

AM9469

LOW NOISE SINGLE PHASE FULL WAVE DIRECT PWM MOTOR DRIVER

Description

The AM9469 is a high performance, ultra-low noise single phase (single-coil) brushless direct current (BLDC) fan and motor driver. The integrated full-bridge driver output stage uses BTL linear driver architecture to minimize audible switching noise and Electromagnetic Interference (EMI) providing a low noise solution.

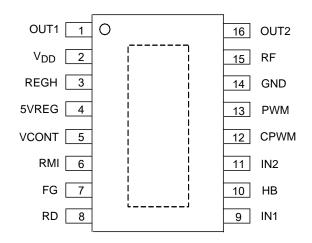
For system flexibility the motor speed can be controlled by either an external PWM signal or by a DC voltage or from a thermistor network. Based on the input signal, the AM9469 adjusts the output duty cycle.

To help protect the motor coil, the AM9469 provides Rotor Lock Protection which shuts down the output drive if rotor lock is detected. The device automatically restarts when the rotor lock is removed. In case of over voltage, the device shuts down the output drive and enters standby mode to help prevent over voltage stress on the coil. Over temperature shutdown provides thermal protection for the device.

A Tachometer output is provided by the open-drain Frequency Generator (FG) Pin which allows external interface to monitor motor rotation or speed. The FG output is the magnetic change frequency. Additionally, a rotor lock detect output is provided by the open-drain RD Pin.

AM9469 is available in thermally enhanced TSSOP-16EP (Type DX) with exposed pad.

Features


- Single-Phase Full Wave BLDC Fan/Motor Drive with BTL Output (BTL Amplifier Gain = 49dB)
- Low Noise Architecture
- Wide Operating Voltage Range: 2.4V to 18V
- PWM Speed Control with External PWM Input
- DC Voltage Speed Control by Adjusting VCONT and RMI Voltage
- Hall Bias Output: V_{HB} = 1.25V
- Built-In Quick Start Circuit
- Lock Protection with Automatic Restart
- Frequency Generator (FG) Output
- Rotor Lock Detection (RD) Output
- Current Limit Circuit

Notes:

- R_F Defines The Current Limit; $R_F = 1\Omega$ will Achieve 250mA Current Limit
- Thermal Shut-Down (TSD) Circuit
- Low Profile Package: TSSOP-16EP (Type DX) with Exposed Pads for Power Handling Capability
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

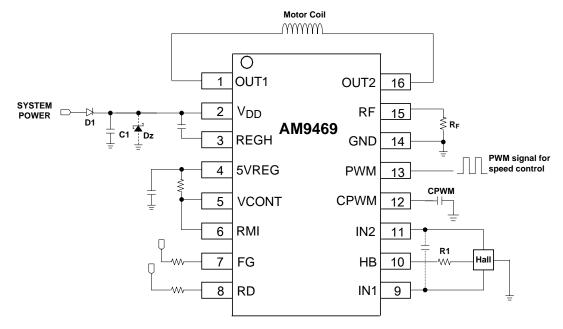
Pin Assignments

(Top View)

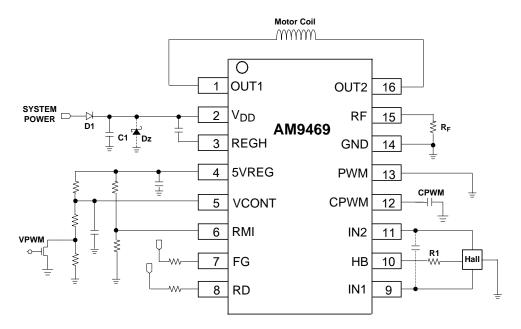
TSSOP-16EP (Type DX)

Applications

- 9V/12V/15V BLDC Cooling Fans and Motors
- CPU Cooling Fans for Notebooks and Desktop BLDC Fans
- Instruments Cooling Fans
- Medium Voltage, Low Power BLDC Motors


1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

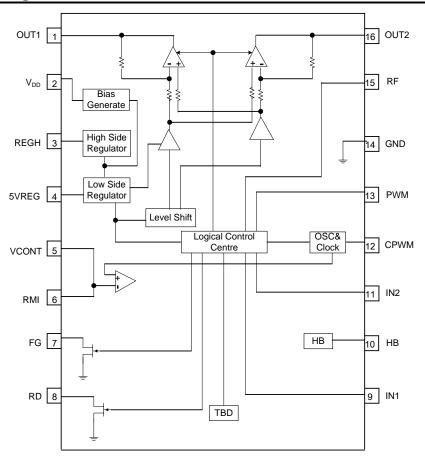

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds

Typical Applications Circuit (Notes 4 & 5)

Typical Applications Circuit for PWM Speed Control

Typical Applications Circuit for VCONT/RMI Control

Notes:


- 4. C1 is for power stabilization and to strengthen the noise immunity and should be as close to the V_{DD} pin as possible. The recommended value for C1 is 1μF typically. The value of capacitor can be optimized depending on the operating mode, motor voltage and the motor current. For PWM speed control mode, with datasheet current capability, the recommended capacitor value is 1μF. The value of the C1 should be checked in the motor design and route in its operating conditions if it is reduced or increased from the recommended value of 1μF.
- 5. Diode D1 is for the reverse connection protection. In addition to power stabilization and noise immunity, C1 also absorbs regenerative motor spikes. Depending on the amount of regenerative voltage spike, value of C1 needs to be adjusted. The zener diode Dz is used to clamp the regenerative voltage spike form the motor operation to safe level when reverse blocking diode D1 is used. If reverse blocking diodes is not used, the use of zener clamp Dz depends on the supply voltage capability to effectively sink the regenerative energy and voltage spike. The value of C1 and the requirement Dz needs to be verified on each application design.

Pin Descriptions

Pin Number	Pin Name	Description
1	OUT1	Output Drive - Source and Sink Capable Pin
2	V_{DD}	Power Supply Input Pin
3	REGH	High-Side Regulator Output Voltage
4	5VREG	5V Regulator Output Voltage
5	VCONT	Output duty control pin for in DC signal speed control mode. Voltage in VCONT is compared with triangular wave on CPWM for the output duty ratio.
6	RMI	Output Minimum Duty (Minimum Speed) Control Pin for CPWM
7	FG	Frequency Generator (FG) – The FG Output is Same as the Magnetic Change Frequency
8	RD	Rotor Lock Detect Open Drain Output
9	IN1	Hall Device Positive Input Pin
10	НВ	Hall Bias Voltage
11	IN2	Hall Device Negative Input Pin
12	CPWM	Capacitor Connection Pin for PWM Oscillator and Main Clock
13	PWM	PWM signal input pin for PWM speed control mode. The PWM on this pin controls the output duty directly.
14	GND	Ground Pin
15	RF	Current Limit Set Pin – Connect a resistor between RF pin and GND, current limit is defined by 250mV/R _F
16	OUT2	Output Drive - Source and Sink Capable Pin
Pad	Pad	Exposed Pad for Thermal Dissipation. It can be connected to GND or left open circuit.

Functional Block Diagram

Absolute Maximum Ratings (Note 6) (@TA = +25°C, unless otherwise specified.)

Symbol	Charact	eristics	Rating	Unit
V_{DD_MAX}	Maximum Supply Voltage (Note 7)		24	٧
V _{REVERSE}	Reverse Supply Voltage on All Pins		-0.3	V
V _{PWM_MAX}	Maximum Voltage on Logic PWM Pin		7	V
I _{OUT(PEAK)}	Maximum Output Current (Peak)		1,200	mA
I _{OUT} (CONT)	Maximum Continuous Current		750	mA
I _{RD}	Maximum RD Output Current		5	mA
V _{RD}	Maximum RD Voltage		24	V
I _{FG}	Maximum FG Output Current		5	mA
V_{FG}	Maximum FG Voltage		24	V
I _{HB}	Maximum HB Output Current		10	mA
P _D	Power Dissipation (Notes 8 & 9)	TSSOP-16EP (Type DX)	3,520	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
TJ	Maximum Junction Temperature	+150	°C	
ESD HBM	Human Body Model ESD Capability		4	kV

Notes:

- 6. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.
- 7. The absolute maximum V_{DD} of 24V is a transient stress rating and is not meant as a functional operating condition. It is not recommended to operate the device at the absolute maximum rated conditions for any period of time.
- 8. For thermal de-rating curves under different PCB size and layout conditions, see thermal performance section.

 9. AM9469 exposed pad soldered to minimum recommended landing pads (see Package Outline Dimension section) on 3inch x 4.5inch four-layer 2oz.copper glass epoxy PCB (1.6mm thickness), calculated in accordance with JESD 51-7. See thermal performance section.

Recommended Operating Conditions

Symbol	Characteristic	Conditions	Min	Max	Unit
V_{DD}	Supply Voltage when the device is operating normally with all circuits active	Operating; All Circuits Active	2.4	18	V
V _{ICM} Hall Input Common-Mode Input Voltage Range		_	0.3	V _{5VREG} -1.5V	V
V _{CONTIN}	VCONT Input Voltage Range	_	0.3	V _{5VREG}	V
V_{RMIN}	RMI Input Voltage Range	_	0.3	V _{5VREG}	V
T _A	Operating Temperature Range	Operating	-40	+105	°C

Electrical Characteristics (Note 10) (@T_A = +25°C, V_{DD} = 12V, unless otherwise specified.)

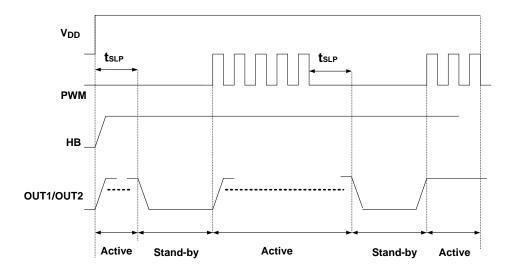
Symbol	Characteristics	Conditions	Min	Тур	Max	Unit
I _{DD}	Supply Current	_	_	2.5	4.0	mA
V _{OV_TH}	Over Voltage Protection Threshold for Shutdown to Standby Mode	Voltage Increasing	19.5	20.5	21.5	V
V _{OV_RLTH}	Over Voltage Release Threshold	Voltage Decreasing	18.3	19.5	20.5	V

10. Typical data is measured at TA = +25°C, VDD = 12V. The maximum and minimum parameters values over operating temperature range are not tested in production, they are guaranteed by design, characterization and process control.

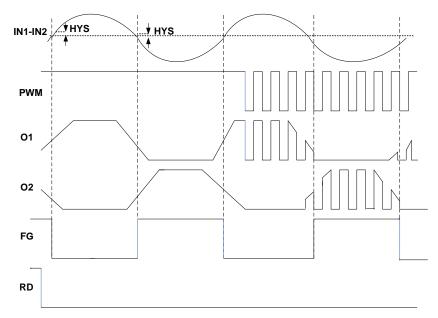
Electrical Characteristics (Continued) (Note 11) (@T_A = +25°C, V_{DD} = 12V, unless otherwise specified.)

Symbol	Characteristics	Conditions	Min	Тур	Max	Unit
\ <u>/</u>	Output On Voltage Course & Sink	I _{OUT} = 750mA (Source + Sink)		0.65	1.05	V
Vo	Output On Voltage, Source + Sink	$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$	_	0.65	1.05	V
V_{RF}	Current Limit Voltage	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	230	250	270	mV
V_{RGL}	5VREG Output Voltage	$I_{5VREG} = 5mA$, $T_A = -40$ °C to +105°C	4.8	5	5.2	V
V_{RGH}	REGH Output Voltage	I _{REGH} = 5mA	V _{DD} - 4.6	V _{DD} - 4.2	V _{DD} - 3.9	V
V_{HB}	Hall Bias Output Voltage	$I_{HB} = 5mA$, $T_A = -40$ °C to $+105$ °C	1.20	1.25	1.30	V
I _{HIN}	Hall Input Bias Current	_	_	_	0.5	μA
V _{INOFS}	Hall Amplifier Output Offset Voltage	_	-5	_	5	mV
GH	Hall Amplifier Voltage Gain	_	48	52	_	dB
V _{PWML}	PWM Pin Input Low	_	0	_	1.2	V
V _{PWMH}	PWM Pin Input High	_	1.8	_	5VREG	V
I _{PWM}	PWM Pin Bias Current	PWM = GND	-17	-10	-6	μA
tpwm_min	Input PWM Smallest Width	_	2	_	_	μs
f _{PWM_RANGE}	External Input PWM Frequency Range	_	8	_	100	kHz
I _{CPC}	CPWM Charge Current	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	16.4	_	19.6	μA
I _{CPD}	CPWM Discharge Current	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	16.4	_	19.6	μA
R _{CP}	CPWM Charge/Discharge Current Ratio	R _{CP} = I _{CPC} / I _{CPD}	0.9	1	1.11	_
V_{CPH}	CPWM Oscillation High Level	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	3.35	3.5	3.65	V
V_{CPL}	CPWM Oscillation Low Level	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	0.95	1.0	1.05	V
V _{CPA}	CPWM Oscillation Amplitude	$T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$	2.3	2.5	2.7	V
f _{CPWM}	CPWM Oscillation frequency	CPWM = 100pF	_	36	_	kHz
ICONT	VCONT Pin Input Bias Current	_	_	_	0.3	μΑ
I _{RMI}	RMI Pin Input Bias Current		_	1	0.3	μΑ
V_{RD}	RD Output Low Voltage	$I_{RD} = 3mA$	_	1	0.3	V
I _{RDL}	RD Output Leakage Current	V _{RD} = 18V	_	-	1	μΑ
V_{FG}	FG Output Low Voltage	I _{FG} = 3mA	_	_	0.3	V
I _{FGL}	FG Output Leakage Current	V _{FG} = 18V	_	_	1	μΑ
ΔV_{FG}	FG Comparator Hysteresis		_	±5	_	mV
tLCK_DET_ON	Output ON Time in Lock Detection	C _{PWM} = 100pF	_	0.5	_	S
toff	Output OFF Time in Lock Mode	C _{PWM} = 100pF	_	4.5	_	S
R_{T}	Output OFF/ON Ratio in Lock Detection	$C_{PWM} = 100pF, R_T = t_{ACT} / t_{DET}$	_	9	_	S
T _{J_SDN_TH}	IC Junction Temperature Thermal Shutdown Threshold	_	_	+175	_	°C
T _{J_SDN_HYST}	IC Junction Temperature Thermal Shutdown Hysteresis	_	_	+25	_	°C

Note: 11. Typical data is measured at T_A = +25°C, V_{DD} = 12V. The maximum and minimum parameters values over operating temperature range are not tested in production, they are guaranteed by design, characterization and process control.



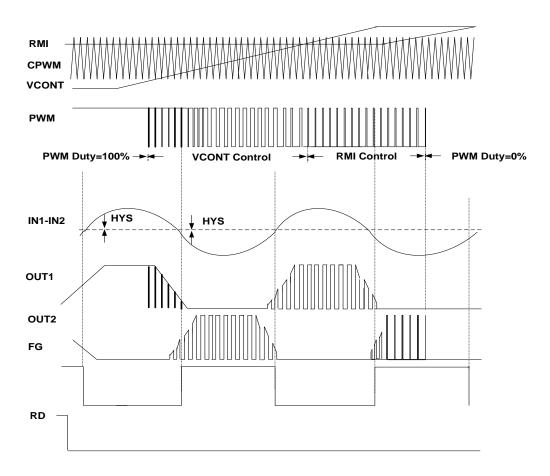
Operating Characteristics


Standby and Start-Up Timing

When the PWM Pin input signal is logic "L" level continuously for a longer time than t_{SLP} , the device enters standby mode as shown below. When the PWM Pin signal is "H" level, the device turns active and operates normally. The PWM Pin is also used to control the motor speed with external PWM signal into this pin. The lowest frequency PWM signal is defined by t_{SLP} , i.e. the PWM duty low time has to be smaller t_{SLP} for motor speed control.

 $t_{SLP} = 400 \mu s typical$

In Normal Operation/Rotation

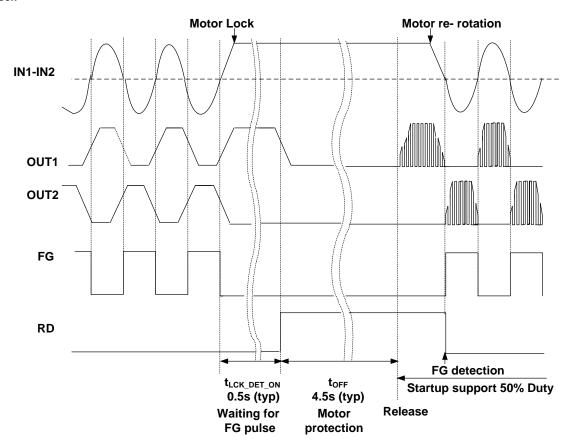

Truth Table for Various Modes with PWM Pin

IN1	IN2	PWM	OUT1	OUT2	FG	MODE			
ш		Н	Н	L		Drive			
H L	L	L	L	L	_	Regenerate			
	ш	Н	L	Н	OFF	Drive			
L	П	L	L	L	OFF	Regenerate			

Operating Characteristics (Continued)

VCONT/RMI Control

Truth Table for Various Modes with VCONT/RMI Pin


IN1	IN2	PWM2 (Note 12)	OUT1	OUT2	FG	MODE
Н		Н	Н	L	_	Drive
П		L	L	L	L	Regenerate
1	Н	Н	L	Н	OFF	Drive
L	П	L	L	L	OFF	Regenerate

Note: 12. PWM2 is internal signal.

Operating Characteristics (Cont.)

Motor Lock

Application Notes

H-Bias - Hall Bias Output

This is a 1.25V nominal voltage source to bias a differential un-buffered Hall element sensor. If a Hall element requires a lower voltage than the H-Bias output, connect an appropriate value resistor between the H-Bias Pin and the Hall element supply pin.

IN1 and IN2 - Hall Inputs

The rotor position is detected by a Hall sensor, with the output of Hall sensor applied to the IN1 and IN2 Pins. This sensor can be either a 4-pin "naked" Hall device or of the 3-pin buffered switching type. For a 4-pin device the differential Hall output signal is connected to the IN1 and IN2 Pins. For a buffered Hall sensor, the Hall device output is attached to the IN1 Pin, with a pull-up attached if needed. Meanwhile, the IN2 pin has an external potential divider attached to hold the pin at half V_{REF}. When IN1 is high in relation to IN2, OUT2 is the active drive.

PWM Pin - External PWM Signal Input for PWM Speed Control Mode

In PWM speed control mode, external PWM signal is applied at this PWM Pin to control the motors speed. The duty ratio of the PWM signal input to this pin controls the fan motor speed by varying the output PWM drive directly.

CPWM Pin

Internal motor control triangular wave is generated based on the capacitor on this pin. A capacitor of 100pF (C_{PWM} = 100pF), will provide a triangular wave of 36kHz (typ). The VCONT and RMI signals are compared with this triangular wave to generate the speed control PWM drive and minimum speed control clamp points. The output PWM drive frequency is the same as the triangular waveform frequency.

FG/RD Pin

FG is the Frequency Generator (tachometer) output and is a buffered signal from the Hall sensor. RD is the fan locked status detector. FG and RD are open-drain outputs and will require external pull-up resistors. Typically, a pull-up resistor of $10k\Omega$ is recommended from the FG and RD Pins to the supply voltage.

RF Pin

The current limiter is activated when the voltage between current detection resistor exceeds 0.25V between GND and RF. The current limiter is activated at $I_0 = 250$ mA when $R_F = 1\Omega$. The current limit is set with a R_F resistor between the RF Pin and GND Pin.

RMI Pin - Minimum Speed Setting Pin

RMI is the minimum speed setting pin. DC voltage on this pin sets the minimum speed value. If you do not use RMI (minimum speed control), please connect it to 5VREG.

VCONT Pin - DC Voltage Speed Control

VCONT is DC voltage inputs speed control pin. The voltage on the VCONT Pin is compared with the triangular oscillation on the CPWM Pin to generate the output drive PWM signal. For the control method, refer to the timing chart.

REGH/5VREG Pin

Please insert capacitor value $1\mu F$ between 5VREG and GND for regulated output voltage stabilization; insert capacitor value $1\mu F$ value between V_{DD} and REGH for stable output voltage.

OUT1 and OUT2 Pins

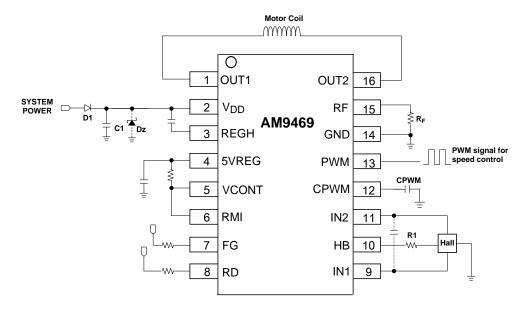
OUT1 and OUT2 Pins provide H-bridge driver output for fan and motor coil connection.

V_{DD} – Device Supply Voltage

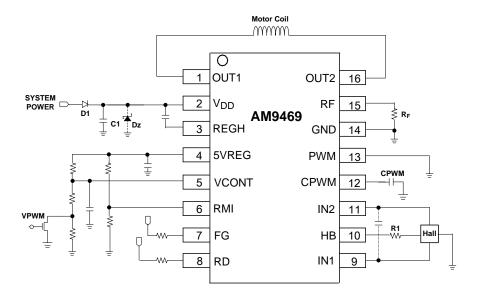
This provides the supply for the device.

GND – Supply Return

This is the device supply ground return pin for control signal.

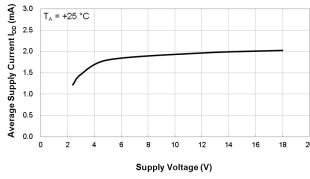

Application Notes (Continued)

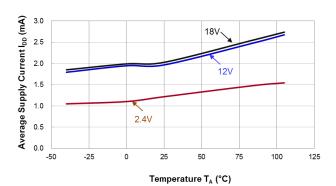
Speed Control


This device allows both the DC voltage input and PWM signal input for speed control. Typically, only one of the methods is used to control the motor speed. In DC voltage speed control mode, the voltage on the VCONT Pin is compared with the CPWM triangular wave to generate internal PWM signal to drive the output. In PWM speed control mode, the PWM signal on the PWM Pin directly controls the output PWM drive.

The typical application circuits shows the two speed control methods.

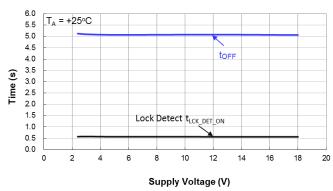
1. Speed Control by PWM Pin

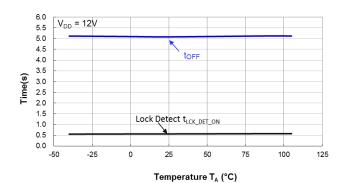

2. Speed Control by VCONT/RMI Pin



Typical Operating Characteristics

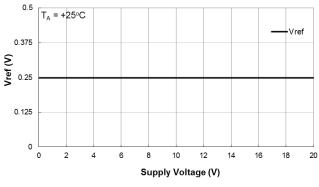
Average Supply Current



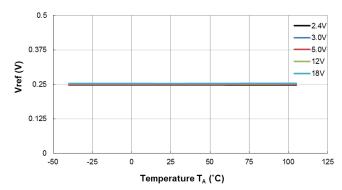


Average Supply Current vs. Temperature

Lock Detect t_{LCK_DET_ON} and Shutdown t_{OFF} Periods



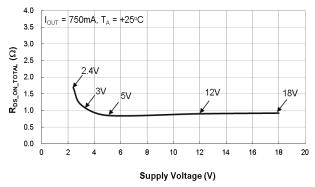
Lock Detect $t_{\text{LCK_DET_ON}} \text{And} \ t_{\text{OFF}} \, \text{vs.} \, \text{Supply Voltage}$



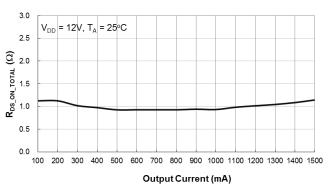
Lock Detect $t_{\rm LCK_DET_ON}\,{\rm And}\,\,t_{\rm OFF}\,{\rm vs.}$ Temperature

Current Limits

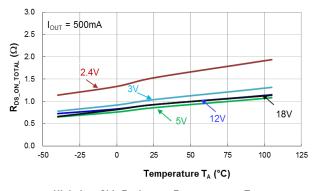
Current limit (250mV)vs. Supply Voltage

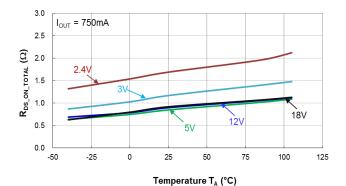


Current Limit (250mV) vs. Temperature



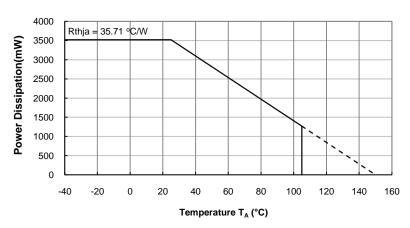
Typical Operating Characteristics (Continued)


AM9469 Total Resistance Total R $_{\rm DS(ON)}$ of High Side and Low Side Switches


 $\label{eq:high+Low} \mbox{ High+Low Side Resistance $R_{\mbox{\scriptsize DS_ON_TOTAL}}$ vs. Supply Voltage}$

 $\textbf{High+Low\,Side\,Resistance}~R_{\texttt{DS_ON_TOTAL}}~~\textbf{vs.}~\textbf{Current}$

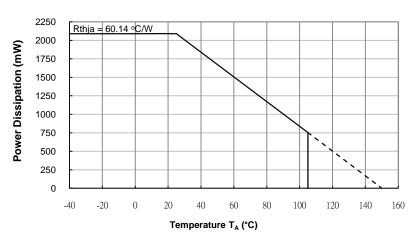
 $\label{eq:high+LowSide} \textbf{High+LowSide Resistance} \; \textbf{R}_{\textbf{DS_ON_TOTAL}} \; \; \textbf{vs. Temperature}$


 $\label{eq:high+LowSide} \textbf{High+LowSide Resistance} \; \textbf{R}_{\textbf{DS_ON_TOTAL}} \; \; \textbf{vs.} \; \textbf{Temperature}$

Thermal Performance

TSSOP-16EP (Type DX) Power Dissipation De-rating Curve 1 (Note 13)

I	T _A (°C)	-40	0	25	50	60	70	80	85	90	95	100	105	110	120	125	130	140	150
ľ	P _D (mW)	3,520	3,520	3,520	2,816	2,534	2,253	1,971	1,830	1,690	1,549	1,408	1,267	1,126	845	704	563	282	0



TSSOP-16EP (Type DX) Thermal Derating Curve

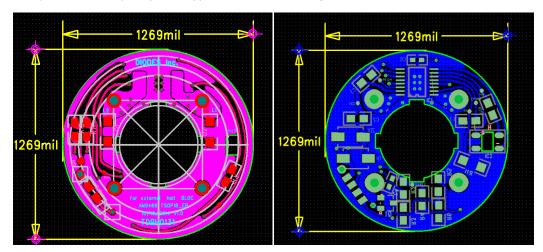
Note: 13. TSSOP-16EP (Type DX) is soldered on FR-4 substrate 4-layer 1.6mm thickness PCB board, calculated in accordance with JESD 51-7.

TSSOP-16EP (Type DX) Power Dissipation De-rating Curve 2 (Note 14)

T _A (°C)	-40	0	25	50	60	70	80	85	90	95	100	105	110	120	125	130	140	150
P _D (mW)	2,090	2,090	2,090	1,672	1,505	1,338	1,170	1,087	1,003	920	836	752	669	502	418	334	167	0

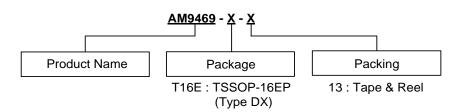
TSSOP-16EP (Type DX) Thermal Derating

(Custom Circular PCB with Centre Hole Cut-Out)


Note: 14. TSSOP-16EP (Type DX) is soldered to the circular PCB diameter 1.2" with the center circular cutout diameter of 0.53". The Hall element space cut-out is 0.12"x0.08". 2-layer 2oz.copper FR-4 PCB (1.6mm thickness) with partial copper flood on the bottom layer.

Thermal Performance (Continued)

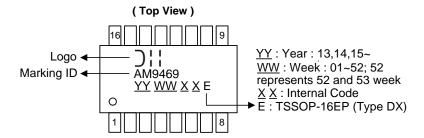
Circular PCB Dimensions


The circular PCB diameter is 1.2" with the center circular cut-out diameter of 0.53". The Hall element space cut-out is 0.12"x0.08". 2-layer 2oz.copper FR-4 PCB (1.6mm thickness) with partial copper flood on the bottom layer.

Custom Circular PCB - Top View

Custom Circular PCB - Bottom View

Ordering Information (Note 15)

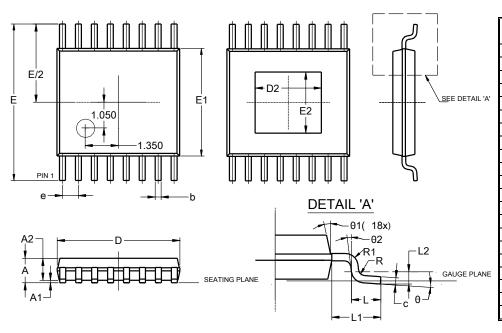


Part Number	Package Code	Packaging	13" Tape and Reel				
rait Number	Fackage Code	Packaging	Quantity	Part Number Suffix			
AM9469-T16E-13 T16E TSS		TSSOP-16EP (Type DX)	2,500/Tape & Reel	-13			

Note: 15. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

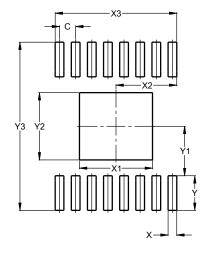
(1) Package Type: TSSOP-16EP (Type DX)



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSSOP-16EP (Type DX)



		P-16EP e DX)			
Dim	Min	Max	Тур		
A		1.08			
A1	0.05	0.15			
A2	0.80	0.93			
b	0.19	0.30			
С	0.09	0.20			
D	4.90	5.10			
D2			2.70		
Е	6.40 BSC				
E1	4.30	4.50			
E2			2.50		
е	0	.65 BS0)		
L	0.45	0.75			
L1	1	.00 RE	F		
L2	0	.25 BS0)		
R	0.09				
R1	0.09				
θ	0°	8°			
θ1	5°	15°			
θ2	0°				
Al	I Dimens	ions in r	mm		

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSSOP-16EP (Type DX)

Dimensions	Value (in mm)
С	0.65
Х	0.35
X1	2.94
X2	2.45
Х3	4.90
Υ	1.40
Y1	2.00
Y2	2.72
Y3	6.80

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

AM9469 16 of 16 April 2018
Document number: DS38810 Rev. 2 - 2 www.diodes.com © Diodes Incorporated

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А