

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

Drivers

with Single-Wire Digital Interface

July 2013

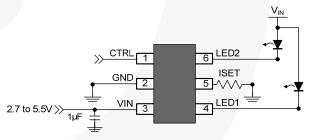
FAN5622 / FAN5624 / FAN5626 Linear LED Drivers with Single-Wire Digital Interface

Features

- Family of Three Linear Current-Sink LED Drivers that Support 2, 4, or 6 LED Outputs
- Current Sink Driver for Each LED Output:
 - 30 mA Maximum Output Current
 - 50 mV Drop-out at 15 mA IOUT
 - Better than 3% Matching between Channels
 - External R_{SET}
- Single-Wire Digital Control Interface for Easy Programming
 - 32 Linear Steps of Dimming Control
- Less than 1 µA Shutdown Current
- Short-Circuit, Under-Voltage, and Thermal Protection
- Wide Input Voltage Range: 2.7 to 5.5 V
- Small Form-Factor Packages:
 - FAN5622: 6-Pin Super SOT23
 - FAN5624: 10-Lead 1.4x1.8x0.55 mm UMLP
 - FAN5626: 10-Lead 1.6x2.1x0.55 mm MicroPak™ MLP

Applications

- Mobile Handsets
- Mobile Internet Devices
- PMP and MP3 Players
- LCD Modules


Description

The FAN5622, FAN5624, and FAN5626 are two-, four-, and six-channel current-sink linear LED drivers used to backlight the main LCD displays or keypads in mobile electronics, such as cellular phone handsets.

A very low dropout of 50 mV allows driving LEDs without any inductors or switch capacitors. The brightness levels of the LED outputs are programmed through single-wire digital control interface. The user can program 32 linear dimming steps and turn on and off the LEDs through this interface by applying digital pulses.

The FAN562x family of linear LED drivers provides high efficiency due to the low drop-out voltage of the LED driver. Good matching between different channels of LED output is provided across the entire 32 dimming steps. These LED drivers also integrate short circuit, under-voltage, and thermal protection to ensure for a more robust solution.

The FAN5622, FAN5624, and FAN5626 are available in very small form-factor packages: 6-pin Super SOT23, 10-lead UMLP, and 10-lead MicroPak™ MLP, respectively.

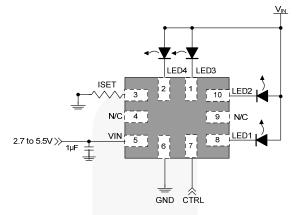
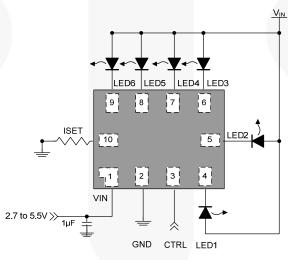
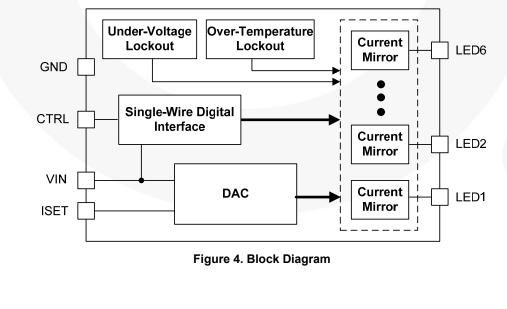


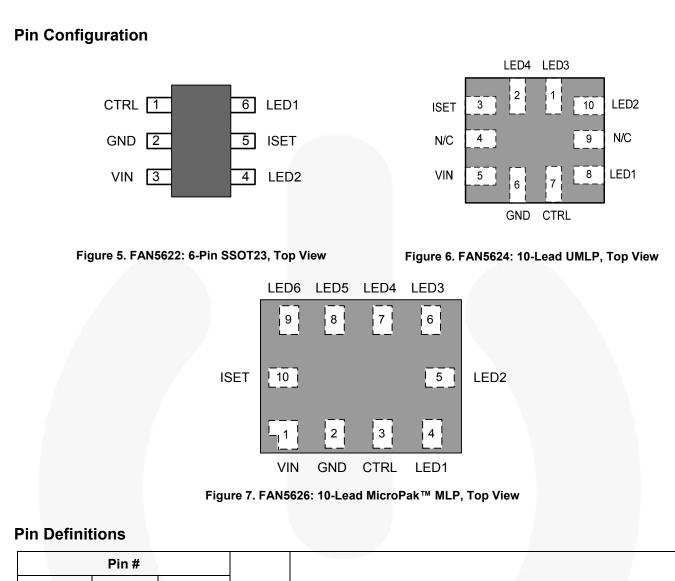
Figure 1. Typical Application of FAN5622


Ordering Information

Part Number	# of Channels	Temperature Range	Package	Packing
FAN5622SX	2	-40 to 85°C	6-Lead, SUPERSOT6, JEDEC MO-193, 1.6 mm Wide	Tape and Reel
FAN5624UMPX	4	-40 to 85°C	10-Lead, Ultrathin Molded Leadless Package (UMLP)	Tape and Reel
FAN5626LX	6	-40 to 85°C	10-Lead ,Micropak ,JEDEC MO255, 1.6 X 2.1 mm	Tape and Reel

Applications Diagrams





Block Diagram

	Pin #				
FAN5622 SSOT23-6	FAN5624 UMLP10	FAN5626 MicroPak MLP10	Name	Description	
3	5	1	VIN	Input Voltage. Connect to 2.7-5.5 V _{DC} input power source.	
2	6	2	GND	Ground	
5	3	10	ISET	LED Current Setting . Full-scale LED current is set by tying this pin through a resistor (R_{SET}) to GND.	
1	7	3	CTRL	Control pin. Program dimming levels by driving pin with digital pulses. This pin cannot be left floating.	
6	8	4	LED1	LED Cathode #1. LED current sink output.	
4	10	5	LED2	LED Cathode #2. LED current sink output.	
	1	6	LED3	LED Cathode #3. LED current sink output.	
	2	7	LED4	LED Cathode #4. LED current sink output.	
		8	LED5	LED Cathode #5. LED current sink output.	
		9	LED6	LED Cathode #6. LED current sink output.	
	4, 9		N/C	No Connect	

FAN5622 / FAN5624 / FAN5626 — Linear LED Drivers with Single-Wire Digital Interface

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
	VIN Pin		-0.3	6.0	V
Vcc	Other Pins ⁽¹⁾		-0.3	V _{IN} + 0.3	V
ESD	Electrostatio Discharge Protection Level	Human Body Model per JESD22-A114	3.0		kV
E9D	Electrostatic Discharge Protection Level	Charged Device Model per JESD22-C101	1	.5	kV
TJ	Junction Temperature		-40	+150	°C
T _{STG}	Storage Temperature		-65	+150	°C
TL	Lead Soldering Temperature, 10 Seconds			+260	°C

Note:

1. Lesser of 6.0 V or $V_{\text{IN}}\text{+}0.3$ V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Max.	Unit
V _{IN}	Power Supply Voltage Range	2.7	5.5	V
T _A	Operating Ambient Temperature Range		+85	°C
TJ	Operating Junction Temperature Range		+125	°C
I _{LED(FS)}	s) Full-Scale LED Current		30	mA

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperature T_A .

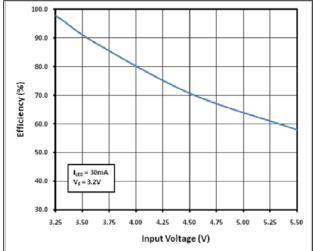
Symbol	Parameter		Unit
	Junction-to-Ambient Thermal Resistance, SSOT23-6 Package	235	°C/W
θ_{JA}	Junction-to-Ambient Thermal Resistance, UMLP10 Package ⁽²⁾	287	°C/W
	Junction-to-Ambient Thermal Resistance, MicroPak™ MLP10 package ⁽³⁾	220	°C/W

Notes:

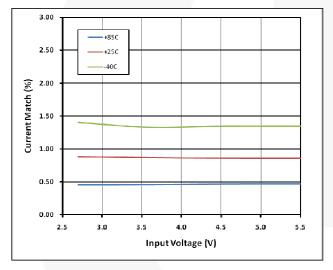
2. Recommended not to exceed 132 mW of maximum power dissipation.

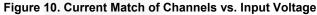
3. Recommended not to exceed 198 mW of maximum power dissipation.

Electrical Specifications


 $V_{\text{IN}} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ } \text{R}_{\text{SET}} = 19.10 \text{ } \text{k}\Omega, \text{ } \text{T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ } \text{V}_{\text{f}} = 2.5 \text{ V to } [3.5 \text{ V or } \text{V}_{\text{IN}} - 0.1 \text{ V}], \text{ whichever is smaller. Typical values are at } \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{ } \text{V}_{\text{IN}} = 3.6 \text{ V}, \text{ and } \text{V}_{\text{f}} = 3.2 \text{ V}.$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Power Suppli	es			1		
I _{SD}	Shutdown Supply Current	V _{IN} = 3.6 V, CTRL = 0		0.3	1.0	μA
l _{in}		FAN5622: V _{IN} = 3.6 V, I _{LED} = 0 mA		0.4	0.8	mA
	Operating Supply Current	FAN5624: V _{IN} = 3.6 V, I _{LED} = 0 mA		0.6	1.0	mA
		FAN5626: V _{IN} = 3.6 V, I _{LED} = 0 mA		0.8	1.2	mA
I _{IH}	Control Pin Input Current	CTRL = 1.8 V		1	250	nA
M	Under-Voltage Lockout	V _{IN} Rising		2.50	2.70	V
V_{UVLO}	Threshold	V _{IN} Falling	2.10	2.30	2.50	V
Regulation						
I _{FS_LEDx (MAX)}	Full-Scale LED Output Current	I _{LEDx} = 30 mA; x = 1 to 6	5		30	mA
I _{LED}	Absolute Current Accuracy	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 2.85 \ \text{V} - 4.5 \ \text{V}; \ V_{\text{CATH}} = 0.15 \ \text{to} \\ (1.2 \ \text{V or } V_{\text{IN}} = 2.55 \ \text{V}, \ \text{Whichever is} \\ \text{Smaller}); \ \text{Full-Scale Current 5-} \\ 30 \ \text{mA}, \ T_{\text{A}} = 25^{\circ}\text{C} \end{array}$	-10		+10	%
ILED MATCH	LED Current Matching ⁽⁴⁾	I _{LEDx} = 15 mA; V_LEDx=0.4 V, T _A = 25°C	-3		+3	%
VISET	I _{SET} Drive Voltage	9.53 k $\Omega \le R_{SET} \le 56.2 \text{ k}\Omega$		1.20		V
I _{RATIO}	Current Mirror Ratio from ISET Pin	9.53 kΩ ≤ R _{SET} ≤ 56.2 kΩ		240		
ΔI_{OUT_LOAD}	I _{OUT} Load Regulation	V_{IN} = 3.6 V, I_{LEDx} = 15 mA, LED V _F = 2.7 to 3.5 V,	-3		+3	%
ΔI_{OUT_LINE}	IOUT Line Regulation	$V_{\rm IN}$ = 2.7 to 4.8 V, $I_{\rm LEDx}$ = 15 mA, $V_{\rm CATH}$ = 0.5 V	-4		+4	%
N/	Dropout Voltago	V _{IN} =3.6 V; I _{LED} = 15 mA, -10% I _{LED} Drop		50		mV
V _{DROPOUT}	Dropout Voltage	V _{IN} =3.6 V; I _{LED} = 30 mA, -10% I _{LED} Drop		60		IIIV
TSD		Rising Temperature at Junction		150		°C
130	Thermal Shutdown	Hysteresis		20		
Logic Input (C	CTRL)					
VIH	HIGH-Level Input Voltage		1.2			V
VIL	LOW-Level Input Voltage				0.4	V
T _{LO}	CTRL LOW Time for Dimming	V _{IN} = 3.6 V; See Figure 17	0.5		300	μs
Τ _{ΗI}	Time Delay between Steps	V _{IN} = 3.6 V; See Figure 17	0.5			μs
T _{ON}	CTRL HIGH to Turn-On Delay	V _{IN} = 3.6 V; See Figure 17		250		μs
T_{SD}	CTRL LOW, Shutdown Pulse Width	V _{IN} = 3.6 V; from Falling Edge of CTRL	1			ms


Note:


4. For the two, four, and six LED current sinks of FAN5622, FAN5624, and FAN5626 respectively; the following are determined: the maximum sink current of the two, four, and six LED outputs (MAX); the minimum sink current of the two, four, and six outputs (MIN); and the average sink current (AVG). For all of the LED outputs, two matching numbers are calculated: (MAX-AVG)/ AVG and (AVG-MIN)/AVG. The largest number of the two (worst case) is considered the matching figure for the part. The matching figure for a given part is considered to be the highest matching figure of all LED outputs. The typical specification provided is the most likely norm of the matching figure for all parts.

Typical Performance Characteristics

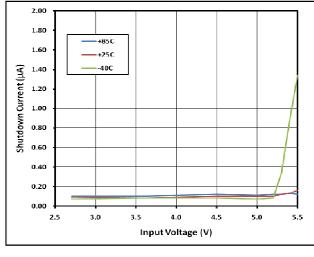
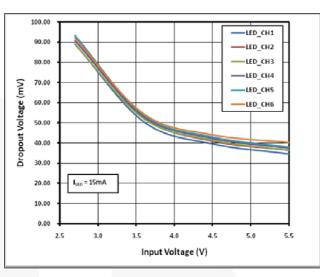
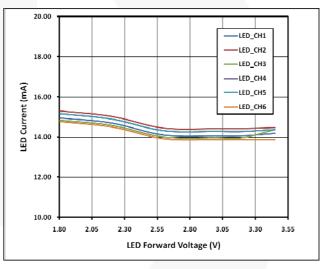
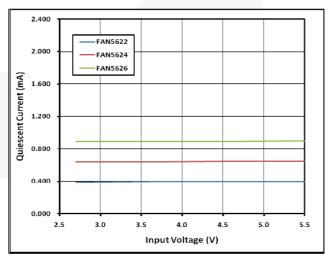
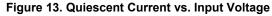
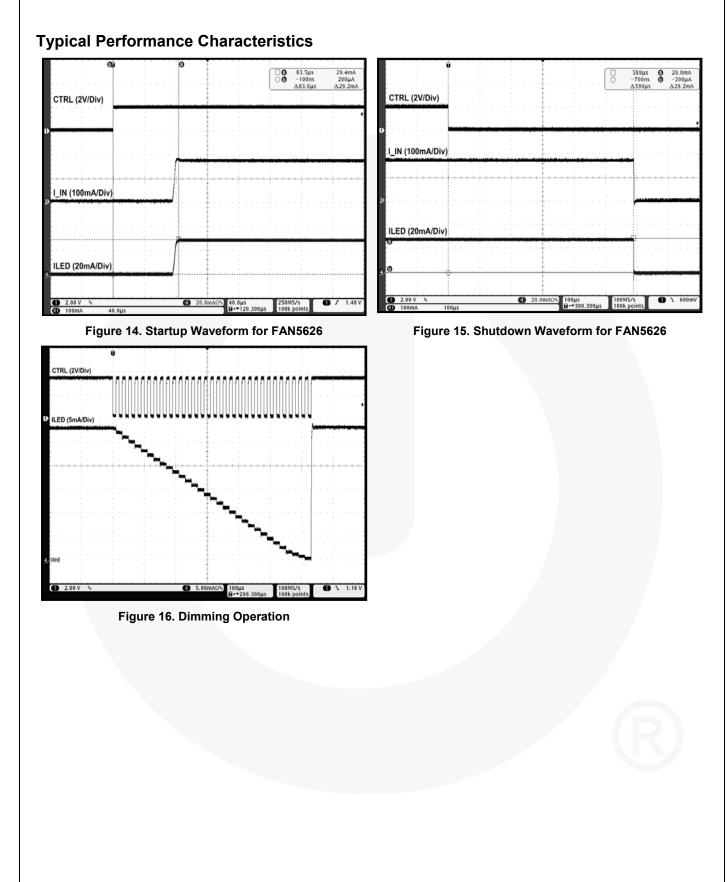


Figure 12. Shutdown Current vs. Input Voltage


Figure 9. Dropout Voltage vs. Input Voltage

Circuit Description

The FAN5622, FAN5624, and FAN5626 are a family of current-sink linear LED driver ICs able to drive two, four, and six LEDs respectively. These three devices are powered directly from 2.7 V to 5.5 V supply and all the channels are controlled via the integrated current sinks from the external power source. Designed with a very low drop-out voltage, the FAN562x products can operate close to the input supply voltage without the need for additional inductive boost or capacitive switching circuitry.

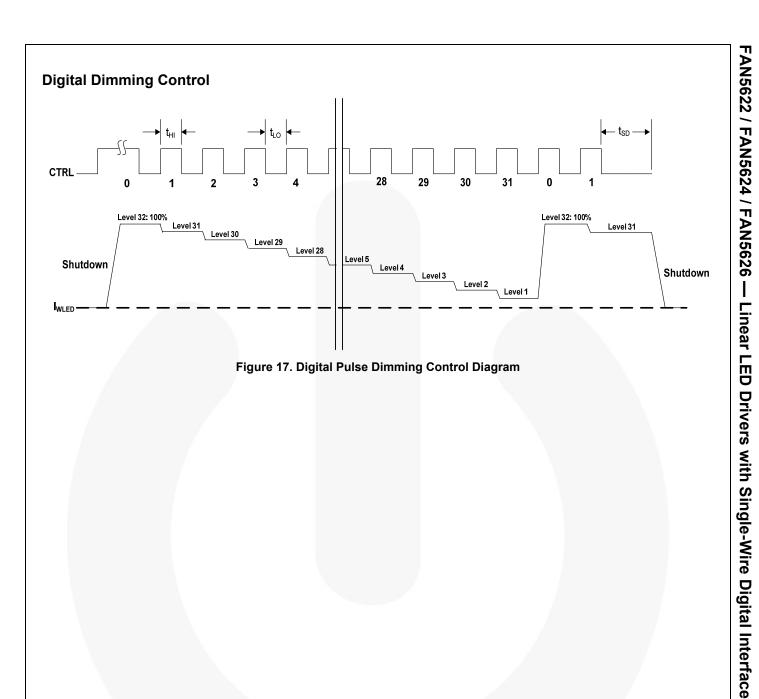
All three devices require only two additional discrete passive components: a single 1 μF input ceramic capacitor and a resistor (R_{SET}) to set the maximum current for the LEDs. Each current-sink output provides constant current and can drive the LEDs up to 30 mA. Fairchild Semiconductor's TinyWireTM single-wire digital interface enables these LED drivers to program the brightness level of the LEDs in 32 linear steps.

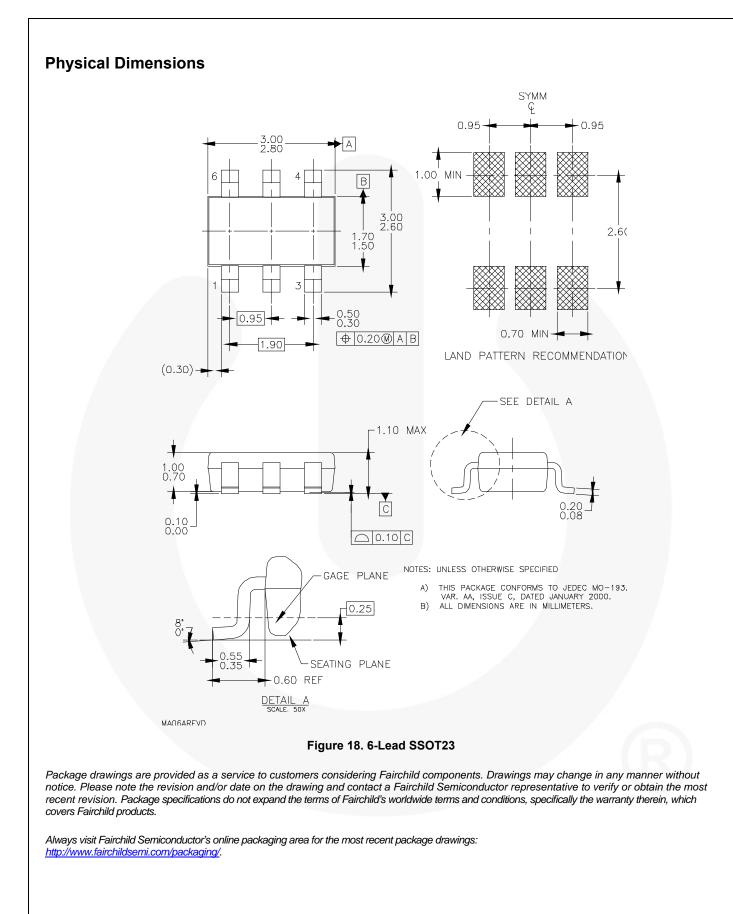
Setting Maximum Current

The maximum LED current of the FAN5622, FAN5624, and FAN5626 is programmed by an external resistor called RSET. The maximum full-scale LED current for all three LED drivers is 30 mA and it can go as low as 5 mA. The FAN562x products also operate below 5 mA full-scale LED current by using a larger R_{SET} value. However, the LED channel accuracy and matching specifications are guaranteed. Table 1 shows the RSET resistor values for several full-scale current levels.

Table 1. Maximum LED Current Settings by Resistor

I _{LED} (mA)	R _{SET} (kΩ)
5	56.20
10	28.70
15	19.10
20	14.30
25	11.50
30	9.53


Digital Interface & Dimming Control


The FAN5622, FAN5624, and FAN5626 implement a simple single-wire digital interface to program the LED brightness to one of thirty two (32) levels spaced in linear steps. To maintain the brightness of the LEDs at a specific dimming level, the digital pulse signal to the CTRL pin should be held HIGH for that last pulse. It is held HIGH for as long as desired to keep the LEDs illuminated at that specific brightness level.

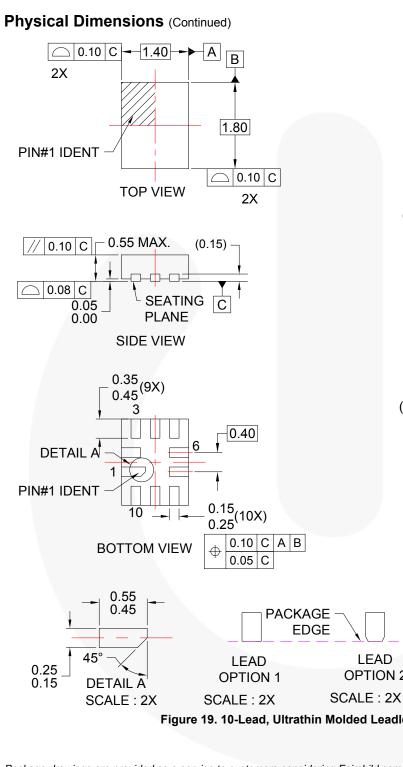

Table 2 outlines the dimming levels while Figure 17 shows how to change the dimming levels.

Table 2. Brightness	Control Levels	(R _{SET} = 19.10 kΩ)
---------------------	----------------	-------------------------------

Dimming Level	Current Level	I _{LED} (mA)
1	1.67%	0.25
2	3.33%	0.50
3	5.00%	0.75
4	6.67%	1.00
5	10.00%	1.50
6	13.33%	2.00
7	16.67%	2.50
8	20.00%	3.00
9	23.33%	3.50
10	26.67%	4.00
11	30.00%	4.50
12	33.33%	5.00
13	36.67%	5.50
14	40.00%	6.00
15	43.33%	6.50
16	46.67%	7.00
17	50.00%	7.50
18	53.33%	8.00
19	56.67%	8.50
20	60.00%	9.00
21	63.33%	9.50
22	66.67%	10.00
23	70.00%	10.50
24	73.33%	11.00
25	76.67%	11.50
26	80.00%	12.00
27	83.33%	12.50
28	86.67%	13.00
29	90.00%	13.50
30	93.33%	14.00
31	96.67%	14.50
32	100.00%	15.00

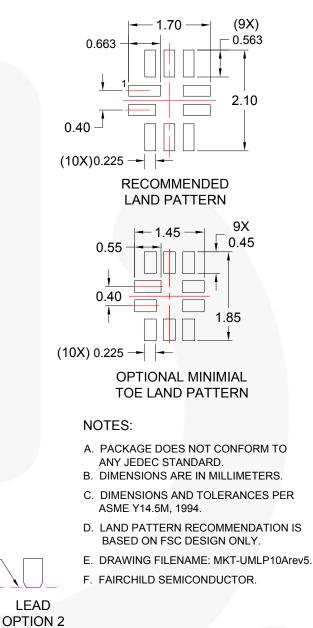
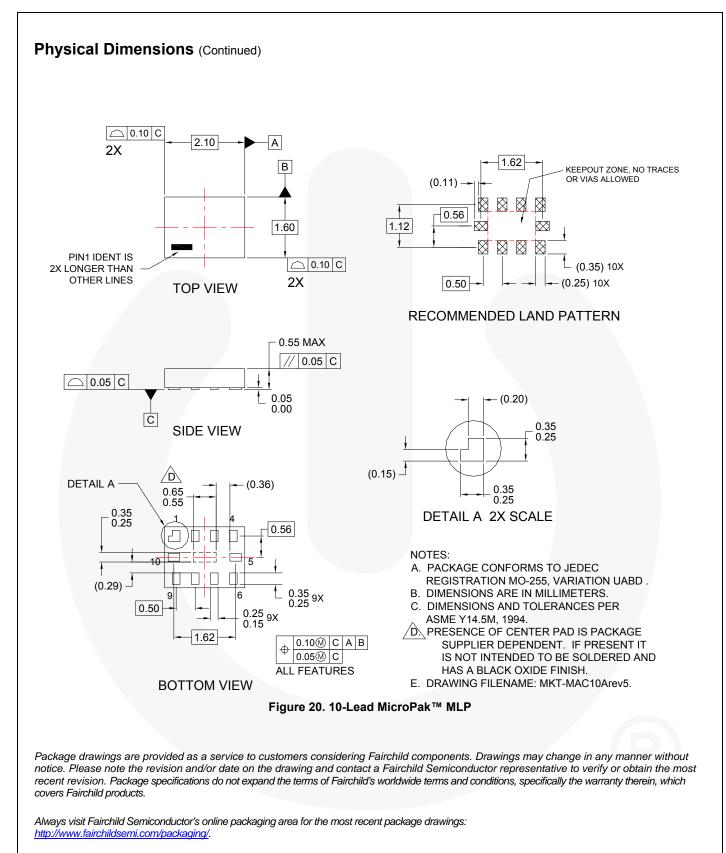



Figure 19. 10-Lead, Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Rev 164

FAN5622 / FAN5624 / FAN5626

I

Linear LED

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FAN5626LX

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А