Nyquist bandwidth). If f_S/8 mode is selected, then a single 25 Msps channel is output, where 6.25 MHz in the output data corresponds to 67 MHz at the ADC input. If I/Q mode is selected, then two 12.5 Msps channels are output, where DC corresponds to 67 MHz and the channels represents In-Phase and Quadrature components of the down-conversion. Figure 4-16 and Figure 4-17 show the DDC block diagrams of single and dual-channels, respectively. Figure 4-18 and Figure 4-19 show the half-band filter responses.

This DDC feature can be used in a variety of highspeed signal-processing applications, including digital radio, wireless base stations, radar, cable modems, digital video, etc. Since the processing is achieved completely in the digital domain, the result is not affected by classical nonlinearities typical in analog implementations.

4.8.3.1 Single-Channel DDC

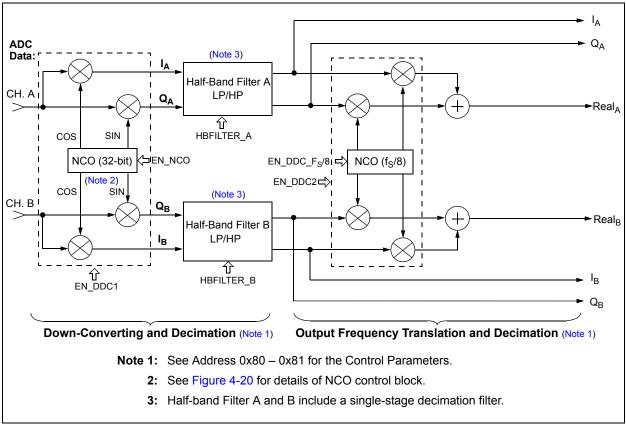
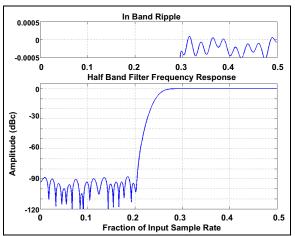
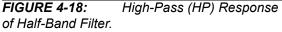

Figure 4-16 shows the single-channel DDC configuration. The DDC includes a 32-bit numerically controlled oscillator (NCO), a selectable (high/low) half-band filter, optional decimation, and two output modes (I/Q or $f_S/8$). Phase and amplitude dither may be enabled for the NCO with a negligible performance penalty. Each of these processing sub-blocks are individually controlled. Examples of setting registers for selected output type are shown in Tables 4-11 and 4-12 in Section 4.8.4 "Examples of Register Settings for Using Decimation and DDC".

FIGURE 4-16: Simplified DDC Block Diagram for Single-Channel Mode. See Tables 4-11 and 4-12 for Using this DDC Block.

4.8.3.2 Dual-Channel DDC

Figure 4-17 shows the dual-channel DDC configuration. Each channel includes the same processing elements as shown in the single-channel DDC, however the I/Q outputs cannot be separately decimated since the device only supports two channels of decimation (four would be required for I/Q of Channel A and I/Q of Channel B). The decimation option can be used if the DDC output after the half-band filter is up-converted by f_S/8 for each channel. Otherwise, I/Q of each channel will be output separately similar to a 4-channel input device with the WCK output pin toggling synchronously with the I-data of Channel A. Note that the NCO phase can be adjusted uniquely for each of the two input channels (see Figure 4-20). Examples of setting registers for selected output type are shown in Tables 4-13 and 4-14.




FIGURE 4-17: Simplified DDC Block Diagram for Dual-Channel Mode. See Tables 4-13 and 4-14 for Using this DDC Block.

4.8.3.3 Half-Band Filter

The half-band digital filter is used to reduce the sample rate by a factor of 2 while rejecting aliases that fall into the band of interest. This filter is designed to operate as either a high-pass filter (Figure 4-18) or a low-pass filter (Figure 4-19), and to provide greater than 90 dB of attenuation for 20% (attenuation band) of the input sampling rate and less than 1 mdB (10⁻³ dB) of ripple for 20% (passband region) of the input sampling rate. For example, for an ADC sample rate of 200 MSPS, this provides less than 1 mdB of ripple over a bandwidth of 40 MHz. The half-band filter is configured using the HBFILTER A and HBFILTER B parameters in Address 0x80 (Register 5-41). The filter responses of the half-band filter shown in Figures 4-18 and 4-19 indicate a ripple of 0.5 mdB and an alias rejection of 90 dB. The output of the half-band filter is a DC-centered complex signal (I and Q). This I and Q signal is then carried to the next down-conversion stage (DDC2) for frequency translation (upconversion), if the DDC is enabled.

Note:	The half-band filter delays the data output
	by 80 clock cycles: 2 (due to decimation) x
	40 cycles (due to propagations)

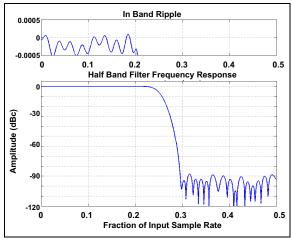
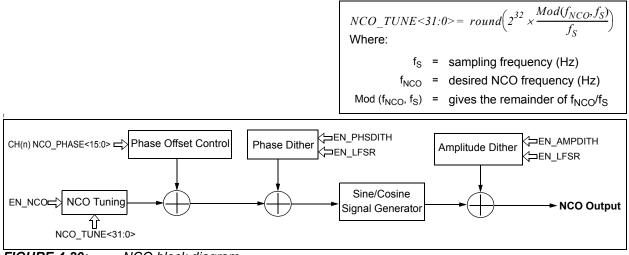
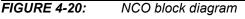


FIGURE 4-19: Low-Pass (LP) Response of Half-Band Filter.


4.8.3.4 Numerically Controlled Oscillator (NCO)


The on-board Numerically Controlled Oscillator (NCO) provides the frequency reference for the In-Phase and Quadrature mixers in the digital down-converter (DDC). Figure 4-20 shows the control signals associated with the NCO. In Octal or dual-channel mode, the NCO allows the output phase to be adjusted on a per-channel basis.

Note: The NCO is only used for DDC or CW octalchannel mode. It should be disabled when not in use.

The NCO frequency is programmed using the 32-bit wide unsigned register variable NCO_TUNE<31:0> in Addresses 0x82 - 0x85 (Registers 5-43 - 5-46). The following equation is used to setup the NCO_TUNE<31:0> setting:

EQUATION 4-5: NCO FREQUENCY

4.8.3.5 NCO Amplitude and Phase Dither

The EN_AMPDITH and EN_PHSDITH parameters in Address 0x80 (Register 5-41) can be used for amplitude and phase dithering, respectively. In principle, these will dither the quantization error created by the use of digital circuits in the mixer and local oscillator, thus reducing spurs at the expense of noise. In practice, the DDC circuitry has been designed with sufficient noise and spurious performance for most applications. In the worst case scenario, the NCO has an SFDR of greater than 116 dB when the amplitude dither is enabled and 112 dB when disabled. Although the SNR (~93 dB) of the DDC is not significantly affected by the dithering option, using the NCO with dithering options enabled is always recommended for the best performance.

4.8.3.6 NCO for $f_S/8$ and $f_S/(8xDER)$

The output of the first down-conversion block (DDC1) is a complex signal (comprising I and Q data) which can then be optionally decimated further up to 64x to provide both a lower output data rate and input channel filtering. If f_S/8 mode is enabled, a second mixer stage (DDC2) will convert the I/Q signals to a real signal centered at half of the current Nyquist frequency; i.e., if the output data rate in I/Q mode is 25 Msps per channel (12.5 MHz Nyquist), then in f_S/8 mode the output data rate would be 50 Msps, and the signal would be recentered around 12.5 MHz. In single-channel mode, this is done at the output of the decimation filters (if used). In dual-channel mode, this must be done prior to the decimation. When decimation is enabled, the I/Q outputs are up-converted by fs/(8xDER), where DER is the additional decimation rate added by the FIR decimation filters. This provides a decimated output signal centered at f_S/8 or f_S/(8xDER) in the frequency domain.

4.8.3.7 NCO Phase Offset Control

The user can add phase offset to the NCO frequency using the NCO phase offset control registers (Addresses 0x86 to 0x95 – Registers 5-47 – 5-62). CH(n)_NCO_PHASE<15:0> is the 16-bit wide NCO phase offset control parameter for Channel *n*. A 0x0000 value in the register corresponds to no offset, and a 0xFFFF corresponds to an offset of 359.995°. The phase offset can be controlled with 0.005° per step. The following equation is used to program the NCO phase offset register:

EQUATION 4-6: NCO PHASE OFFSET

 $CH(n)_NCO_PHASE < 15:0 >= 2^{16} \times \frac{Offset \ Value \ (\phi)}{360}$ Where: n = channel number Offset Value (\phi) = desired phase offset value in degrees

A decimal number is used for the binary contents of the CH(n)_NCO_PHASE<15:0>.

4.8.3.8 In-Phase and Quadrature Signals When the first down-conversion is enabled, it produces In-phase (I) and Quadrature (Q) components given by:

EQUATION 4-7: I AND Q SIGNALS

$$I = ADC \times COS(2\pi f_{NCO}t + \phi)$$
(a)
$$Q = ADC \times SIN(2\pi f_{NCO}t + \phi)$$
(b)

where:

$$\phi = 360 \times \frac{CH(n) NCO_PHASE < 15:0>}{2^{16}}$$
 (c)
= 0.005493164 ° × CH(n) NCO PHASE <15:0>

where:

- ADC = output of the ADC block
- $t = k/f_S$, with k =1, 2, 3,..., n

 f_{NCO} = NCO frequency

I and Q data are output in an interleaved fashion where I data is output on the rising edge of the WCK. If I and Q output are selected in dual-channel mode with DDC enabled, I data of Channel 0 is output at the rising edge of WCK, followed by Q data of Channel 0, then I and Q data of Channel 1.

4.8.4 EXAMPLES OF REGISTER SETTINGS FOR USING DECIMATION AND DDC

The following tables show examples of setting registers for using decimation and digital down-conversion (DDC) depending on the output type selection. This feature is available in the MCP37D31/21-200 device only.

TABLE 4-11:REGISTER SETTINGS FOR DECIMATION AND DDC OPTIONS
FOR SINGLE-CHANNEL MODE – EXAMPLE

Rate FIR B)			FIR A	Filter	FIR B Filter	DDC1	DDC2	Dual-Channel DSPP Control	
Decimation Ra (by FIR A and FI (Note 6)	DDC Mode	Addr. 0x02 (Note 1)	0x7A<6> (FIR_A<0>)	0x7B (FIR_A<8:1>)	0x7C (FIR_B<7:0>)	0x80<5,1,0> (Note 2)	0x81<6,3,2> (Note 3)	0x79<7> (EN_DSPPDUAL)	Output
0	Disabled	0x00	0	0x00	0x00	0,0,0	0,0,0	0	ADC
8	Disabled	0x33	1	0x03	0x00	0,0,0	0,0,0	0	ADC with decimation (÷8)
512	Disabled	0x99	1	0xFF	0x00	0,0,0	0,0,0	0	ADC with decimation (÷512)
0	I/Q	0x00 (Note 4)	0	0x00	0x00	1,0,1	0,0,0	0	I/Q Data
8	I/Q	0x33	0	0x07	0x07	1,0,1	0,0,0	0	Decimated I/Q (+8)
0	f _S /8	0x11 (Note 5)	0	0x00	0x00	1,1,1	0,0,0	0	Real without using decimation filter (÷2)
8	f _S /8	0x44	0	0x07	0x07	1,0,1	1,0,0	0	Real with decimation (÷16)

Note 1: Output data and clock rate control register.

2: 0x80<5,1,0> = <EN_NCO, EN_DDC_FS/8, EN_DDC1>.

3: 0x81<6,3,2> = <EN_DDC, SEL_DSPP, 8CH_CW>.

4: Each of I/Q has 1/2 of f_S bandwidth. The combined bandwidth is the same as the f_S bandwidth. Therefore the data rate adjustment is not needed.

5: Data rate is reduced by half since the Half-Band Filter A includes decimation of 2.

6: This decimation value is set using the decimation filter. When DDC is used, the actual total decimation is 2x larger since 2x is included from the DDC Half-Band Filter. Example: "single-channel, Decimation = 8x, DDC-IQ" option actually has 16x decimation with 8x provided by the decimation filter and 2x from the DDC Half-Band Filter.

TABLE 4-12: OUTPUT TYPE VS. CONTROL PARAMETERS FOR SINGLE-CHANNEL DDC – EXAMPLE

Output Type Complex: I and Q	Control Parameter	Register	Descriptions
Complex: Land O		•	Descriptions
Complex. I and Q	EN_DDC1 = 1	0x80	Enable DDC1 block
	EN_NCO = 1	0x80	Enable 32-bit NCO
	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
	EN_DDC_FS/8 = 0	0x81	NCO(f _S /8/DER) is disabled
	EN_DDC2> = 0	0x80	DDC2 is disabled
	FIR_A<8:1> = 0x00	0x7B	FIR A decimation filter is disabled
	FIR_B<7:0> = 0x00	0x7C	FIR B decimation filter is disabled
	OUT_CLKRATE<3:0>	0x02	Output clock rate is not affected (no need to change)
Decimated I and	EN_DDC1 = 1	0x80	Enable DDC1 block
Q:I _{DEC} , Q _{DEC}	EN_NCO = 1	0x80	Enable 32-bit NCO
	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
	EN_DDC_FS/8 = 0	0x81	NCO(f _S /8/DER) is disabled
	EN_DDC2 = 0	0x80	DDC2 is disabled
	FIR_A<8:1>	0x7B	Program FIR A filter for extra decimation (Note 1)
	FIR_B<7:0>	0x7C	Program FIR B filter for extra decimation (Note 1)
-	OUT_CLKRATE<3:0>	0x02	Adjust the output clock rate to the decimation rate
Real: Real _A after	EN_DDC1 = 1	0x80	Enable DDC1 block
DDC(f _S /8/DER)	EN_NCO = 1	0x80	Enable 32-bit NCO
without using Decimation Filter	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
	EN_DDC_FS/8 = 1	0x81	NCO(f_S /8/DER) is enabled. This translates the input signal from dc to f_S /8 (Note 3)
	EN_DDC2 = 1	0x80	DDC2 is enabled
	FIR_A<8:1> = 0x00	0x7B	Decimation filter FIR A is disabled
	FIR_B<7:0> = 0x00	0x7C	Decimation filter FIR B is disabled
	OUT_CLKRATE<3:0> = 0001	0x02	Adjust the output clock rate to divided by 2 (Note 2)
Decimated Real:	EN_DDC1 = 1	0x80	Enable DDC1 block
Real _{A_DEC} after Decimation	EN_NCO = 1	0x80	Enable 32-bit NCO
Filter and	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
DDC(f _S /8/DER)	EN_DDC_FS/8 = 1	0x81	NCO(f_S/8/DER) is enabled. This translates the input signal from dc to f_S/8/DER (Note 3)
	EN_DDC2 = 1	0x80	DDC2 is enabled
	FIR_A<8:1>	0x7B	Program FIR B filter for extra decimation (Note 4)
	FIR_B<7:0>	0x7C	Program FIR B filter for extra decimation (Note 4)
	OUT_CLKRATE<3:0>	0x02	Adjust the output clock rate to the total decimation rate including the 2x decimation by the Half-Band Filter A

Note 1: For I/Q decimation, the maximum decimation rate for the FIR A and FIR B is 128x each since the input is already decimated by 2x in the Half-Band Filter. See Figure 4-15 for details.

- **2:** Divided by 2 is due to the 2x decimation included in the Half-Band Filter A.
- 3: DER is the decimation rate setting of FIR A and FIR B filters.
- 4: When this filter is used, the up-conversion frequency is reduced by the extra decimation rates (DER).

TABLE 4-13: REGISTER SETTINGS FOR DECIMATION AND DDC OPTIONS FOR DUAL-CHANNEL MODE EXAMPLE MODE EXAMPLE

Decimation Rate (by FIR A and FIR B) (Note 7)	DDC-Mode	Address 0x02 (Note 1)	0x7A<6> (FIR_A<0>) A	0x7B (FIR_A<8:1>)	LIR B Filter 0x7C (FIR_B<7:0>)	0x80<5,1,0> (Note 2) 17	0x81<6,3,2> DC (Note 3) CC	Dual-Channel DSPP Control (TV-CA2- N3)	Output
0	Disabled	0x00	0	0x00	0x00	0,0,0	0,0,0	0	ADC
8	Disabled	0x33	0	0x07	0x07	0,0,0	0,0,0	0	ADC with decimation (+8)
256	Disabled	0x88	0	0xFF	0xFF	0,0,0	0,0,0	0	ADC with decimation (+256)
0	I/Q	0x00 (Note 4)	0	0x00	0x00	1,0,1	0,0,0	1	I/Q data
0	f _S /8	0x11 (Note 5)	0	0x00	0x00	1,1,1	0,0,0	1	Real _A /Real _B without using decimation filter (÷2)
8	f _S /8	0x44	0	0x0E	0x0E (Note 6)	1,1,1	0,0,0	1	Real with decimation filter (÷16)

Note 1: Output data and clock rate control register.

2: 0x80<5,1,0> = <EN_NCO, EN_DDC_FS/8, EN_DDC1>.

3: 0x81<6,3,2> = <EN_DDC, SEL_DSPP, 8CH_CW>.

4: Each of I/Q has 1/2 of f_S bandwidth. The combined bandwidth is the same as the f_S bandwidth. Therefore the data rate adjustment is not needed.

5: Data rate is reduced by half since the Half-Band Filter A/B includes decimation of 2.

6: 0x0E takes into account the stages 1 and 2 are bypassed. See Figure 4-15 for "dual-channel Input" for DDC.

7: This decimation value is from the decimation filter. When DDC is used, the actual total decimation is 2x larger since 2x is included from the DDC Half-Band Filter. Example: "Dual-Ch., Decimation=8x, DDC-f_s/8" option actually has 16x decimation with 8x provided by the decimation filter and 2x by the DDC Half-Band Filter.

Output Type	Control Parameter	Register	Descriptions
Complex: I and Q	EN_DSPPDUAL = 1	0x79	Enable all digital post-processing functions for dual-channel operations
	EN_DDC1 = 1	0×80	Enable DDC1 block
	EN_NCO = 1	0x80	Enable 32-bit NCO
	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
	HBFILTER_B = 1	0x80	Enable Half-Band Filter B, includes 2x decimation
	EN_DDC_FS/8 = 0	0x81	NCO(f _S /8/DER) is disabled
	EN_DDC2 = 0	0x80	DDC2 is disabled
	FIR_A<8:1> = 0x00	0x7B	FIR A decimation filter is disabled
	FIR_B<7:0> = 0x00	0x7C	FIR B decimation filter is disabled
	OUT_CLKRATE<3:0>	0x02	Output clock rate is not affected (no need to change)
Real: Real _A for Channel A	EN_DSPPDUAL = 1	0x79	Enable all digital post-processing functions for dual-channel operations
and Real _B for	EN_DDC1 = 1	0x80	Enable DDC1 block
Channel B after NCO(f _S /8/DER)	EN_NCO = 1	0x80	Enable 32-bit NCO
without using Decimation Filter	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
	HBFILTER_B = 1	0x80	Enable Half-Band Filter B, includes 2x decimation
	EN_DDC_FS/8 = 1	0x81	NCO(f_S /8/DER) is enabled. This translates the input signal from DC to f_S /8 (Note 1)
	EN_DDC2 = 1	0x80	DDC2 is enabled
	FIR_A<8:1> = 0x00	0x7B	Decimation filter FIR A is disabled
	FIR_B<7:0> = 0x00	0x7C	Decimation filter FIR B is disabled
	OUT_CLKRATE<3:0> = 0001	0x02	Adjust the output clock rate to divided by 2 (Note 2)
Decimated Real: Real _{A_DEC} for	EN_DSPPDUAL = 1	0x79	Enable all digital post-processing functions for dual-channel operation
Channel A and	EN_DDC1 = 1	0x80	Enable DDC1 block
Real _{B_DEC} for Channel B after	EN_NCO = 1	0x80	Enable 32-bit NCO
NCO(f _S /8/DER) and	HBFILTER_A = 1	0x80	Enable Half-Band Filter A, includes 2x decimation
Decimation Filter	HBFILTER_B = 1	0x80	Enable Half-Band Filter B, includes 2x decimation
	EN_DDC_FS/8 = 1	0x81	NCO(f_S /8/DER) is enabled. This translates the input signal from DC to f_S /8/DER (Note 1)
	EN_DDC2 = 1	0x80	DDC2 is enabled
	FIR_A<8:1>	0x7B	Program FIR A filter for extra decimation (Note 3)
	FIR_B<7:0>	0x7C	Program FIR B filter for extra decimation (Note 3)
	OUT_CLKRATE<3:0>	0x02	Adjust the output clock rate to the total decimation rate including the 2x decimation by the Half-Band Filter A

TABLE 4-14: OUTPUT TYPE VS. CONTROL PARAMETERS FOR DUAL-CHANNEL DDC EXAMPLE

Note 1: DER is the decimation rate setting of FIR A and FIR B filters.

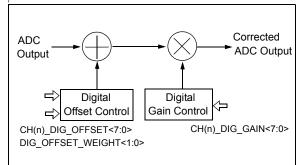
2: Divided by 2 is due to the 2x decimation included in the Half-Band Filter A.

3: When this filter is used, the up-conversion frequency is reduced by the extra decimation rates (DER).

4.9 Digital Offset and Digital Gain Settings

Offset and gain can be individually adjusted for each input channel. Figure 4-21 shows a simplified block diagram of the digital offset and gain settings. Offset is applied prior to the gain.

Offset and gain adjustments occur prior to DDC, Decimation, or FDR when these features are used.


4.9.1 DIGITAL OFFSET SETTINGS

The offset of an individual channel can be controlled using CH(N)_DIG_OFFSET<7:0> in Addresses 0x9E - 0xA7 (Registers 5-71 - 5-79) together with the offset weight control register, DIG_OFFSET_WEIGHT<1:0> in 0xA7 (Register 5-79).

Note that, except for the octal-channel mode, the offset setting registers, 0x9E - 0xA7 (Registers 5-71 - 5-79), are not sequentially corresponding to the channel order defined by CH_ORDER<23:0>. Table 4-15 shows the details of the offset registers that are corresponding to the actual channels, depending on the number of channels used.

4.9.2 DIGITAL GAIN SETTINGS

CH(N)_DIG_GAIN<7:0> in Addresses 0x96 - 0x9D (Registers 5-63 - 5-70) is used to adjust the digital gain per channel.

FIGURE 4-21: Simplified Block Diagram for Digital Offset and Gain Settings.

- Note 1: Digital Offset Setting: Register mapping (0x9E – 0xA7) to the corresponding channel is not sequential to the channel order defined by CH_ORDER<23:0>, except for the octal-channel mode. See Table 4-15 for details.
 - Gain and NCO Phase Offset: Register mapping to the corresponding channel is sequential to the channel order defined by CH ORDER<23:0>.

of sed		Register Address for Offset Setting								
Number of Channel Used	1 st Channel	2 nd Channel	3 rd Channel	4 th Channel	5 th Channel	6 th Channel	7 th Channel	8 th Channel		
1	0x9F	—	-	-	—	—	—	-		
2	0xA0	0x9F	_	_	—	—	—	-		
3	0xA1	0x9F	0xA0	_	_	_	_	_		
4	0xA2	0x9F	0xA0	0xA1	—	—	—	-		
5	0xA3	0x9F	0xA0	0xA1	0xA2	—	—	-		
6	0xA4	0x9F	0xA0	0xA1	0xA2	0xA3	_	_		
7	0xA5	0x9F	0xA0	0xA1	0xA2	0xA3	0xA4	_		
8	0x9E	0x9F	0xA0	0xA1	0xA2	0xA3	0xA4	0xA5		

TABLE 4-15: REGISTER ASSIGNMENT FOR OFFSET SETTING

4.10 Continuous Wave (CW) Beamforming and Ultrasound Doppler-Signal Processing Using CW octal-channel Mode (MCP37D31/21-200 only)

In modern ultrasound medical applications, large numbers of transducers are often used. The signals from these sensors are then coherently combined for higher transducer gain and directivity. The signals from each sensor arrive at the detection device with a different time delay. Also, in multi-channel scanning operations using the MUX, there is a time delay between acquiring input signals (see Section 4.8.1 "Fractional Delay Recovery for Dual and Octal-Channel modes"). These time-delays may need to be corrected before all input signals are combined for the signal processing.

Digital beamforming is a digital signal-processing technique that requires summing all input signals from different channels after correcting for time delay. The time-delay correction involves the phase alignment of the detected signals with respect to a reference. Along with the beamforming, many modern medical ultrasound devices support Doppler imaging which processes phase information in addition to the classical magnitude detection (for brightness imaging). The ultrasound Doppler signal processing is used to determine movement in the body as represented by blood flow, which can help to diagnose the functioning of a heart valve or blood vessel, etc. In a traditional ultrasound system, all of these functions are typically accomplished with discrete components. Figure 4-23 shows an example of an ultrasound system implementation using various specialized components.

The MCP37D31/21-200 device has a built-in feature that can perform some of the functions that are done traditionally using extra components. The continuous wave (CW) digital beamforming and Doppler signal processing features are available, but these are offered in the octal-channel operation only.

Figure 4-22 shows a simplified block diagram for the ultrasound CW beamingforming with DDC I/Q decimation. Note that the sub-blocks shown after the MUX are commonly used for all input channels.

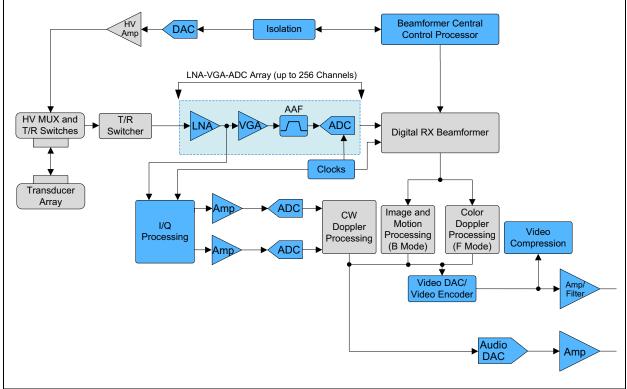


FIGURE 4-22: Example of Ultrasound System Building Block.

4.10.1 BEAMFORMING

Beamforming is achieved by scanning all inputs while correcting the phase of each channel with respect to a reference. This can be done using:

- Fractional Delay Recovery (FDR)
- · Phase offset settings of each individual channel
- · Gain setting per channel

While the CW input channel is multiplexed sequentially, the phase offset can be added to the NCO output (each channel individually). CH(n)_NCO_PHASE<15:0>, in Addresses 0x86 to 0x95 (Registers 5-47 - 5-62), corrects the time delay of the incoming signals with respect to the reference.

The phase-compensated input signal is then downconverted by a wide dynamic range I/Q demodulator. The digital beamforming of the inputs is then obtained by summing I and Q data from individual channels. This summed I and Q data are fed to the half-band filter. Equation 4-8 shows the I and Q data of an individual channel with phase correction (phase offset), and the resulting digital beamforming signal.

The processing blocks after the digital beamforming are the same as for the DDC single-channel operation described in Section 4.8.3.1 "Single-Channel DDC", except only limited decimation rates of the FIR A and FIR B filters are used due to the processing time-requirement for summing of the input signals from all channels.

EQUATION 4-8: BEAMFORMING SIGNALS

$$I_{CH(n)} = ADC \times COS(2\pi f_{NCO}t + \phi(n))$$

$$Q_{CH(n)} = ADC \times SIN(2\pi f_{NCO}t + \phi(n))$$

$$I = \sum_{n=0}^{N} I_{CH(n)}$$

$$Q = \sum_{n=0}^{N} Q_{CH(n)}$$

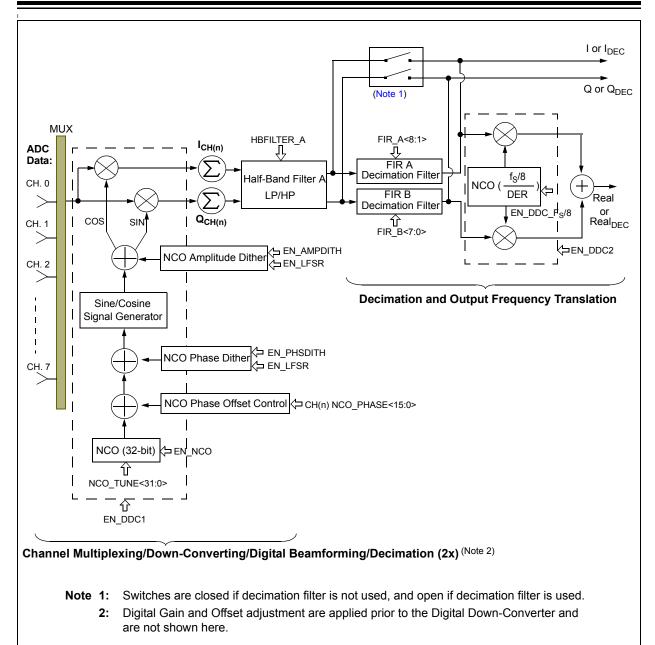
$$\phi(n) = 360^{\circ} \times \frac{CH(n) \ NCO \ PHASE < 15:0>}{2^{16}}$$

$$= 0.005493164^{\circ} \times CH(n) \ NCO \ PHASE < 15:0>$$
Where:

$$\phi(n) = \text{NCO phase offset of channel } n$$
ADC = the output of the ADC block

The NCO phase offset can be controlled by 0.005493164° per step. See **Section 4.8.3.7 "NCO Phase Offset Control**" for details.

4.10.2 ULTRASOUND DOPPLER SIGNAL PROCESSING


Doppler shift measurement requires summing the input signals from multiple transducer channels and mixing them with a phase-controlled local oscillator frequency. The resulting low-frequency output is then centered near DC and can measure a Doppler shift produced by moving objects, such as blood flow and changes in blood pressure in arteries, etc. In traditional Doppler measurement, many discrete analog components are used along with, typically, a high-resolution ADC (~18-bit range).

This device has unique built-in features that are suitable for ultrasound Doppler shift measurements. By utilizing these features, system engineers can reduce many discrete components which are otherwise necessary for an ultrasound Doppler measurement system.

The following built-in digital signal post-processing (DSPP) features in the MCP37D31/21-200 can be effectively used for the ultrasound Doppler signal processing applications:

- Fractional Delay Recovery (FDR): Correct the time delay of signal sampling between channels. See details in Section 4.8.1 "Fractional Delay Recovery for Dual and Octal-Channel modes",
- Digital Gain and Offset adjustment for each channel: See details in Section 4.9 "Digital Offset and Digital Gain Settings"
- Down-Conversion for each channel with a unique phase of the same NCO frequency prior to summing the eight channels as shown in Figure 4-23.
- After down-conversion by the DDC, the resulting signal can then be decimated to achieve very high SNR in a narrow bandwidth.

^{© 2014} Microchip Technology Inc.

FIGURE 4-23: Simplified Block Diagram of CW Beamforming and I/Q Signal Processing - Available in MCP37D31/21-200 only.

4.11 Digital Output

The MCP37231/21-200 and MCP37D31/21-200 can operate in one of three digital output modes:

- Full Rate CMOS
- Double Data Rate (DDR) LVDS
- Serialized DDR LVDS.

The outputs are powered by DV_{DD18} and GND. LVDS mode is recommended for data rates above 80 Msps. The digital output mode is selected by the OUTPUT_-MODE<1:0> bits in Address 0x62 (Register 5-20). Figures 2-1 – 2-4 show the timing diagrams of the digital output.

4.11.1 FULL RATE CMOS MODE

In full rate CMOS mode, the data outputs (Q15 to Q0, DM1 and DM2), over-range indicator (OVR), word clock (WCK) and the data output clock (DCLK+, DCLK–) have CMOS output levels. The digital output should drive minimal capacitive loads. If the load capacitance is larger than 10 pF, a digital buffer should be used.

4.11.2 DOUBLE DATA RATE LVDS MODE

In double data rate (DDR) LVDS mode, the output is a parallel data stream which changes on each edge of the output clock. Even-bit first and MSB-byte first modes are available:

- Even-bit first option: Available for all resolution options including 18-bit option. See Figure 2-2 for details.
- MSB-byte first option: Available for 16-bit option only. See Figure 2-3 for details.

In multi-channel configuration, the data is output sequentially with the WCK that is synchronized to the first sampled channel.

For 16-bit output, the digital output data is clocked out through eight LVDS output pairs (Q7+/Q7- through Q0+/Q0-). Word clock and over-range (WCK/OVR), and digital output clock (DCLK+, DCLK–) are also LVDS output pairs.

A 100 Ω differential termination resistor is required for each LVDS output pin pair. The termination resistor should be located as close as possible to the LVDS receiver. By default the outputs are standard LVDS levels: 3.5 mA output current with a 1.15V output common-mode voltage on 100 Ω differential load. See Address 0x63 (Register 5-21) for more details of the LVDS mode control.

Note: LVDS output polarity can be controlled independently for each LVDS pair. See POL_LVDS<7:0> setting in Address 0x65 (Register 5-23).

4.11.3 SERIALIZED LVDS MODE

This output mode is only available for the octal-channel operation with 16-bit data output, and uses 8-output lanes: a single LVDS pair for each channel output as shown in Figure 2-4.

Each channel's data is serialized by the data serializer, and the outputs are available through eight LVDS output lanes. Each differential LVDS output pair holds a single input channel's data, and clocks out data with double data rate (DDR), which is synchronized with WCK/OVR bit:

- Q7+/Q7- pair: 1st channel selected
- Q6+/Q6- pair: 2nd channel selected
 - •
- Q0+/Q0- pair: last channel selected

Note:	Output Data Rate in LVDS Mode: In
	octal-channel mode, the input sample rate
	per channel is f _S /8. Therefore, the output
	data rate to shift out all 16-bit in DDR is still
	equivalent to f_S . For example, if f_S =
	200 Msps, each channel's sample rate is
	$f_{\rm S}/8 = 25$ Msps, and output clock rate
	(DCLK) for 16-bit DDR output is 200 MHz.

4.11.4 PROGRAMMABLE LVDS OUTPUT CURRENT

In LVDS mode, the default output driver current is 3.5 mA. This current can be adjusted by using LVDS_IMODE<2:0> bit setting in Address 0x63 (Register 5-21). Available output drive currents are 1.8 mA, 3.5 mA, 5.4 mA, and 7.2 mA.

4.11.5 OPTIONAL LVDS DRIVER INTERNAL TERMINATION

In most cases, using an external 100Ω termination resistor will give excellent LVDS signal integrity. In addition, an optional internal 100Ω termination resistor can be enabled by setting the LVDS_LOAD bit in Address 0x63 (Register 5-21). The internal termination helps for absorbing any reflections caused by imperfect impedance termination at the receiver.

4.11.6 OVER-RANGE BIT (OVR)

The input over-range status bit is asserted (logic high) when the analog input has exceeded the full-scale range of the ADC in either the positive or negative direction. In LVDS DDR Output mode, the OVR bit is multiplexed with the word clock (WCK) output bit, such that OVR is output on the falling edge of the data output clock and WCK on the rising edge.

The OVR bit has the same pipeline latency as the ADC data bits. In multi-channel mode, the OVR is output independently for each input channel and is synchronized to the data. In serialized LVDS mode (for 16-bit octal channel), the MSB is asserted coincident with the WCK rising edge. OVR will be asserted if any of the channels is over-ranged, but it does not specify which channel is over-ranged. See Address 0x68 (Register 5-26) for OVR and WCK control options.

If DSPP options are enabled, OVR pipeline latency will be unaffected, however the data will incur additional delay. This has the effect of allowing the OVR indicator to precede the affected data.

4.11.7 WORD CLOCK (WCK)

The word clock output bit indicates the start of a new data set. In single-channel mode, this bit is disabled. In DDR output with multi-channel mode, it is always asserted coincidentally with the data from the first sampled channel, and multiplexed with the OVR bit. See Address 0x68 (Register 5-26) for OVR and WCK control options.

4.12 Output Data format

The device can output the ADC data in offset binary or two's complement. The data format is selected by the DATA_FORMAT bit in Address 0x62 (Register 5-20). Table 4-16 shows the relationship between the analog input voltage, the digital data output bits and the overrange bit. By default, the output data format is two's complement.

TABLE 4-16: ADC OUTPUT CODE VS. INPUT VOLTAGE									
Input Range	Offset Binary ⁽¹⁾	Two's Complement ⁽¹⁾	Over-Range (OVR)						
A _{IN} > A _{FS}	1111-1111-1111-1111	0111-1111-1111-1111	1						
A _{IN} = A _{FS}	1111-1111-1111-1111	0111-1111-1111-1111	0						
A _{IN} = A _{FS} – 1 LSB	1111-1111-1111-1110	0111-1111-1111-1110	0						
A _{IN} = A _{FS} – 2 LSB	1111-1111-1111-1100	0111-1111-1111-1100	0						
	•								
	•								
$\Delta \dots = \Delta_{}/2$	1100-0000-0000-0000	0100-0000-0000-0000	0						
$A_{\rm IN} = A_{\rm FS}/2$			-						
A _{IN} = 0	1000-0000-0000-0000	0000-0000-0000-0000	0						
A _{IN} = -A _{FS} /2	0011-1111-1111-1111	1011-1111-1111-1111	0						
	•								
	•								
	•	1	-						
A _{IN} = -A _{FS} + 2 LSB	0000-0000-0000-0010	1000-0000-0000-0010	0						
A _{IN} = -A _{FS} + 1 LSB	0000-0000-0000-0001	1000-0000-0000-0001	0						
A _{IN} = -A _{FS}	0000-0000-0000-0000	1000-0000-0000-0000	0						
A _{IN} < -A _{FS}	0000-0000-0000-0000	1000-0000-0000-0000	1						

TABLE 4-16: ADC OUTPUT CODE VS. INPUT VOLTAGE

Note 1: MSB is sign bit

4.12.1 PHASE SHIFTING OF OUTPUT CLOCK (DCLK)

In full rate CMOS mode, the data output bit transition occurs at the rising edge of DCLK+. In double data rate LVDS mode, the data transition occurs at both the rising and falling edges of DCLK+. For adequate setup and hold time when latching the data into the external host device, the user can adjust the phase of the digital clock output (DCLK+, DCLK-), relative to the data output bits.

This digital output clock (DCLK+, DCLK-) phase delay can be achieved by using the phase delay control registers. Table 4-17 shows the output clock phase control registers. Figure 4-24 shows an example of the output clock phase delay control using the DLL_PHDLY<2:0> in DLL block (PLL and decimation are not used).

TABLE 4-17: OUTPUT CLOCK (DCLK) PHASE CONTROL PARAMETERS

Control Parameter	Register	Operating Condition
DLL_PHDLY<2:0>	0x52	External clock is used as timing source without using PLL or decimation. The phase delay is controlled in DLL Block. See Figure 4-11 for details.
PLL_PHDLY<3:0>	0x6D	PLL is used without using decimation. The phase delay is controlled in PLL Block. Figure 4-11 for details.
DCLK_PHDLY_DEC<2:0>	0x64	The decimation filter is used. See details in Section 4.8.2 "Decimation Filters".

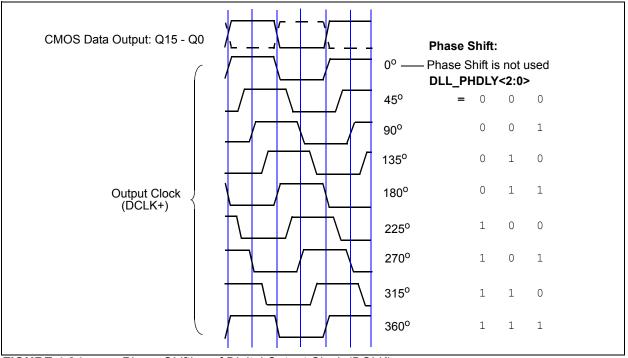


FIGURE 4-24: Phase Shifting of Digital Output Clock (DCLK).

4.13 Digital Output Randomizer

Depending on PCB considerations and power supply coupling, SFDR may be improved by decorrelating the ADC input from the ADC digital output data. The device includes an output data randomizer option. When this option is enabled, the digital output is randomized by applying an exclusive-OR logic operation between the LSB (D0) and all other data output bits. To decode the randomized data, the reverse operation is applied: an exclusive-OR operation is applied between the LSB (D0) and all other bits. The DCLK, OVR, WCK, DM1, DM2 and LSB (D0) outputs are not affected. Figure 4-25 shows the block diagram of the data randomizer and decoder logic. The output randomizer is enabled by setting the EN_OUT_RANDOM bit in Address 0x07 (Register 5-5).

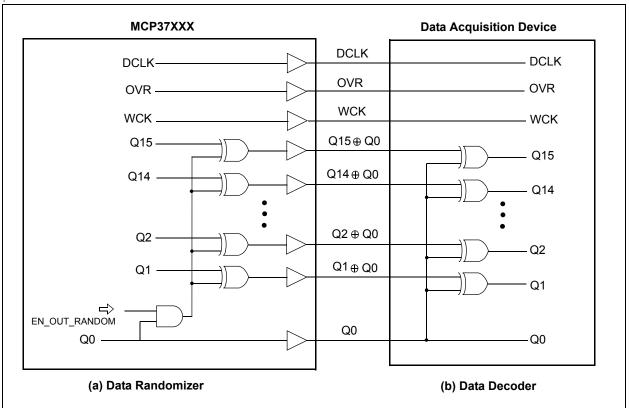


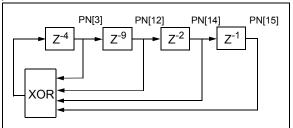
FIGURE 4-25: Logic Diagram for Digital Output Randomizer and Decoder.

4.14 Output Disable

The digital output can be disabled by setting OUTPUT_MODE<1:0> = 00 in Address 0x62 (Register 5-20). All digital outputs are disabled, including OVR, WCK, DCLK, etc.

4.15 Output Test Patterns

To facilitate testing of the I/O interface, the device can produce various predefined or user-defined patterns on the digital outputs. See TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20) for the predefined, and for the user-defined test patterns. For the user-defined pattern, the Addresses 0x74 - 0x77 (Registers 5-29 - 5-32) can be programmed using the SPI interface. When an output test mode is enabled, the ADC's analog section can still be operational, but does not drive the digital outputs. The outputs are driven only with the selected test pattern.


4.15.1 PSEUDO-RANDOM NUMBER (PN) SEQUENCE OUTPUT

When TEST_PATTERNS<2:0> = 111, the device outputs a pseudo-random number (PN) sequence which is defined by the polynomial of degree 16, as shown in Equation 4-9. Figure 4-26 shows the block diagram of a 16-bit Linear Feedback Shift Register (LFSR) for the PN sequence.

EQUATION 4-9: POLYNOMIAL FOR PN

$$P(x) = 1 + x^{4} + x^{13} + x^{15} + x^{16}$$

The output PN[15:0] is directly applied to the output pins Qn[15:0]. In addition to the output at the Qn[15:0] pins, the two MSBs, PN[15] and PN[14], are copied to OVR and WCK pins, respectively. The two LSBs, PN[1] and PN[0], are also copied to DM1 and DM2 pins, respectively. In CMOS output mode, the pattern is always applied to all CMOS I/O pins, regardless whether or not they are enabled. In LVDS output mode, the pattern is only applied to the LVDS pairs that are enabled.

FIGURE 4-26: Block Diagram of 16-bit LFSR for Pseudo-Random Number (PN) Sequence for Output Test Pattern.

4.16 System Calibration

The built-in system calibration algorithm includes:

- Harmonic Distortion Correction (HDC)
- DAC Noise Cancellation (DNC)
- Dynamic Element Matching (DEM)

HDC and DNC correct the nonlinearity in the residue amplifier and DAC, respectively. The system calibration is performed by:

- Power-p calibration, which takes place during the power-on reset sequence (requires 2²⁷ clock cycles)
- Background calibration, which takes place during normal operation (per 2³⁰ clock cycles).

Background calibration time is invisible to the user, and primarily affects the ADC's ability to track variations in ambient temperature.

The calibration status is monitored by CAL pin or the CAL_STAT bit in Address 0xC0 (Register 5-80). See also Address 0x07 (Register 5-5) and 0x1E (Register 5-6) for time delay control of the auto-calibration. Table 4-18 shows the calibration time for various ADC core sample rates.

TABLE 4-18:CALIBRATION TIME VS. ADC
CORE SAMPLE RATE

f _S (Msps)	200	150	100	70	50
Power-Up Calibration Time (s)	0.67	0.9	1.34	1.92	2.68
Background Calibration Time (s)	5.37	7.16	10.73	15.34	21.48

4.16.1 RESET COMMAND

Although the background calibration will track changes in temperature or supply voltage, changes in clock frequency or register configuration should be followed by a recalibration of the ADC. This can be accomplished either via the Hard or Soft Reset commands. The recalibration time is the same as the power-up calibration time (2²⁷ clock cycles). During the reset, the device has the following state:

- No ADC output
- No change in power-on condition of internal reference
- · Most of the internal clocks are not distributed
- · Contents of internal user registers:
 - Not affected by Soft Reset
 - Reset to default values by Hardware Reset
- Current consumption of the digital section is negligible, but no change in the analog section.

4.16.1.1 Hardware Reset

A hard reset is triggered by toggling the RESET pin. On the rising edge, the internal user-registers are initialized to their default states and recalibration of the ADC commences. The recalibration time is the same as the power-up calibration time. See Figure 2-8 for the timing details of the hardware RESET pin.

4.16.1.2 Soft Reset

The user can issue a Soft Reset command for a fast recalibration of the ADC, by setting the SOFT_RESET bit to '0' in Address 0x00 (Register 5-1). During Soft Reset, all internal calibration registers are initialized to their initial default states. User registers are unaffected. When exiting the Soft Reset (changing from '0' to '1'), an automatic device calibration takes place.

4.17 Power Dissipation and Power Savings

The power dissipation of the ADC core is proportional to the sample rate (f_S). The digital power dissipation of the CMOS outputs are determined primarily by the strength of the digital drivers and the load condition on each output pin. The maximum digital load current (I_{LOAD}) can be calculated as:

EQUATION 4-10: CMOS OUTPUT LOAD CURRENT

 $I_{LOAD} = DV_{DD1.8} \times f_{DCLK} \times N \times C_{LOAD}$ Where:

N = Number of bits

 $C_{I,OAD}$ = Capacitive load of output pin

The capacitive load presented at the output pins needs to be minimized to minimize digital power consumption. The output load current of the LVDS output is constant, since it is set by LVDS_IMODE<2:0> in Address 0x63 (Register 5-21).

4.17.1 POWER SAVING MODES

This device has two power-saving modes:

- Shutdown
- Standby

They are set by the SHUTDOWN and STANDBY bits in Address 0x00 (Register 5-1).

In Shutdown mode, most of the internal circuitry, including the reference and clock, are turned off with the exception of the SPI interface. During Shutdown, the device consumes 25 mA (typical), primarily due to digital leakage. When exiting from Shutdown, issuing a Soft Reset at the same time is highly recommended. This will perform a fast recalibration of the ADC. The contents of the internal registers are not affected by the Soft Reset.

In Standby mode, most of the internal circuitry is disabled except for the reference, clock and SPI interface. If the device has been in standby for an extended period of time, the existing calibration may not be accurate. Therefore, when exiting from Standby mode, executing the device Soft Reset at the same time is highly recommended.

5.0 SERIAL PERIPHERAL INTERFACE (SPI)

The user can configure the ADC for specific functions or optimized performance by setting the device's internal registers through the serial peripheral interface (SPI). The SPI communication uses three pins: CS, SCLK and SDIO. Table 5-1 summarizes the SPI pin functions. The SCLK is used as serial timing clock and can be used up to 50 MHz. SDIO (serial data input/ output) is a dual-purpose pin that allows data to be sent or read from the internal registers. The Chip Select pin (CS) enables the SPI communication when active-low. The falling edge of \overline{CS} followed by a rising edge of SCLK determines the start of the SPI communication. When \overline{CS} is tied to high, the SPI communication is disabled and SPI pins are placed in high- impedance mode. The internal registers are accessible by their address.

Figures 5-1 and 5-2 show the SPI data communication protocols for this device with MSB-first and LSB-first option, respectively. It consists of:

 16-bit wide instruction header + Data byte 1 + Data byte 2 + . . . + Data Byte N

Table 5-2 summarizes the bit functions. The R/\overline{W} bit of the instruction header indicates whether the command is a read ('1') or a write ('0'):

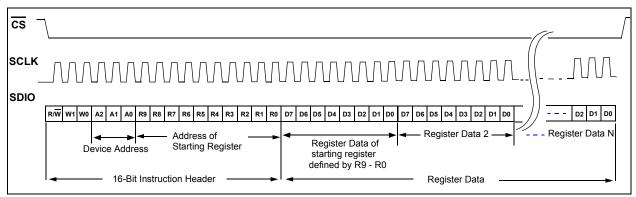
If the R/W bit is '1', the SDIO pin changes direction from an input (SDI) to an output (SDO) after the 16-bit wide instruction header.

By selecting the R/\overline{W} bit, the user can write the register or read back the register contents. The W1 and W2 bits in the instruction header indicate the number of data bytes to transmit or receive in the following data frame.

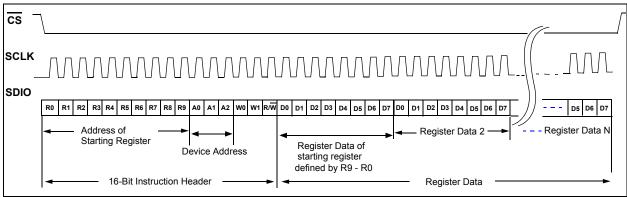
A2 – A0 bits are the SPI device address bits. These bits are used when multiple devices are used in the same SPI bus. A2 is internally hardcoded to '0'. A1 and A0 bits are correspond to the logic level of ADR1 and ADR0 pins, respectively.

Note: In VTLA-124 package, ADR1 is internally bonded to ground (logic '0').

The R9-R0 bits represent the starting address of the configuration register to write or read. The data bytes following the instruction header are the register data. All register data is 8-bit wide. Data can be sent in MSB-first mode (default) or in LSB-first mode, which is determined by <LSB_FIRST> bit setting in Address 0x00 (Register 5-1). In Write mode, the data is clocked in at the rising edge of the SCLK. In the Read mode, the data is clocked out at the falling edge of the SCLK.


TABLE 5-1: SPI PIN FUNCTIONS

Pin Name	Descriptions
CS	Chip Select pin. SPI mode is initiated at the falling edge. It needs to maintain active-low for the entire period of the SPI communication. The device exits the SPI communication at the rising edge.
SCLK	Serial clock input pin.Writing to the device: Data is latched at the rising edge of SCLK
	 Reading from the device: Data is latched at the falling edge of SCLK
SDIO	 Serial data input/output pin. This pin is initially input pin (SDI) during the first 16-bit instruction header. After the instruction header, it's I/O status can be changed depending on R/W bit: if R/W = 0: Data input pin (SDI) for writing if R/W = 1: Data output pin (SDO) for
	 if R/W = 1: Data output pin (SDO) for reading


TABLE 5-2:SPI DATA PROTOCOL BIT
FUNCTIONS

Bit Name	Descriptions
R/W	1 = Read Mode 0 = Write Mode
W1, W0 (Data Length)	 00 = Data for one register (1 byte) 01 = Data for two registers (2 bytes) 10 = Data for three registers (3 bytes) 11 = Continuous reading or writing by clocking SCLK (Note).
A2 - A0	Device SPI Address for multiple devices in SPI bus. A2: Internally hardcoded to '0' A1: Logic level of ADR1 pin A0: Logic level of ADR0 pin
R9 - R0	Address of starting register.
D7 - D0	Register data. MSB or LSB first, depending on LSB_FIRST bit setting in 0x00.

Note: The register address counter is incremented by one per step. The counter does not automatically reset to 0x00 after reaching the last address (0x15F). The user also needs to be aware the user-registers are not sequentially allocated.

FIGURE 5-1: SPI Serial Data Communication Protocol with MSB-first. See Figures 2-5 and 2-6 for Timing Specifications.

FIGURE 5-2: SPI Serial Data Communication Protocol - with LSB-First. See Figures 2-5 and 2-6 for Timing Specifications.

5.1 Register Initialization

The internal configuration registers are initialized to their default values in two different conditions:

- After 2²⁰ clock cycles of delay from the power-on reset (POR).
- By the hardware reset pin (RESET).

Figures 2-5 and 2-6 show the timing details.

5.2 Configuration Registers

The internal registers are mapped from address 0x00 to 0x15F. Among them, 83 registers are user-configuration registers. These user registers are not sequentially located, but mixed with factory controlled registers. Some user-configuration registers also have factory-controlled bits. The factory controlled registers and bits cannot be overwritten by the user. All user configuration registers are read/write, except for the last four registers, which are read-only. Each register is made of an 8-bit wide volatile memory, and their default values are loaded during the power-up sequence or by using the hardware RESET pin. All registers are accessible by the SPI command using the register address. Table 5-3 shows the user-configuration memory map, and Registers 5-1 - 5-83 show the details of the register bit functions.

Note 1: All address and bit locations that are not included in the following table should not be written or modified by the user. Contact Microchip Technology Inc. for more information on the factory programming bit settings.

2: Some registers include factory-controlled bits (FCB). Do not overwrite these bits.

TABLE 5-3: **REGISTER MAP TABLE**

Addr	Desister News		Bits								
Addr.	Register Name	b7	b6	b5	b4	b3	b2	b1	b0	Defaul Value	
0x00	SPI Bit Ordering and ADC	SHUTDOWN	LSB-First	SOFT_RESET	STANDBY	STANDBY	SOFT_RESET	LSB-First	SHUTDOWN	0:	
	Mode Selection	1 = Shutdown	1 = LSB first 0 = MSB first	0 = Soft Reset	1 = Standby	1 = Standby	0=Soft Reset	1 = LSB first 0 = MSB first	1 = Shutdown		
0x01	No. of Channel Selection and Independence Control of Output Data and Clock Divider	EN_DATCLK_IND	FCB<3> = 0	SEL_NCH<2:0> FCB<2:0> = 111				0>			
0x02	Output Data and Clock Rate		OUT_DA	TARATE<3:0>			OUT_CLKI	RATE<3:0>		0:	
0x04	SPI SDO Timing Control	SDO_TIME			F	CB<6:0> = 001111				0:	
0x07	Output Randomizer and WCK Polarity	POL_WCK	EN_AUTOCAL_ TIMEDLY	FCB<4:0> = 100001 EN OUT					EN_OUT_ RANDOM	0:	
0x1E	Auto-Calibration Time Delay			AUTOCAL_TIMEDLY<7:0>						0>	
0x52	DLL Control	EN_DUTY		DLL_PHDLY<2:0>		EN_DCLK	EN_DLL	EN_CLK	RESET_DLL	0>	
0x53	Clock Source Selection		FCB<6:4>= 001		CLK_SOURCE FCB<3:0>= 0101					0:	
0x54	PLL Reference Divisor			PLL_REFDIV<7:0>						0	
0x55	PLL Output and Reference Divisor		PLL_OU	PLL_OUTDIV<3:0> U<1:0> PLL_REFDIV<9:8>					EFDIV<9:8>	0	
0x56	PLL Prescaler (LSB)				PLL_PRESCALE	R (LSB)<7:0>				0:	
0x57	PLL Prescaler (MSB)		FCB<3	: 0> = 0100			PLL_PRESCALI	ER (MSB)<11:8>	(MSB)<11:8>		
0x58	PLL Charge-pump		FCB<2:0> = 001		PLL_BIAS		PLL_CHAG	PUMP<3:0>		0	
0x59	PLL Enable Control 1	U	FCB<4:	3> = 1000	EN_PLL_REVDIF	FC	B<2:1>	EN_PLL	FCB<0> = 1	0	
0x5A	PLL Loop Filter Resistor	U	FCB<	1:0> = 01			PLL_RES<4:0>			0	
0x5B	PLL Loop Filter Cap3	U	FCB<	1:0> = 01			PLL_CAP3<4:0>			0	
0x5C	PLL Loop Filter Cap1	U	FCB<	1:0> = 01			PLL_CAP1<4:0>			0	
0x5D	PLL Loop Filter Cap2	U	FCB<	1:0> = 01			PLL_CAP2<4:0>			0	
0x5F	PLL Enable Control 2		FC	B<7:4>		EN_PLL_OUT	EN_PLL_BIAS	FC	B<1:0>	0	
0x62	Output Data Format and Out- put Test Patterns	U	LVDS_8CH 1 = Serialized 0 = Interleaved	DATA_FORMAT 1 = Offset binary 0 = two's complement	11 = LVDS,MSB byte first			2:0>	C		
0x63	ADC Output Bits (Resolution) and LVDS Output Load		OUTPU	OUTPUT_BIT<3:0> LVDS_LOAD LVDS_IMODE<1:0>)>	C		

Read-only register. Preprogrammed at the factory for internal use. 2:

DS20005322B-page 71

TABLE 5-3: **REGISTER MAP TABLE (CONTINUED)**

A	De sister News				Bits					Default
Addr.	Register Name	b7	b6	b5	b4	b3	b2	b1	b0	Value
0x64	Output Clock Phase Control when Decimation Fil- ter is used	EN_PHDLY_DEC DCLK_PHDLY_DEC<2:0> FCB<3:0> = 0011								
0x65	LVDS Output Polarity		POL_LVDS<7:0>							
0x66	Digital Offset Correction - Lower Byte				DIG_OFFSE	T<7:0>				0x00
0x67	Digital Offset Correction - Upper Byte				DIG_OFFSET	Γ<15:8>				0x00
0x68	WCK/OVR and DM1/DM2		FCB<3	: 0> = 0010		POL_WCK_OVR	EN_WCK_OVR 1 = Enabled	DM1DM2 1 = Added	POL_DM1DM2 1 = Inverted	0x24
0x6B	PLL Calibration			FCB<4:0>=0001			PLL CALTRIG		:0>=00	0x08
0x6D	PLL Output and Output Clock Phase	U<	U<1:0> EN_PLL_CLK PLL_PHASE PLL_PHDLY<3:0>							
0x74	User-Defined Output Pattern A - Lower Byte		PATTERN A<7:0>							
0x75	User-Defined Output Pattern A - Upper Byte	PATTERN A<15:8>								
0x76	User-Defined Output Pattern B - Lower Byte	PATTERN B<7:0>								
0x77	User-Defined Output Pattern B - Upper Byte				PATTERN B	<15:8>				0x00
0x78	Noise Shaping Requantizer Channel A Fil- ter ⁽¹⁾	NSR_RESET				NSRA<6:0>				0x00
0x79	Dual-Channel DSPP and Noise Shaping Requantizer Channel B Filter	EN_DSPPDUAL				NSRB<6:0> ⁽¹⁾				0x00
0x7A	FIRA0 Filter, FDR, and NSR Control	U	FIR_A<0>	EN_FDR	FCB<0> = 0	EN_NSRB_11 ⁽¹⁾	EN_NSRB_12 ⁽¹⁾	EN_NSRA_11 ⁽¹⁾	EN_NSRA_12 ⁽¹⁾	0x00
0x7B	FIR A Filter (for Single, Dual)				FIR_A<8	:1>				0x00
0x7C	FIR B Filter for Channel B				FIR_B<7	:0>				0x00
0x7D	Auto-Scan Channel Order - Lower Byte		CH_ORDER<7:0>							
0x7E	Auto-Scan Channel Order - Middle Byte	CH_ORDER<15:8>								0xAC
0x7F	Auto-Scan Channel Order - Upper Byte	CH_ORDER<23:16>								0x8E

© 2014 Microchip Technology Inc.

TABLE 5-3: REGISTER MAP TABLE (CONTINUED)

Addr.	Register Name				Bits					Default	
Addr.	Register Name	b7	b6	b5	b4	b3	b2	b1	b0	Valu	
0x80	Digital Down-Converter Con- trol 1	HBFILTER_B	HBFILTER_A	EN_NCO	EN_AMPDITH	EN_PHSDITH	EN_LFSR	EN_DDC_FS/8	EN_DDC1	0x0	
0x81	Digital Down-Converter Con- trol 2	FDR_BAND	EN_DDC2	GAIN_HBF_DDC	SEL_FDR	SEL_DSPP	8CH_CW	GAIN_80	CH<1:0>	0x0	
0x82	Numerically Controlled Oscil- lator (NCO) Tuning - Lower Byte				NCO_TUNE	<7:0>				0x0	
0x83	Numerically Controlled Oscil- lator (NCO) Tuning - Middle Lower Byte				NCO_TUNE	<15:8>				0x0	
0x84	Numerically Controlled Oscil- lator (NCO) Tuning - Middle Upper Byte				NCO_TUNE<	23:16>				0x0	
0x85	Numerically Controlled Oscil- lator (NCO) Tuning - Upper Byte		NCO_TUNE<31:24>								
0x86	CH0 NCO Phase Offset in CW or DDC Mode - Lower Byte		CH0_NCO_PHASE<7:0>								
0x87	CH0 NCO Phase Offset in CW or DDC Mode - Upper Byte		CH0_NCO_PHASE<15:8>								
0x88	CH1 NCO Phase Offset in CW or DDC Mode - Lower Byte				CH1_NCO_PHA	ASE<7:0>				0x0	
0x89	CH1 NCO Phase Offset in CW or DDC Mode - Upper Byte				CH1_NCO_PHA	SE<15:8>				0x(
0x8A	CH2 NCO Phase Offset in CW or DDC Mode - Lower Byte				CH2_NCO_PHA	ASE<7:0>				0x(
0x8B	CH2 NCO Phase Offset in CW or DDC Mode - Upper Byte				CH2_NCO_PHA	SE<15:8>				0x0	
0x8C	CH3 NCO Phase Offset in CW or DDC Mode - Lower Byte				CH3_NCO_PHA	ASE<7:0>				0x(
0x8D	CH3 NCO Phase Offset in CW or DDC Mode - Upper Byte			CH3_NCO_PHASE<15:8>							

2: Read-only register. Preprogrammed at the factory for internal use.

TABLE 5-3: **REGISTER MAP TABLE (CONTINUED)**

A	De nieten Neme				Bits					Default
Addr.	Register Name	b7	b6	b5	b4	b3	b2	b1	b0	Value
0x8E	CH4 NCO Phase Offset in CW or DDC Mode - Lower Byte				CH4_NCO_PHA	ASE<7:0>				0x00
0x8F	CH4 NCO Phase Offset in CW or DDC Mode - Upper Byte				CH4_NCO_PHA	SE<15:8>				0x00
0x90	CH5 NCO Phase Offset in CW or DDC Mode - Lower Byte				CH5_NCO_PH	ASE<7:0>				0x00
0x91	CH5 NCO Phase Offset in CW or DDC Mode - Upper Byte				CH5_NCO_PHA	SE<15:8>				0x00
0x92	CH6 NCO Phase Offset in CW or DDC Mode - Lower Byte		CH6_NCO_PHASE<7:0>							
0x93	CH6 NCO Phase Offset in CW or DDC Mode - Upper Byte		CH6_NCO_PHASE<15:8>							0x00
0x94	CH7 NCO Phase Offset in CW or DDC Mode - Lower Byte	CH7_NCO_PHASE<7:0>							0x00	
0x95	CH7 NCO Phase Offset in CW or DDC Mode - Upper Byte				CH7_NCO_PHA	SE<15:8>				0x00
0x96	CH0 Digital Gain				CH0_DIG_GA	IN<7:0>				0x3C
0x97	CH1 Digital Gain				CH1_DIG_GA	IN<7:0>				0x3C
0x98	CH2 Digital Gain				CH2_DIG_GA	IN<7:0>				0x3C
0x99	CH3 Digital Gain				CH3_DIG_GA	IN<7:0>				0x3C
0x9A	CH4 Digital Gain				CH4_DIG_GA	IN<7:0>				0x3C
0x9B	CH5 Digital Gain				CH5_DIG_GA	IN<7:0>				0x3C
0x9C	CH6 Digital Gain				CH6_DIG_GA	IN<7:0>				0x3C
0x9D	CH7 Digital Gain				CH7_DIG_GA	IN<7:0>				0x3C
0x9E	CH0 Digital Offset				CH0_DIG_OFF	SET<7:0>				0x00
0x9F	CH1 Digital Offset				CH1_DIG_OFF	SET<7:0>				0x00
0xA0	CH2 Digital Offset				CH2_DIG_OFF	SET<7:0>				0x00
0xA1	CH3 Digital Offset				CH3_DIG_OFF	SET<7:0>				0x00
0xA2	CH4 Digital Offset				CH4_DIG_OFF	SET<7:0>				0x00
0xA3	CH5 Digital Offset				CH5_DIG_OFF	SET<7:0>				0x00

1:

Not used for this device. Do not change the factory default setting. Read-only register. Preprogrammed at the factory for internal use. 2:

Note

TABLE 5-3: REGISTER MAP TABLE (CONTINUED)

A al al a	De sister Norre				Bits					Default
Addr.	Register Name	b7	b6	b5	b4	b3	b2	b1	b0	Value
0xA4	CH6 Digital Offset				CH6_DIG_OFFSI	ET<7:0>				0x00
0xA5	CH7 Digital Offset				CH7_DIG_OFFSI	ET<7:0>				0x00
0xA7	Digital Offset Weight Control	FCB<5:3> = 010			DIG_OFFSET_W	/EIGHT<1:0>	FCB<2:0> = 111			0x47
0xC0	Calibration Status Indication (Read only)	CAL_STAT	FCB<6:0> = xxx-xxxx					-		
0xD1	PLL Calibration and Status Indication (Read only)	FCB<4	:3> = xx	PLL_CAL_STAT	FCB<2:1>	> = _{XX}	PLL_VCOL_STAT	PLL_VCOH_STAT	FCB<0> = x	-
0x15C	CHIP ID - Lower Byte ⁽²⁾ (Read only)				CHIP_ID<7:	:0>				-
0x15D	CHIP ID - Upper Byte ⁽²⁾ (Read only)				CHIP_ID<15	5:8>				-
Legend Note	U = Unimplemented bit, real: Not used for this device. Do		Factory-Controlled bit story default setting.	s. Do not program	1 = bit is set 0 = b	bit is cleared	x = bit is unknown			<u>.</u>

2: Read-only register. Preprogrammed at the factory for internal use.

MCP37231/21-200 AND MCP37D31/21-200

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
SHUTDOW	VN LSB_FIRST	SOFT_RESET	STANDBY	STANDBY	SOFT_RESET	LSB_FIRST	SHUTDOWN
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable bi	t	U = Unimple	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 7	SHUTDOWN	I: Shutdown mode	e setting for p	ower-saving (Note 2)		
	-	shutdown mode					
	0 = Not in s	hutdown mode (D	efault)				
bit 6	—	Select SPI comm					
		PI communication					
		Pl communication					
bit 5	-	T: Soft Reset cor	•	4)			
	1 = Notins 0 = ADC in	Soft Reset mode (Default)				
hit 1			to o power or	wing standby	$m_{\rm ed}$ (Nets 2)		
bit 4		Send the device in Standby mode	no a power-sa	aving standby	mode (Note 3)		
		Standby mode (De	efault)				
bit 3	STANDBY: S	Send the device in	ito a power-sa	aving standby	mode (Note 3)		
		Standby mode		• •	. ,		
		Standby mode (De	-				
bit 2	_	T: Soft Reset cor	•	4)			
		oft Reset mode (E	Default)				
	0 = ADC in S						
bit 1	_	Select SPI comm					
		PI communication					
h # 0		PI communication					
bit 0		I: Shutdown mode Shutdown mode	e setting for p	ower-saving (Note 2)		
		utdown mode (De	efault)				
Note 1:		r nibble are mirro	-	kes the MSB	- or I SB-first mo	de interchange	eable. The
	• •	<3:0>) has a higi				•	
2:		n mode, most of					
		PI interface. Whe					
	registers are no	Itaneously is high	ly recommend	ded for a fast	recalibration of th	ne ADC. The i	nternal user
3:	-	mode, most of the	e internal circ	uits are turne	d off except for th	ne reference o	lock and SPI
•		exiting from Stan					
		Reset simultaneou					
4:		ne device into the					
		ult states. The use					
	has the following	.'), the device perf	orms an auto	matic device	calibration. Durin	ig the Soft Res	set, the device
	- no ADC ou	•					
		in power-on condi	tion of interna	al reference			
		internal clocks an					
					it no obongo in t		1 :

REGISTER 5-1: ADDRESS 0X00 – SPI BIT ORDERING AND ADC MODE SELECTION (Note 1)

The power consumption of the digital section is negligible, but no change in the analog section.

REGISTER 5-2:		S 0X01 – NU DATA AND (•		ENCY CONTI	ROL OF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
EN_DATCLK_IND	FCB	5	SEL_NCH<2:0>			FCB<2:0>	
bit 7							bit (
Legend:							
R = Readable bit		W = Writable	bit	U = Unimple	emented bit, re	ad as '0'	
-n = Value at POF	२	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 6		(Default) -Controlled bits	s. This is not f	or the user. D	o not change t	he default setti	ngs.
bit 7	1 = Enable	_IND: Enable of				.,	
bit 6		. ,	s. This is not f	or the user. D	o not change t	he default setti	nas.
bit 5-3	•	:0>: Select the			•		0
				·		, , , , , , , , , , , , , , , , , , ,	
	110 = 6 input						
	101 = 5 input						
	100 = 4 input						
	011 = 3 input						
	010 = 2 input						
	001 = 1 input	• •					
	000 = 8 input	S					
bit 2-0	FCB<2:0>: Fa	actory-Controll	ed bits. This is	s not for the u	ser. Do not ch	ange the defau	lt settings.
Note 1: EN_D	ATCLK_IND = 1	l enables OUT	_CLKRATE<	3:0> settings i	n Address 0x0	2 (Register 5-3).
2: The to	tal number of in	nput channel va	aries with the	device part nu	mber (P/N):		
- Sir	ngle/Dual/Quad	-Channel devic	ces: SEL_NCI	H<2:0> bits ar	e pre-progami	med at the facto	ory.
-							

- Octal-Channel devices: SEL_NCH<2:0> bits are programmed by the user. See Addresses 0x7D – 0x7F (Registers 5-38 – 5-40) for selecting the input channel order.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	OUT_DATAF	RATE<3:0>			OUT_CL	<rate<3:0></rate<3:0>	
bit 7							bit
Legend:							
R = Readable bit		W = Writable b	DIT	-	mented bit, re		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7-4	OUT_DATAR	ATE<3:0>: Outpu	ut data rate co	ontrol bits (Note	2)		
	1111 = Outp	ut data is all 0's					
	1110 = Outp	ut data is all 0's					
	-	ut data is all 0's					
	1100 = Interr						
	1011 = Interr	•					
	1010 = Interr	•	10				
		peed divided by 5 peed divided by 2					
		peed divided by 2 peed divided by 1					
		peed divided by 6					
		peed divided by 3					
		peed divided by 1					
		peed divided by 8					
	0010 = Full s	peed divided by 4	ŀ				
	0001 = Full s	peed divided by 2	2				
	0000 = Full s	peed rate (Defau	lt)				
bit 3-0	—	TE<3:0>: Output	clock rate co	ontrol bits (Note	3, Note 4)		
	1111 = Full s	•					
	1110 = No cl						
	1101 = No cl						
	1100 = No cl						
	1011 = No cl						
	1010 = No cl	peed divided by 5	12				
		peed divided by 2					
		peed divided by 1					
		peed divided by 6					
		peed divided by 3					
	0100 = Full s	peed divided by 1	6				
	0011 = Full s	peed divided by 8	3				
		peed divided by 4					
		peed divided by 2					
		ock output (Defau	-				
		e used when the (
	rs 5-36 and 5- r dual channe	37) or digital dowr I mode	conversion	option (s	see Address ()	xou - Register 5-	+ () is used li
		ot reprogram. The	ese settinas a	re used for the	internal test o	nly. If these bits	are repro-
		nt settings, the out				,	
3: Bits <3:	0> become ac	tive if EN_DATCL	$K_{IND} = 1$ in	Address 0x01	(Register 5-2).		only used with
		esses 0x80 and 0					
4: When n	o clock output	is selected (Bits 1	.110 - 101	0): clock output	t is not availab	ie at the DCLK+/	DCLK- pins.

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-------	-------	-------	-------	-------	-------	-------	-------

REGISTER 5-4: ADDRESS 0X04 – SPI SDO OUTPUT TIMING CONTROL (CONTINUED)

SDO_TIME	FCB<6:0>
bit 7	bit 0
Legend:	

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SDO_TIME: SPI SDO output timing control b	oit
-------	---	-----

1 = SDO output at the falling edge of clock (Default)

0 = SDO output at the rising edge of clock

bit 6-0 **FCB<6:0>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

REGISTER 5-5: ADDRESS 0X07 – OUTPUT RANDOMIZER AND WCK POLARITY CONTROL

R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0
POL_WCK	EN_AUTOCAL TIMEDLY			FCB<4:0>			EN_OUT_RANDOM
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7 **POL_WCK:** WCK polarity control bit (Note 1)

- 1 = Inverted
- 0 = Not inverted (Default)
- bit 6 EN_AUTOCAL_TIMEDLY: Auto-calibration starter time delay counter control bit (Note 2)
 - 1 = Enabled (Default)
 - 0 = Disabled

bit 0

bit 5-1 **FCB<4:0>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

- EN_OUT_RANDOM: Output randomizer control bit
 - 1 = Enabled: ADC data output is randomized
 - 0 = Disabled (Default)
- Note 1: See Address 0x68 (Register 5-26) for WCK/OVR pair control.
 - 2: This bit enables the AUTOCAL_TIMEDLY<7:0> settings. See Address 0x1E (Register 5-6).

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		A	UTOCAL_TI	MEDLY<7:0>			
bit 7							bit (
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

REGISTER 5-6: ADDRESS 0X1E – AUTOCAL TIME DELAY CONTROL (Note 1)

bit 7-0	AUTOCAL_TIMEDLY<7:0>: Auto-calibration start time delay control bits 1111-1111 = Maximum value				
	•				
	•				
	•				
	1000-0000 = (Default)				
	•				
	•				
	•				
	0000-0000 = Minimum value				

Note 1: EN_AUTOCAL_TIMEDLY in Address 0x07 (Register 5-5) enables this register setting. This register controls the time delay before the auto-calibration starts. The value increases linearly with the bit settings, from minimum to maximum values.

REGISTER 5-7: ADDRESS 0X52 – DLL CONTROL

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0
EN_DUTY	DL	L_PHDLY<2:0)>	EN_DCLK	EN_DLL	EN_CLK	RESET_DLL
bit 7				•		•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 EN_DUTY: Enable DLL circuit for duty cycle correction (DCC) of input clock (Note 1)

- 1 = Correction is ON
- 0 = Correction is OFF (Default)

bit 6-4 DLL_PHDLY<2:0>: Select the phase delay of the clock output (Note 2)

- 111 **= 360**°
- 110 **= 315^o**
- 101 **= 270^o**
- 100 **= 225**°
- 011 = 180°
- 010 = 135^o
- $001 = 90^{\circ}$

000 = 45⁰ (Default)

- **Note 1:** Enable the DLL circuitry for the duty cycle correction. Analog clock output: Rising edge is unaffected and only falling edge is modified. The duty cycle correction will affect the SNR performance significantly.
 - 2: Phase of output data:
 - In CMOS output, the data transition occurs at the rising edge of the DCLK+.
 - In DDR LVDS output, the data transition occurs at both rising and falling edges of the DCLK+.
 - **3:** DLL must be reset if clock is removed or clock frequency is changed significantly. DLL resets automatically during power-up process. The DLL reset control procedure: Set this bit to '0' (reset) and then to '1'.

REGISTER 5-7: ADDRESS 0X52 – DLL CONTROL (CONTINUED)

bit 3	 EN_DCLK: Enable digital clock to the circuit 1 = Enabled (Default) 0 = Disabled: Digital clock is turned off, therefore ADC output is not available.
bit 2	EN_DLL: Enable DLL circuitry to provide a selectable phase clock to digital output clock.
	1 = Enabled
	 Disabled. Phase selection of digital output is not available (Default)
bit 1	EN_CLK: Enable internal clock circuitry
	1 = Enabled (Default).
	0 = Disabled. No clock is available to the internal circuits, ADC output is not available.
bit 0	RESET_DLL: DLL circuit reset control (Note 3)
	1 = DLL is active
	0 = DLL circuit is held in reset (Default)
Note 1:	Enable the DLL circuitry for the duty cycle correction. Analog clock output: Rising edge is unaffected and only falling edge is modified. The duty cycle correction will affect the SNR performance significantly.
-	

2: Phase of output data:

- In CMOS output, the data transition occurs at the rising edge of the DCLK+.
- In DDR LVDS output, the data transition occurs at both rising and falling edges of the DCLK+.
- **3:** DLL must be reset if clock is removed or clock frequency is changed significantly. DLL resets automatically during power-up process. The DLL reset control procedure: Set this bit to '0' (reset) and then to '1'.

REGISTER 5-8: ADDRESS 0X53 – CLOCK SOURCE SELECTION

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FCB<6:4>		CLK_SOURCE	FCB<3:0>				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	FCB<6:4>: Factory-Controlled bits. This is not for the user. Do not change the default settings.
---------	--

- bit 4 CLK_SOURCE: Select internal timing source
 - 1 = PLL output is selected as timing source
 - 0 = External clock input is selected as timing source (PLL is not used) (Default)

bit 3-0 **FCB<3:0>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PLL_REF	DIV<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
	•					,	
		= PLL reference of = PLL reference of					
	•						
	•						
		= PLL reference of		(If PLL_REFDI	V<9:8> = 00)		
		= Do not use (No					
	0000-0001	= PLL reference of	divided by 1	(if PLL_REFDI	/<9:8> = 00)		
	0000-0000	= PLL reference r	not divided (if PLL_REFDIV	<9:8> = 00) ([Default)	
		10-bit wide setting REFDIV<9:0> bit	•	• •	,		

REGISTER 5-9: ADDRESS 0X54 – PLL REFERENCE DIVISOR

Note 1: PLL_REFDIV is a 10-bit wide setting. See Address 0x55 (Register 5-10) for the upper two bits and Table 4-3 for PLL_REFDIV<9:0> bit settings. This setting controls the clock division ratio of the PLL reference clock (external clock input at the clock input pin) before the PLL phase-frequency detector circuitry. Note that the divider value of 2 is not supported. EN_PLL_REFDIV in Address 0x59 (Register 5-14) must be set.

REGISTER 5-10: ADDRESS 0X55 - PLL OUTPUT AND REFERENCE DIVISOR

R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
PLL_OUTDIV<3:0>			Unimplemented		PLL_REFDIV<9:8>		
bit 7					bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	PLL_OUTDIV<3:0>: PLL output divisor control bits (Note 1) 1111 = PLL output divided by 15 1110 = PLL output divided by 14
	•
	•
	•
	0100 = PLL output divided by 4 (Default)
	0011 = PLL output divided by 3
	0010 = PLL output divided by 2
	0001 = PLL output divided by 1
	0000 = PLL output not divided
bit 3-2	Unimplemented: Not used.
bit 1-0	PLL_REFDIV<9:8>: Upper two MSB bits of PLL_REFDIV<9:0> (Note 2)
	00 = see Table 5-4. (Default)
Note 1:	PLL_OUTDIV<3:0> controls the PLL output clock divider: VCO output is divided by the PLL_OUTDIV<3:0> setting.

2: See Address 0x54 (Register 5-9) and Table 5-4 for PLL_REFDIV<9:0> bit settings. EN_PLL_REFDIV in Address 0x59 (Register 5-14) must be set.

TABLE 5-4:	Example – PLL Reference Divisor Bit Settings Vs. PLL Reference Input Frequency

PLL_REFDIV<9:0>	PLL Reference Frequency
11-1111-1111	Reference frequency divided by 1023
11-1111-1110	Reference frequency divided by 1022
00-0000-0011	Reference frequency divided by 3
00-0000-0010	Do not use (Not supported)
00-0000-0001	Reference frequency divided by 1
00-0000-0000	Reference frequency divided by 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PLL_PI	RE<7:0>			
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
	• • 0111-1000) = VCO clock div	ided by 120 (íf PLL_PRF<11	1:8> = 0000) (Default)	
	•			<u>_</u>			
	0000-0001	= VCO clock div = VCO clock div = VCO clock not	ided by 1 (if I	PLL_PRE<11:8	> = 0000)		

Note 1: PLL_PRE is a 12 bit-wide setting. The upper four bits (PLL_PRE<11:8>) are defined in Address 0x57. See Table 4-3 for the PLL_PRE<11:0> bit settings. The PLL Prescaler is used to divide down the VCO output clock in the PLL phase-frequency detector loop circuit.

REGISTER 5-12: ADDRESS 0X57 – PLL PRESCALER (MSB)

REGISTER 5-11: ADDRESS 0X56 – PLL PRESCALER (LSB)

R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-U			R/W-0	R/W-U			R/W-0
	FCB	<3:0>			PLL_PI	RE<11:8>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable bi	t	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unkr	nown
bit 7-4 bit 3-0	PLL_PRE<1	Factory-Controlled	aler selection	n (Note 1)	Do not char	nge the default s	settings.
1111 = 2 ¹² - 1 (max), if PLL_PRE<7:0> = •				0xFF			
	• 0000 = (Def	ault)					
Note 1: P	II PRF is a 12	bit-wide setting	See the lowe	er eight bit setting	IS (PLL_PRF	<7:0>) in Addre	ess 0x56

Note 1: PLL_PRE is a 12 bit-wide setting. See the lower eight bit settings (PLL_PRE<7:0>) in Address 0x56 (Register 5-11). See Table 4-3 for the PLL_PRE<11:0> bit settings for PLL feedback frequency.

TABLE 5-5: Example: PLL Prescaler Bit Settings and PLL Feedback Frequency

PLL Feedback Frequency
VCO clock divided by 4095 (2 ¹² - 1)
VCO clock divided by 4094 (2 ¹² - 2)
VCO clock divided by 3
VCO clock divided by 2
VCO clock divided by 1
VCO clock divided by 1
-

REGISTER 5-13: ADDRESS 0X58 – PLL CHARGE-PUMP

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	
	FCB<2:0>:		PLL_BIAS		PLL_CHAC	GPUMP<3:0>		
bit 7							bit	
Legend:								
R = Reada	ble bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-6	FCB<2:0	>: Factory-Controlle	ed bits. This is	not for the use	er. Do not char	nge the default s	ettings.	
bit 5	PLL BIA	S: PLL charge-pum	p bias source	selection bit (Note 1)			
	1 = Self							
		dgap voltage from		generator (1.2)	V) (Default)			
bit 4-0	PLL_CH4	AGPUMP<3:0>: PL	L charge-pur	np bias current	control bits (N	ote 2)		
	1111 = M	laximum current						
	•							
	•							
	•							
	0010 = (Jeiault)						
	•							
	•							
	0000 = M	linimum current						
Note 1:	This bit can be	e controlled by the fa	actorv.					
	PII = CHACPI IMP < 3:0> bits should be set based on the phase detector comparison frequency. The bia							

2: PLL_CHAGPUMP<3:0> bits should be set based on the phase detector comparison frequency. The bias current amplitude increases linearly with increasing the bit setting values. The increase is from approximately 25 μA to 375 μA, 25 μA per step. See Section 4.7.2 "PLL output frequency and control Parameters" for more details of the PLL block.

REGISTER 5-14: ADDRESS 0X59 – PLL ENABLE CONTROL 1

U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
	FCB<	<4:3>	EN_PLL_REFDIV	FCB	<2:1>	EN_PLL	FCB<0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Not used.

bit 6-5	FCB<4:3>: Factory-Controlled bits. This is not for the user. Do not change the default settings.

- bit 4 EN_PLL_REFDIV: Enable PLL Reference Divider (PLL REFDIV<9:0>).
 - 1 = Enable PLL REFDIV<9:0> register
 - 0 = Reference divider is bypassed (Default)

bit 3-2 **FCB<2:1>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

- bit 1 **EN_PLL:** Master enable bit for PLL circuit.
 - 1 = Enable PLL circuit
 - 0 = Disable PLL circuit (Default)

bit 0 **FCB<0>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

REGISTER 5-15: ADDRESS 0X5A – PLL LOOP FILTER RESISTOR

U-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
_	FCB	<1:0>			PLL_RES<4:0	>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Not used.
bit 6-5	FCB<1:0>: Factory-Controlled bits. This is not for the user. Do not program.
bit 4-0	PLL_RES<4:0>: Resistor value selection bits for PLL loop filter (Note 1)
	11111 = Maximum value
	•
	•
	•
	00111= (Default)
	•
	•
	•
	00000 = Minimum value

Note 1: PLL_RES<4:0> bits should be set based on the phase detector comparison frequency. The resistor value increases linearly with the bit settings, from minimum to maximum values. See the PLL loop filter section in Section 4.7 "ADC Clock Selection and PLL Output Frequency Control".

REGISTER 5-16: ADDRESS 0X5B – PLL LOOP FILTER CAP3								
U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	
—	FCB	<1:0>	PLL_CAP3<4:0>					
bit 7							bit 0	
Logondy								
Legend:								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Not used.
bit 6-5	FCB<1:0>: Factory-Controlled bits. This is not for the user. Do not program.
bit 4-0	PLL_CAP3<4:0>: Capacitor 3 value selection bits for PLL loop filter (Note 1)
	11111 = Maximum value
	•
	•
	•
	01111= (Default)
	•
	•
	•
	00000 = Minimum value
Noto 1:	This capacitor is in sories with the shunt register, which is set by PLL PES-4:05 hits. The set

Note 1: This capacitor is in series with the shunt resistor, which is set by PLL_RES<4:0> bits. The capacitor value increases linearly with the bit settings, from minimum to maximum values. This setting should be set based on the phase detector comparison frequency.

REGISTER 5-17: ADDRESS 0X5C - PLL LOOP FILTER CAP1

U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1		
_	F	CB<1:0>		I	PLL_CAP1<4:0	>			
bit 7							bit C		
Legend:									
R = Read	lable bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7	Unimplem	ented: Not used.							
bit 6-5	FCB<1:0>	: Factory-Controlle	ed bits. This i	s not for the use	er. Do not progr	am.			
bit 4-0	PLL_CAP	1<4:0>: Capacitor	1 value sele	ction bits for PLI	_ loop filter (No	te 1)			
	11111 = N	11111 = Maximum value							
	•								
	•								
	• 00111= (D	efault)							
	•	olaaliy							
	•								
	•								
	00000 = N	linimum value							
 Note 1: This capacitor is located between the charge-pump output and ground, and in parallel with the tor which is defined by the PLL_RES<4:0>. The capacitor value increases linearly with the bit 									

tor which is defined by the PLL_RES<4:0>. The capacitor value increases linearly with the bit settings, from minimum to maximum values. This setting should be set based on the phase detector comparison frequency.

REGISTER 5-18: ADDRESS 0X5D – PLL LOOP FILTER CAP2

U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
_	FCB<1:0>			PLL_CAP2<4:0>			
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Not used.

bit 6-5	FCB<1:0>: Factory-Controlled bits. This is not for the user. Do not program.
bit 4-0	PLL_CAP2<4:0>: Capacitor 2 value selection bits for PLL loop filter (Note 1)
	11111 = Maximum value
	•
	•
	•
	00111 = (Default)
	•
	•
	•
	00000 = Minimum value
Note 1:	This capacitor is located between the charge-pump output and ground, and in parallel with

Note 1: This capacitor is located between the charge-pump output and ground, and in parallel with CAP1 which is defined by the PLL_CAP1<4:0>. The capacitor value increases linearly with the bit settings, from minimum to maximum values. This setting should be set based on the phase detector comparison frequency.

REGISTER 5-19: ADDRESS 0X5F – PLL ENABLE CONTROL 2 (Note 1)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	FCB<	5:2>		EN_PLL_OUT	EN_PLL_BIAS	FCB	<1:0>
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-4 **FCB<5:2>:** Factory-Controlled bits. This is not for the user. Do not change the default settings.

- EN_PLL_OUT: Enable PLL output.
- 1 = Enable PLL output
 - 0 = Disable PLL output (Default)
- bit 2 EN_PLL_BIAS: Enable PLL bias
 - 1 = Enable PLL bias
 - 0 = Disable PLL bias (Default)
- bit 1-0 FCB<2:1>: Factory-Controlled bits. This is not for the user. Do not change the default settings.
- Note 1: To enable PLL output, EN_PLL_OUT, EN_PLL_BIAS and EN_PLL in Address 0x59 (Register 5-14) must be set.

bit 3

REGISTER 5-20: ADDRESS 0X62 - OUTPUT DATA FORMAT AND OUTPUT TEST PATTERN

U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
—	LVDS_8CH	DATA_FORMAT	OUTPU	Γ_MODE	TE	ST_PATTERN	S
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			s '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7		Unimplemented: Not used.
bit 6		LVDS 8CH: LVDS data stream type selection for octal-channel mode (Note 1)
		1 = Serialized data stream (Note 2)
		0 = Interleaved with parallel data stream (Note 3)(Default)
bit 5		DATA_FORMAT: Output data format selection
		1 = Offset binary (unsigned)
		0 = two's complement (Default)
bit 4-3	3	OUTPUT MODE<1:0>: Output mode selection (Note 7)
		11 = Select DDR LVDS output mode with MSB byte first (Note 4)
		10 = Select DDR LVDS output mode with even bit first (Note 5)(Default)
		01 = Select CMOS output mode
		00 = Output disabled
bit 2-0	h	TEST PATTERNS<2:0>: Test output data pattern selection
511 2 1	,	111 = Output data is pseudo-random number (PN) sequence (Note 6)
		110 = Sync Pattern for LVDS output.
		18-bit mode: '11111111 00000000 10'
		16-bit mode: '1111111 00000000'
		14-bit mode: '11111111 000000'
		12-bit mode: '11111111 0000'
		10-bit mode: '11111111 00'
		101 = Alternating Sequence for LVDS mode
		16-bit mode: '01010101 10101010'
		14-bit mode: '01010101 101010'
		100 = Alternating Sequence for CMOS.
		Output: '11111111 1111111' alternating with '00000000 0000000'
		011 = Alternating Sequence for CMOS.
		Output: '01010101 01010101' alternating with '10101010 10101010'
		010 = Ramp Pattern. Outputs are incremented by:
		18-bit mode: 1 LSB per clock cycle
		16-bit mode: 1 LSB per 4 clock cycles
		14-bit mode: 1 LSB per 16 clock cycles
		001 = Double Custom Patterns.
		Output: Alternating custom pattern A (see Addresses 0X74 – 0X75 - Registers 5-29 – 5-30) and custom
		pattern B (see Address 0X76 - 0X77 - Registers 5-31 – 5-32) (Note 8)
		000 = Normal Operation. Output: ADC data (Default)
Note	1:	This bit setting is valid for the octal-channel mode only. See Address 0x7D -0x7F (Registers 5-38 - 5-40) for channel order selec-
	2:	tion. Serialized LVDS is available in octal-channel with 16-bit mode only: Each LVDS output pair holds a single input channel's data
		and outputs in a serial data stream (synchronized with WCK): Q7+/Q7- is for the first channel selected data, and Q0+/Q0- is for
		the last channel selected data. This bit function is enabled only when SEL_DSPP = 1 in Address 0x81 (Register 5-42). See
	a .	Figure 2-4 for the timing diagram.
	3:	The output is in parallel data stream. The first sampled data is clocked out first in parallel LVDS output pins, followed by the next sampled channel data. See Figures 2-2 and 2-3 for the timing diagram.
	4:	Only 16-bit mode is available for this option.
		Rising edge: Q15-Q8.
		Falling edge: Q7-Q0
	5:	Rising edge: Q14, Q12, Q10, Q0.
	_	Falling edge: Q15, Q13, Q11, Q1.
	6:	Pseudo-random number (PN) code is generated by the linear feedback shift register (LFSR).

- 7: See Figures 2-1 2-4 for the timing diagram.
- 8: The alternating patterns A and B are applied to Q<15:0>. Pattern A<15:14> and Pattern B<15:14> are also applied to OVR and WCK pins, respectively. Pattern A<1:0> and Pattern B<1:0> are also applied to DM1/DM+ and DM2/DM-.

ADC OUTDUT DIT (DECOLUTION) AND LVDC LOAD

DECIOTED E MA

REGISTE	R 5-21:	ADI	ORESS 0X63 -	- ADC OUTI	PUT BIT (RESOL	UTION) AN	D LVDS LOAI	C					
R/W-0	R/W	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1					
	(OUTF	PUT_BIT		LVDS_LOAD		LVDS_IMODE						
bit 7						-		bit (
Legend:													
R = Reada	able bit		W = Writable b	bit	U = Unimplement	ed bit, read as	s '0'						
-n = Value	e at POR		'1' = Bit is set		'0' = Bit is cleared	1	x = Bit is unki	nown					
bit 7-4	<u> 16-Bit [</u>	Devic	<u>e (MCP37231/D</u>	<u>31-200):</u>									
	OUTPUT_BIT<3:0>: Select number of output data bits (Note 1)												
	1111 =	15											
	1110 =												
	1101 =												
	1100 =												
	1011 = 1010 =												
	1010 =												
	1000 =												
	0111 =												
	0110 =	6											
	0101 =												
	0100 =												
	0011 =	-											
	0010 =	2											
	0001 =	1											
	0000 =	16-bi	t (Default)										
	<u>14-Bit D</u>	Devic	<u>e (MCP37221/D</u>	<u>21-200):</u>									
	OUTPU	Т_ВІ	T<3:0>: These b	oits have no e	ffect (Note 2)								
bit 3	LVDS_I		: Internal LVDS	load terminat	tion								
	LVDS_LOAD: Internal LVDS load termination 1 = Enable internal load termination												
	0 = Di	isable	e internal load te	rmination (De	fault)								
bit 2-0	LVDS I	MOD	E<2:0>: LVDS o	driver current	control bits								
	011 = 5												
	001 = 3	8.5 m/	A (Default)										
	000 = 1	.8 m/	4										
	-		ne following setti	<u>ings (Note 3):</u>									
			100, 010										
Note 1:	These bits and DM2 b		applicable for the	e 16-bit device	es only. See Addres	ss 0x68 (<mark>Regis</mark>	ster 5-26) for ad	ditional DM1					
o .	Annlinghlo	for 1	1 bit douises an	ly Those hits	are not upor color	table The 11	hit output is ove	المشارع والماحا					

2: Applicable for 14-bit devices only. These bits are not user selectable. The 14-bit output is available with CMOS or LVDS output with even-bit first option.

3: These settings can result in unknown outputs currents.

REGISTER 5-22: ADDRESS 0X64 – OUTPUT CLOCK PHASE CONTROL WHEN DECIMATION FILTER IS USED

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EN_PHDLY_DEC	DCLK	PHDLY_DEC	><2:0>		FCB	FCB<3:0>				
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'				
-n = Value at POR	n = Value at POR '1' = Bit is set			'0' = Bit is clea	ired	x = Bit is unk	nown			
bit 7	1 = DCLK_	- PHDLY_DEC<	2:0> setting i	clock phase dela s enabled (<mark>Note</mark> s disabled (Def a	1)	en decimation	filter is used.			
bit 6-4	DCLK_PHDI used (Note 2)	_	: Digital outp	ut clock phase	delay contro	l when decim	nation filter is			
	110 = 270° p 101 = 225° p 100 = 180° p	ohase-shifted (ohase-shifted ohase-shifted (I ohase-shifted	Note 3)							

- 011 = 135° phase-shifted (Note 3)
- 010 = 90° phase-shifted 001 = 45° phase-shifted (Note 3)
- 000 = In-Phase (Default)

bit 3-0

FCB<3:0>: Factory-Controlled bits. This is not for the user. Do not program.

- **Note 1:** This feature is only used in conjunction with the decimation filter options where the core clock frequency is faster than the output clock frequency.
 - 2: This bit is enabled only if EN_PHDLY_DEC = 1. These bits are used when the divided clocks are used. See OUT_-CLKRATE<3:0> bits in Address 0x02 (Register 5-3). When the full speed clock is selected, the same feature is provided by the DLL phases. See Address 0x52 (Register 5-7).
 - 3: Only available when the decimation filter setting is greater than 2. When FIR_A/B <8:1> = 0's (default) and FIR_A<6> = 0, only 4-phases are available (0, 90, 180, 270). See Addresses 0x7A, 0x7B and 0x7C (Registers 5-35 5-37). See address 0x6D and 0x52 DCLK (Registers 5-28 and 5-7) phase shift for other modes.

REGISTER 5-23: ADDRESS 0X65 - LVDS OUTPUT POLARITY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POL_LVD)S<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

1111-1110 =	Invert all LVDS pairs Invert all LVDS pairs except the LSB pair
•	
-	Invert MSB LVDS pair
•	
	Invert LSB LVDS pair No inversion of LVDS bit pairs (Default)

REGISTER 5-24: ADDRESS 0X66 – DIGITAL OFFSET CORRECTION (LOWER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DIG_OFFS	ET <7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 DIG_OFFSET <7:0>: Lower byte of DIG_OFFSET <15:0> (Note 1)

0000-0000 = **Default**

Note 1: Offset is added to the ADC output. Setting is two's complement. Step size of each bit setting of the combined register is equal to:

- 0.125 LSB for 12-bit ADC
- 0.25 LSB for 14-bit, ADC
- 0.5 LSB for 16-bit ADC
- 1 LSB for 18-bit ADC.

REGISTER 5-25: ADDRESS 0X67 – DIGITAL OFFSET CORRECTION (UPPER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DIG_OFFS	ET<15:8>			
bit 7							bit 0
Legend.							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 DIG_OFFSET <15:8>: Upper byte of DIG_OFFSET<15:0> (Note 1)

0000-0000 = **Default**

- **Note 1:** Offset is added to the ADC output. Setting is two's complement. Step size of each bit setting of the combined register is equal to:
 - 0.125 LSB for 12-bit ADC
 - 0.25 LSB for 14-bit, ADC
 - 0.5 LSB for 16-bit ADC
 - 1 LSB for 18-bit ADC.

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
	FCB	<3:0>		POL_WCK_OVR	EN_WCK_OVR	DM1DM2	POL_DM1DM2
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writabl	e bit	U = Unimplemente	d bit, read as '0'		
-n = Value	e at POR	'1' = Bit is s	et	'0' = Bit is cleared		x = Bit is un	known
bit 2	EN_WCK_ 1 = Enabl 0 = Disab	verted (Defau OVR: Enable ed (Default) led	WCK and C	OVR output bit pair			
bit 1	1 = Addeo			its (DM1/DM+ and D	0M2/DM- bits) to th	ne data strea	m (Note 1)
bit 0	1 = Invert	,		DM1/DM+ and DM2/	DM- pair in LVDS	mode (Note	1
Note 1:				MCP37D31-200 dev M2/DM-, DM2/DM- is			

additional LSB bits (DM1/DM+ and DM2/DM-, DM2/DM- is the LSB) can be added by using the decimation filters. See Address 0x7B and 0x7C (Registers 5-36 and 5-37) for the decimation filter settings. Requirement of decimation factor for two additional bits: 256x for single channel and 128x for dual channel mode. See Address 0x63 (Register 5-21) for the output bit control.

REGISTER 5-27: ADDRESS 0X6B – PLL CALIBRATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
		FCB<4:0>			PLL_CALTRIG	FCBF	CB<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 **FCB<4:0>:** Factory-Controlled bits. This is not for the user. Do not program.

- bit 3 **PLL_CALTRIG**: Manually force recalibration of the PLL at the state of bit transition (Note 1) Toggle from "1" to "0", or "0" to "1" = Start PLL calibration
- bit 2-0 FCBFCB<1:0>: Factory-Controlled bits. This is not for the user. Do not program.
- **Note 1:** PLL calibration status is observed by the PLL calibration status bit PLL_CAL in Address 0xD1 (Register 5-81). PLL should be recalibrated following a change in input frequency or PLL configuration registers (Address 0x54 0x57, Registers 5-9 5-12).

REGISTE	R 5-28: A	DDRESS 0X6D -	- PLL OUTPU	T AND OUTF	PUT CLOCK	PHASE (Note	1)
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	EN_PLL_CLK	PLL_PHASE		PLL_PH	DLY<3:0>	
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-3 bit 3	EN_PLL_C	ented: Not used LK: Enable PLL ou	•				
		utput clock is enab ock output is disab		ore			
bit 2-0	1 = Falling	E: Select PLL pha Edge Edge (Default)	se for internal de	elay line			
bit 2-0	output 1111 = De 1110 = De	Y<3:0>: Output clo (Note 2) elay of 15 cycles elay of 14 cycles elay of one cycle o delay (Default)	ock is delayed b	y the number	of VCO clock	cycles from the	e nominal PLL
Note 1:	This register	has effect only who					s 0x53

(Register 5-8) and PLL circuit is enabled by EN_PLL bit in Address 0x59 (Register 5-14).

2: This bit setting enables the output clock phase delay. This phase delay control option is applicable when PLL is used as the clock source and the decimation is not used.

REGISTER 5-29: ADDRESS 0X74 – USER-DEFINED OUTPUT PATTERN A (LOWER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PATTERN	N_A<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 7-0 PATTERN_A<7:0>: Lower byte of PATTERN_A<15:0> (Note 1)

'1' = Bit is set

See PATTERN A<15:8> in Address 0x75 (Register 5-30) and TEST PATTERNS<2:0> in Address 0x62 Note 1: (Register 5-20).

DS20005322B-page 94

-n = Value at POR

x = Bit is unknown

REGISTER 5-30: ADDRESS 0X75 – USER-DEFINED OUTPUT PATTERN A (UPPER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PATTERN	_A<15:8>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 PATTERN_A<15:8>: Upper byte of PATTERN_A<15:0> (Note 1)

Note 1: See PATTERN_A<7:0> in Address 0x74 (Register 5-29) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20).

REGISTER 5-31: ADDRESS 0X76 – USER-DEFINED OUTPUT PATTERN B (LOWER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PATTERN	I_B<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 7-0 **PATTERN_B<7:0>:** Lower byte of PATTERN_B<15:0> (Note 1)

'1' = Bit is set

Note 1: See PATTERN_B<15:8> in Address 0x77 (Register 5-32) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20).

REGISTER 5-32: ADDRESS 0X77 – USER-DEFINED OUTPUT PATTERN B (UPPER BYTE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PATTERN	B<15:8>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 PATTERN_B<15:8>: Upper byte of PATTERN_B<15:0> (Note 1)

Note 1: See PATTERN_B<7:0> in Address 0x76 (Register 5-31) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20).

-n = Value at POR

x = Bit is unknown

REGISTER 5-33: ADDRESS 0X78 – NOISE SHAPING REQUANTIZER CHANNEL A FILTER (NSRA)(Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
NSR_RESET				NSRA<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	NSR_RESET: Toggle of this bit causes a reset of the NSRA and NSRB state.
	- Toggle from '1' to '0', or '0' to '1' = Reset of NSRA and NSRB
	- Otherwise = No effect (Default)
bit 6-0	NSRA<6:0>: Noise-Shaping requantizer (NSR) filter settings for single or dual channel
	(Channel A only)
	000-0000 = (Default)

Note 1: This register setting is not used for this device. Do not change the factory default setting.

REGISTER 5-34: ADDRESS 0X79 – DUAL-CH DSPP AND NOISE SHAPING REQUANTIZER CHANNEL B FILTER (NSRB) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
EN_DSPPDUAL				NSRB<6:0)>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 EN_DSPPDUAL: Enable all digital post-processing functions for dual channel operations (Note 2) 1 = Dual channel DDC is enabled. 0 = Disabled (Default)
bit 6-0	NSRB<6:0>: Noise-Shaping requantizer (NSR) filter settings for single or
	dual channel (Channel B only)(Note 2)
	111-1111 =
	111-1110 =
	•
	•
	•
	000-0001 =
	000-0000 = (Default)

- **Note 1:** This register is used for single and dual-channel modes only. NSRB is not used for this device.
 - 2: This bit setting is not used for this device. Do not change the factory default setting.

REGISTE	R 5-35: A	DDRESS 0	X7A – FRA	ACTIONAL D	ELAY RECOV	ERY AND FIR	_A0 (Note 1)
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	FIR_A<0>	EN_FDR	FCB	EN_NSRB_1	1 EN_NSRB	_12 EN_NSRA	11 EN_NSRA_12
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writabl	e bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is s	et	'0' = Bit is clea	ared	x = Bit is u	Inknown
bit 7	-	ented: Not us					
bit 6			rst 2x decim	nation (Stage 1/	A in FIR A) in sir	igle-channel mo	de (Note 2)
	1 = Enable						
bit 5		ed (Default)		y (FDR) control	bit		
DIL D	_	ed (with dela			DIL		
		led (Default)	y or 00 Sam	5103)			
bit 4			l bits. This is	not for the use	er. Do not progra	m.	
bit 3	EN_NSRB_	_11: Enable 1	1-bit noise-	shaping requar	tizer for Channe	el B (Note 3)	
	1 = Enable	ed					
		led (Default)					
bit 2		-	2-bit noise	shaping requar	tizer for Channe	el B (Note 3)	
	1 = Enable						
bit 1		led (Default)	1 hit noice a		tizor for Chappa		
DILI	1 = Enable	-		shaping requan	tizer for Channe	A (Note 3)	
		led (Default)					
bit 0	EN_NSRA	12: Enable 1	2-bit noise	shaping requar	tizer for Channe	el A (Note 3)	
	1 = Enable	- ed					
	0 = Disab	led (Default)					
Note 1:	•		•	nd dual-channe			
2:	FIR_A<0> = (Register 5-3			le, and FIR_A<	0> = 0 for dual o	channel mode. S	See Address 0x7B
۰.	This hit setting	a ia nat usa	d for this day	ina Da nataha	and the featory	default eatting	

3: This bit setting is not used for this device. Do not change the factory default setting.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			F	FIR_A<8:0>			
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	hit	U = Unimpleme	ented hit read	as '0'	
-n = Value		'1' = Bit is se		'0' = Bit is clear		x = Bit is unknown	
		1 - Dit 13 30			cu		
		. De sins stiers I					
bit 7-0		Decimation in <u>nnel Mode: (N</u>)		ettings for Chanr	iel A (or I)(Not	e 3, Note 6)	
			•	ers (decimation	rate: 512)		
		111 = Enabled	0	·	Tate: 512)		
		111 = Enabled	•				
		111 = Enabled	•				
		111 = Enabled					
		111 = Enabled					
			•	ers (decimation	rate = 8)		
				ers (decimation			
				decimation rate			
		000 = Disabled	•		,		
	Dual-Chan	<u>nel Mode:</u> (Not	te 5)	. ,			
	1-1111-11	10 = Enabled	stage 2 - 9 fill	ers (decimation	rate: 256)		
	0-1111-11	10 = Enabled	stage 2 - 8 filt	ers			
	0-0111-11	110 = Enabled	stage 2 - 7 filt	ers			
	0-0011-11	110 = Enabled	stage 2 - 6 filt	ers			
	0-0001-11	110 = Enabled	stage 2 - 5 filt	ers			
	0-0000-11	110 = Enabled	stage 2 - 4 filt	ers			
	0-0000-01	110 = Enabled	stage 2 - 3 filt	ers			
	0-0000-00	10 = Enabled	stage 2 filter (decimation rate	= 2)		
	0-0000-00	000 = Disabled	all FIR A filte	rs. (Default)			
Note 1:	This register i	s used only for	single and du	al-channel mod	es. The regist	er values are thermor	neter
	a 1a a a a a a						

encoded. 2: By using the decimation filters, two additional bits can be obtained. See DM1DM2 bit setting in Address 0x68 (Register 5-26) for details. The register value can be pre-programmed at the factory.

- **3:** SNR is improved by approximately 2.5 dB per each filter stage, but output data rate is reduced by a factor of 2 per stage. The data and clock rates in Address 0X02 (Register 5-3) need to be updated accordingly when this register is updated. Address 0x64 (Register 5-22) setting is also affected. The maximum decimation factor for the single-channel mode is 512, and 256 for the dual channel mode.
- 4: In single-channel mode, the 1st stage filter is selected by FIR_A<0> = 1 in Address 0x7A (Register 5-35).
- In dual-channel mode, the 1st stage filter is disabled by setting FIR_A<0> = 0 in Address 0x7A (Register 5-35).
- 6: LSB is corresponding to FIR_A<0> in Address 0x7A. See Section 4.8.2 "Decimation Filters" for the decimation filter.

REGISTER 5-37: ADDRESS 0X7C – FIR B FILTER (Note 1, Note 2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			F	=IR_A<8:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 FIR_B<7:0>:Decimation Filter FIR B settings for Channel B (or Q) (Note 3, Note 4) 1111-1111 = Enabled stage 2 - 9 filters (decimation rate = 256) 0111-1111 = Enabled stage 2 - 8 filters 0011-1111 = Enabled stage 2 - 7 filters 0001-1111 = Enabled stage 2 - 6 filters 0000-1111 = Enabled stage 2 - 6 filters 0000-0111 = Enabled stage 2 - 4 filters 0000-0111 = Enabled stage 2 - 3 filters 0000-0011 = Enabled stage 2 - 3 filters 0000-0001 = Enabled stage 2 filter (decimation rate = 2) 0000-0000 = Disabled all FIR B Filters. (Default)

- **Note 1:** This register is used for the dual-channel mode only. The register values are thermometer encoded and they can be pre-programmed at the factory.
 - 2: EN_DSPPDUAL bit in Address 0x79 (Register 5-34) must be set when using decimation in dual-channel mode.
 - 3: By using the decimation filters, two additional bits can be obtained. See DM1DM2 bit setting in Address 0x68 (Register 5-26) for details. SNR is improved by approximately 2.5 dB per each filter stage, but output data rate is reduced by a factor of 2 per stage. The maximum decimation factor for the dual-channel mode is 256. The data and clock rates in Address 0X02 (Register 5-3) need to be updated accordingly when this register is updated. Address 0x64 (Register 5-22) setting is also affected.
 - 4: See Section 4.8.2 "Decimation Filters" for the decimation filter.

REGISTER 5-38: ADDRESS 0X7D – AUTO-SCAN CHANNEL ORDER (LOWER BYTE)

R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			CH	_ORDER<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read a	s '0'	

'0' = Bit is cleared

bit 7-0 CH_ORDER<7:0>: Lower byte of CH_ORDER<31:0> (Note 1)

'1' = Bit is set

0111-1000 = Default

Note 1: See Table 4-1 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels to be selected.

-n = Value at POR

x = Bit is unknown

REGISTER 5-39: ADDRESS 0X7E – AUTO-SCAN CHANNEL ORDER (MIDDLE BYTE)

R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
			CH_	ORDER<15:8>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CH_ORDER<15:8>: Middle byte of CH_ORDER<31:0> (Note 1) 1010-1100 = Default

Note 1: See Table 4-1 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels to be selected.

REGISTER 5-40: ADDRESS 0X7F – AUTO-SCAN CHANNEL ORDER (UPPER BYTE)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
			CH_	ORDER<23:16	>		
bit 7							bit 0
Legend:							
R = Readab	e bit	W = Writable b	oit	U = Unimplem	ented bit, read a	s '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-0 CH_ORDER<23:16>: Upper byte of CH_ORDER<31:0> (Note 1)

1000-1110 **= Default**

Note 1: See Table 4-1 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels to be selected.

REGISTE	ER 5-41: ADDRESS 0X80 – DIGITAL DOWN-CONVETER CONTROL	1 (Note 1)	
R/W-0	-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0
HBFILTE	ER_B HBFILTER_A EN_NCO EN_AMPDITH EN_PHSDITH EN_LFSR EN	LDDC_FS/8	EN_DDC'
bit 7			bit (
Legend:		(0)	
R = Read			
-n = value	ue at POR '1' = Bit is set '0' = Bit is cleared x =	Bit is unkno	WN
bit 7	HBFILTER_B: Select half-bandwidth filter at DDC output of channel B in dua 1 = Select High-Pass filter at DDC output	al-channel mo	ode (Note 2)
1.1.0	0 = Select Low-Pass filter at DDC output (Default)		
bit 6	 HBFILTER_A: Select half-bandwidth filter at DDC output of channel A (Note 1 = Select High-Pass filter at DDC output 0 = Select Low-Pass filter at DDC output (Default) 	2)	
bit 5	EN_NCO: Enable NCO of DDC1		
	1 = Enabled		
	<pre>0 = Disabled (Default)</pre>		
bit 4	EN_AMPDITH: Enable amplitude dithering for NCO (Note 3, Note 4)		
	1 = Enabled 0 = Disabled (Default)		
bit 3	EN_PHSDITH: Enable phase dithering for NCO (Note 3, Note 4)		
	1 = Enabled		
	<pre>0 = Disabled (Default)</pre>		
bit 2	EN_LFSR: Enable linear feedback shift register (LFSR) for amplitude and pl	nase dithering	g for NCO
	1 = Enabled 0 = Disabled (Default)		
bit 1	EN_DDC_FS/8: Enable NCO for the DDC2 to center the DDC output sign	al to be arou	ind f _S /8/DEF
	(Note 5)		
	1 = Enabled 0 = Disabled (Default)		
bit 0	EN_DDC1: Enable digital down converter 1 (DDC1)		
	1 = Enabled (Note 6)		
	<pre>0 = Disabled (Default)</pre>		
Note 1:	This register is used for single, dual-channel and octal-channel modes when CW (8CH_CW = 1).	/ feature is er	nabled
2:			
	-Single-Channel mode: use only HBFILTER_A -Dual-Channel mode: use both HBFILTER A and HBFILTER B.		
3:			
4:		nance.	
5:			sabled), out

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FDR_BAN	D EN_DDC2	GAIN_HBF_DDC	SEL_FDR	SEL_DSPP	8CH_CW	GAIN_8C	H<1:0>
bit 7		•	•		· · ·		bit
Legend:							
R = Reada	ble bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
bit 7	_	D: Select 1st or 2nd	Nyquist band	1			
		lyquist band yquist band (Default)				
bit 6		Enable DDC2 after		llf-band filter (H	IBE) in DDC		
Sit O	1 = Enable						
	o = Disab	oled (Default)					
bit 5	GAIN_HBF	_DDC: Gain select f	or the output	t of the digital h	nalf-band filter (HBF) in DDC (I	Note 1)
	1 = x2						
	0 = x1 (D	-					
bit 4		Select fractional del	ay recovery (FDR) for 8-cha	annel or dual-ch	annel mode (<mark>N</mark>	ote 2, Note
		for 8-channel for dual-channel (De t	fault)				
bit 3		P: Select digital signa	•	ssina (DSPP) fe	eatures for 8-ch	annel or dual-c	hannel mo
	(Note 2, Not		r	5(-)			
		ofor 8-channel					
		ofor dual-channel (E	•				
bit 2	_	Enable CW mode in	octal-channe	el mode (Note 3	, Note 4)		
	1 = Enabl 0 = Disab	oled (Default)					
bit 1-0		I<1:0>: Select gain fa	actor for CW	signal in octal-	-channel modes	S.	
		0 = x4, 01 = x2, 00 =		-			
	(B/2). Since the factor of 2, which	ilters (HBF) are used bandwidth is reduce ch is equivalent to ov I video and audio sig ng.	ed by a factor ersampling b	r of 2, the sample of 2, the same same same	oling rate requir (x2). The HBFs	ement is also r are used in th	educed by e sub-banc
		y compensates digita ction 4.8.1 "Fractior					
		s bit, the phase offse SEL_DSPP is a globa					
	after each char	le is enabled, the AD nnel's digital phase of egisters 5-47 to 5-79	fset, digital g	ain, and digital	l offset are cont	rolled using the	e Address

REGISTER 5-43: ADDRESS 0X82 – NUMERICALLY CONTROLLED OSCILLATOR (NCO) TUNING (LOWER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NC	O_TUNE<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	NCO_TUNE <7:0>: Lower byte of NCO_TUNE<31:0> (Note 2).
	0000-0000 = DC (0 Hz) when NCO TUNE<31:0> = 0000 0000 (Default)

Note 1: This Register is used only when DDC is enabled: EN_DDC1 = 1 in Address 0x80 (Register 5-41). See Section 4.8.3.4 "Numerically Controlled Oscillator (NCO)" for the details of NCO.

2: NCO frequency = (NCO_TUNE<31:0>/ 2^{32}) x f_S/2, where f_S is the sampling clock frequency.

REGISTER 5-44: ADDRESS 0X83 – NUMERICALLY CONTROLLED OSCILLATOR (NCO) TUNING (MIDDLE LOWER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NCC	_TUNE<15:8>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 NCO_TUNE<15:8>: Middle lower byte of NCO_TUNE<31:0> (Note 2). 0000-0000 = Default

- Note 1: This Register is used only when DDC is enabled: EN_DDC1 = 1 in Address 0x80 (Register 5-41). See Section 4.8.3.4 "Numerically Controlled Oscillator (NCO)" for the details of NCO.
 - 2: NCO frequency = (NCO_TUNE<31:0>/ 2^{32}) x f_S/2, where f_S is the sampling clock frequency.

REGISTER 5-45: ADDRESS 0X84 – NUMERICALLY CONTROLLED OSCILLATOR (NCO) TUNING (MIDDLE UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NCO	_TUNE<23:16>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 NCO_TUNE<23:16>: Middle upper byte of NCO_TUNE<31:0> (Note 2). 0000-0000 = Default

- Note 1: This Register is used only when DDC is enabled: EN_DDC1 = 1 in Address 0x80 (Register 5-41). See Section 4.8.3.4 "Numerically Controlled Oscillator (NCO)" for the details of NCO.
 - 2: NCO frequency = (NCO_TUNE<31:0>/ 2^{32}) x f_S/2, where f_S is the sampling clock frequency.

REGISTER 5-46: ADDRESS 0X85 – NUMERICALLY CONTROLLED OSCILLATOR (NCO) TUNING (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NCO	_TUNE<31:24	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 NCO_TUNE<31:24>: Upper byte of NCO_TUNE<31:0> (Note 2). 1111-1111 = f_S/2 if NCO_TUNE<31:0> = 0xFFFF FFFF

- •
- •

0000-0000 = **Default**

- Note 1: This Register is used only when DDC is enabled: EN_DDC1 = 1 in Address 0x80 (Register 5-41). See Section 4.8.3.4 "Numerically Controlled Oscillator (NCO)" for the details of NCO.
 - **2:** NCO frequency = (NCO_TUNE<31:0>/ 2^{32}) x f_S/2, where f_S is the sampling clock frequency.

REGISTE		ADDRESS 0X86 3YTE) (Note 1, No		CO PHASE OF	FSET IN CW	OR DDC MODE	E (LOWER
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH0_N	NCO_PHASE<7	:0>		
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unknov	wn
Note 1:	This registe	00 = 0° when CH0 r (Addresses 0x86				only when the foll	owing modes
11010 11	are used:		0/0 (I , I (only when the lon	
		DDC mode in oc					
	- Single a	nd dual-channel n	node with D	DC.			
		W bit setting in Ac hannel selection b		I (Register 5-42)	. See Address	es 0x7D - 0x7F (R	egisters 5-38
2:		st channel selecte					
3:	CH(n)_NCC	PHASE_OFFSE	T<15:0> =	2 ¹⁶ x Phase Off	set Value/360.		
REGISTE		ADDRESS 0X87 UPPER BYTE) (O PHASE OFF	SET IN CW	OR DDC MODE	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH0_N	CO_PHASE<15	5:8>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH0_NCO_PHASE<15:8>: Upper byte of CH0_NCO_PHASE<15:0> (Note 2) 1111-1111 = 359.995° when CH0_NCO_PHASE<15:0> = 0xFFFF

•

0000-0000 = 0° when CH0_NCO_PHASE<15:0> = 0x0000 (Default)

- **Note 1:** See Note 1 and Note 2 in Registers 5-47 has effect only when the following modes are used:
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-49: ADDRESS 0X88 – CH1 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

	•	•	. ,				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH1_N	ICO_PHASE<7:	0>		
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 7-0		_ PHASE<7:0>: 1 = 1.4° when C	•		•	lote 2)	
	0000-000	$0 = 0^{\circ}$ when CH	1 NCO PHA	$\Delta SE < 15.0 > = 0x$	0000 (Default)		

0000-0000 = 0° when CH1_NCO_PHASE<15:0> = 0x0000 (Default)

- **Note 1:** See Note 1 in Registers 5-47. CH1 is the 2nd channel selected by CH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-50: ADDRESS 0X89 – CH1 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH1_NCO_PHASE<15:8>								
bit 7							bit 0	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH1_NCO_PHASE <15:8>: Upper byte of CH1_NCO_PHASE<15:0> (Note 2) 1111-1111 = 359.995° when CH1 NCO PHASE<15:0> = 0xFFFF

1111-1111 - 559.995 WHEN CITT_NCO_FTIASE<15.02 - 0XFF

•

•

0000-0000 = 0° when CH1_NCO_PHASE<15:0> = 0x0000 (Default)

- Note 1: See Note 1 in Registers 5-47. CH1 is the 2nd channel selected by CH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-51: ADDRESS 0X8A – CH2 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

	•	•				
R/W-0 R/W	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CH2_N	CO_PHASE<7:	0>		
bit 7						bit C
Legend:						
R = Readable bit W = Writable bit		e bit	U = Unimpleme			
-n = Value at POR	n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
1111-1 • •	CO_PHASE<7:0> 111 = 1.4° when (000 = 0 ° when CH	CH2_NCO_PF	HASE<15:0> = (0x00FF		

- **Note 1:** See Note 1 in Registers 5-47. CH2 is the 3rd channel selected by CH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-52: ADDRESS 0X8B – CH2 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	CH2_NCO_PHASE<15:8>								
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- Note 1: See Note 1 in Registers 5-47. CH2 is the 3rd channel selected by CH ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-53: ADDRESS 0X8C – CH3 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH3_N	ICO_PHASE<7:	0>		
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpleme				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
	1111-1111 • •	PHASE<7:0>: Long Long Long Long Long Long Long Long	I3_NCÓ_PI	HASE<15:0> = (0x00FF		

- Note 1: See Note 1 in Registers 5-47. CH3 is the 4th channel selected by CH_ORDER<23:0> bits.
 - 2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-54: ADDRESS 0X8D – CH3 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH3_NCO_PHASE<15:8>							
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

```
bit 7-0 CH3_NCO_PHASE <15:8>: Upper byte of CH3_NCO_PHASE<15:0> (Note 2)
1111-1111 = 359.995° when CH3_NCO_PHASE<15:0> = 0xFFFF
```

•

.

0000-0000 = 0° when CH3_NCO_PHASE<15:0> = 0x0000 (Default)

- Note 1: See Note 1 in Registers 5-47. CH3 is the 4th channel selected by CH_ORDER<23:0> bits.
 - 2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-55: ADDRESS 0X8E – CH4 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

	R/W-0	R/W-0 F	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH4_N	CO_PHASE<7:)>		
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	nted bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unknown	

- .
- 0000-0000 = 0° when CH4_NCO_PHASE<15:0> = 0x0000 (Default)
- **Note 1:** See Note 1 in Registers 5-47. CH4 is the 5th channel selected by CH_ORDER<23:0> bits.
 - 2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-56: ADDRESS 0X8F – CH4 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH4_N	CO_PHASE<15	5:8>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CH4_NCO_PHASE <15:8>: Upper byte of CH4_NCO_PHASE<15:0> (Note 2) 1111-1111 = 359.995° when CH4_NCO_PHASE<15:0> = 0xFFFF

- •
- 0000-0000 = 0° when CH4 NCO PHASE<15:0> = 0x0000 (Default)
- Note 1: See Note 1 in Registers 5-47. CH4 is the 5th channel selected by CH ORDER<23:0> bits.
 - 2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-57: ADDRESS 0X90 – CH5 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

	•						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH5_N	ICO_PHASE<7:	0>		
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable b	oit	U = Unimpleme	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unknown	
bit 7-0	1111-1111 • •	PHASE<7:0>: L = 1.4° when CH	I5_NCO_PH	HASE<15:0> = ()x00FF		

- Note 1: See Note 1 in Registers 5-47. CH5 is the 6th channel selected by CH_ORDER<23:0> bits.
 - 2: CH(n) NCO PHASE OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-58: ADDRESS 0X91 – CH5 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH5_N	CO_PHASE<1	5:8>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH5_NCO_PHASE <15:8>: Upper byte of CH5_NCO_PHASE<15:0> (Note 2) 1111-1111 = 359.995° when CH5 NCO PHASE<15:0> = 0xFFFF

- •
- .

0000-0000 = 0° when CH5_NCO_PHASE<15:0> = 0x0000 (Default)

- Note 1: See Note 1 in Registers 5-47. CH5 is the 6th channel selected by CH_ORDER<23:0> bits.
 - 2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-59: ADDRESS 0X92 – CH6 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

R/W-0 R/	W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CH6_N	CO_PHASE<7:	0>		
oit 7						bit (
_egend:						
R = Readable bit	W = Writabl	e bit	U = Unimpleme	ented bit, read a	as 'O'	
n = Value at POR	'1' = Bit is s	et	'0' = Bit is clear	ed	x = Bit is unknown	
bit 7-0 CH6_	NCO_PHASE<7:0> -1111 = 1.4° when	: Lower byte o	f CH6_NCO_PI	HASE<15:0> (N		

- 0000-0000 = 0° when CH6_NCO_PHASE<15:0> = 0x0000 (Default)
- **Note 1:** See **Note 1** in Registers 5-47. CH6 is the 7th channel selected by CH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-60: ADDRESS 0X93 – CH6 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH6_N	CO_PHASE<1	5:8>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH6_NCO_PHASE <15:8>: Upper byte of CH6_NCO_PHASE<15:0> (Note 2) 1111-1111 = 359.995° when CH6_NCO_PHASE<15:0> = 0xFFFF • •

0000-0000 = 0° when CH6_NCO_PHASE<15:0> = 0x0000 (Default)

- Note 1: See Note 1 in Registers 5-47. CH6 is the 7th channel selected by CH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

REGISTER 5-61: ADDRESS 0X94 – CH7 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH7_N	ICO_PHASE<7:0)>		
bit 7							bit (
Legend:							
R = Readal	ble bit	W = Writable b	it	U = Unimpleme	nted bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknown	
h:+ 7 0							
bit 7-0		_ PHASE<7:0>: Lo				lote 2)	
	•			ASE 0.02 = 0.	XUUFF		
	•						
	•						
	0000-0000	= 0° when CH7	NCO_PHA	ASE<15:0> = 0x0	0000 (Default)		
Note 1:	See Note 1 in	Registers 5-47. C	CH7 is the 8	Bth channel selec	ted by CH_O	RDFR<23.0> hits	

2: CH(n)_NCO_PHASE_OFFSET<15:0> = 2¹⁶ x Phase Offset Value/360.

REGISTER 5-62: ADDRESS 0X95 – CH7 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE) (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH7_N	CO_PHASE<1	5:8>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

```
bit 7-0 CH7_NCO_PHASE <15:8>: Upper byte of CH7_NCO_PHASE<15:0> (Note 2)
1111-1111 = 359.995° when CH7_NCO_PHASE<15:0> = 0xFFFF
```

•

- 0000-0000 = 0° when CH7_NCO_PHASE<15:0> = 0x0000 (Default)
- Note 1: See Note 1 in Registers 5-47. CH7 is the 8th channel selected byCH_ORDER<23:0> bits.
 - **2:** CH(n)_NCO_PHASE_OFFSET<15:0> = 2^{16} x Phase Offset Value/360.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0			
			CH0	DIG_GAIN<7:0)>					
bit 7							bit			
Legend:										
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown				
bit 7-0	CH0 DIG	GAIN<7:0>: Dia	ital gain sett	ing for channel	0 (Note 2. Note	3. Note 4)				
bit 7-0		GAIN<7:0>: Dig	ital gain sett	ing for channel	0 (Note 2, Note	3, Note 4)				
		1 = -0.03125								
	1111-1110									
		1 = -0.09375								
	1111-1100	0 = -0.125								
	•									
	•									
	•	1 = -3.90625								
	1000-001									
		1 = -3.96875								
		1000-0000 = -4								
		0111-1111 = 3.96875 (MAX) 0111-1110 = 3.9375								
		1 = 3.90625								
	0111-110									
	•	0.010								
	•									
	•									
	0011-1100	0 = 1.875 (Defa u	ult)							
	•		7							
	•									

```
•

0000-0011 = 0.09375

0000-0010 = 0.0625

0000-0001 = 0.03125

0000-0000 = 0.0
```

- **Note 1:** CH0 is the 1st channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D 0x7F (Registers 5-38 5-40) for channel selection bit settings.
 - 2: This register's bits can be pre-programmed at the factory.
 - **3:** Max = 0x7F(3.96875), Min = 0x80 (-4), Step size = 0x01 (0.03125). Bits from 0x81-0xFF is two's complementary of 0x00-0x80. Negative gain setting inverts output.
 - 4: Default value: 0x38(1.75).

		R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH1_	DIG_GAIN<7:0>			
pit 7							bit
egend:							
R = Reada	uhle hit	W = Writable	hit	U = Unimplement	ed hit read	as '0'	
-n = Value at POR (1) = Bit is set			'0' = Bit is cleared		x = Bit is unknown		
		1 - Dit 13 30					
bit 7-0	1111-1111 1111-1100 1111-1100 • • 1000-0011 1000-0010 1000-0001 1000-0000	= -0.03125 = -0.0625 = -0.09375 = -0.125 = -3.90625 = -3.9375 = -3.96875 = -4 = 3.96875 (M = 3.9375		ing for channel 1 (N	lote 2)		
	0111-1100						
	•						
	•	- 4 075 (D -f-					
	•) = 1.875 (Defa	iuit)				
	•						
	•						
	0000-0011	= 0.09375					
	0000-0010						
	0000-0001						
Note 1:	0000-0000					sses 0x7D - 0x7F (<mark>Re</mark>	

Note 1: CH1 is the 2nd channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D - 0x7F (Registers 5-38 - 5-40) for channel selection bit settings.

2: See Notes 2, 3 and 4 in Register 5-63.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH2	2_DIG_GAIN<7:0>			
bit 7							bi
Legend:							
R = Reada	able bit	W = Writable	e bit	U = Unimplemer	nted bit, read	l as '0'	
-n = Value		'1' = Bit is se		'0' = Bit is cleare		x = Bit is unknown	
	1111-1110 1111-1103 1111-1100 • • • 1000-0013	1 = -0.09375 0 = -0.125 1 = -3.90625					
	1000-0000 0111-1112 0111-1110 0111-1102	1 = -3.96875 0 = -4 1 = 3.96875 (N 0 = 3.9375 1 = 3.90625	IAX)				
	0111-1100 • •	0 = 3.875					
	0011-1100	0 = 1.875 (Def a	ault)				
	0000-0010	1 = 0.09375 0 = 0.0625 1 = 0.03125					

- 0000-0001 = 0.03125 0000-0000 = 0.0
- **Note 1:** CH2 is the 3rd channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D 0x7F (Registers 5-38 5-40) for channel selection bit settings.
 - 2: See Notes 2, 3 and 4 in Register 5-63.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH3	DIG_GAIN<7:0>			
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	e bit	U = Unimplemente	ed bit, read	l as '0'	
-n = Value at POR '1' = Bit is set		et	'0' = Bit is cleared		x = Bit is unknown		
bit 7-0	1111-1111 1111-1100 1111-1100 • • • 1000-0011 1000-0010 1000-0000 0111-1111 0111-1100 • • • •	= -0.03125 = -0.0625 = -0.09375 = -0.125 = -3.90625 = -3.9375 = -3.96875 = -4 = 3.96875 (M = 3.9375 = 3.90625 = 3.875 = 1.875 (Defa = 0.09375 = 0.09375 = 0.0625 = 0.03125	AX)	ing for channel 3 (N	Note 2)		

Note 1: CH3 is the 4th channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D - 0x7F (Registers 5-38 – 5-40) for channel selection bit settings.

2: See Notes 2, 3 and 4 in Register 5-63.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH4	DIG_GAIN<7:0	>		
bit 7							bit
Legend:							
R = Readable bit		W = Writable	e bit	U = Unimpleme	ented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is se	t	'0' = Bit is clear	red	x = Bit is unknowr	า
	0111-1110 0111-1101 0111-1100 • •	= -0.125 = -3.90625 = -3.9375 = -3.96875 = -4 = 3.96875 (M. = 3.9375 = 3.90625					

- 0000-0011 **= 0.09375**
- 0000-0010 **= 0.0625**
- 0000-0001 = 0.03125
- 0000-0000 = 0.0
- **Note 1:** CH4 is the 5th channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D 0x7F (Registers 5-38 5-40) for channel selection bit settings.
 - **2:** See Notes 2, 3 and 4 in Register 5-63.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH5	_DIG_GAIN<7:0>			
bit 7							bit
Legend:							
R = Readal	ole bit	W = Writable	e bit	U = Unimplement	ed bit, read a	as 'O'	
-n = Value at POR '1' = Bit is set		et	'0' = Bit is cleared		x = Bit is unknown		
bit 7-0	1111-1111 1111-1110 1111-1100 • • • 1000-0011 1000-0010 1000-0000 0111-1110 0111-1100 • • •	 = -0.03125 = -0.0625 = -0.09375 = -0.125 = -3.90625 = -3.9375 = -3.96875 (M) = 3.9375 = 3.90625 = 3.875 = 1.875 (Defa = 0.09375 = 0.0625 	AX)	ing for channel 5 (N	lote 2)		

Note 1: CH5 is the 6th channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D - 0x7F (Registers 5-38 – 5-40) for channel selection bit settings.

2: See Notes 2, 3 and 4 in Register 5-63.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH6	_DIG_GAIN<7:0	>		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	e bit	U = Unimplem	ented bit. read	1 as '0'	
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unknown	
	0111-1110 0111-1101 0111-1100 •	= -3.90625 = -3.9375 = -3.96875 = -4 = 3.96875 (M = 3.9375 = 3.90625					

- 0000-0000 = 0.0 Note 1: CH6 is the 7th channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D - 0x7F (Registers 5-38 - 5-40) for channel selection bit settings.
 - 2: See Notes 2, 3 and 4 in Register 5-63.

0000-0010 = 0.0625 0000-0001 = 0.03125

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
			CH7	_DIG_GAIN<7:0>			
bit 7							bit
Legend:							
R = Readal	ble bit	W = Writable	e bit	U = Unimplement	ed bit_read a	as '0'	
-n = Value a		'1' = Bit is se		'0' = Bit is cleared		x = Bit is unknown	
			•				
bit 7-0		GAIN<7.0>. Di	nital nain satt	ting for channel 7 (N	loto 2)		
		L = -0.03125	gital gain sett				
	1111-1110						
	1111-1101	L = -0.09375					
	1111-1100) = -0.125					
	•						
	•						
	•	0 00005					
		L = -3.90625					
	1000-0010	J = -3.9375 L = -3.96875					
	1000-000						
		L = 3.96875 (M	AX)				
	0111-1110	•					
	0111-110						
	0111-1100						
	•						
	•						
	•						
	0011-1100) = 1.875 (Defa	ult)				
	•						
	•						
	•						
	0000-0011						
	0000-0010						
	0000-0000						
Note 1:	CH7 is the 8 th						

Note 1: CH7 is the 8th channel selected by CH_ORDER<23:0> bits. See Addresses 0x7D - 0x7F (Registers 5-38 – 5-40) for channel selection bit settings.

2: See Notes 2, 3 and 4 in Register 5-63.

REGISTER 5-71: ADDRESS 0X9E – CH0 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0_DIG_OFFSET<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	is '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CH0_DIG_OFFSET <7:0>: Digital offset setting bits for channel 0 (Note 2)
1111-1111 = 0xFF x DIG_OFFSET_WEIGHT<1:0>
.

0000-0001 = 0x01 x DIG_OFFSET_WEIGHT<1:0> 0000-0000 = 0 (Default)

Note 1: See Table 4-14 for the corresponding channel.

2: Offset value is two's complement. This value is multiplied by DIG_OFFSET_WEIGHT<1:0> in Address 0xA7 (Register 5-79).

REGISTER 5-72: ADDRESS 0X9F - CH1 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	CH1_DIG_OFFSET<7:0>								
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH1_DIG_OFFSET <7:0>: Digital offset setting bits for channel 1 (Note 2)

Note 1: See Table 4-14 for the corresponding channel.

REGISTER 5-73: ADDRESS 0XA0 – CH2 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	CH2_DIG_OFFSET<7:0>							
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CH2_DIG_OFFSET <7:0>: Digital offset setting bits for channel 2 (Note 2) 1111-1111 = 0xFF x DIG OFFSET WEIGHT<1:0>

Note 1: See Table 4-14 or the corresponding channel.

2: Offset value is two's complement. This value is multiplied by DIG_OFFSET_WEIGHT<1:0> in Address 0xA7 (Register 5-79).

REGISTER 5-74: ADDRESS 0XA1 – CH3 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH3_D	IG_OFFSET<7	:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH3_DIG_OFFSET <7:0>: Digital offset setting bits for channel 3 (Note 2) 1111-1111 = 0xFF x DIG_OFFSET_WEIGHT<1:0>

> • • • 0000-0001 = 0x01 x DIG_OFFSET_WEIGHT<1:0> 0000-0000 = 0 (Default)

Note 1: See Table 4-14 for the corresponding channel.

REGISTER 5-75: ADDRESS 0XA2 – CH4 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH4_D	IG_OFFSET<7	/:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

0000-0000 **= 0 (Default)**

Note 1: See Table 4-14 for the corresponding channel.

2: Offset value is two's complement. This value is multiplied by DIG_OFFSET_WEIGHT<1:0> in Address 0xA7 (Register 5-79).

REGISTER 5-76: ADDRESS 0XA3 – CH5 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH5_D	IG_OFFSET<7	/:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 5-77: ADDRESS 0XA4 – CH6 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	CH6_DIG_OFFSET<7:0>							
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CH6_DIG_OFFSET <7:0>: Digital offset setting bits for channel 6 (Note 2) 1111-1111 = 0xFF x DIG OFFSET WEIGHT<1:0>

Note 1: See Table 4-14 for the corresponding channel.

2: Offset value is two's complement. This value is multiplied by DIG_OFFSET_WEIGHT<1:0> in Address 0xA7 (Register 5-79).

REGISTER 5-78: ADDRESS 0XA5 – CH7 DIGITAL OFFSET (Note 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CH7_D	IG_OFFSET<7	:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CH7_DIG_OFFSET <7:0>: Digital offset setting bits for channel 7 (Note 2) 1111-1111 = 0xFF x DIG_OFFSET_WEIGHT<1:0>

• • • 0000-0001 = 0x01 x DIG_OFFSET_WEIGHT<1:0> 0000-0000 = 0 (Default)

Note 1: See Table 4-14 for the corresponding channel.

REGISTER 5-79: ADDRESS 0XA7 – DIGITAL OFFSET WEIGHT CONTROL

R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
	FCB<5:3>		DIG_OFFSET	_WEIGHT<1:0>		FCB<2:0>	
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 FCB<7:5>: Factory-Controlled bits. This is not for the user. Do not program.

bit 4-3	DIG_OFFSET_WEIGHT<1:0>: Control the weight of the digital offset settings (Note 1)
	11 = 2 LSB x Digital Gain
	10 = LSB x Digital Gain
	01 = LSB/2 x Digital Gain
	00 = LSB/4 x Digital Gain, (Default)

bit 2-0 **FCB<2:0>:** Factory-Controlled bits. This is not for the user. Do not program.

Note 1: This bit setting is used for the digital offset setting registers in Addresses 0x9E - 0xA7 (Registers 5-71 - 5-79).

REGISTER 5-80: ADDRESS 0XC0 – CALIBRATION STATUS INDICATION

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
CAL_STAT		FCB<6:0>						
bit 7	bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7 CAL_STAT: Power-Up auto-calibration status indication flag bit

1 = Device power-up calibration is completed

0 = Device power-up calibration is not completed

bit 6-0 **FCB<6:0>:** Factory-Controlled bits. These bits are readable, but have no meaning for the user.

REGISTER 5-81: ADDRESS 0XD1 - PLL CALIBRATION AND STATUS INDICATION

R-x	R-x	R-x	R-x	R-x		R-x		R-x	R-x
FCB<	:4:3>	PLL_CAL_STAT	FCB<	<2:1>	PLL_	VCOL_STA	T PLL	_VCOH_STAT	FCB<0>
bit 7 bit 0									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 **FCB<4:3>:** Factory-Controlled bits. These bits are readable, but have no meaning for the user.

- PLL_CAL_STAT: PLL auto-calibration status indication flag bit (Note 1)
 - 1 = Complete: PLL auto-calibration is completed
 - 0 = Incomplete: PLL auto-calibration is not completed
- bit 4-3 **FCB<2:1>:** Factory-Controlled bits. These bits are readable, but have no meaning for the user.

bit 5

REGISTER 5-81: ADDRESS 0XD1 – PLL CALIBRATION AND STATUS INDICATION (CONTINUED)

PLL_VCOL_STAT: PLL drift status indication bit
1 = PLL drifts out of lock with low VCO frequency
0 = PLL operates as normal
PLL_VCOH_STAT: PLL drift status indication bit
1 = PLL drifts out of lock with high VCO frequency
0 = PLL operates as normal

bit 0 **FCB<0>:** Factory-Controlled bits. This bit is readable, but have no meaning for the user.

Note 1: See PLL_CALTRIG bit setting in Address 0x6B (Register 5-27).

REGISTER 5-82: ADDRESS 0X15C – CHIP ID (LOWER BYTE)(Note 1)

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
CHIP_ID<7:0>							
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 CHIP_ID<7:0>: Chip ID of the device: Lower byte of the CHIP ID<15:0>

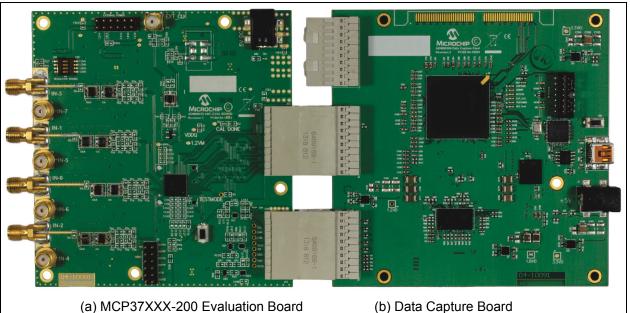
Note 1: Read-only register. Preprogrammed at the factory for internal use. **Example:** MCP37231-200: '0000 1000 0111 0000'

MCP37D21-200: '0000 1000 0101 0000' MCP37D31-200: '0000 1010 0111 0000' MCP37D21-200: '0000 1010 0101 0000'

REGISTER 5-83: ADDRESS 0X15D – CHIP ID (UPPER BYTE)(Note 1)

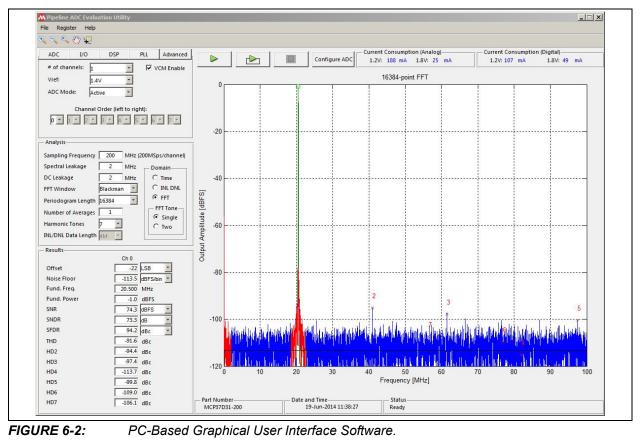
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
CHIP_ID<15:8>								
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-0 CHIP_ID<15:8>: Chip ID of the device: Lower byte of the CHIP ID<15:0>

Note 1: Read-only register. Preprogrammed at the factory for internal use.

Example: MCP37231-200: '0000 1000 0111 0000' MCP37221-200: '0000 1000 0101 0000' MCP37D31-200: '0000 1010 0111 0000' MCP37D21-200: '0000 1010 0101 0000'


6.0 DEVELOPMENT SUPPORT

Microchip offers a high speed ADC evaluation platform which can be used to evaluate Microchip's high speed ADC products. The platform consists of an MCP37XXX evaluation board, an FPGA-based data capture card board, and a PC-based Graphical User Interface (GUI) software for ADC configuration and evaluation. Figure 6-1 and Figure 6-2 show this evaluation tool. This evaluation platform allows users to quickly evaluate the ADC's performance for their specific application requirements. More information is available at http://www.microchip.com.

NOTES:

7.0 TERMINOLOGY

Analog Input Bandwidth (Full Power Bandwidth)

The analog input frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB.

Aperture Delay or Sampling Delay

This is the time delay between the rising edge of the input sampling clock and the actual time at which the sampling occurs.

Aperture Uncertainty

The sample-to-sample variation in aperture delay.

Aperture Delay Jitter

The variation in the aperture delay time from conversion to conversion. This random variation will result in noise when sampling an AC input. The signal-to-noise ratio due to the jitter alone will be:

EQUATION 7-1:

 $SNR_{JITTER} = -20log(2\pi \times f_{IN} \times t_{JITTER})$

Calibration Algorithms

This device utilizes two patented analog and digital calibration algorithms, Harmonic Distortion Correction (HDC) and DAC Noise Cancellation (DNC), to improve the ADC performance. The algorithms compensate various sources of linear impairments such as capacitance mismatch, charge injection error, and finite gain of operational amplifiers. These algorithms execute in both power-up sequence (foreground) and background mode:

- Power-Up Calibration: The calibration is conducted within the first 2²⁷ clock cycles after power-up. The user needs to wait this Power-Up Calibration period, after the device is powered-up, for an accurate ADC performance.
- Background Calibration: This calibration is conducted in background while the ADC is performing conversions. The update rate is about every 2³⁰ clock cycles.

Channel Crosstalk

This is a measure of the internal coupling of a signal from an adjacent channel into the channel of interest in the multi-channel mode. It is measured by applying a full-scale input signal in the adjacent channel. Crosstalk is the ratio of the power of the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel input. It is typically expressed in dBc.

Pipeline Delay (LATENCY)

LATENCY is the number of clock cycles between initiation of conversion and when that data is presented to the output driver stage. Data for any given sample is available after the Pipeline Delay plus the Output Delay after that sample is taken. New data is available at every clock cycle, but the data lags the conversion by the Pipeline Delay plus the Output Delay.

Clock Pulse Width and Duty Cycle

The clock duty cycle is the ratio of the time the clock signal remains at a logic high (clock pulse width) to one clock period. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.

Differential Nonlinearity (DNL, No Missing Codes)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. No missing codes to 16-bit resolution indicates that all 65,536 codes must be present over all operating conditions.

Integral Nonlinearity (INL)

INL is the maximum deviation of each individual code from an ideal straight line drawn from negative full scale through positive full scale.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the power of the fundamental (P_S) to the noise floor power (P_N), below the Nyquist frequency and excluding the power at DC and the first nine harmonics.

EQUATION 7-2:

$$SNR = 10 log \left(\frac{P_S}{P_N}\right)$$

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

Signal-to-Noise and Distortion (SINAD)

SINAD is the ratio of the power of the fundamental (P_S) to the power of all the other spectral components including noise (P_N) and distortion (P_D) below the Nyquist frequency, but excluding DC:

EQUATION 7-3:

$$SINAD = 10log\left(\frac{P_S}{P_D + P_N}\right)$$
$$= -10log\left[10^{-\frac{SNR}{10}} - 10^{-\frac{THD}{10}}\right]$$

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

Effective Number of Bits (ENOB)

The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula:

EQUATION 7-4:

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

Gain Error

Gain error is the deviation of the ADC's actual input fullscale range from its ideal value. The gain error is given as a percentage of the ideal input full-scale range.

Gain error is usually expressed in LSB or as a percentage of full-scale range (%FSR).

Gain-Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed in ppm/°C.

Offset Error

The major carry transition should occur for an analog value of $\frac{1}{2}$ LSB below A_{IN} + = A_{IN} -. Offset error is defined as the deviation of the actual transition from that point.

Temperature Drift

The temperature drift for offset error and gain error specifies the maximum change from the initial (+25°C) value to the value at across the T_{MIN} to T_{MAX} range.

Maximum Conversion Rate

The maximum clock rate at which parametric testing is performed.

Minimum Conversion Rate

The minimum clock rate at which parametric testing is performed.

Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier) or dBFS.

Total Harmonic Distortion (THD)

THD is the ratio of the power of the fundamental (P_S) to the summed power of the first 13 harmonics (P_D) .

EQUATION 7-5:

$$THD = 10 \log\left(\frac{P_S}{P_D}\right)$$

THD is typically given in units of dBc (dB to carrier). THD is also shown by:

EQUATION 7-6:

$$THD = -20log \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + ... + V_n^2}}{V_1^2}$$

Where:
$$V_1 = RMS \text{ amplitude of the fundamental frequency}$$
$$V_1 \text{ through } V_n = \text{ Amplitudes of the second through nth harmonics}$$

Two-Tone Intermodulation Distortion (Two-Tone IMD, IMD3)

Two-Tone IMD is the ratio of the power of the fundamental (at frequencies f_{IN1} and f_{IN2}) to the power of the worst spectral component at either frequency $2f_{IN1} - f_{IN2}$ or $2f_{IN2} - f_{IN1}$. Two-Tone IMD is a function of the input amplitudes and frequencies (f_{IN1} and f_{IN2}). It is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the ADC full-scale range.

Power-Supply Rejection Ratio (PSRR)

Measured as the ratio of the change in the powersupply voltage to the change in the ADC output.

•AC PSRR:

EQUATION 7-7:

 $PSRR_{AC} = 20log\left(\frac{\Delta AV_{DD}}{\Delta V_{OUT}}\right)$

The AC PSRR is typically given in units of dBc.

•DC PSRR:

The DC PSRR is typically given in units of mV/V or dB.

EQUATION 7-8:

Common-Mode Rejection Ratio (CMRR)

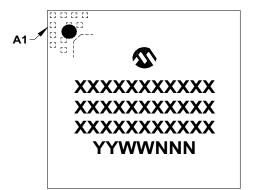
Common-mode rejection is the ability of a device to reject a signal that is common to both sides of a differential input pair. The common-mode signal can be an AC or DC signal, or a combination of the two. CMRR is measured using the ratio of the differential signal gain to the common-mode signal gain and expressed in dB with the following equation:

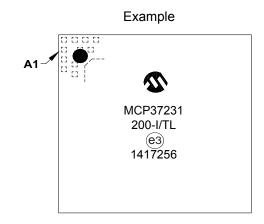
EQUATION 7-9:

$$CMRR = 20log\left(\frac{A_{DIFF}}{A_{CM}}\right)$$

Where:

A_{DIFF} = ∆Output Code/∆Differential Voltage

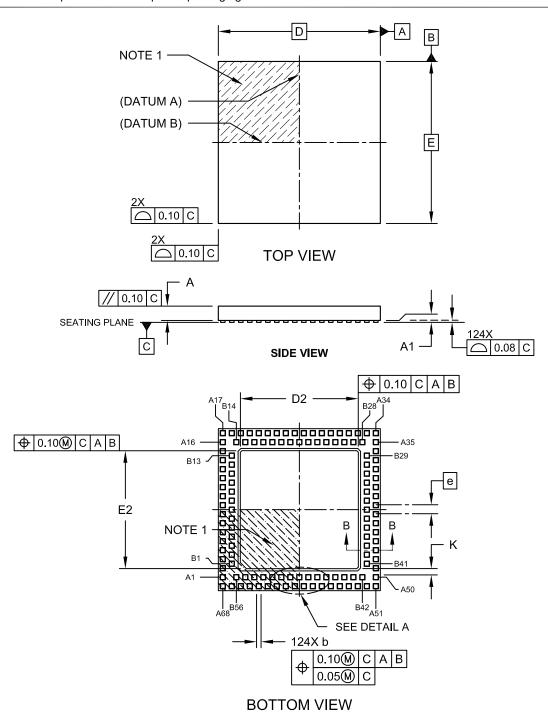

 $A_{DIFF} = \Delta Output Code/\Delta Common Mode Voltage$


NOTES:

8.0 PACKAGING INFORMATION

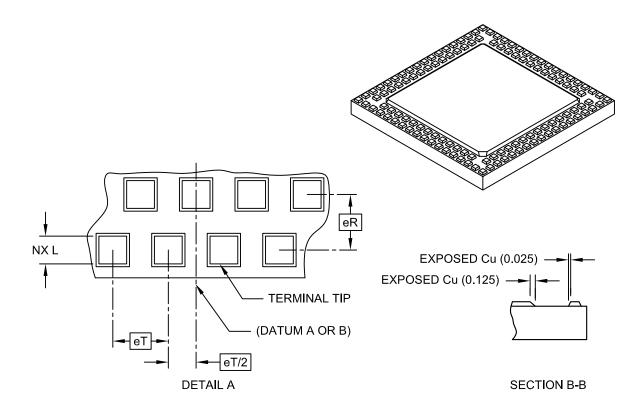
8.1 Package Marking Information

124-Lead VTLA (9x9x0.9 mm)



Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

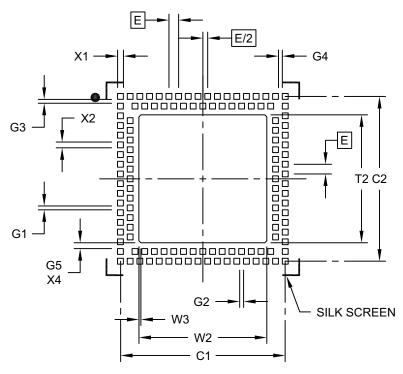
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N		124		
Pitch	еT	0.50 BSC			
Pitch (Inner to outer terminal ring)	eR	0.50 BSC			
Overall Height	A	0.80	0.85	0.90	
Standoff	A1	0.00	-	0.05	
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	6.40	6.55	6.70	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	6.40	6.55	6.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)				0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

APPENDIX A: REVISION HISTORY

Revision B (September 2014)

• Removed the non-availability notes related to 14-bit option.

Revision A (July 2014)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

[X] ⁽¹⁾	<u>-xxx</u>	<u>×</u>	<u>/xx</u>	Exa	imples:
ape and Reel Option	Sample Rate	Temperature Range	 Package	a) b) c)	MCP37D31-200I/TL: 124LD VTLA, 200 Msps MCP37D31-200I/TE*: 121LD TFBGA, 200 Msps MCP37231T-200I/TL: Tape and Reel, Industrial temperature, 124LD VTLA, 200 Msps
MCP37D31-2 MCP37221-20	00: 16-Bit I Digital 00: 14-Bit 00: 14-Bit	Low-Power ADC Down-Converter Low-Power ADC Low-Power ADC	with 8-Channel MUX, and CW Beamformin with 8-Channel MUX with 8-Channel MUX	, Col lig (,	ntact Microchip Technology Inc. for availability.
	•		ay)		
200 = 200) Msps				
i i = -4()°C to +85	5°C (Industrial)		Note	1: Tape and Reel identifier only appears in the
TE* = E	9x9x0.9 mm Ball Plastic 1 Bx8x1.08 mr	Body (VTLA), 12 Thin Profile Fine F n Body (TFBGA)	24-Léad Pitch Ball Grid Array - , 121-Lead		catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
	ape and Reel Option MCP37231-20 MCP37D31-2 MCP37D21-20 Blank = Sta T = Taj 200 = 200 I = -40 TL = Taj TE* = East	ape and Reel OptionSample RateMCP37231-200:16-Bit I DigitalMCP37D31-200:16-Bit I DigitalMCP37D21-200:14-Bit DigitalMCP37D21-200:14-Bit DigitalBlank= Standard pack TT= Tape and Ree200= 200 MspsI= -40°C to 9x9x0.9 mmTL= Terminal Ver 9x9x0.9 mmTE*= Ball Plastic T 8x8x1.08 mr	ape and Reel Option Sample Rate Temperature Range MCP37231-200: 16-Bit Low-Power ADC Digital Down-Converter MCP37D31-200: 16-Bit Low-Power ADC Digital Down-Converter MCP37221-200: 14-Bit Low-Power ADC Digital Down-Converter MCP37D21-200: 14-Bit Low-Power ADC Digital Down-Converter Blank = Blank = Standard packaging (tube or tra T = 200 = 200 = 200 = 200 = 200 = 201 = 202 = 203 = 204 = 205 = 206 = 207 = 208 = 209 = 200 #Standard packaging (tube or tra T 200 = 201 #Standard packaging (tube or tra T 202 = 203 #Standard packaging (tube or tra T 204 = 205 #Standard packaging (tube or tra T <t< td=""><td>ape and Reel Option Sample Temperature Rate Package Package MCP37231-200: 16-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformir MCP37221-200: 14-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformir MCP37D21-200: MCP37D21-200: 14-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformi Blank = Standard packaging (tube or tray) T T = Tape and Reel⁽¹⁾ 200 = 200 Msps I = -40°C to +85°C (Industrial) TL = Terminal Very Thin Leadless Array Package - 9x9x0.9 mm Body (VTLA), 124-Lead</td><td>ape and Reel Sample Temperature Range a) b) b) c) MCP37231-200: 16-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37D31-200: 16-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37221-200: 14-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37D21-200: 14-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming Blank = Standard packaging (tube or tray) T = Tape and Reel⁽¹⁾ 200 = 200 Msps I = -40°C to +85°C (Industrial) TL = Terminal Very Thin Leadless Array Package - 9x9x0.9 mm Body (VTLA), 124-Lead TE* = Ball Plastic Thin Profile Fine Pitch Ball Grid Array - 8x8x1.08 mm Body (TFBGA), 121-Lead</td></t<>	ape and Reel Option Sample Temperature Rate Package Package MCP37231-200: 16-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformir MCP37221-200: 14-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformir MCP37D21-200: MCP37D21-200: 14-Bit Low-Power ADC with 8-Channel MUX Digital Down-Converter and CW Beamformi Blank = Standard packaging (tube or tray) T T = Tape and Reel ⁽¹⁾ 200 = 200 Msps I = -40°C to +85°C (Industrial) TL = Terminal Very Thin Leadless Array Package - 9x9x0.9 mm Body (VTLA), 124-Lead	ape and Reel Sample Temperature Range a) b) b) c) MCP37231-200: 16-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37D31-200: 16-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37221-200: 14-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming MCP37D21-200: 14-Bit Low-Power ADC with 8-Channel MUX, Digital Down-Converter and CW Beamforming Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾ 200 = 200 Msps I = -40°C to +85°C (Industrial) TL = Terminal Very Thin Leadless Array Package - 9x9x0.9 mm Body (VTLA), 124-Lead TE* = Ball Plastic Thin Profile Fine Pitch Ball Grid Array - 8x8x1.08 mm Body (TFBGA), 121-Lead

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-577-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address:

www.microchip.com Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А