UM11009 PCA9745B demonstration board OM13524 Rev. 1 – 23 June 2016

User manual

Document information

Info	Content
Keywords	SPI-bus, PCA9745B, RGB and White LEDs, 16-channel x 8-bit PWMs
Abstract	The OM13524 demo board is easy to test and design for the PCA9745B, a 16-channel SPI 4-wire bus 57 mA constant current and outputs allow up to 20 V for LED supply. This demo board, along with the Win-I2CUSB hardware board or Fm+ development board (OM13260), provides an easy to use evaluation platform.

UM11009

PCA9745B demonstration board OM13524

Revision history

Rev	Date	Description
1	20160623	Initial version

Contact information

For more information, please visit: http://www.nxp.com

UM11009

1. Introduction

The PCA9745B evaluation board features LEDs for color mixing, blinking and dimming demonstrations. A graphical interface allows the user to easily explore the different functions of the driver. The board can be connected in series with other SPI-bus demoboards to create an evaluation system.

The IC communicates to the host via the industry standard SPI-bus port. The evaluation software runs under Microsoft Windows PC platform.

2. Features

- A complete evaluation platform for the PCA9745B 16-channel SPI-bus constant current LED driver
- Easy to use GUI based software demonstrates the capabilities of the PCA9745B
- On-board four white and four RGB LEDs for visual experience
- · Convenient test points for easy scope measurements and signal access
- USB interface to the host PC
- No external power supply required

3. Getting started

3.1 Assumptions

Familiarity with the SPI-bus is helpful but not required.

3.2 Static handling requirements

CAUTION

This device is sensitive to Electro Static Discharge (ESD). Therefore care should be taken during transport and handling. You must use a ground strap or touch the PC case or other grounded source before unpacking or handling the hardware.

3.3 Minimum system requirements

- PC Pentium 60 processor (or equivalent), 8 MB RAM, 10 MB of hard drive space
- One USB port (either 2.0 or 1.1 compatible)
- Windows 98SE, ME, 2000, XP, or Vista
- Fm+ development board (OM13260) or WIN-I2CUSB board (from www.demoboard.com)

3.4 Power requirements

The NXP demonstration boards OM13260 and OM13524 hardware obtain power from the PC USB port. Care should be taken not to exceed the USB port current capabilities.

4. Installation

4.1 Fm+ development board and WIN-SPIUSB software

The OM13524 is a daughter card to the OM13260 Fm+ I2C bus development board with SPI driver which is part of the Fm+ development board kit (OM13320). You may download the software, user manual, and find ordering information at the NXP web site: http://www.nxp.com/demoboard/OM13320.html#documentation

The Win-SPIUSB software from The Boardshop runs on Windows 98SE, ME, 2000, and XP and is compatible with any PC hardware having a minimum of a Pentium processor and an USB port. The software allows the user to select one of the SPI-bus driver from a menu and also provides a Universal mode (SPI Expert mode) to allow users to create their own SPI-bus commands with the same SPI-bus devices.

4.2 OM13524 connection to Fm+ I2C bus development board

The OM13260 Fm+ I2C bus development board should be disconnected from your PC before connecting the OM13524 PCA9745B demo board on to it. The OM13524 board has a 9-pin male connector (CON1) that connects to the 8-pin male connector (CN16) on the Fm+ I2C bus development board using six jumper wires as shown in the Fig 1.

CON1(9-pin) ← → CN16 (8-pin) 3.3V (pin 4) ← +3V3 (pin 2) SCL (pin 5) ← MCU_SCLK (pin 4) GND (pin 6) ← GND (pin 7) SDA (pin 7) ← MCU_MOSI (pin 3) SPI_SDO (pin 8) → MCU_MISO (pin 1) SPI_CSN (pin 9) ← MCU_SSN (pin 6)

UM11009

4.3 OM13524 connection to WIN-I2CUSB hardware adapter board

The Win-I2CUSB board should be disconnected from your PC before connecting the OM13524 PCA9745B demo board on to it. The OM13524 board has a 9-pin male connector (CON1) that connects to the 14-pin male connector (J1) on the Win-I2CUSB board using six jumper wires as shown in the Fig 2.

 $CON1(9-pin) \leftrightarrow J1 (14-pin)$

- 3.3V (pin 3) ← 3.3V (pin 2)a
- SCL (pin 5) \leftarrow SCLK (pin 4)
- GND (pin 6) \leftarrow GND (pin 6)
- SDA (pin 7) ← MOSI (pin 8)
- SPI_SDO (pin 8) \rightarrow MISO (pin 10)
- SPI_CSN (pin 9) \leftarrow SSN (pin 12)

Connect 6-jumper wires between the OM13524 board and the Win-I2CUSB board before connecting the USB cable. Once both boards are connected, connect the USB cable and start the Win-SPIUSB software. You are now ready to evaluate the PCA9745B.

UM11009 PCA9745B demonstration board OM13524

UM11009

5. Hardware description

Fig 3 shows the following items on the hardware:

- CON1 (9-pin male connector) is connected to SPI master device.
- CON2 (9-pin female connector) is connected to next SPI daisy-chain device.
- CON3 (5-pin male connector) is no use for PCA9745B SPI device.
- CON4 (14-pin male connector) is connected to J1 on WIN-I2CUSB hardware board as I2C master device to drive this demo board (no connect for SPI signals)
- J1 selects V_{DD} power for PCA9745B, connected 1-2 for V_{DD} = 5 V and connected 2-3 for V_{DD} = 3.3 V.
- J13 selects LED power for all LEDs, connected 1-2 for V_{LED} = 3.3 V and connected 2-3 for V_{LED} = 5 V.
- J7 (7-8), J9 (9-10) and J10 (9-10) to select Vss for pin 2, SDO for pin 3 and /CS for pin 4 respectively.
- LED[0:15] 16-channel output to drive four White LEDs (WHT_LED[1:4]) and four RGB LEDs (RGB_LED[1:4]).
- TP2 and TP3 are GND pins for probing use.
- TP1 can be connected as external reset signal to /RESET pin when J6 is open.
- TP4 can be connected as external output enable signal to /OE pin for blinking/dimming control when J11 is open.
- All jumpers default setting and function as shown in <u>Table 1</u>.

Table 1. Jumper settings for test and evaluation

Jumper	Default setting	Comment
J1	2-3	This jumper is used to select VDD for PCA9745B
(3-pin)	$(V_{DD} = +3.3V)$	1-2: select +5V
		2-3: select +3.3V
J2	1-2	This 3x2 jumper is used to select Rext (pin1) value for PCA9745B
(3x2-pin)	(Rext=1 K,	1-2: select Rext = 1K and max. o/p current is 57.3 mA
	57 mA@max)	3-4: select Rext = 1.5K and max. o/p current is 38.25 mA
		5-6: select Rext = 2K and max. o/p current is 28.6 mA
J3	Open	Short: external 1.1K pull-up resistor for SDI on PCA9745B
(2-pin)		Open: no external pull-up resistor for SDI on PCA9745B
J4	Open	Short: external 1.1K pull-up resistor for SCLK on PCA9745B
(2-pin)		Open: no external pull-up resistor for SCLK on PCA9745B
J5	Short	Short: connect VDD_IN to V_{DD} (pin28) on PCA9745B
(2-pin)		Open: connect current meter to measure the I_{DD} on PCA9745B
J6	Open	Short: force /RESET (pin25) to GND
(2-pin)		Open: 10K pull-up /RESET (pin25) to VDD
J7	7-8	This 4x2 jumper is used to select input value for pin 2
(4x2-pin)		Open: floating
		1-2: select V _{DD}
		3-4: select pull-up with 31.6K
		5-6: select pull-down with 34.8K
		7-8: select GND

Jumper	Default setting	Comment
J8	2-3	This jumper is used to select bus mode
(3-pin)		1-2: select normal I2C or SPI addressable bus mode
		2-3: select SPI daisy-chain bus mode for PCA9745B
J9	9-10	This 5x2 jumper is used to select input value for pin 3
(5x2-pin)		Open: floating
		1-2: select V _{DD}
		3-4: select pull-up with 31.6K
		5-6: select pull-down with 34.8K
		7-8: select GND
		9-10: SDO for last slave device of PCA9745B in SPI daisy-chain
J10	9-10	This 5x2 jumper is used to select input value for pin 4
(5x2-pin)		Open: floating
		1-2: select V _{DD}
		3-4: select pull-up with 31.6K
		5-6: select pull-down with 34.8K
		7-8: select GND
		9-10: CSN (Chip Select) SPI bus mode for PCA9745B
J11	Short	Short: force /OE (pin5) to GND, to enable LEDs output
(2-pin)		Open: 10K pull-up /OE (pin5) to V_{DD} when apply external clock for blinking/dimming on TP4 (test point)
J12, J16 J19,	Short	These jumpers are used to open the WHT_LED1 or RGB_LED1
J22 (2-pin)		J12 to control white LED, J16 to control Red LED, J19 to control Green LED, J22 to control Blue LED
		Open: connect current meter to measure one of the LEDs output current o open one of the LEDs output for detecting an LED open condition in one o EFLAGn register
		Short: normal operation for WHT_LED1 and RGB_LED1
J13	1-2	This jumper is used to select LED supply voltage
(3-pin)	$(V_{LED} = +3.3V)$	1-2: select +3.3V for all LEDs supply voltage
		2-3: select +5V for all LEDs supply voltage
		Open (no jumper): select external voltage from J20 (≤ +20V) and J24 (GND)
J14, J18 (2-pin)	Open	These jumpers are used to merge the LED[0:2] outputs together for driving higher LED current.
		Open: normal operation for the LED[0:2]
		Short: When short J14/J18 and open J16/J19 to combine LED[0:2] outputs to drive LED0. When short J14 only and open J16 to combine LED[0:1] outputs to drive LED0
J15, J17 J21,	Open	These jumpers are used to short the WHT_LED1 or RGB_LED1
, ,		J15 to control white LED, J17 to control Red LED, J23 to control Green
		LED, J21 to control Blue LED
J23 (2-pin)		LED, J21 to control Blue LED Open: normal operation for WHT LED1 and RGB LED1
		Open: normal operation for WHT_LED1 and RGB_LED1 Short: to short one of the LEDs for detecting an LED short condition in one
	+20V	Open: normal operation for WHT_LED1 and RGB_LED1

Jumper	Default setting	Comment
J24 (2-pin)	GND	External GND input for LEDs supply voltage
J25, J27 J29, J31 (2-pin)	Short	These jumpers are used to open the WHT_LED4 or RGB_LED4 J25 to control white LED, J27 to control Red LED, J29 to control Green LED, J31 to control Blue LED
		Open: connect current meter to measure one of the LEDs output current or open one of the LEDs output for detecting an LED open condition in one of EFLAGn register
		Short: normal operation for WHT_LED4 and RGB_LED4
J26, J28 J30,	Open	These jumpers are used to short the WHT_LED4 or RGB_LED4
J32 (2-pin)		J26 to control white LED, J28 to control Red LED, J32 to control Green LED, J30 to control Blue LED
		Open: normal operation for WHT_LED4 and RGB_LED4
		Short: to short one of the LEDs for detecting an LED short condition in one of EFLAGn register
CON1	9-pin male connector	This 9-pin male connector is connected to SPI master device or next daisy- chain device
CON2	9-pin female connector	This 9-pin female connector is connected to next SPI daisy-chain device
CON3	5-pin male connector	No use for PCA9745B SPI device
CON4	14-pin	This 14-pin header is used to connect to Win-I2CUSB hardware board as
	header	I2C master device to drive this demo board (no use for PCA9745B)
TP1	Test Point 1	This TP1 is used to drive /RESET input pin25 from external when J6 is OPEN
TP2, TP3	Test Point 2/3	These two test points are GND for probe ground connection
TP4	Test Point 4	This TP4 is used to drive /OE input pin5 from external when J11 is OPEN

UM11009 PCA9745B demonstration board OM13524

6. Schematic

7. OM13524 demonstration board main components

Table 2. OM	13524 demo board main componen	nts	
Device	Description	LED	Location
PCA9745B	16-channel SPI-bus 57 mA / 20V constant current LED driver	-	U1 (See <u>Fig 5</u>)
PRTR5V0U2AX	ESD protection diode	-	U2
LW-E67C	White LED	4 white LEDs	WHT_LED[1:4]
LRTB_G6SG	RGB LED	4 RGB LEDs	RGB_LED[1:4]
LTST- C170GKT	Green LED for PCA9745B power supply either 3.3 V or 5 V indicator	1 green LED	D1

UM11009

8. PCA9745B evaluation steps with WIN-I2CUSB board

The PCA9745B is controlled by WIN-SPIUSB GUI in Expert mode as shown in Fig 6.

File Device Options	Window About			_
EEPROM / FI Universal Mo				
	USB hardwa indicator	are Output power indicators	SDI	Mode cator
	Ha	dware Detected 3,3V On	5.0V Off 1.MHz	MODE 0
Win-SPIUSB - [SPI E	xpert Mode]		والمتصر ا	X
Se File Edit Devic	e Options Window About		-	8 x
	+ - > = = = =	GP10 7	Input State unkown R	lead
			Hatas	
Msg W/R Data		Delay	noces	100
Msg W/R Data 1 MOSI		Delay	notes	
Msg W/R Data		Delay	Roces	
Msg W/R Data 1 MOSI MISO		Delay	notes	
Msg W/R Data 1 MOSI MISO 2 MOSI MISO 3 MOSI		Deby	notes	
Hsg W/R Data 1 MOSI MISO 2 MOSI MISO 3 MOSI MISO		Deby	ROLES	
Hsg W/R Data 1 MOSI MISO 2 MOSI MISO 3 MOSI MISO 4 MOSI	Send All Send S			
Hisg W/R Data 1 HOSI HISO 2 HOSI HISO 3 HOSI HISO 4 HOSI Send Message		equence Send Continuously		
Hsg W/R Data 1 MOSI MISO 2 MOSI MISO 3 MOSI MISO 4 MOSI	Ide 01,02,03,0	equence Send Continuously 4,05,06,07,08,09,10		MODE 0 st

Connect the hardware as described in <u>Section 4.3</u>. All jumpers are in default setting for PCA9745B demo board. When you have correctly installed the software and the demonstration board hardware is connected and recognized by the computer, start the Win-SPIUSB software. As shown in the <u>Fig 6</u>, when the demonstration board hardware is correctly connected to the USB port and the computer recognizes it, the message "Hardware Detected" is displayed on the bottom of the window.

Switched 3.3 V and 5.0 V output power supplies are controlled through the "Options" menu or by double clicking on the 3.3 V or 5.0 V symbols on the bottom of the window. Power supplies are disabled by default and you must enable them before using the SPIbus device on the board. SPI Frequency and Mode are controlled through the "Options" menu or by double clicking on the frequency or mode symbol on the bottom of the window.

8.1 PCA9745B blinking demo for all White and RGB LEDs

- 1. From the 'Device' drop-down menus select 'Universal Modes', and from the subsequent drop-down menu select 'Expert Mode' as shown in Fig 6.
- 2. Copy the "PCA9745B WHT_RGB LEDs blinking demo" text file as shown below. From the 'File' drop-down menus select 'Open', and from the "open data file" window to select this text file.

UM11009

SPI Data File 2 0,04,55,Comments: set LEDOUT0 = 55h, turn on LEDs ,02,00 0,06,55,Comments: set LEDOUT1 = 55h, turn on LEDs ,04,55 0,08,55,Comments: set LEDOUT2 = 55h, turn on LEDs ,06,55 0,0A,55,Comments: set LEDOUT3 = 55h, turn on LEDs ,08,55 2000,82,80,Comments: write IREFALL = 80h 0,0A,55 0,82,00,Comments: write IREFALL = 00h 0,02,80 1500,82,40,Comments: write IREFALL = 80h 0,02,00 0,82,00,Comments: write IREFALL = 00h 0,02,40 1000,82,20,Comments: write IREFALL = 80h 0,02,00 0,82,00,Comments: write IREFALL = 00h 0,02,20 500,82,10,Comments: write IREFALL = 80h 0,02,00 0,02,21,Comments: set group control = blinking 0,02,10 0,04,FF,Comments: set LEDOUT0 = FFh 0,02,21 0,06,FF,Comments: set LEDOUT1 = FFh ,04,FF 0,08,FF,Comments: set LEDOUT2 = FFh ,06,FF 0,0A,FF,Comments: set LEDOUT3 = FFh ,08,FF 0,80,C0,Comments: set PWMALL=C0h 0,0A,FF 0,0C,40,Comments: set GRPPWM=40 0,00,C0

© NXP Semiconductors N.V. 2016. All rights reserved.

2000,0E,00,Comments: set GRPFREQ=00

0,0C,40

0,0C,80,Comments: set GRPPWM=80

0,0E,00

2000,0E,01,Comments: set GRPFREQ=01

0,0C,80

0,0C,A0,Comments: set GRPPWM=A0

0,0E,01

2000,0E,02,Comments: set GRPFREQ=02

0,0C,A0

0,0C,C0,Comments: set GRPPWM=C0

0,0E,02

2000,0E,03,Comments: set GRPFREQ=03

0,0C,C0

0,82,00,Comments: write IREFALL = 00h

0,0E,03

Sequence:01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

- After open the "PCA9745B WHT_RGB LEDs blinking demo" text file, the WIN-I2CUSB GUI in Expert mode screen will be displayed as shown in <u>Fig 7</u>.
- 4. Click the 'Send All' button, all the valid messages on the screen will be sent in the order of the row number (Msg #). The action will be performed one time.
- 5. User can program the MOSI (Master Out Slave In) Data to PCA9745B, the first 7-bit is to access the address of register and 8th bit to indicate Read (1) or Write (0), the next byte is data to read or write.

UM11009

*	File Edit Dev	ice Options	Window /	About							×
	2 🖬 💆	4 - 6	ENC	1.0	GP	10 ?		Input State u	nkown Re	ead	
Msg	W/R Data			Delay	Notes					_	
1	MOSI 04,55			0	set LEDOU	r0 = 55h, turr	n on LEDs				
	MISO 02,00										
2	MOSI 06,55			0	set LEDOU	F1 = 55h, turr	n on LEDs				
	MISO 04,55										
3	MOSI 08,55			0	set LEDOU	12 = 55h, turr	n on LEDs				
	MISO 06,55										
4	MOST 04,55			0	setLEDOU	13 = 55h, turr	on LEDs				
	MISO 08,55										
5	MOST 82,80			2000	write IREF	ALL = 80h					
	MISO 0A,55			0							
6	MOSI 82,00			0	write IREF	ALL = 00h					
1.00	MISO 02,80			0							
7	M051 82,40			1500	write IREF	ALL = 90h					
	MISO 02,00			0							
8	MOST 82,00			0	write IREF	ALL = 00h					
	MISO 02,40			0							
9	MOST 82,20			1000	write IREF	4LL = 80h					
	MISO 02,00			0							
10	MOSI 82,00			0	write IREF	VLL = 00h					
	MISO 02,20			0							
11	14051 82,10			500	write IREF	¥L = 80h					
	MISO 02,00			0							
12	MOSI 02,21			0	set group o	ontrol = biinki	ng				
	MISO 02,10			0							
13	MOSI 04,FF			0	set LEDOU	ro = FFh					
	MISO 02.21			0							٠
S	Send Message	Send	All	Send Se	quence	Send Cont	inuously				
A	Active Msg. = 1	Id	e lo	.02.03.04	4.05.06.07.08	1.09.10.11.12	. 13. 14. 15.	16, 17, 18, 19, 20,	21,22,23,24	25.26	-
-			1.					5.0V Off		MODE 0	
				rsar	comare Detect	eo	a av un	3.07 011	THAT	MODE 0	168

UM11009

9. PCA9745B evaluation steps with Fm+ development board

Fig 8. Selecting Expert Mode from Fm+ development board GUI

Connect the hardware as described in <u>Section 4.2</u>. All jumpers are in default setting for PCA9745B demo board. When you have correctly installed the software and the demonstration board hardware is connected and recognized by the computer, start the Fm+ development board software. As shown in Fig 8, when the demonstration board hardware is correctly connected to the USB port and the computer recognizes it, the message "USB-I2C Hardware Detected" is displayed on the bottom of the window. SPI Frequency is controlled through the "Options" menu or by clicking on the frequency symbol on the bottom of the window.

9.1 PCA9745B gradation demo for White and Red LEDs

- 1. From the 'Device' drop-down menus select 'Expert Modes' as shown in Fig 8.
- 2. Copy the "PCA9745B gradation demo in continuous mode" text file as shown below. From the 'File' drop-down menus select 'Open', and from the "open data file" window to select this text file.

SPI Data File 2 0,04,05,Comments: LEDOUT0 turn on WHT_RED LEDs

,02,00

All information provided in this document is subject to legal disclaimers.

0,06,05,Comments: LEDOUT1
,04,05 0,08,05,Comments: LEDOUT2
.06.05
0,0A,05,Comments: LEDOUT3
,08,05
0,02,05,Comments: set Exponential adjust for gradation
,0A,05
0,50,C3,Comments: set RAMP_RATE_GRP0
,02,05
0,52,47,Comments: set STEP_TIME_GRP0
.50.C3
0,54,D2,Comments: set HOLD_CNTL_GRP0
,52,47
0,56,80,Comments: set IREF_GRP0
,54,D2
0,58,C3,Comments: set RAMP_RATE_GRP1
,56,80
0,5A,47,Comments: set STEP_TIME_GRP1
,58,C3
0,5C,D2,Comments: set HOLD_CNTL_GRP1
,5A,47
0,5E,80,Comments: set IREF_GRP1
,5C,D2
0,70,33,Comments: set GRAD_MODE_SEL0
,5E,80
0,72,33,Comments: set GRAD_MODE_SEL1
,70,33
0,74,E4,Comments: set GRAD_GRP_SEL0
,72,33
0,76,E4,Comments: set GRAD_GRP_SEL1
,74,E4
0,78,E4,Comments: set GRAD_GRP_SEL2
,76,E4
0,7A,E4,Comments: set GRAD_GRP_SEL3
,78,E4
0,82,01,Comments: must set IREFALL = 01 during gradation
,7A,E4
2000,7C,0F,Comments: set GRAD_CNTL

UM11009

,02,01

Sequence: 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

- 3. After open the "PCA9745B gradation demo in continuous mode" text file, the "NXP Fm+ Board GUI" in Expert mode screen will be displayed as shown in Fig 9.
- 4. Click the 'Send All' button, all the valid messages on the screen will be sent in the order of the row number (Msg #). The action will be performed one time.
- User can program the MOSI (Master Out Slave In) Data to PCA9745B, the first 7-bit is to access the address of register and 8th bit to indicate Read (1) or Write (0), the next byte is data to read or write.

🧆 F	ile Edit Device	Options Windo	v Help	
	👌 🖬 💆 👘	+ = 🌭 🕫		
Msg	I/O Data	Delay	Notes	*
14	MOSI 70,33	0	set GRAD_MODE_SEL0	
	MISO 5E,80			
15	MOSI 72,33	0	set GRAD_MODE_SEL1	
	MISO 70,33			
16	MOSI 74,E4	0	set GRAD_GRP_SEL0	
	MISO 72,33			
17	MOSI 76,E4	0	set GRAD_GRP_SEL1	
	MISO 74,E4			
18	MOSI 78,E4	0	set GRAD_GRP_SEL2	
	MISO 76,E4			
19	MOST 7A,E4	0	set GRAD_GRP_SEL3	
	MISO 78,E4			
20	MOSI 82,01	0	must set IREFALL = 01 during gradation	
	MISO 7A,E4			
21	MOSI 7C,0F	2000	set GRAD_CNTL	100
	MISO 02,01			+
s	end Message	Send All	Send Sequence Send Continuously	
A	ctive Msg. = 4	Sending Msg #	21 01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21	
-	Trankmissa	on successful	US8-I2C Hardware Detected I2C: 1000 kHz	SPI: 1 MHz

Fig 9. Message data in Expert mode to demo all white and red LEDs for gradation

9.2 Two PCA9745B demo boards in daisy-chain connection

- 1. From the 'Device' drop-down menus select 'Expert Modes' as shown in Fig 8.
- Copy the "SPI daisy chain demo with two PCA9745B devices" text file as shown below. From the 'File' drop-down menus select 'Open', and from the "open data file" window to select this text file.

SPI Data File 2 0,80,80,80,80,Comments: set PWMALL=80h ,00,80,00,80 900,82,20,82,10,Comments: set IREFALL=20h, 10h ,02,20,02,10

All information provided in this document is subject to legal disclaimers

900,82,00,82,00,Comments: set IREFALL=00 ,02,00,02,00 0,04,55,04,01,Comments: set LEDOUT0 (02h->04h due to bit0=0 is write bit) = 55h 1st device; 01h for 2nd device white LEDs ON; 0.02.00.02.00 0.06.55.06.01.Comments: set 2nd device 55h & 1st device 01h for LEDOUT1 0,06,55,06,01 0,08,55,08,01,Comments: set LEDOUT2 = 55h & 01h 0,08,55,08,01 0,0A,55,0A,01,Comments: set LEDOUT3 = 55h & 01h 0,08,55,08,01 800,82,10,82,40,Comments: write IREFALL = 10h & 40h 0,0A,55,0A,01 800,04,01,04,40,Comments: set LEDs on 0,04,01,04,40 800,06,01,06,40,Comments: set LEDs ON 0,04,01,04,40 800,08,01,08,40,Comments: set LEDs on 0,0A,01,0A,40 800,0A,01,0A,40,Comments: set LEDs on 0,04,04,04,10 600,04,04,04,10,Comments: set LEDs on ,06,04,06,10 600,06,04,06,10,Comments: set LEDs on ,08,04,08,10 600,08,04,08,10,Comments: set LEDs on 0,04,10,04,04 600,0A,04,0A,10,Comments: set LEDs on 0,08,04,08,10 500,04,10,04,04,Comments: set LEDs on 0,04,04,04,10 500,06,10,06,04,Comments: set LEDs ON 0,04,10,04,04 500,08,10,08,04,Comments: set LEDs on 0,06,10,06,04 500,0A,10,0A,04,Comments: set LEDs on 0,08,10,08,04 800,82,00,82,00,Comments: write IREFALL = 00 0,0A,10,0A,04

UM11009

800,02,05,82,80,Comments: write IREFALL = 80h & set exp. gradation adjust for 2nd device 0,02,00,02,00 0,04,01,82,00,Comments: write IREFALL = 00h, set LDR=01 for 2nd device 0,02,05,02,80 0,06,01,04,40,Comments: set LEDOUT0 = 40h for blue LEDs ON, set LDR=01 for 2nd device 0,04,01,02,00 0,08,01,06,40,Comments: set LEDOUT1 = 40h, set LDR=01 for 2nd device 0,06,01,04,40 0,0A,01,08,40,Comments: set LEDOUT2 = 40h, set LDR=01 for 2nd device 0,08,01,06,40 0,50,C3,0A,40,Comments: set LEDOUT3 = 40h, set RAMP RATE GRP0=c3h 0,0A,01,08,40 800,52,47,82,80,Comments: write IREFALL = 80h, set STEP_TIME_GRP0=47h 0,50,C3,0A,40 0,54,D0,82,00,Comments: write IREFALL = 00h, set HOLD CNTL GRP0=D0h 0,52,47,02,80 0,56,F0,04,05,Comments: set LEDOUT0 = 05h turn on W_R_G_B LEDs, set IREF_GRP0=F0h 0,54,D0,02,00 0,70,11,06,10,Comments: set LEDOUT1 = 10h, set GRAD_MODE_SEL0=11h 0,56,F0,04,05 0,72,11,08,40,Comments: set LEDOUT2 = 40h, set GRAD_MODE_SEL1=11h 0,70,11,06,10 0,74,E4,0A,00,Comments: set LEDOUT3 = 00h, set GRAD GRP SEL0=E4h 0,72,11,08,40 800,76,E4,82,20,Comments: write IREFALL = 20h, set GRAD_GRP_SEL1=E4h 0,74,E4,0A,00 0,78,E4,82,00,Comments: write IREFALL = 00h, set GRAD_GRP_SEL2=E4h 0,76,E4,02,20 0,7A,E4,04,00,Comments: set LEDOUT0 = 00h, set GRAD_GRP_SEL3=E4h 0,78,E4,02,00 1,7C,03,06,05,Comments: set LEDOUT1 = 05h, set GRAD_CNTL=03h 0,7A,E4,04,00 4000,82,01,08,10,Comments: set LEDOUT2 = 10h, set IREFALL not 0 to enable gradation operation 0,7C,03,06,05 0,74,00,0A,40,Comments: set LEDOUT3 = 40h, set GRAD_GRP_SEL0=00h 0,02,01,08,10 800,76,00,82,1F,Comments: write IREFALL = 1Fh, set GRAD_GRP_SEL1=00h 0,74,00,0A,40 0,78,00,82,00,Comments: write IREFALL = 00h,set GRAD GRP SEL2=00h

User manual

© NXP Semiconductors N.V. 2016. All rights reserved.

UM11009

0,76,00,02,1F 0,7A,00,04,40,Comments: set LEDOUT0 = 40h,set GRAD GRP SEL2=00h 0,78,00,02,00 0,04,05,06,00,Comments: set LEDOUT1 = 00h, LEDOUT0=05h 0,7A,00,04,40 0,06,05,08,05,Comments: set LEDOUT2 = 05h, LEDOUT1=05h 0,04,05,06,00 0.08.05.0A,10,Comments: set LEDOUT3 = 10h,LEDOUT2=05h 0,06,05,08,05 4000,0A,05,82,0F,Comments: write IREFALL = 0Fh,LEDOUT3=05h 0,08,05,0A,10 0,70,FF,82,00,Comments: write IREFALL = 00h,set GRAD_MODE_SEL0=FFh 0,0A,05,02,0F 0,72,FF,04,10,Comments: set LEDOUT0 = 10h,set GRAD_MODE_SEL1=FFh 0,70,FF,02,00 0.04,50,06,40,Comments: set LEDOUT1 = 40h,LEDOUT0=50h 0,72,FF,04,10 0,06,50,08,00,Comments: set LEDOUT2 = 00h,LEDOUT1=50h 0,04,50,06,40 0.08,50,0A,05,Comments: set LEDOUT3 = 05h,LEDOUT2=50h 0,06,50,08,00 4000,0A,50,82,07,Comments: write IREFALL = 07h,LEDOUT3=50h 0,08,50,0A,05 0,04,55,02,21,Comments: set group control = blinking,LEDOUT0=55h 0,0A,50,02,07 0,06,55,04,FF,Comments: set LEDOUT0 = FFh,LEDOUT1=55h 0,04,55,02,21 0,08,55,06,FF,Comments: set LEDOUT1 = FFh,LEDOUT2=55h 0,06,55,04,FF 0,0A,55,08,FF,Comments: set LEDOUT2 = FFh,LEDOUT3=55h 0,08,55,06,FF 0,05,FF,0A,FF,Comments: set LEDOUT3 = FFh, read LEDOUT0 register from 2nd device 0,0A,55,08,FF 400,07,FF,80,C0,Comments: set PWMALL=C0h, read LEDOUT1 from 2nd device 0,00,55,0A,FF 500.09,FF,0C,40,Comments: set GRPPWM=40, read LEDOUT2 from 2nd device 0,00,55,00,C0 5000,0B,FF,0E,00,Comments: set GRPFREQ=00, read LEDOUT3 from 2nd device 0,00,55,0C,40

User manual

© NXP Semiconductors N.V. 2016. All rights reserved.

UM11009

800,FF,FF,0C,80,Comments: set GRPPWM=80, NOP for 2nd device 0,00,55,0E,00 5000,FF,FF,0E,01,Comments: set GRPFREQ=01, NOP for 2nd device 0,00,00,0C,80 1,82,00,82,00,Comments: set IREFALL=00 0,00,00,0E,01 Sequence:01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,3 1,32,33,34,35,36,37,38

3. The Fm+ development board as SPI master drives two PCA9745B demo boards in daisy-chain as shown in the Fig 10. After open the "SPI daisy chain demo with two PCA9745B devices" text file, the "NXP Fm+ Board GUI" in Expert mode screen will be displayed all messages, then click the 'Send All' button, all the valid messages on the screen will be sent in the order of the row number (Msg #). The action will be performed one time.

Fig 10. Two PCA9745B demo boards connecting to the Fm+ development board

10. Support

For support, please send an email to: <u>i2c.support@nxp.com</u>

11. Abbreviations

Table 2.	Abbreviations
Acronym	Description
ESD	Electro Static Discharge
GUI	Graphical User Interface
l ² C-bus	Inter-integrated Circuit bus
IC	Integrated Circuit
LED	Light Emitting Diode
MISO	Master In, Slave Out
MOSI	Master Out, Slave In
PC	Personal Computer
PWM	Pulse Width Modulator
RAM	Random Access Memory
RGB	Red/Green/Blue
RGBA	Red/Green/Blue/Amber
SPI	Serial Peripheral Interface
USB	Universal Serial Bus

12. References

[1] PCA9745B, 16-channel Fm+ I²C-bus 57 mA / 20V constant current LED driver Product data sheet; NXP Semiconductors: http://www.nxp.com/documents/data sheet/PCA9745B.pdf

UM11009

UM11009

13. Legal information

13.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

13.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

13.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

14. List of figures

Fig 1.	PCA9745B demo board (OM13524) connecting
	to the Fm+ development board (OM13260)5
Fig 2.	PCA9745B demo board (OM13524) connecting
	to the WIN-I2CUSB board6
Fig 3.	PCA9745B demo board (OM13524)7
Fig 4.	PCA9745B demo board schematic11
Fig 5.	PCA9745B SPI Daisy-Chain LED driver block
	diagram12
Fig 6.	Drop-down menu selection for SPI expert mode
	13
Fig 7.	Message data in Expert mode to demo all White
	and RGB LEDs for blinking16
Fig 8.	Selecting Expert Mode from Fm+ development
	board GUI17
Fig 9.	Message data in Expert mode to demo all white
	and red LEDs for gradation19
Fig 10.	Two PCA9745B demo boards connecting to the
	Fm+ development board23

15. List of tables

- Table 2. OM13524 demo board main components 12

16. Contents

1.	Introduction3
2.	Features3
3.	Getting started3
3.1	Assumptions
3.2	Static handling requirements
3.3	Minimum system requirements3
3.4	Power requirements3
4.	Installation4
4.1	Fm+ development board and WIN-SPIUSB
	software4
4.2	OM13524 connection to Fm+ I2C bus
4.0	development board4 OM13524 connection to WIN-I2CUSB hardware
4.3	
-	adapter board
5.	Hardware description
6.	Schematic11
7.	OM13524 demonstration board main
	components12
8.	PCA9745B evaluation steps with WIN-I2CUSB
	board
8.1	PCA9745B blinking demo for all White and RGB
-	LEDs
9.	PCA9745B evaluation steps with Fm+
0.4	development board
9.1	PCA9745B gradation demo for White and Red LEDs
9.2	Two PCA9745B demo boards in daisy-chain
5.2	connection
10.	Support24
11.	Abbreviations
12.	References
12.	Legal information
13.1	Definitions
13.1	Disclaimers
13.3	Trademarks
14.	List of figures
15.	List of tables
16.	
10.	Contents28

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 23 June 2016 Document identifier: UM11009

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А