Version1.1

By Andy Lindsay

PAALAX 7

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product. If you
discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before returning the
product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the outside of the box used to
return the merchandise to Parallax. Please enclose the following along with the returned merchandise: your name, telephone number,
shipping address, and a description of the problem. Parallax will return your product or its replacement using the same shipping method
used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the product has been altered
or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright © 2006-2009 by Parallax Inc. By downloading or obtaining a printed copy of this documentation or
software you agree that it is to be used exclusively with Parallax products. Any other uses are not permitted and may represent a violation of
Parallax copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication of this documentation
for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is permitted, subject to the following
Conditions of Duplication: Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for commercial use; it
may be duplicated only for educational purposes when used solely in conjunction with Parallax products, and the user may recover from the
student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often less than typical
retail duplication charges.

Propeller, Penguin, and Spin are trademarks of Parallax Inc. BASIC Stamp, Stamps in Class, Boe-Bot, SumoBot, Scribbler, Toddler, and
SX-Key are registered trademarks of Parallax, Inc. If you decide to use any trademarks of Parallax Inc. on your web page or in printed
material, you must state that (trademark) is a (registered) trademark of Parallax Inc.” upon the first appearance of the trademark name in
each printed document or web page. Other brand and product names herein are trademarks or registered trademarks of their respective
holders.

ISBN 13: 9-781928-982500
1.1.0-09.03.06-HKTP
DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not responsible for any personal
damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your Propeller
microcontroller application, no matter how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our web site:

e Propeller chip — This list is specifically for our customers using Propeller chips and products.

. BASIC Stamp — This list is widely utilized by engineers, hobbyists and students who share their BASIC Stamp projects
and ask questions.

. Stamps in Class® — Created for educators and students, subscribers discuss the use of the Stamps in Class series of tutorials
in their courses. The list provides an opportunity for both students and educators to ask questions and get answers.

. Parallax Educators — A private forum exclusively for educators and those who contribute to the development of Stamps in
Class and Propeller Education materials. Parallax created this group to obtain feedback on our educational materials and to
provide a place for educators to develop and share classroom resources.

. Robotics — Designed for Parallax robots, this forum is intended to be an open dialogue for robotics enthusiasts. Topics
include assembly, source code, expansion, and manual updates. The Boe-Bot”, Toddler”, SumoBot”, Scribbler® and
Penguin™ robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with Parallax assembly language
SX-Key" tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module that is programmed using
a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by sending an
email to editor@parallax.com. We continually strive to improve all of our educational materials and documentation, and frequently revise
our texts. Occasionally, an errata sheet with a list of known errors and corrections for a given text will be posted to our web site,
www.parallax.com. Please check the individual product page’s free downloads for an errata file.

Table of Contents

Table of Contents

PREFACE ...ttt ettt ettt et e et e e ea et e e te e e ameeeamee e e emseeeseeeameee e teeeanteeenneeeneeeanneeeanneeeneeans 5
1: PROPELLER MICROCONTROLLER & LABS OVERVIEWccoiiiiiiiee e 7
The Propeller MIiCrOCONTIOIEToiiiieiie et e e et e e e 7
The Propeller EQUCAtion Kit ... e e e e e e eeeeaeeas 12
The Propeller Education Kit Labs..........oooiiiii e e e 14
2: SOFTWARE, DOCUMENTATION & RESOURCES.coo i 17
Download Software and DOCUMENTALIONiiiiiiiiii e 17
Install the Parallax Serial TeIrMINGL.......c..ooii i e et e e e st e e e s sneeeeeans 18
USEIUI WED SIES ...ttt et s e e e st e e s st e e e sssaeeesnnnneeas 18
TECh SUPPOI RESOUICESvveiiieieiiiiitieeie e ettt e e e e e e e e e e e s e st a e e e e eaeeeesansraaeeeaeeesesnnraneaaeens 18
3: SETUP AND TESTING LAB FOR 40-PIN DIP PE PLATFORMccciiiiiiiniiieiecnee e 19
I =T = = x0T o SRR 19
ProCEAUINE OVEIVIEW.......eiiiiee ettt e e ettt e e e e e e e st ae e e e e e e e e s ntaaeeeeeeeeesnnnseneeeeesannnsnneees 23
Inventory EQUIpPMENt and Parts ... 24
Assemble the BreadbOards...... ... ittt e e e e e e e eaae s 25
Set up PE Platform Wiring and Voltage Regulators..............oooi e 27
Test the PE Platform WIrNGeeii et 29
Socket the Propeller Chip and EEPROM............oooiiiiiie et 30
Load a Test Program and Test the [/O PiNScooiiiiiiiiiiee et 32
Before Changing or Ajusting CirCUILSccoiiiiiiiiiiiie ettt e e e s 37
Troubleshooting for the 40-Pin DIP PE Platform Setup........cccccoeoiiiiiiiiieie e 37
4: 1/O AND TIMING BASICS LAB..... .ottt sn e s 43
Parts List and SChemMatiCc..ooiiiiii s 43
Propeller NOMENCIATUIE.c.oouiiii ettt et e e sneee e neeeeas 44
Lights on with Direction and Output Register BitS..........oocceoiiiiiiii e 45
[/O Pin Group OPErationS..........oii ittt ettt sttt ettt e e s bt e e e s rateee e e aateeeesanbeeeesabeeeeeans 47
Reading an Input, Controlling an OULPUL.............oiiiiiiii e 48
Timing Delays with the System CIOCKooiiiiiii e 49
System Clock Configuration and Event Timing...........coooiiiiiiiiii e 51
More Output Register OPErationsccuiiiiiiiiiii ettt e et e e s e e s snsaeeesanneeeas 53
Conditional Repeat COMMEANGSocooiiiiiiiiiiiiiie et e e e e e e e e e e e e etabe e eeaaeeaans 55
Operations in Conditions and Pre and Post Operator PoSitions.............cccooecviiiiiiicc e 56
Some Operator VOCADUIAIY............oviiiiiie ettt e e e e e e e e e re e e e e e e e anes 58
Shifting LED DiISPIAY......uuutiiiiieeieiiitiie ittt e e ettt e e e e e st e e e e e e e s s s sssaeeeeaaeessasasaneeaaeeaeaanns 59
Variable EXAMPIE ...ttt e e e e e nnee 60
Timekeeping APPIICAtIONSooo it e e b e e e et e e 62
ST (0T0 YN N3 TSR 64
5: METHODS AND COGS LAB...... .ottt e et e et e e s mte e e aaeeeameeeaseeeamseeeaneeeenseenes 67
10T [T i o SR 67
Parts List and SChematicueiiiiii e e 67
Defining a Method’s Behavior with Local Variablescociiiiiiiiiiiiee e 68
(07 11114 o =T 1Y =11 o Vo Yo 1 R 68
ParameEter PasSSiNg it e e e e e e e e e e e e e e e e e nnneeees 69
L070To I 1 I g Lo 1= (] oo TR PP P P PRPRT 76
Y (0o Y I3 T PP P P PRPRRR 78
B: OBUECTS LAB ..ttt ettt ekttt et a e e h e e e bt s e et e e 81

Propeller Education Kit Labs: Fundamentals - Page 3

Table of Contents

] (oo (8T (o o USRS 81
Equipment, Parts, SChEMALICc.uuiiiiiiie e 82
L1 (g To @ | I o= 1SS 83
Calling Methods in Other Objects with Dot Notation ..., 83
Objects that Launch Processes iNt0 COgS........uiii ittt 86
Conventions for Start and Stop Methods in Library ObJectscceeviiiiiiiiiiiiiiieeee 90
Documentation COMMENTSooiiiiii ettt e e e e e e st e e e e e e e e e et e e e e e e e e e e annnnnneeeaan 90
Public vs. Private Methodsooo e e e e a e e 93
Multiple ObJECE INSTANCES.eiii it e et e e et e e e s anee e e e ssnteeeesnraeeeeanes 94
Propeller Chip — PC Terminal CommuniCatioNcoooiiiiiiiiiii i 95
FullDuplexSerial and Other Library ODJECESccviiiiiiiiiie e 100
Sending Values from Parallax Serial Terminal to the Propeller Chip.......cccccccovveciiiiiiieiiicice, 103
Terminal I/O Pin Input State DiSPlayoveiiiiiiiiieee e e e 105
Terminal LED OUPUt CONTIOL ..ot e e 107
The DAT Block and Address PasSingcoooiiiiiieiiiiiee it 108
The Float and FIoatString ODJECESccoouiiiiie e 110
Objects that Use Variable AAAreSSESooiiiiiiiiiiiii e e 111
Passing Starting Addresses to Objects that Work with Variable Lists...........ccooocooiie 114
1101 | T T PSPPSR 116
7: COUNTER MODULES AND CIRCUIT APPLICATIONS LAB.......coiiiiiiee e 121
T (0o [T i o U UPST 121
HOW CouNter MOAUIES WOTK.........eiiiieiiiiie ettt et et e e st e e s snne e e e e ansseeeeanneee s 122
Measuring RC Decay with a Positive Detector Mode.............cccooeeiiiiiiiiiiiii e, 122
D/A Conversion — Controlling LED Brightness with DUTY ModeSccoeveiiiiiiiiiiieieee e, 129
Special PUrPOSE REGISTIEISoviiiiieiiec e e e e e e e e e e eeareee s 134
Generating Piezospeaker Tones with NCO MOE.........ccuuiiiiiiiiiiiiii e 137
Applications - IR Object and Distance Detection with NCO and DUTY Modesccccceevieeeenns 147
Counting Transitions with POSEDGE and NEGEDGE MOdEScccoviviiiiiiiiiiiniiee e 153
PWM With the NCO MOUEScci ittt et e e et e e e s s e e s snsaeeasanssaeaesnnneensn 156
Probe and Display PWM — Add an Object, Cog and Pair of Counters............coccceiiiiiiiniiceee. 160
PLL Modes for High-Frequency AppliCatioNnscooiiiiiiiiie e 166
Metal Detection with PLL and POS Detector Modes and an LC CirCuit..........cccoccvveveviiieeesinnenn. 171
7010 | T TSR 180
APPENDIX A: OBJECT CODE LISTINGScoiiiiiiie ittt ettt st ntee e e 187
FUIIDUPIEXSEIIAIPIUS.SPINetiieiiie ettt e e e e e e e e et e e e e e e e e eanbaaeeeeaeeeesennrenneeas 187
Yo (= Lo\ A= AV TR =T oo PSRRI 193
APPENDIX B: STUDY SOLUTIONScoiiiiiiie ittt e e e eaae e s eare e e e e nreea e e e 195
I/0 and Timing Basics Lab Study SOIUtIONScooiiiiiiii e 195
Methods and Cogs Lab Study SOIULIONScooiiiiiiiiiii e 201
Objects Lab Study SOIUTIONS.......couueiiiiiee e 203
Counter Modules and Circuit Applications Lab Study Solutionsccccooiiiiiiii e 209
APPENDIX C: PE KIT COMPONENTS LISTINGcuttiiiiiiiie et e enee e nree e 219
APPENDIX D: PROPELLER MICROCONTROLLER BLOCK DIAGRAM........ccccciieiiiiraeeciiea e 221
APPENDIX E: LM2940CT-5.0 CURRENT LIMIT CALCULATIONS.......ccoiiiie e 222
INDEX .ottt ie ettt ettt e e ettt e e ettt e e s ettt e s at et e e e nn et e e e annaee e e e nbeeeeeanneeeeeannteee e e s teeeeeanteeeenteeeeenraeeeeannees 224

Page 4 - Propeller Education Kit Labs: Fundamentals

Preface

Preface

Since the Propeller chip comes in a 40-Pin DIP package, a pluggable breadboard kit for the Propeller
chip made a lot of sense. The support circuits for the Propeller chip, including EEPROM program
memory, voltage regulators, crystal oscillator, and Propeller Plug programming tool are all also
available in versions that can be plugged into a breadboard, so why not? It also makes a great deal of
sense from the college and university lab standpoint. Provide a simple kit that students can afford,
that is reusable, with a microcontroller that excels in a multitude of electronics, robotics, and
embedded systems projects. With that in mind, the PE DIP Plus Kit was put together, as a bag that
includes the Propeller microcontroller, “plus” all the other parts you might need to make it work.

The PE DIP Plus Kit made sense for folks who have already have breadboards and some experience,
but what about a student who maybe just completed the Stamps in Class What’s a Microcontroller
tutorial, and is interested in approaching the Propeller chip as a kit and tutorial as well? With this
student in mind, another bag of parts was assembled, along with a series of activities that put the parts
in the bag to work with the Propeller microcontroller. The bag of parts ended up with the name PE
Project Parts, and the activities became the PE Kit Labs.

The PE Kit Labs in this text are written primarily for college and university students with some
previous programming and electronics experience, preferably with microcontrollers. Subjects
introduced include:

Microcontroller basics such as I/O control and timing with the system clock

Programming topics such as operators, method calls, and objects, and variable addresses
Programmed multiprocessor control

Microcontroller-circuit interactions with indicator lights, pushbuttons, circuits that sense the
environment and can be measured with RC decay, frequency circuits (speakers), and
frequency selective circuits

e Advanced topics include utilizing counter modules to perform tasks in the background

This collection of PE Kit Labs is intended give the reader a good start with programming the
Propeller chip and using it in projects. However, this book is just a start. Introducing all aspects of
the Propeller microcontroller with PE Kit Labs would take several such books, so additional labs are
available online. More labs and applications will be posted periodically.

This text also includes pointers to the wealth of information available for the Propeller chip in the
Propeller Manual, Propeller Datasheet, Propeller Forum, and Propeller Object Exchange, as well as
examples of using these resources. The reader is especially encouraged to utilize the Propeller
Manual as a reference while going through these labs. The Propeller Manual’s contents and index
will provide references to more information about any topic introduced in these labs.

The Propeller Chip Forum at forums.parallax.com has a Propeller Education Kit Labs sticky-thread
with links to discussions about each lab. The reader is encouraged to utilize this resource for posting
questions about topics in the PE Kit Labs as well as comments and suggestions. Parallax collects this
feedback and incorporates it into future revisions of each lab. Also, if you (or your students)
prototyped something cool with the PE Kit, by all means, post your documented project to the forums
so that others can see what you did and how you did it.

Propeller Education Kit Labs: Fundamentals - Page 5

Preface

Acknowlegements
Parallaxians:
e Author: Andy Lindsay, Applications Engineer
Cover art: Jennifer Jacobs, Art Director
Editing: Stephanie Lindsay, Technical Editor
[lustrations: Andy Lindsay, with help from Rich Allred, Manufacturing Manager
Photography: Rich Allred
Review: Jessica Uelmen, Education Associate

Parallax Community — thanks to:

e Aaron Klapheck for commented code illustrating cog variable bookkeeping in the Advanced
Topic: Inside start and stop methods section of the Objects Lab.

e Engineering students at University of California Davis and California State University
Sacramento who used the PE Kit in their projects and submitted great questions and bug
reports.

e Steve Nicholson for his incisive and thorough review of earlier drafts of the PE Kit Labs.

Page 6 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

1: Propeller Microcontroller & Labs Overview

This chapter provides an abbreviated overview of the Propeller Microcontroller and some
introductory information about the Propeller Education Kit and Labs. More detailed information
about the Propeller microcontroller, its architecture, and programming languages can be found in the
Propeller Manual and Propeller Datasheet. Both are available from the Downloads link at
www.parallax.com/Propeller.

The Propeller Microcontroller

The Propeller Microcontroller in Figure 1-1 (a) is a single chip with eight built-in 32-bit processors,
called cogs. Cogs can be programmed to function simultaneously, both independently and
cooperatively with other cogs. In other words, cogs can all function simultaneously, but whether they
function independently or cooperatively is defined by the program. Groups of cogs can be
programmed to work together, while others work on independent tasks.

A configurable system clock supplies all the cogs with the same clock signal (up to 80 MHz). Figure
1-1 (b) shows how each cog takes turns at the option for exclusive read/write access of the Propeller
chip’s main memory via the Hub. Exclusive read/write access is important because it means that two
cogs cannot try to modify the same item in memory at the same instance. It also prevents one cog
from reading a particular address in memory at the same time another cog is writing to it. So,
exclusive access ensures that there are never any memory access conflicts that could corrupt data.

Figure 1-1: Propeller Microcontroller Packages and Hub and Cog Interaction

Hub and Cog Interaction

(a) Propeller microcontrollers in 40-pin DIP, (b) Excerpt from Propeller Block Diagram
TSOP and QFN packages describing Hub and Cog interaction. See Appendix
D: Propeller Microcontroller Block Diagram

32 KB of the Propeller chip’s main memory is RAM used for program and data storage, and another
32 KB is ROM, and stores useful tables such as log, antilog, sine, and graphic character tables. The
ROM also stores boot loader code that cog 0 uses at startup and interpreter code that any cog can use
to fetch and execute application code from main memory. Each cog also has the ability to read the
states of any or all of the Propeller chip’s 32 I/O pins at any time, as well as set their directions and
output states at any time.

Propeller Education Kit Labs: Fundamentals - Page 7

http://www.parallax.com/Propeller

Propeller Microcontroller & Labs Overview

The Propeller chip’s unique multiprocessing design makes a variety of otherwise difficult
microcontroller applications relatively simple. For example, processors can be assigned to audio
inputs, audio outputs, mouse, keyboard, and maybe a TV or LCD display to create a microcontroller
based computer system, with processors left over to work on more conventional tasks such as
monitoring inputs and sensors and controlling outputs and actuators. Figure 1-2 (a) shows a Propeller
chip-generated video image that could be used in that this kind of application. The Propeller also
excels as a robotic controller, with the ability to assign processors to tasks such as PWM DC motor
control, video processing, sensor array monitoring, and high speed communication with nearby robots
and/or PCs. Figure 1-2 (b) shows an example of a Propeller controlled balancing robot with video
sensor. The initial prototype was developed with a Propeller Education Kit.

Although the Propeller chip is very powerful, that doesn’t mean it is difficult to use. The Propeller
chip also comes in handy for simple projects involving indicator lights, buttons, sensors, speakers,
actuators, and smaller displays found in common product designs. You will see examples of such
simple circuits in the following Propeller Education Kit Labs.

Figure 1-2: Application Examples

(a) Propeller microcontroller generated graphic TV (b) Hanno Sander’s balancing robot, initial prototype
display. This application also uses a standard PS/2 developed with the Propeller Education Kit and
mouse to control the graphics (not shown). ViewPort software. Photo courtesy of

mydancebot.com.

Applications with the Propeller Chip

Programs for the Propeller chip are written with PC software and then loaded into the Propeller chip,
typically via a USB connection. The languages supported by Parallax’ free Propeller Tool software
include a high-level language called Spin, and a low-level assembly language. Applications
developed in Spin language can optionally contain assembly language code. These applications are
stored on your PC as .spin files.

Other programming languages have been developed for programming the Propeller chip. Some are free
® and available through resources like the Parallax forums and Source Forge; others are available for purchase
or free in a limited version through the Parallax web site and other companies that sell compilers.

Before a cog can start executing a Spin application, it has to first load an Interpreter from the
Propeller chip’s ROM (Figure 1-3 a). Spin applications get stored in main memory’s RAM as tokens,
which the interpreter code makes the cog repeatedly fetch and execute (Figure 1-3 b & c). A few

Page 8 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

examples of actions the cog might take based on the token values are shown in Figure 1-3 (c¢). They
include read/writes to configuration registers, variables, and I/O pins as well as reads from ROM.
Cogs can also execute the machine codes generated by assembly language. As shown in Figure 1-4,
these machine codes get loaded into the cog’s 2 KB (512 longs) of RAM and executed at a very high
speed, up to 20 million instructions per second (MIPS). Cog RAM not used by machine instructions
can also provide high speed memory for the cog with four clock cycles (50 ns at 80 MHz) per
read/write.

Figure 1-3: Cog Interpreting Spin Language

Main (Hub) Memory Main (Hub) Memory Fetch/Execute Main (Hub) Memory

32| Configuration Configuration Configuration

KB Application R | Application R | Application

R A A

A M M

M | Stack + VAR Stack + VAR Stack + VAR
Character Character Character

32 Set Set Set

KB R R

R | Log, Antilog, & o | Log, Antilog, & o | Log, Antilog, &

O | Sine Tables M | Sine Tables M | Sine Tables 3 =

M 3 E

Boot Loader Boot Loader Boot Loader E Y E

Interpreter Interpreter Interpreter 3 E

“

(a) Interpreter loaded into cog (b) Cog fetches token from Main
from Main Memory’s ROM through Memory’s RAM
Hub

(c) Cog executes token. Examples
include RAM, I/0O or config
read/write, or ROM read

A cog executing assembly language can also access the Propeller chip’s main memory through the
Hub. The Hub grants main memory access to each cog every 16 clock cycles. Depending on when
the cog decides to check with main memory, the access time could take anywhere from 7 to 22 clock
cycles, which equates to a worst case memory access time of 275 ns at 80 MHz. After the first
access, assembly code can synchronize with the cog’s round-robin access window to main memory,
keeping the subsequent access times fixed at 16 clock cycles (200 ns).

Main (Hub) Memory
Configuration \
R | Application
A
M
Stack + VAR
Figure 1-4: Cog Executing
Character +—> Assembly Language
Set 71022
R clock cycles,
o | Log, Antilog, & 16wchy;|1es
M| Sine Tables synchronized
Boot Loader
Interpreter

Propeller Education Kit Labs: Fundamentals - Page 9

Propeller Microcontroller & Labs Overview

Since each cog has access to the Propeller chip’s RAM in main memory, they can work cooperatively
by exchanging information. The Spin language has built-in features to pass the addresses of one or
more variables used in code to other objects and cogs. This makes cog cooperation very simple.
Code in one cog can launch code into another cog and pass it one or more variable addresses (see
Figure 1-5). These variable addresses can then be used for the two cogs to exchange information.

Main (Hub) Memory

Configuration

Application

S
CcoG
Stack + VAR . .
< o Figure 1-5: Two (or more) Cog’s Working
Character J Cooperatively through Shared Memory
Set >

R
A
M

Log, Antilog, &
Sine Tables

=E0x

Boot Loader
Interpreter

The Propeller chip’s cogs are numbered cog 0 through cog 7. After the application is loaded into the
Propeller chip, it loads an interpreter into cog 0, and this interpreter starts executing Spin code tokens
stored in main memory. Commands in the Spin code can then launch blocks of code (which might be
Spin or assembly language) into other cogs as shown in Figure 1-6. Code executed by the other cogs
can launch still other cogs regardless of whether they are Spin or assembly, and both languages can
also stop other cogs for the sake of ending unnecessary processes or even replacing them with
different ones.

\\\“
> 20
\\‘ -« ~
~ B -
S Goe . .
o /v v Figure 1-6: Cog Launching
“\ 0 ‘Q e \ S Code in one cog launching other cogs, which can in
cBe - turn launch others...
- Cogs can also stop other cogs to free them up for
COG"
" other tasks.
~ 4
« S
S >
CcoG

Writing Application Code

Spin is an object-based programming language. Objects are designed to be the building blocks of an
application, and each .spin file can be considered an object. While an application can be developed as
a single object (one program), applications are more commonly a collection of objects. These objects
can provide a variety of services. Examples include solutions for otherwise difficult coding
problems, communication with peripheral devices, controlling actuators and monitoring sensors.
These building block objects are distributed through the Propeller Object Exchange
(obex.parallax.com) and also in the Propeller Tool software’s Propeller Library folder. Incorporating
these pre-written objects into an application can significantly reduce its complexity and development
time.

Page 10 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

Figure 1-7 shows how objects can be used as application building blocks, in this case, for a robot that
maintains a distance between itself and a nearby object it senses. The application code in the
Following Robot.spin object makes use of pre-written objects for infrared detection (IR
Detector.spin), control system calculations (PID.spin), and motor drive (Servo Control.spin).

Note that these pre-written objects can in turn use other objects to do their jobs. Instead of harvesting
objects that do jobs for your application, you can also write them from scratch, and if they turn out to
be useful, by all means, submit them for posting to the Propeller Object Exchange at
obex.parallax.com.

5
3

‘E
Top Object File
Following Robaot.spin

Launches a cog
S

- — -1 Figure 1-7: Object
Building Blocks for

Spin code only Applications

Ir Detector.spin PID Algorithm.spin Servo Control.spin

Launches a cog

>

& & 3

Spin + ASM
Square Wave.spin Float32.spin Float5tring.spin

In Figure 1-7, the Following Robot.spin object is called the top object file. This file has the first
executable line of code where the Propeller chip starts when the application runs. In every case, cog 0
is launched and begins executing code from the top object. Our top object example, Following
Robot.spin, contains code to initialize the three objects below it, making it the “parent object” of the
three. Two of these three building blocks in turn initialize “child object” building blocks of their own.
Two of the building block objects launch additional cogs to do their jobs, so a total of three cogs are
used by this application. Regardless of whether a parent object launches a cog to execute Spin code
or assembly code, the child objects have built-in Spin code and documentation that provide a simple
interface for code in their parent objects to control/monitor them.

Though it is not shown in our example, recall from Figure 1-6 that an object can launch more than
one cog. Also, an object can launch a process into a cog and then shut it down again to make it
available to other objects. Although any object can actually start and stop any cog, it's a good
practice to make stopping a cog the responsibility of the object that started it.

How the Propeller Chip Executes Code

The Parallax Propeller Tool software can be used to develop applications and load them into the
Propeller chip. When an application is loaded into the Propeller chip, the Spin code is compiled into
tokens and the optional assembly code is compiled into machine codes. The Propeller Tool then

Propeller Education Kit Labs: Fundamentals - Page 11

Propeller Microcontroller & Labs Overview

transfers the application to the Propeller chip, typically with a serial-over-USB connection. The
programmer can choose to load it directly into the Propeller chip’s main RAM, or into an EEPROM
(electrically erasable programmable read-only memory). As shown in Figure 1-8, if the program is
loaded directly into RAM, the Propeller chip starts executing it immediately. If the program is loaded
into an EEPROM, the Propeller chip copies this information to RAM before it starts executing.

Figure 1-8: Loading a Program into RAM or EEPROM

Prgpgller Propeller Copy to Load from EEPROM
ode Code EEPROM after Reset
—— —_—_ |
Serial . : . Serial
over over

usB USB
(a) Load program directly into Propeller RAM (b) Load program into EEPROM

Loading programs from a PC into RAM takes around 1 second, whereas loading programs into
EEPROM takes a few seconds (under 10 seconds for most). While loading programs into RAM can
be a lot quicker for testing the results of changes during code development, programs should be
loaded into EEPROM when the application is deployed, or if it is expected to restart after a power
cycle or reset. Programs loaded into RAM are volatile, meaning they can be erased by a power
interruption or by resetting the Propeller chip. In contrast, programs loaded into EEPROM are
nonvolatile. After a power cycle or reset, the Propeller chip copies the program from EEPROM into
RAM and then starts executing it again.

The Propeller Education Kit

The Propeller Education (PE) Kit is a complete Propeller microcontroller development system that
can be used for projects and product prototypes. This kit also includes parts for projects that are
documented by the PE Kit Labs. These labs will help you learn how to develop applications with the
Propeller Microcontroller.

= e
o ,\ -

] Figure 1-9: Propeller Education Kit
(40-Pin DIP Version)

Page 12 - Propeller Education Kit Labs: Fundamentals

1: Propeller Microcontroller & Labs Overview

The PE Kit comes in two different versions: 40-pin DIP and PropStick USB. Both feature an
arrangement of interlocking breadboards with the following parts mounted on them:

Propeller microcontroller

5.0 V and 3.3 V voltage regulators

EEPROM for non-volatile program storage

5.00 MHz external crystal oscillator for precise clock signal

Reset button for manual program restarts

LED power indicator

9 V battery-to-breadboard connector

Serial to USB connection for downloads and bidirectional communication with the PC.

Collectively, the interlocking breadboards with Propeller microcontroller system mounted on it are
referred to in this document as the PE Platform. The PE Platform with the 40-pin DIP kit is also
shown in Figure 1-10 (a). With this platform, each part and circuit in the list above is plugged
directly into the breadboard. Although this version of the PE Platform takes a little while to build and
test, the advantage is that any given part can be replaced at a very low cost.

The PE Platform with the PropStick USB is shown in Figure 1-10 (a). The PropStick USB module is
a small printed circuit board (PCB) with surface-mount versions of all the parts and circuits listed
above (except the external 5 V regulator circuit). The PCB itself has pins so that it can be plugged
into the breadboard. While this arrangement makes it quick wire up the PE Platform and get started,
it can be relatively expensive to replace the PropStick USB rather than individual components if
something gets damaged.

Figure 1-10: PE Kit Platforms

(a) 40-pin DIP Version (b) PropStick USB Version

Propeller Education Kit Labs: Fundamentals - Page 13

Propeller Microcontroller & Labs Overview

The Propeller Education Kit Labs

The Propeller Education Kit Labs include the ones printed in this text as well as additional labs and
applications available for download from www.parallax.com. The labs in this text demonstrate how
to connect circuits to the Propeller microcontroller and write programs that make the Propeller chip
interact with the circuits. The programs also utilize the Spin programming language’s features as
well as the Propeller microcontroller’s multiprocessing capabilities.

Prerequisites

These labs assume prior microcontroller experience. Although the Setup and Testing labs provide
wiring diagrams, the rest do not. At a minimum, you should have experience building circuits from
schematics as well as experience with some form of computer or microcontroller programming
language.

Resources for Beginners: For introductions to building circuits, microcontroller programming, and much more
“prior microcontroller experience”, try either the BASIC Stamp Activity Kit or BASIC Stamp Discovery kit. Both
kits have everything you’ll need to get started, including a BASIC Stamp 2 microcontroller, project board, the
@ introductory level What’s a Microcontroller? text and parts for every activity. The What’s a Microcontroller?
text is also available for free PDF download from www.parallax.com, and both kits are available for purchase
from the web site as well as from a variety of electronics retailers and distributors. To find a retailer or
distributor near you, check the Distributors list under the Company category at the Parallax web site.

PE Kit Labs in This Text

o Software, Documentation & Resources — Download Propeller software and documentation,
and install the software.

e Setup and Testing Lab for 40-Pin DIP PE Platform — Hardware preparation. If you have
the PropStick USB Version of the PE Kit, use its alternative Setup and Testing Lab. It is a
free download from the 32306 product page at www.parallax.com.

e 1/O and Timing Basics Lab — How to configure the Propeller chip’s I/O pins, monitor input
signals, transmit output signals, and coordinate when events happen based on the system
clock.

e Methods and Cogs — How to write methods in Spin and optionally launch methods into one
or more of the Propeller chip’s cogs (processors).

e Objects — How use pre-written objects to simplify coding tasks, and how to write objects.

e Counter Modules and Circuit Applications — How to employ the counter modules built
into each cog to perform measurements and control processes that require precise timing.
(Each cog has two counter modules that can function in parallel with the cog’s program
thread.)

The last four labs (I/O and Timing through Counter Modules and Circuit Applications) have
questions, exercises, and projects at the end of the chapter with answers in Appendix B: Study
Solutions, starting on page 195. For best results, hand-enter the code examples as you go through the
labs. It’1l give your mind time to consider each line of code along with the concepts and techniques
introduced in the various sections of each lab.

Page 14 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/
http://www.parallax.com/

1: Propeller Microcontroller & Labs Overview

More PE Kit Labs & Applications Online

To find additional labs and applications that build on the concepts introduced in this book, go to
forums.parallax.com — Propeller — Propeller Education Kit labs. You will find links to PDFs and
discussions for each of the labs in this text along with additional material, like the ViewPort lab
excerpt shown in Figure 1-11. Some of these labs will utilize the parts on the PE Kit, and others
require additional parts, most of which are available from Parallax or other electronics suppliers.

Figure 1-11: ViewPort Lab Excerpt

oo =loix]
File Edit View Configuraton Designer Pluginse Help
@nnecy@i* 1Mbps ~
Welcome Idso Ilsa IaII |
Timescale: |5ggu9 vl v 20 - I vl
0Scop

1 1

1 Y - " 1
80
40 :

T WA V3 2 A L Y|
L 1
i DL L B P [[L
PETARLY R VAN VY
-80

0 2 3 A Overview-click on name to configure
g Mame |Plot |Edit [Min Max A Val
v Time (msec) T'T‘U‘T'W—ng_hsi
p Cursors Show |A B |gﬁ
500 1k 1.5k 2k 2.5k 3k 3.5k Ak 4 5k Horz 117mS _ [217mS [994pS
dB Mode (@ | [l vert
5 Log Mode ©' Edit Variables
10 é"
=
o

15 7
20
25
P [Sy P P N U | = A
Connection: Connected at 1000 khps. Memory:00:06:40

Oscilloscope and spectrum analyzer display signals generated by a microphone as someone whistles
into it. The Propeller chip samples these signals and forwards them to the ViewPort PC Software.
This is one of the activities featured in the ViewPort Lab.

Propeller Education Kit Labs: Fundamentals - Page 15

Propeller Overview

Page 16 - Propeller Education Kit Labs: Fundamentals

2: Software, Documentation & Resources

2: Software, Documentation & Resources

The Parallax Propeller Tool software and Parallax Serial Terminal shown in Figure 2-1 are free
downloads from www.parallax.com. You’ll use the Propeller Tool to write programs for the
Propeller chip, and the Parallax Serial Terminal will provide bidirectional text communication
between the PC and Propeller chip. On the same page with the Propeller Tool software, you will also
find several reference documents and the example programs for these labs. This chapter includes
download and setup instructions for all these items along with pointers to other useful resources for
developing projects, prototypes and products with the Propeller microcontroller.

Figure 2-1: Propeller Tool and Parallax Serial Terminal

R o T — o
Fie Bt Ban g | =]
- HelloFullDuplexSerial Hedoh ull)ugraSenal | j
@ FullDuplexSanal ey oy e BT —] -
e E i blects Lal] [This is a test message!l j
This is a test message!
bi| [Froceten L2y T o o , ; . i This is a test messags!

(=1

_clkmode = xtall * plllGx
xinfreq = 5_g00_0ag

=

Debug.ste (string{ Th apel”, 13)) | |

waitent [clkfreg + ent) ComPut_ Bsudfise g T [~ OTR [~ ATS

: - comnz =] [570 =] o me @ pSR @ C15 ¥ Echaln
T =] |« .

Traent | Compdad | M o . = Preds.. Clear Paure Disable

o Lol

Download Software and Documentation

In these labs, you will make use of the Propeller Tool programming software, the Parallax Serial
Terminal, and the Propeller Manual reference documentation. These items along with the Propeller
microcontroller datasheet are all on a single page at www.parallax.com.

v Go to www.parallax.com/Propeller — Downloads & Articles.
v Download the following items and place them in a convenient folder.
o Propeller Tool Software v1.2 or newer. System requirements: Windows 2K/XP/Vista
and an available USB port.
Parallax Serial Terminal Software
Source Code — for the Propeller Education Kit Labs: Fundamentals (.zip)
Book — Propeller Education Kit Labs: Fundamentals (.pdf)
Propeller Manual
Propeller Datasheet
If you are using the PropStick USB version of the PE Kit, be sure to locate its
separate Setup and Testing Lab PDF file.

O O O O O O

One of the Propeller Tool default installation features is the USB drivers for the programming/
communication/debugging tools included in your PE Kit. When you install the Propeller Tool
software, it will automatically install the drivers your PC will need to communicate with the Propeller
Plug’s or PropStick USB’s serial-over-USB circuits. These are FTDI’s VCP USB drivers for
Windows 2K/XP/Vista. You may also obtain drivers from www.ftdichip.com.

Propeller Education Kit Labs: Fundamentals - Page 17

http://www.parallax.com/
http://www.parallax.com/Propeller
http://www.ftdichip.com/

Software, Documentation & Resources

v" Install the Propeller Tool software by running the setup program and following the prompts.
When you get to the Install Optional Driver Step shown below, make sure to leave the
Automatically install/update driver box checked.

Leave this checkbox checked!

Install Optional Driver

with these products.

Installshield

software installation. The “optional driver” is required for these labs. It is necessary for
the serial-over-USB circuit built into the Propeller Plug and PropStick USB.

{& The Propeller Tool v1.06 - Installer

Chaoose optional driver installation.

This program can automatically install or update the driver For Parallax USB-based products
like: the Propeller Demo Board and Prop ClipjPlug. This driver is required ko communicate

¥ automatically installjupdate driver (recommended)

You may see this step during the Propeller Tool

x|
= 7

ey AR

Mext = Cance|

Install the Parallax Serial Terminal

The Parallax Serial Terminal is a stand-alone executable that can be used to exchange serial messages
with the Propeller chip at runtime. In addition to enhancing some of the PE Kit Lab examples with
text messages indicating status and values, it can also be useful for rudimentary datalogging and
debugging. Even though it’s a stand-alone application, it is convenient to make a single copy of it
and place a link next to the one you will use to open the Propeller Tool software.

v

Unzip the Parallax Serial Terminal into the folder where the Propeller Tool software was

installed. The default file path for the Propeller Tool v1.2 is C:\Program Files\Parallax

Inc\Propeller Tool v1.2.
v

Useful Web Sites

Create a shortcut to the Parallax Serial Terminal next to the Propeller Tool software shortcut.

In addition to www.parallax.com/Propeller, there are a couple of other web sites where you can get
answers to questions as well as objects to reduce your development time on Propeller projects.

e Object exchange: http://obex.parallax.com

e Propeller Chip forum: http://forums.parallax.com — Propeller

Tech Support Resources

Parallax Inc. offers several avenues for free technical support services:

e Email: support@parallax.com
e Fax: (916) 624-8003

e Telephone: Toll free in the U.S: (888) 99-STAMP; or (916) 624-8333. Please call between
the hours of 7:00 am and 5:00 pm Pacific time, or leave us a message.
e Forums: http://forums.parallax.com/forums/. Here you will find an active forum dedicated to

the Propeller chip, frequented by both Parallax customers and employees.

Page 18 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/Propeller
http://obex.parallax.com/
http://forums.parallax.com/
mailto:support@parallax.com
http://forums.parallax.com/forums/

3: Setup and Testing Lab

3: Setup and Testing Lab for 40-Pin DIP PE Platform

This is the Setup and Testing lab for the 40-pin DIP version of the PE Kit.

v" If you have the 40-Pin DIP version of the PE Kit (#32305), continue here.

v"If you have the PropStick USB version of the PE Kit (#32306), check for a separate printed
Setup and Testing Lab - PropStick USB Version document included with your kit. It is also a
free download from the 32306 product page at www.parallax.com.

The PE Platform

The Propeller Education (PE) Kit Platform shown in Figure 3-1 makes a great reusable prototyping
tool for electronics and robotics projects. It’s also a great starting point for learning the basics of
programming the Propeller Microcontroller to be the embedded computer brain in your next
invention. This lab introduces the 40-Pin DIP PE Platform and its components and features, and then
guides you through assembling and testing your PE Platform.

Figure 3-1: PE Kit Platform (40-Pin DIP version)

The PE Platform in Figure 3-1 is an array of breadboards connected side-by-side with the Propeller
chip and support circuits and components mounted in the center. Each project circuit you build on
the left or right breadboards will be adjacent to Propeller chip I/O pins for easy access. Each
breadboard also has vertical power connectors on both sides so that ground and regulated 3.3 V are
next to any given breadboard row. This arrangement makes most circuits very simple to wire and
visually track. It also minimizes the wiring spaghetti and troubleshooting problems that can occur
with tall individual breadboards.

Propeller Education Kit Labs: Fundamentals - Page 19

Setup and Testing Lab

PE Platform Components and Features
Figure 3-2 shows the 40-Pin DIP PE Platform’s major components, including:

Propeller microcontroller with pin map sticker affixed

9 V battery-to-breadboard connector

5.0 V and 3.3 V voltage regulators

LED power indicator

Reset button for manual program restarts

5.00 MHz external crystal oscillator for precise clock signal

32 KB EEPROM for non-volatile program storage

Propeller Plug programming and communication tool for program downloads and
bidirectional communication with the PC.

Figure 3-2: PE Kit Platform Components

9V battery-
to-
breadboard

connector 3.3 V voltage

regulator

50V USB Cable

voltage
regulator

LED Power
Indicator
Propeller Plug
programming &
Reset communication tool

Button

Propeller
Microcontroller
+

Pin Map Sticker 5 MHz Crystal
Oscillator

32 KB EEPROM

Propeller Microcontroller

A Propeller Microcontroller in a 40-pin DIP package provides a breadboard friendly brain for the PE
Platform. This amazing microcontroller has eight processors, called cogs. Its system clock can run at
up to 80 MHz, and each cog can execute up to 20 million instructions per second (MIPS). Each cog
takes turns at accessing the Propeller chip’s main memory. This memory access combined with the
Spin (high level) and Assembly (low level) languages created especially for the Propeller makes
writing code for multiple processors very simple and straightforward. If you’ve ever written a
BASIC subroutine and subroutine call (or a C function and function call, or a Java method and
method call), making a different processor execute that subroutine/function/method takes just two
more steps. You’ll see lots of examples of this as you go through the PE Kit Labs.

Propeller Datasheet and Propeller Manual

The Propeller Datasheet provides a complete technical description of the Propeller Microcontroller, and the
@ Propeller Manual explains the chip’s programming software and languages in detail. Both the Propeller
Datasheet and Propeller Manual are available for PDF download from www.parallax.com. The printed version
of the Propeller Manual is also available for purchase at the Parallax web site (#122-32000).

Page 20 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/

3: Setup and Testing Lab

Reset Button

The reset button can be pressed and released to restart program execution. It can also be pressed and
held to halt program execution. When released, the Propeller chip will load the program stored in PE
Platform’s EEPROM program and restart from the beginning.

9 V Battery-to-Breadboard Connector

This little gadget provides a simple, breadboard-friendly power supply connection. The
recommended DC supply voltage across VIN-VSS is 6 to 9.5 VDC, and recommended power
sources for VIN—VSS include:

e 9V alkaline batteries
e Rechargeable 9 V batteries (common voltage ratings include 9 V, 8.4 V, and 7.2 V)

Always disconnect the battery from the connector and store separately. 9 V batteries should never be
stored in the PE Kit plastic box because loose parts could short across the terminals. The 9 V battery should
always be disconnected from the battery-to-breadboard connector and stored where its terminals cannot short
across any metal objects or other conductive materials.

@ “Wall Warts”: The term “wall wart” commonly describes the DC supplies that draw power from AC wall outlets,

and they often supply a much higher DC voltage than they are rated for. If you are going to use a wall wart,
it's usually best to choose one that's rated for 6 V regulated DC output with a current capacity of 500 mA or
more. The PE DIP Plus kit includes a 47 yF capacitor that can be placed across the battery inputs on the
breadboard to provide the input capacitance required by the PE Platform’s voltage regulator due to the wall
wart’s longer supply line.

5.0 V Regulator

The National Semiconductor LM2940CT-5.0 regulator is included in the PE Platform to make it
convenient to supply 5 V components, such as the infrared detector introduced in the Counter
Modules and Circuit Applications lab. A series resistor (typically 10 k) should always be connected
between a 5 V output and a Propeller I/O pin, which is 3.3 V. The 5 V regulator also serves as an
intermediate stage between the battery input voltage and the 3.3 V regulator that supplies the
Propeller chip.

The LM2940 voltage regulator circuit is designed to provide a 400 mA output current budget with a 9
V battery supply in the classroom or lab (at room temperature). This current budget can vary with
supply voltage and temperature. For example, if the supply voltage reduced from 9 V to 7.5 V, the
current budget increases to nearly 700 mA at room temperature. Another example, if the supply
voltage is 9 V, but the ambient temperature is 100 °F (40 °C), the current budget drops to around 350
mA.

More Info:

e Appendix E: LM2940CT-5.0 Current Limit Calculations beginning on page 222 includes equations you
can use to predict the PE Kit's 5 V regulator circuit's current budgets under various supply voltage and
temperature conditions.

. The LM2940CT datasheet, available from www.national.com, has lots more information, including

pointers for attaching a heatsink to the LM2940 to increases its current/temperature budget by improving
its ability to dissipate heat

3.3 V Regulator

This National Semiconductor LM2937ET-3.3 regulator can draw up to 400 mA from the PE
Platform’s LM2940 (5 V regulator) at room temperature and supply the 3.3 V system with up to 360
mA of current. The 3.3 V system includes the Propeller chip, EEPROM, power LED, and the variety
of 3.3 V circuits you will build in the PE Kit Labs.

Propeller Education Kit Labs: Fundamentals - Page 21

Setup and Testing Lab

Keep in mind that if you have a power-hungry 5 V circuit, it subtracts current from the 5 V
regulator’s 400 mA output current budget, which in turn leaves the 3.3 V regulator with a smaller
current budget to supply the rest of the system.

LED Power Indicator

This light turns on to indicate that power is connected to the board. It can also provide indications of
dead batteries, short circuits, and even tell you if the Propeller Plug programming and communication
tool is connected. As wired in this lab, it draws about 12 mA. After completing this lab, you can use
a larger resistor for a less-bright indicator light that draws less current.

5.00 MHz Crystal Oscillator and Socket

The 5.00 MHz crystal oscillator provides the Propeller chip with a precise clock signal that can be
used for time-sensitive applications such as serial communication, RC decay measurements and servo
control. The Propeller chip has built-in phase locked loop circuitry that can use the 5.00 MHz
oscillator signal to generate system clock frequencies of 5, 10, 40 or even 80 MHz.

The 5.00 MHz oscillator can also be replaced with a variety of other oscillators. A few examples
include a programmable oscillator and a 60 MHz crystal. The Propeller chip also has a built-in RC
oscillator that can be used in fast or slow modes (approximately 12 MHz and 20 kHz respectively).
The internal oscillators are not nearly as precise as the 5.00 MHz oscillator, so if your project
involves time-sensitive tasks such as serial communication, pulse width modulation for servo control,
or TV signal generation, make sure to use the external 5.00 MHz oscillator.

32 KB EEPROM

The PE Platform’s 32 KB EEPROM program and data storage memory is non-volatile, meaning it
can’t be erased by pressing and releasing the reset button or disconnecting and reconnecting power.
This EEPROM memory should not be treated like RAM because each of its memory cells is only
good for 1 million erase/write cycles. After that, the cell can actually wear out and no longer reliably
store values. So, a program that modifies an EEPROM cell once every second would wear it out in
only 11.6 days. On the other hand, if a cell gets modified every ten minutes, it’ll be good for over 19
years.

@ EEPROM: Electrically Erasable Programmable Read-Only Memory
RAM: Random Access Memory.

Keep in mind that your application can use the Propeller chip’s main memory (32 KB of which is
RAM) for indefinite writes and rewrites at any frequency. It can then use the EEPROM to back up
data that the application may need later, especially if that data has to live through disconnecting and
reconnecting power. The EEPROM Datalogging Application (available at www.parallax.com —
Propeller — Downloads & Articles) introduces an object that can be used to periodically back up
values stored in RAM to EEPROM.

Propeller Plug Programming and Communication Tool

The Propeller Plug provides a serial-over-USB connection between the Propeller chip and PC for
programming, communication, and debugging. This tool’s blue LED indicates messages received
from the PC, while the red one indicates messages transmitted to the PC. The FTDI chip labeled
FT232 on the module converts USB signals from the PC to 3.3 V serial signals for the Propeller chip
and vice versa.

Page 22 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/

3: Setup and Testing Lab

On the PC side, a virtual COM port driver provided by FTDI is bundled with the Propeller Tool
software you installed in the previous chapter. Aside from being necessary for the Propeller Tool
software to load programs into the Propeller chip, the virtual COM port makes it convenient for the
Propeller chip to communicate with serial software such as Parallax Serial Terminal.

More Virtual COM Port Info

After the FTDI virtual COM Port driver is installed by the Propeller Tool Installer, a Propeller Plug that gets
connected to one of the PC’s USB ports appears as a “USB Serial Port (COMXX)” in the Windows Device
@ Manager’s Ports (COM & LPT) list. The FTDI driver converts data placed in the COM port’s serial transmit
buffer to USB and sends it to the Propeller Plug’s FT232 chip, and USB messages from the FT232 are
converted to serial data and stored in the COM port’s receive buffer. Serial communication software like the
Propeller Tool and Parallax Serial Terminal use these COM port buffers to exchange information with
peripheral serial devices.

Prerequisites

Please follow the directions in Software, Documentation & Resources, starting on page 17, before
continuing here.

Procedure Overview

In this lab, you will assemble the PE Platform (40-Pin DIP version), following the steps listed below.
It’s important to follow the instructions for each step carefully, especially since you will be wiring up
your own development platform (on the breadboard) instead of just plugging the Propeller
microcontroller into a socket on a carrier PCB.

Inventory Equipment and Parts

Assemble the Breadboards

Set up PE Platform Wiring and Voltage Regulators

Test the PE Platform Wiring

Socket the Propeller Chip and EEPROM

Connect the Propeller Plug to the PC and PE Platform

Connect Battery Power Supply

Test Communication

Load a Test Program and Test the I/O Pins

Troubleshooting for the 40-Pin DIP PE Platform Setup (if necessary)

Since the PE Platform will be the microcontroller system at the heart of the PE Kit Labs, all its
electrical connections should be tested before proceeding to the next lab. By following all the steps in
this lab, it will help rule out potential wiring errors, which can easily slip by unnoticed as you build
the PE Platform circuits, and then cause unexpected problems in later labs.

Propeller Education Kit Labs: Fundamentals - Page 23

Setup and Testing Lab

Inventory Equipment and Parts
Required:
e Computer with Microsoft Windows 2000, XP, or Vista and an available USB port
e 9V alkaline battery (For this Setup and Testing lab, use a new 9 V, alkaline battery.)
e PE Kit’s Breadboard Set (#700-32305), Propeller Plug (#32201), and Propeller DIP Plus Kit
(130-32305) listed in the tables below

Optional, but useful:
e Small needle-nose pliers and wire cutter/stripper
e Multimeter (DC + AC Voltmeter and Ohmmeter)
e Digital storage oscilloscope, such as the Parallax USB Oscilloscope (#28014)
e Antistatic mat and bracelet

ESD Precautions: Electrostatic discharge (ESD) can damage the integrated circuits
(ICs) in this kit. If you have an antistatic bracelet and mat, use them. If you don't, the
metal chassis of a PC plugged into a grounded outlet can also provide a safe and
convenient way of losing static charge periodically before and while handling ICs. The
part of the chassis that’s typically exposed on a PC is the frame on the back. The
monitor and peripheral ports are connected to it with metal screws. Touch that frame
(not the ports) before opening the antistatic bags and then frequently while handling the
parts.

Here are some more tips for reducing the likelihood of a static zap to PE Kit parts: Avoid
touching the metal pins on the ICs. Handle ICs by their black plastic cases. Also, if you
know your work area conditions cause you to build up static charge and then zap nearby
objects, find another work area that is less static prone. Likewise, if you know a
particular sweater causes you to build up charge in a certain chair, don’'t wear that
sweater while working with the PE Platform.

v" Gather the components listed in Table 3-1, Table 3-2, and Table 3-3.
v" Open up the PE Project Parts bag and check its contents against the PE Project Parts list in
Table C-2 in Appendix C: PE Kit Components Listing.

Table 3-1: Breadboard Set (#700-32305)

Breadboard, 12x30 sockets,
3.19" x 1.65"

700-00077 3

Breadboard, 2x24 sockets,
3.19"x 0.5"

700-00081 4

Table 3-2: Propeller Plug (#32201)

¥88 7
i3] ;""“*]
o g'b iﬁ
32201 1 | Propeller Plug
805-0010 1 USB A to Mini B Retractable Cable X

Page 24 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

Table 3-3: Propeller DIP Plus Kit (130-32305)
Part Number Quantity | Description

571-32305 1 9V battery clip
201-01085 2 Capacitor, Electrolytic, 6.3 V, 1000 pF i
"”e
201-04740 1 Capacitor, Electrolytic, 25V, 0.47 uF
Al
150-01011 1 Resistor, CF, 5%, 1/4 watt, 100 Q
Mz

150-01030 1 Resistor, CF, 5%, 1/4 watt, 10 kQ
251-05000 1 Crystal 5.00 MHz, 20 pF, HC-49/us A y
350-00001 1 LED Green T1 %

‘®
400-00002 1 Pushbutton - normally open =
451-00302 1 2-pin m/m header
451-00406 1 Extended right angle m/m 4 pin header with 0.1 spacing [-

601-00513 1 3.3 V regulator, TO92 package ‘;lL

601-00506 1 5.0 V regulator, TO92 package
602-00032 1 32 kB EEPROM, DIP-8 -
e ———
_——
800-00016 6 Bags of 10 Jumper Wires e ——

Propeller Chip P8X32A - 40 pin DIP Propeller DIP pin map sticker

EEEREERE R

D parallax.com Ly PROPELLER

P8X32A-D40 1
120-00003 1

Parts and quantities subject to change without notice.

O - ®
Ezapaee

Assemble the Breadboards

The three 12-column x 30-row prototyping breadboards in Figure 3-3 have sockets whose locations
can be described by (column letter, row number). Each column has a letter along the top and bottom
of the breadboard and each row has a number along the sides. Two examples of breadboard
coordinates in the figure are (K, 3) on the center breadboard, and (C, 7) on the right breadboard. Each
breadboard is organized in rows of six sockets; all the sockets in each row of six are connected by a
metal bracket underneath. So, to connect two or more wires together, just plug them into the same
row of six sockets.

Propeller Education Kit Labs: Fundamentals - Page 25

Setup and Testing Lab

v" Connect the interlocking breadboards together as shown in Figure 3-3.

Figure 3-3: Breadboards

Example coordinate:

Each group of six sockets (K, 3) on center breadboard

is electrically connected.

Example coordinate:
(C, 7) on right breadboard

\

I

-_x - JQ - 0 Q oo - x—f TQ -0 Q0T — X — - TJQ - ¥ O To
OOFOOO 1 REOELO® -~ ~OOFOOO 1 OOOOEO- | OO | ~OOOOOO 1 OAOOOO -~ | OO
OOYOOO | (QLOVO) POGHOOO | | OOOOOON OO | POOOOOO | | OOPOOON | OO
COPOOO | | DUDBDD » *OOOOO0 | | OOOOEO [OO [OOOOOO | | EOPOOO« [OO ﬂ
REOPFIOO® | | OOCOOEO ~ ~OOO000 | | OOOOOO» | OO | ~OOOOOO | | OOQROOO*» | OO
LOOOOB) | EOOOOO« OO0 | | OO | OO | "OOOOOE | | OO | OO
o PUOUOY | | OOOOOO > 2OOOOO0 | | OOOOOO> | OO 20O | | OOLRPOO> | OO
NEOOOOO | | OOOOEO~ ~NOOOOO0 | | OOOOOO~ NOEOOEO | | OOOBOO ~
2POOOOO | | OOEOOO® *2OOOOO0 | | OOOOOO= 2OOOOO0 | | OOEOEO®
©cOOOOOO | | OOOOOO© ©cOOOOOO | | OO [OO [cOOEOOO | | OOOOOO« [OO
SOOOOO0 | | OOOOOOs SOOOOR0 | | OOOOOOs OO | OO | | OO | OO
2000000 | | OOOOOO= SO00000 | | OOOOEO= (OO 2000000 | | OOOOOO= [OO
SOOOOOO | | OOOOOOR SOOOOO0 | | OOOOEOR [OO [SOOEOOO | | OOOOOOR | OO
ZOOOOO0 | | OOOOOO ZOOOOO0 | | OOOOOO |00 [3OOOOOE | | OOV | OO
ROOOO00 | | OOOOEO= ROOO000 | | OOOOOOR OO [ROOOOO0 | | OOOOOO=R | OO
aOOOOO0 | | OOOOOOH aOOOOO0 | | OOOOOOH QOO0 | | OOOOOO
RLOOOOOO | | OOOOOO 3000000 | | OOOOOO 52000000 | | OOEOOO 5
QOOOOO | | EOOOOO 000000 | | OO | OO IO | | OOOVOOO | OO
OPOEOO | | POCOOO 5000000 | | OOV | OO 3OO0 | | OO | OO
OPOOOO | | OOVOOO D 2000000 | | OOV OO | ZOVOOOE | | PEOOOOD | OO
OPOOOO | | OOOOOOS BOOOOOO | | OO00OOB [O0 [BOOOO00 | | O0O00OOSE [©®O
OPOOOO | | OOOOOOR ROOOOOO | | OOOOCOR [OO [ROOOOOO | | OOOOOOR (OO
OPOOOO | | OOOOOORN ROOOOOO | | OOOOOOR | © ROOOOOO | | OOOOOOR | OO
OPOOOO | | OOOOOOS BOOOOOO | | OO BOOOOO0 | | OOEOEOR
OPOOOO | | OOOOOOR ROOOOOO | | OOOOOOR ROOOOOO | | OOOOOOR
OPOOOO | | OOOOOOR ROOOOOO | | OOOOOOH O R000O0 | | OOOEOOR | OO
QPOOOO | | OOVOOOR BOOOOO0 | | OOOOOOR fOO | 3000000 | | OOOOOOR | OO
QPOOOO | | POOOOOR NOOOOOO | | OOOOOOR/ 00 [ROOOOOE | | OOOOOOR | O® ﬂ
OPOOOO | | OOOOEOR BOOOOOO | | OOOOOOY |00 [3OOOOOO | | OOOOOOS ®
OPOOOO | | OOOOEOS BOOOOOO | | OOOOOOL | 00 [BOOOOOE | | OOOOOOR O]
OPOOOO = OOOOOO®S8 BOOOOO0 “ OOOOOFS OO0 8OOCOO0 - 0OOOOO8 | PO
—F——-SaQ -0 Q0 T - X— —-TJaQ -~ 0® Q0T - X— - TJaQ -0 Q0T
Ay amY /(Ay |
Two groups of 12 sockets All 24 sockets next to each Example coordinate: Example coordinate:
by each red line are black line are electrically (BLACK, 22) on middle- (RED, 28) on right power
electrically connected. connected. right power connector connector

See it in color and zoom in: This file is available in color as a free PDF download from the Propeller

Education Kit (32305) product page at www.parallax.com . You can also use Adobe Acrobat Reader to zoom

in on regions of the various wiring diagrams, which can be useful for verifying where certain leads get plugged

in.

@ Adhesive Backing - don’t expose it. The breadboards have an adhesive backing covered with wax paper.
Do not peel off the wax paper unless you are ready to permanently affix the breadboards to something

permanent, such as a metal back plane cut to size or a project box.

VSS and GND; VDD and 3.3V: The Propeller chip’s GND pin is referred to as VSS in the Propeller Manual,
and VDD is +3.3 V.

Each breadboard in Figure 3-3 is flanked on both sides by a 2-column x 24-row power connector.
The columns on these power connectors are indicated by black and red lines, and the rows are
indicated by the breadboard row numbers. Example coordinates include (BLACK, 22) on the middle-
right power connector and (RED, 28) on the right one.

On each power connector in Figure 3-3, all 24 sockets by the vertical black line are electrically
connected. These sockets typically serve as a common ground, and each of these black columns gets
connected to the battery’s negative terminal on the PE Platform. Each power connector also has two
groups of twelve sockets denoted by two vertical red lines. The upper twelve sockets next to the red
line are grouped together, but are not connected to the lower twelve next to the other red line. The
break in the red line by these socket groups indicates the break in continuity. The breadboard is

Page 26 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/

3: Setup and Testing Lab

designed this way to accommodate two separate voltage supplies on the same power connector. This
feature is not used now, so all the positive power connectors are shorted together with jumper wires,
and then connected to the 3.3 V regulator’s output to provide a supply for the PE Platform.

Set up PE Platform Wiring and Voltage Requlators

The PE Platform schematic shown in Figure 3-4 will be assembled in steps. In this section, you will
first set up and test the wiring without the battery, Propeller Plug, Propeller chip or 24LC256
EEPROM. After some electrical tests to verify the wiring, you will connect and test each component.
By following this procedure, you will minimize the likelihood of damaging one of the components
due to a wiring error.

Figure 3-4: Schematic — Propeller DIP Plus Kit
Vbat 5.0V 3.3V

LM2940-5.0 T LM2937-3.3

} IN ouT et & IN ouT

=L GND j; GND

6-9 VDC =— [TO220 [T0220 100 Q
'|' 1000 pF 1000 pF

GND
GND
RES
_ «Tx <>
L —R— To PC
l._o
Pushbum
po 1 Y aohea—BRxL | 3.3V
S) 39 [pao—X2 | 10 kQ T
P2[]3 38 [1 P29 28’;:\ YW
P3[4 37 [1 P28
P4[]5 36 [1 P27 241.C256
P5[] 6 35 [] P26 o~ vecff——
Pe[]7 34[P25 33V i ij—_l_
P78 33 [0 P24 j_ Crystal A2 solff— —
vss [9 320 VDI34|1_ vss SDAl GND
. BOEn[] 10 = O 31 [J X0 - — DIP
3—:Iﬂ/— L— Resn] 11 gg% 30 :|><| GND
voD [} 12 N 29 [1 vss
pa] 13 I§|‘§ 28 [P23
— P9] 14 E X 27 P22 GED
= Piof15 o 26 P21
GND P11] 16 25 [1 P20
P12 17 24 [1 P19
P13 [] 18 23 [1 P18
P14] 19 22 [1 P17
P15 20 21 [P16
DIP-40

Figure 3-5 shows the wiring diagram we will use for the schematic in Figure 3-4. Note that the
Propeller chip, 24LC256 EEPROM, Propeller plug and battery are not yet connected. Note also that
the board in the wiring diagram is tight-wired, with all the wires cut to length to be flush with the
breadboard surface. This will make it easier to identify and remove loose-wired project circuits
without having to worry about potentially disconnecting a part or wire that’s integral to the PE
Platform.

v Make sure your breadboard is oriented so that the numbers and letters that indicate the
breadboard socket coordinates are the same as in Figure 3-5.

Propeller Education Kit Labs: Fundamentals - Page 27

Setup and Testing Lab

v" Connect the wires and components exactly as shown in Figure 3-5. Make sure that the all of

the wires are securely plugged into their sockets. If you accidentally cut a wire too short and

it has a tenuous connection in the socket, discard it and replace it with one you have cut to the

correct length.
v The LED’s anode should be connected to (RED, 10) and its cathode to (L, 10). The cathode

pin is the one closer to the flat spot on the otherwise round rim at the base of the LED.
v" The resistor across (K, 9) and (K, 10) is 100 Q (brown-black-brown) and provides series

resistance for the power LED.
v" The resistor across (D, 5) and (D, 9) is 10 kQ (brown-black-orange), and will pull up one of

the EEPROM pins.

Figure 3-5: Wiring Diagram — Propeller DIP Plus Kit before ICs are Connected

LM2940 - 5.0

3.3

LM2937 -

/

S S
OOOOOP OOOOELO OOOOOO OOOOOO®
OOOOPP OCOCOOEEVOOOOL OOOEOEO
1234867 8 91011121314151617 181920212223 24252627 282930
aQOOOPPOOOOOOOOOOOOOOOOOOOOOOOO®a
bOOOOPPOOOOOOOOOOOOOOOOOOOOOOO®D
COOOOIEPOOOOOOOOOOPOOOOOOOOOOOO®
JOOOCIEPOOOOOOOOOOOOOOOOOOOOOO®OO®
m®@@Om@@@@@@@@@@@@@@@@@@@@@@@@@m

POOOOCOOOOOOOOOOOOOOOOOOOO f
[]
POOOOOOOOOOOOOOOOOOOEOOO®Y

OOOCEPOOOOOOOOOOOOOOOOOOOOOOOO !
123 4506 7 8 91011121314 151617 181920212223 24 2526 27 28 29 30

DOOOOO QOO0 OCOOEOO

@ \@@@@@@ll@@@@@@ OOOOGEO

AF 748 9 1011 saKaa:;ﬁomom\f@mwﬁmmmmﬁmmmﬁo

a @ DDOOEOVOEOVOOOOOOOO

UO(CGGGGGG((LO®®®® OOOOOOOO®b
OOOOOOO®C

CO@@@@@@@@@ DOOOOOOOOOI
cOOOETIVOOOOOOOOOOOOOOOOOOOOOO®e.
fEOOPRPOOOOPOEOOOOOOOOOOOOOOOOOEO f

POOOOOOOOOOOOOOOOOOO®Y
DOOOOOOOOOOOOOOOOOO®OO®N
olllDoOO@C@@@@@@@@@@@@@@@@@@@@_

Oo®®®ODDDDDDQDDO®®®®®®®®®_
DOOOOOOOOEDOOOOOOOOO®K
MMWG©®®®®@JﬂJﬂ®®®®®®®®_

111213141516 17 18MI QPO 1 B2 23 24 25 26 27 28 29 30

PO @m@f@fw PEEEOO

OOOOE Coume) O YO OOOOEO
12 3 44506 7 8 91011121314 151617 1EQ9 20Q1 22 23 24 25 26 27 28 29 30
aQOOCIPOOOOOOOOOOOOVOVOOOOOOOO®a
bOOOCIIIPOOOOOOOOOOOO2AADOOOOOOOO®b
o®®®mww@@@@@@@@@@@@ﬁ%u@@@@@@@GGn
dOOOCITPOOOOOOOOOOOPPOOOOEOOO®d
cQOOCPOOOOOOOOOOVOTIVOOOOOOOO® .
fOOOCPOOOOOOOOOOEOOOOOOOOOOOOOO f
[]
I00OCEPOOOOOOOOOOOOOOOOOOOOOOO® Y
hOOOCHIPOOOOOOOOOOOOOOOOOOOOOOO®N
OOOCEPOOOOOOOOOOOOOOOOOOOOOOOV I
QOO OOOOOOOOOOOOOOOOOOOOOOO®]
KOOOOEPROOOOOOOOOOOOOOOOOOOOOOOOK
OOOOPPOOOEOOOOOOOOOEOOOOOOOOOOE !
123 4P 7 8 91011121314151617 181920212223 24252627 282930
OOOOPY OO OOOOEL OO
OOOOOLO OOOOOCE=E=DOOOOO OOOOEO

A

A

Verify Wiring Connections

It’s important to eliminate any wiring mistakes before connecting power to the PE Platform. By

double-checking your wiring and running a few simple tests, you can in many cases catch a mistake

that might otherwise cause your system not to work or even damage some of its components.

Although the PE Platform’s parts are not expensive to replace, unless you have extras on hand,

waiting while the new parts get shipped could turn out to be an unwelcome delay.

v' Make a printout of Figure 3-5, and verify each connection by drawing over it with a
highlighter pen after you have checked your wiring against the diagram, matching the

coordinates of each socket that a part or wire is plugged into against the coordinates shown in

the figure.

Propeller Education Kit Labs: Fundamentals

Page 28 -

3: Setup and Testing Lab

v The 9 V battery’s red positive terminal wire should be plugged into the center breadboard’s
(L, 1) socket, and its black negative terminal plugs into (L, 2).

v The LM2940-5.0 voltage regulator in sockets (J, 1-3) should be plugged in so that the
labeling on the black case faces left, and the heat conducting metal tab and backing faces
right.

v The LM2937-3.3 voltage regulator in sockets (H, 3-5) should also be plugged in so that the
labeling on the black case faces left, and the heat conducting metal tab and backing faces
right.

v' Verify that the LM2940 5 V regulator’s output capacitor’s negative terminal (find the stripe
with the minus “—” signs on its metal case) is connected to (BLACK, 1) and that the LM2937
3 V regulator’s output capacitor’s negative terminal is plugged into either (J, 6) or (J, 7).

WARNING: Reverse voltage across an electrolytic capacitor can cause it to rupture or
in some cases explode. The electrolytic capacitor's negative terminals (denoted by a
stripe with negative signs) should always be connected to a lower voltage than its
positive terminal.

v" Verify that the Power LED’s anode terminal is connected to (RED, 10) and that its cathode
terminal (indicated by the shorter lead and flat spot on the otherwise cylindrical plastic case)
is connected to (L, 10).

Test the PE Platform Wiring
This section has a list of test points that you can probe with a multimeter to verify that:

o The voltage regulators are correctly wired and working properly

e The supply voltages are correctly distributed to all the power rails

e The supply voltages are routed to the correct sockets to supply the Propeller and EEPROM
chips.

v" If you have a multimeter at your disposal, the test points are listed below.
Tests Points with Battery Disconnected

Continuity

Most multimeters have a continuity setting that allows you to probe for low resistances. The symbol
for continuity test is typically a diode with a dot emitting sound waves, indicating that if the meter
detects low resistance, it will play a tone. If your meter does not have a continuity test mode,
consider measurements under 1 Q as an indication of continuity.

Resistance measurements tend to vary with length of wire. For example, the resistance between
(RED, 30) on the far left power connector and (RED, 30) on the far right power connector might
measure in the 0.5 Q range, while if you measure two points on the same power connector, it might
measure almost nothing. The measurement will depend on your meter’s calibration and probe
resistance. You can find out what zero ohms should be by shorting your probes together.

If a pair of test points below fail the continuity test, look for missing jumper wires and loose
connections on the center board and rails.

Propeller Education Kit Labs: Fundamentals - Page 29

Setup and Testing Lab

v' Battery clip’s negative terminal sockets to the BLACK columns in all four power connectors.
(The negative terminal on the battery clip is the smaller diameter terminal that’s closer to the
wires.)

v" Battery clip’s positive terminal to the center board’s (G, 1)

v' Battery clip’s negative terminal to the following sockets: (G, 19), (G, 20), (F, 22), (D, 4),
(F,7),(G,6,7,8,9), (G, 2), and (K, 4).

v" (1, 5) to (RED, 13) and (RED, 18) on all four power connectors.

v (RED, 138) to: (F, 19), (G, 22), (B, 5,), and (B, 6).

Tests with Battery Connected

If your voltmeter is pretty accurate, measured voltages will typically fall in the + 0.1 VDC range.
Some inexpensive voltmeters out there have much lower accuracy. If you are using a very
inexpensive voltmeter, or one with an unknown history, you may notice somewhat larger
measurement variations.

that plugs into the wall, or any supply wire that’s longer than 9 V battery-to-breadboard adapter that

@ The 0.47 pF capacitor should be placed across the 9 V power input if you are using a 6-9 VDC supply
comes in the kit.

v Connect a new alkaline or freshly charged rechargeable 9 V battery to the PE Platform’s
battery clip. The power LED should glow brightly. If it does not, or if the green LED takes
glows orange instead of green, disconnect the battery immediately and go to Troubleshooting
entry (2) on page 39.

DC Voltage

v" Test the voltage across the four red/black vertical power rails. The voltage across (RED, 13)
and (BLACK, 13) should measure 3.3 VDC on each of the four power connectors. If the
voltage is instead in the 4 V neighborhood or higher, disconnect power immediately and go to
Troubleshooting entry (11) on page 42. If the voltage is otherwise incorrect, go to
Troubleshooting entry (3) on page 40.
Repeat the 3.3 VDC test for (RED, 18) and (BLACK, 13).
(I, 1) on center breadboard to (BLACK, any): same as voltage across battery terminals.
(G, 3) on center breadboard to (BLACK, any): 5 VDC. . If the voltage is instead in the 6 V
neighborhood or higher, disconnect power immediately and see Troubleshooting entry (11)
on page 42.

AN

Socket the Propeller Chip and EEPROM

Figure 3-6 shows the PE Platform Schematic after the Propeller chip and EEPROM have
been socketed.

v" Disconnect the battery from the clip for the next steps.

v" Identify the reference notch on the Propeller chip and pin map sticker, and compare their
orientation to the reference notch on the pin map sticker in Figure 3-6. (The reference notch
is the semicircle between the PO and P31 labels on the pin map sticker, and it should
correspond to an actual notch in the Propeller chip at the same location.)

v' Affix the pin map sticker to the Propeller chip, making sure that the reference notch on the
sticker is oriented the same way as the reference notch on the chip.

v" Make sure that each pin is aligned with the correct breadboard socket it’s going to get pressed
into.

Page 30 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

v" Plug the Propeller chip into the breadboard, verifying its orientation against Figure 3-6. Press
firmly with two thumbs.

v" Find the reference notch on the 24LC256 EEPROM chip, then orient it as shown in Figure
3-6 and plug it in. The reference notch should be between the pins that are in the (F, 6) and
(G, 6) sockets.

Figure 3-6: Wiring Diagram — Propeller DIP Plus Kit

Kiepeg

[[92Jamod

LM2940 - 5.0
LM2937 - 3.3

fiepeg
Jojsisuel] A 6

Propeller Plug

—_— X - - TJQ -~ 0 Q0 Tm o Sums
OO0 | -0 M OO - —
QO | POOOOOO | | EOOOOON . E —
00| »OOOOOO | | EOOOOO « ¢ [s =
oJo] EXololololoYoN MGIaYaIalaYaES ¢ 0 —_— >
CEETT OO0 T OOOOOO (Camn O ESICIOIOIoN o To PC
OETTOOLVOOV @ EICIOIOIOIOIONNNOIOICIOIOITE po)
~NOOOOOO IQSH NOOOOO® OOOOOO~
Lgolololololo} 2 2QOOOO0 | | OOOOOO =
00 | ©cOOOOO® g (G ©OOOOOO | | OOOOOR«C | OO
00 | 3000060 O q¥: 3000 O3 | OO
00| 20000600 0]0) qK 2000000 | | EOOOOO= (OO
00 | SOOOOOO SOOF CyR SOOOOO0 | | OOOOOOF (OO
00 | 3000000] 300 QU OO0 | | OOOOOOT | OO
PO | 2000000 = 200 QU= FO00000 | | OOOOOO= | QO
5 OOOOOO o 530l0/ (OlOk:) aOOOOOO OOOOOO
53 OOOOOO > £39l0) (OlOk-H 3OOOOOO OOOOOOz
OO0 | 3000060 3 J00 [Olok~ J000OO0 | | EOOOEOR |6
OO 3000000 = EXQJO, B [O)= >OOOOOO® OOOOOO | O®
00 | 2000000 © o)) B @s 3000000 | | OOOOOOs | OO
00 | BOOOOOO 2 =N o8 BOOOOO0 | | OOOOOOE | OO
OO RO ey By [OJ NG ROOOOO0 | | OOOOOOR [OO
OO0 | ROOOOOO N R @R C ROOOOOO | | OOOOOOR (OO
BOOOOOO 8 BO 0O BOOOOOO | | OOOOOOR
ROOOOOO R RO OOOR ROOOOOO | [OOOOOOR
OO ROOOOOO & RO OOOR FOOOOOO® OOOOOOR O]
00 | BOOOOO® 8 3O OlOIO] BOOOOO0 | | OOOOOOR | OO
00 | ROOOOGO N NS} OOOY ROOOOO0 | | OOOOOOR (OO j
00 | BOOOOOO 8 8O OOOR BOOOOOO | | OOOOOOR | OO
00 | BOOOOOO B BO OOOR BOOOOOO | | OOOOOOR | OO
OO0 18000006 - 8 80O DOOOO BOOOOOO ~ OOOOOOE | OO
—_—Xx— —-TJaQ — Qo0 oo —_— X = - TJa -0 Q0 T®
pam A Y

Connect the Propeller Plug to the PC and PE Platform
The Propeller Tool software should be loaded on your PC before starting here.

v"If you have not already done so, complete the Software, Documentation & Resources lab,
starting on page 17 before continuing here.

The first time you connect your Propeller Plug to your PC with a USB cable, two things should
happen:

1) The Propeller Plug’s serial transmit and receive LEDs should flicker briefly.

2) The Windows operating system should display the message “Found New Hardware — USB
Serial Port” followed by “Found New Hardware — Your new hardware is installed and ready
to use.”

Each time you reconnect your Propeller Plug to the PC, the communication LEDs should flicker, but
Windows typically does not display the serial port installation messages again after the first time.

v" The battery should still be disconnected.

Propeller Education Kit Labs: Fundamentals - Page 31

Setup and Testing Lab

v" Connect the Propeller Plug to your computer with the USB cable, and verify that both of the
Propeller Plug’s communication LEDs (red and blue) flicker briefly immediately after you
make the connection.

v Now, connect the Propeller Plug to the 4-pin header in your PE Platform parts side up as
shown in Figure 3-6.

v" Verify that the power indicator LED that’s plugged into the (RED, 10) and (L, 10) sockets
glows faintly. You may have to look straight down on its dome top to see the glow. If the
power LED does not glow faintly, do not proceed to the next step. Instead, go to
Troubleshooting entry (5) on page 40.

Connect Battery Power Supply

When you connect the battery supply, the power LED that glowed faintly when you connected the
Propeller Plug should glow brightly. This indicates that the PE Platform’s 3.3 V regulator is
supplying 3.3 V power to the PE Platform’s Propeller chip, EEPROM, and sockets next to the red
stripes on the power connectors.

v" Connect the battery to the battery clip as shown in Figure 3-6. The PE Platform’s power
LED should glow brightly. If it does not, unplug the battery immediately and go to
Troubleshooting entry (4) on page 40. The same applies if the green power LED takes on an
orange hue.

v"If you have a voltmeter, test the voltage at the red and black power connectors. Each should
now measure 3.3 VDC. If the voltage is incorrect, disconnect the battery and go to
Troubleshooting entry (3) on page 40.

v" Check the AC voltage across the red and black power connectors. There should only be
about 50 mV of AC voltage. For AC voltages greater than 300 mV, go to Troubleshooting
entry (11) on page 42.

Test Communication

The Propeller Tool software’s Identify Hardware feature can be used to verify communication
between the PC and the Propeller chip.

Make sure that the battery is connected.

Verity that the USB cable connects the PC to the Propeller Plug.

Verify that the Propeller Plug is connected to the 4-pin header parts side up (label side down).
Open the Propeller Tool software, click the Run menu select Identify Hardware...(or F7).

If the Propeller Tool reports, “Propeller Chip version 1 found on COM...”, continue to the
next section (Load a Test Program and Test the I/O Pins). Otherwise, go to Troubleshooting
entry (6) on page 41 and Troubleshooting entry (1) on page 37.

ANANENENAN

Load a Test Program and Test the 1/O Pins

These tests are important before proceeding with the PE Kit labs. One example of a problem these
tests can intercept is a bent I/O pin on the Propeller chip. Occasionally, one of the pins gets bent
underneath the Propeller chip instead of sinking into its breadboard socket. It can be difficult to catch
by visual inspection, but if an I/O pin does not sense inputs or control outputs, these tests will lead to
finding the problem quickly. It might otherwise take a lot of time looking for an error in an
application circuit or the accompanying code before discovering a bent pin is the culprit. So follow
along and perform these tests. It won’t take long, and it could end up saving you a lot of time later.

Page 32 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

I/O Pin Test Circuit Parts

v" Open up the PE Project Parts bag and check its contents against the PE Project Parts list in
Table C-2 in Appendix C: PE Kit Components Listing.
v" For the next test circuits, gather the following parts from the PE Project Parts bag:

(1) LED - Red, green or yellow

(1) Resistor — 100 Q (brown-black-brown)
(1) Resistor — 10 kQ (brown-black-orange)
(1) Pushbutton

(4) Jumper wires

Build the Test Circuit

The circuit shown in Figure 3-7 and Figure 3-8 will provide a means of testing the Propeller
chip’s I/O pins as both inputs and outputs. If any of the checklist instructions do not work,
go to Troubleshooting entry (9) on page 41.

Start by verifying that the LED circuit is correct and that all the power connector sockets by the red
vertical lines supply 3.3 V as follows:

v" Disconnect the battery from the battery clip.
v" Build the circuit shown in Figure 3-7 and Figure 3-8.
v" Reconnect the battery to the battery clip.

The LED circuit can be tested by connecting it to one of the power connector rails’ RED sockets,
which should supply it with 3.3 VDC.

v" Disconnect the LED wire from (L, 14) in Figure 3-8, and plug it into (RED, 13) on the power
connector between the center and left prototyping breadboards. The LED should light. If it
doesn’t, double-check your wiring. First, make sure the LED is not plugged in backwards.
Its shorter (cathode) leg should be plugged into a socket next to the black line on the left
power connector.

3.3V

|:| Pushbutton

P3 P18 Figure 3-7: Test Circuit Schematic

100
10 kQ

Propeller Education Kit Labs: Fundamentals - Page 33

Setup and Testing Lab

Figure 3-8: Test Circuit Wiring Diagram

OO -0OOOOO 1 OO - ~OOOOOO 1 POEOEE - | OO

OO POOOOOO | | OOOOOO™ NOOOOOO | | OOOOOON | OO

OO | *OOOOOO | | OOOOOO« »OOOOOO | | OOOOEO« | OO]

OO »OOOEOO® QAOOOAE & ! L OOOOOE QEOOEOEO > | OO

@EETC L))) () () ()()() () () 0 (| WO | 9 @OEO®® () [OI0I0I0IVIVA N ROI0)

QETTOLVLOO® | | © o @S VNETTOOOO00 || DOLLTTT TS
OOOOOO | | ® (OR N ~NEOOOOO | | OOOOOO ~
OOOOO® | | ® (OFd % Do ‘\ 2OOOOOO | | OOOOOO® »

® OOOOO® (O] @*g% Do | OO0 cOOOOOO | | OOOEOO«C | O®

® QOO 03 Tug EOD 13|00 3000000 | | OOOOOOs | O®

OO \OOOOYO | | © Q7| OOT-06 12002000000 | | OOOOOO= | OO

QOJ SNOOOOPO | | © (QUSH NOION IFOIO] | IR |00 |RO00O00 | | OOOOOORN | OO

O 3POOOPO | | OG (G- NOION I-EIO) Ve | 00| 2000000 | | OOOCOOs | OO

PO | 2OOOOOO | |© ORI PO | 20O O 1 QO 200000 | | OOOOOO=R | QO
FOOOOOO | | ® Ok 10J0) Ok OO0 | | QOO
3000000 | | ® O 300 ®3 =Jolololololo Nl NolololololokH

OO | 30O | |© (O NOION BS{O]O OJI|00|ICOOOOO | | OO | @O

OO0 | 300000 | |© Ol 200 Oz l00 3000000 | | OOOOOO | OO

OO0 | 30O | |© @s | OO aO@ @3 |90 | 2000000 | | OCOOEEE3 | OO

OO0 | BOOOOOG | |G® RIo#E=DHY OB | 00| B0000O0 | | OOOOEOBLOO

OO | REOOGOG | |G ETOOLEDE ClaQO | ROOOOOO | | OCOOOOL NG

OO | ROOEOOG | |©® OR | €E@ETRRO @R OY | ROOCERO | | OCOCOER | o
BOOOOOO | | ©® (O] BOO ©OB BOOOOOO | | O0OOOWUR
ROOOOOO | | ® OR RO® OOOR ROOOOOO® | | OOOOOFA

OO0 | ROOOOOO | |© O |00 R0O - QOO Bl B OOOOOO | | 9©OOOCKP &

OO0 | B300OOOG || O |00 80G 2 QOGS | OO0 IROOOOO OOOOW SR

OO | RNOOEGOG | |G® O |00 |NOG 2 QOPN | OO0 | NNOGO® OOOODY]

OO0 | BOOOOOO | |© O | 00| BOO® c OOOR OO | RO®OOOO OOOO®R

OO | BOOOROO | | ® OB |00 BOOOC o QOOB | 00 | BOOOO® OOOOOOR

OO 8EOEOOG Y ©® ©810018600 OOO8 IO 80006 OOOOOOS

yAmYy Ay Ay

The LED circuit can also be used to test and make sure all the RED power rails are connected to the
3.3 V supply. Ifyou already did that with a voltmeter, skip this checklist instruction.

v" Unplug the wire from (RED, 13), and plug it into (RED, 12) on the leftmost power connector.
The LED should glow again. Repeat for (RED, 18) on the leftmost power connector as well
as (RED, 18) on the middle-left power connector. The LED should glow at each test point.
If not, check your board against the wiring diagram in Figure 3-8 for missing jumper wires
between RED power connector sockets.

After testing the LED circuit and power connectors, the LED should be reconnected to the Propeller
I/O pin so that it can be used in conjunction with a test program to indicate that I/O pins are
functioning properly as outputs.

v Reconnect the LED circuit to the Propeller chip’s P3 I/O pin (L, 14) in Figure 3-8.

Test Program - PushbuttonLedTest.spin

As written, PushbuttonLedTest.spin flashes an LED connected to any I/O pin on the Propeller chip’s
left side (PO to P15). The rate the LED flashes depends on whether or not the pushbutton connected
to P18 is pressed (10 Hz) or not pressed (2 Hz). The wire connecting P3 to the LED circuit can be
used to probe each I/O pin. For example, if that wire is instead connected to (L, 11), it confirms that
PO is functioning as an output if it makes the LED blink. Connect the wire to (L, 12), and it confirms,
P1 is functioning, and so on, up through P15 (L, 30). You can use the pin map sticker on your
Propeller chip to quickly and easily locate 1/O pins.

1/0 pin is an abbreviation for input/output pin.

The direction and state of each 1/0 pin is controlled by the program. Programs can set and modify the
directions and states of individual I/O pins as well as groups of I/O pins at any time.

Page 34 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

@ Propeller Tool - PushbuttonLedTest-v1.0 = IEI LI
File Edit Run Help

PushbuttonledT est-v1.0 I

i Ful Sowrce " Condensed i Summary " Documentation |
" File: PushbuttonLedTest.spin 2
" Test program for the Propeller Education Lab "PE Platform Setup’
CON
_clkmode = xtall + plli6x " Feedback and PLL multiplier
_xinfreq = 5H 000_000 " External oscillator = 5 MHz
LEDs_START =0 " Start of I/0 pin group for on/off signals
LEDs_END = 15 " End of I/0 pin group for on/off signals
PUSHBUTTON = 18 " Pushbutton Input Pin
PUB ButtonBlinkSpeed " Main method
" Sends on/off (3.3 V / @ V) signals at approximately 2 Hz.
diral[lLEDs START..LEDs END]~~ ' Set entire pin group to output
repeat " Endless loop
| outa[LEDs START..LEDs_END] ' Change the state of pin group
if ina[PUSHBUTTON] == " If pushbutton pressed
waitcnt (clkfreq / 4 + cnt) " Wait 1/4 second —> 2 Hz
else " If pushbutton not pressed
waitent (clkfreq / 20 + ent) " Wait 1/20 second —> 10 Hz 7
| | _’ILI
W| [inset | [I A

If the LED blinks at 2 Hz while the pushbutton is pressed and held, and blinks at 10 Hz after it is
released, it confirms that P18 is functioning as an input. The program can then be modified and the
wire connecting P18 to the pushbutton can be moved to each I/O pin on the right side of the Propeller
chip to test those I/O pins as inputs.

After all the outputs on the Propeller chip’s left side and all the inputs on its right side have been
tested, the pushbutton can then be moved to the left side and the LED to the right. Then, the test can
be repeated to verify that all I/O pins on the left function as inputs and the pins on the right function
as outputs.

Load PushButtonLedTest.spin into EEPROM

You can load this program into the PE Platform’s EEPROM memory by clicking the Run menu,
selecting Compile Current, and then Load EEPROM (F11). After the program is loaded into
EEPROM, the Propeller chip copies it from EEPROM into its main memory RAM and one of the
Propeller chip’s processors starts executing it. (If you disconnect and reconnect power or press and
release the PE Platform’s reset button, the Propeller chip will reload the program from EEPROM into
main memory and start running it from the beginning.)

v" Open PushbuttonLedTest.spin into the Propeller Tool, or type it in. If you type it, be careful
to indent each line exactly as shown.
v" Click the Propeller Tool’s Run menu and select Compile Current — Load EEPROM (F11).

The Propeller Communication window will appear briefly and display progress as the program loads.
If it closes after the “Verifying EEPROM” message, then the download was successful.

Propeller Education Kit Labs: Fundamentals - Page 35

Setup and Testing Lab

v If instead an error window opens that reads “EEPROM programming error...” refer to
Troubleshooting entry (8) on page 41.

Verify that the LED connected to P3 flashes on/off rapidly, at 10 Hz.

Press and hold the pushbutton down, and verify that the LED flashes slower, at only 2 Hz.

If everything worked as anticipated, go on to I/O Pin Tests below. If it did not work, go to
Troubleshooting entry (9) on page 41.

NN

I/O Pin Tests

Use the pin map sticker on the Propeller chip to locate Propeller I/O pins. If any of these tests
indicate that an I/O pin is faulty, refer to Troubleshooting entry (10) on page 42. The first step is to
use the LED circuit to verify that each I/O pin on the left side of the Propeller chip functions as an
output.

v" Unplug the end of the wire that’s in (L, 14) and use it probe PO through P15. (L, 11) through
(L, 18) and (L, 23) through (L, 30). Each I/O pin should cause the LED circuit to blink.

Next, use the Pushbutton circuit to verify that each I/O pin on the right side of the Propeller chip
functions as an input.

v' Press and hold the pushbutton on the right breadboard. The LED circuit on the left
breadboard should flash at 2 Hz instead of 10 Hz.

v" Disconnect the battery from the battery clip.

v" Unplug the pushbutton wire at P18, (A, 28) on the center breadboard, and plug it into P16 (A,
30).

v" Modify the program to monitor P16 instead of P18 by changing the PUSHBUTTON CON directive
in the PushButtonLedTest.spin object from 18 to 16.

v" Reconnect the battery to the battery clip.

v Load the modified program into RAM by clicking the Run menu and selecting Compile
Current — Load RAM (F10).

v" Verify that the pushbutton, which is now connected to P16, controls the LED frequency.

v" Repeat this procedure for P17, P19, P20, and so on, up through P27.

Load RAM (F10) vs. Load EEPROM (F11): The Propeller Tool software’s Load RAM feature is fast, but the
program gets erased whenever power gets disconnected/reconnected or the PE Platform’s reset button gets
pressed. After a reset, the Propeller chip will load the program most recently loaded into EEPROM and start
executing it. While programs loaded into EEPROM do not get erased, they take longer to load. Since testing
the pushbutton involves iteratively changing and reloading the program into the Propeller chip, it saves time to

@ use Load RAM.

What about testing P28..P31? These propeller 1/O pins are hardwired to the FTDI USB — serial chip and
EEPROM program memory. If you were able to use the Load EEPROM feature it confirms that these I/O pins
are fully functional. While it's true that these pins can be used with some application circuits, you would need
to make sure that the application circuits will not damage and cannot be damaged by the other circuits
connected to P28..P31. See Figure 3-4 on page 27 for details. For the most part, the PE Kit labs will not use
these I/O pins for application circuits.

At this point, half of the Propeller chip’s I/O pins have been tested as outputs, and the other half have
been tested as inputs. Before moving the test circuits to opposite sides of the board, it’s a good idea
to load an empty program into the PE Platform’s EEPROM so that the Propeller chip won’t send
signals to the wrong I/O pins. The power should be disconnected when the circuit is changed. To
make sure the empty program runs automatically when the power gets reconnected, it should be
loaded into EEPROM using F11.

v" Load this program (DoNothing.spin) into EEPROM (F11):

Page 36 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

" File: DoNothing.spin

PUB main " Empty main method

Now, power can be disconnected, the pushbutton can be moved to the left breadboard, and the LED
circuit can be moved to the right breadboard.

Disconnect the battery and USB cable.
Move the LED circuit to the right breadboard and connect it to P16.
Move the pushbutton to the left breadboard and connect it to P15.
Modify the object PushbuttonLedTest.spin as follows:
o Change the LEDs_START CON directive from O to 16.
o Change the LEDs_END CON directive from 15 to 27.
o Change the PUSHBUTTON CON directive to 15.
Reconnect the USB cable and battery.
Load the modified PushbuttonLedTest.spin object into EEPROM using F11.
Repeat the output LED tests for P16 to P27.
Repeat the input pushbutton tests starting at P15, then P14, and so on through P0. Remember
to modify the code, and then load RAM using F10 between each test.

ANENENEN

DN NI

Before Changing or Adjusting Circuits

The program DoNothing.spin causes all the I/O pins to be set to input, ensuring that it cannot
inadvertently send a high (3.3 V) signal to a circuit that’s sending a low (0 V) signal, or vice versa.
When you are finished testing, it’s a good idea to load the DoNothing.spin object back into EEPROM
so that your Propeller chip cannot damage the next circuit that gets connected to it. In fact, make it a
habit. Always load DoNothing.spin into EEPROM using F11 before disconnecting power and
building a new circuit or making changes to an existing one.

v" Load DoNothing.spin into EEPROM (F11) now.

When you reconnect power, DoNothing.spin will automatically load from EEPROM to Propeller
main memory, and the Propeller chip will execute it. It will set all I/O pins to input by default. Then,
the program ends, and the Propeller chip goes into low power mode. This protects the Propeller chip
and your new circuit from the time you turn power back on until the time you load the program for
your new circuit into the Propeller chip.

Troubleshooting for the 40-Pin DIP PE Platform Setup

(1) Programming Connection and Serial Port
a. When you connect the Propeller plug to the USB port, the red and blue LEDs next to the
Propeller Plug’s mini B connector should flicker briefly. If not, try a different port. If
none of the ports result in this response, contact Parallax technical support. (See Tech
Support Resources on page 18.)
b. Run the Propeller Tool, click the Run menu and select Identify Hardware (F7). If you get
the message shown in Figure 3-9:
i. Make sure the USB cable is connected to both the Propeller Plug and your
computer’s USB port.
ii. Check the following jumper wires on your PE Platform: (D, 3) to (D, 10), (F, 10)
to (F, 21), (B, 1) to (B, 12), and (C, 2) to (C, 11)

Propeller Education Kit Labs: Fundamentals - Page 37

Setup and Testing Lab

iii. Also, make sure the battery is connected and that the PE Platform’s green power

LED is glowing brightly. Then, try F7 again.

iv. If that does not correct the problem, try connecting the cable to a different USB

port on your computer.

Communication Error 5[

@ Mo Propeller chip found on serial port,

Scanned COM{ .

Maore than ten serial ports vwere excluded fram the search.
Click 'Edit Ports' for more information.

Edlit Ports... |

Figure 3-9:
Communication
Error Message

c. Ifyou still get the Figure 3-9 message after ensuring that the USB cable is connected:
i. Click the Communication Error message box’s Edit Ports button. The Serial

Port Search List window in should appear. You
clicking the Edit menu and selecting Preferences
and then click the Edit Ports button.

can also access this utility by
(F5). Click the Operation tab

ii. Leave the USB cable plugged into the Propeller Plug and unplug and re-plug the

USB cable into the PC’s USB port. Wait

about 20 seconds between

disconnecting and reconnecting the USB cable. The list should update and show

anew “USB Serial Port” entry like the COM46 lin
iii. If it appears in light gray print, right-click the
(COMX), or in some cases Re-Include Port.

Serial Port Search List

The Propeller loading process will scan these serial ports,
in the order shown.

{FPorts excluded fram the search appear in italics.)

e in Figure 3-10.
entry and select Include Port

x|

Figure 3-10: Serial Port

Port IO Port Description Present
CO1 | Communications Port “es
COMLD | Toshiba 8T Fort Yes
COMIE | sport dekhowns Fin
COMAG | USB Serial Port ‘es

Search List

To modify the Serial Port Search List:

» Click and drag ports up or down to change their search order.

» Right-click on pors for include/exclude options.

Restare Defauﬂsl Accept | Qancel

d. If the serial port search list already does scan for and recognize that port, go to

www.parallax.com and click on the USB Driver Installer

link at the bottom of the page,

and then follow the Troubleshooting link at the bottom of that web page.
e. Ifthe Propeller Tool software still displays the “No Propeller chip found...” message, use

your Device Manager to locate the USB Serial Port.

i. To access the Ports List in the Windows Device Manager, right-click My
Computer and select Properties. Click the Hardware tab, and then click the

Page 38 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

Device Manager Button. In the Device Manager, click the + next to Ports (COM
& LPT).

ii. Each time you plug in the USB cable, a reference to USB Serial Port (COMXX)
should appear, as shown in Figure 3-11. Each time you unplug the cable that
connects the Propeller Plug to the PC, the reference should disappear. For
example, the Device Manager below shows USB Serial Port (COM 46), which
indicates that a Propeller Plug might be connected to COM46.

ol

Flle Action Wiew Help

«> & 28

H- & Monitors |
B8 Network adapters
& [§ PCMCIA adapters
Eh Ports (COM&LPT) Figure 3-11: Device

----- r;gf Communications Pork (COML) Manager Ports List
v B Toshiba BT Port (COM40)

L B USE Serial Port (COM4E)
(-5 Processors
E]--% Smatt card readers
=, sound, video and game controllers
£
E

H-- by System devices
+-E82 Universal Serial Bus contraollers

iii. If the USB Serial Port entry does not appear in the Ports (COM &LPT) list but
the Device Manger display appears to refresh every time you plug and unplug the
USB cable:

1. It may indicate that the Propeller Plug was plugged into the PC and an
attempt to manually install the driver was made before the Propeller Tool
software and driver were installed. Browse the list to find the driver that
gets added each time you plug in the Propeller Plug. When you find it,
uninstall it. You can typically do this by right-clicking the driver and
selecting Uninstall.

2. Then, unplug the Propeller Plug. Before plugging it back in, make sure
the FTDI USB Driver is installed. The easiest way to do this is to
uninstall and reinstall the Propeller Tool.

3. When you reinstall the Propeller Tool software:

a. Make sure the checkbox for installing the USB drivers is
checked! See the Download Software and Documentation
section on page 17 for more information.

b. After you have reinstalled the software, the correct driver should
automatically get installed when you connect the Propeller Plug
to the PC. Make sure to leave the battery disconnected when
you connect the Propeller Plug to the PC with the USB cable for
the first time.

f. Contact Parallax Tech Support. (See page 18.)

(2) If the PE Platform’s power LED did not light, or if it glowed orange, when the battery was
connected:
a. Ifthe power LED glowed orange:
i. Check for a short between the LED’s cathode and ground. The LED should have
a 100 Q series resistor between its cathode (L, 10) and ground (BLACK, 9). The
resistor should bridge (K, 9) to (K, 10).

Propeller Education Kit Labs: Fundamentals - Page 39

Setup and Testing Lab

ii. Check to make sure the voltage at the LED’s anode (RED, 10) is 3.3 V.

b. If the LED did not light, it may be plugged in backwards. Check to make sure the
cathode is connected to the resistor and the anode is connected to the 3.3 V supply. In
terms of Figure 3-5 on page 28, the pin coming out by the flat spot on the otherwise
cylindrical base of the LED’s round plastic housing should be plugged into (L, 10). The
other (anode lead) should be connected to (RED, 10). See Verify Wiring Connections on
page 28 for details.

c. Make sure the battery’s (+) terminal is connected to (L, 1) and its (-) terminal is
connected to (L, 2).

d. There could be a wiring mistake causing a short circuit from one of the supply voltages to
ground. If you don’t have a multimeter, start visually checking your wiring again. With
a multimeter, you can check the resistance between the battery’s negative terminal, and
the three positive supplies. Make sure to disconnect the USB cable and battery before
testing resistance.

iii. Start by measuring the resistance between the 3.3 V connection and the battery’s
negative terminal. For example, test at probe points: (RED, 13) and (J, 4) in the
center breadboard.

iv. Repeat resistance measurements between the battery’s negative terminal (J, 4)
and the 5 V regulated output (G, 3) as well as (J, 4) and the battery input (G, 1).
If any of these resistance measurements shows less than 10 Q, that supply
voltage may have been shorted to ground.

v. Contact Parallax Tech Support. (See page 18.)

(3) If the voltage across the power connectors (RED-BLACK) is not 3.3 V:

a. If your meter is a lesser-quality model or has been subject to heavy use by other students,
check it against a known voltage before trusting its measurements.

b. Repeat Verify Wiring Connections section starting on page 28. Carefully continue
through Connect Battery Power Supply on page 32, paying close attention to detail, and
hopefully you’ll catch the error this time around. These tests can rule out a variety of
problems, including shorts with the 5 and/or 9 V supplies.

(4) If the Power LED does not light when you plug the battery in after socketing the Propeller
chip, but it checked out during previous testing:

a. Check for wiring errors to its pins: If a wire terminates at a row that is shared with a
Propeller chip or 24LC256 EEPROM pin, it’s a prime suspect. Make sure the socket
coordinates are identical to Figure 3-5 on page 28, and Figure 3-6 on page 31.

b. Remove the Propeller chip and 24L.C256 EEPROM from the breadboard and repeat
Verify Wiring Connections on page 28. Continue through Connect Battery Power
Supply on page 32 with attention to detail, and hopefully you’ll catch the error this time
around.

c. Contact Parallax Tech Support. (See page 18.)

(5) If the Power LED does not glow faintly after you connect the Propeller Plug to the PE
Platforms 4-pin header and to the PC with a USB cable:

d. Verify that the resistor in the LED circuit is 100 Q (brown, black, brown).

e. Verify that the power LED’s anode is plugged into (RED, 10), and the cathode is plugged
into (L, 10). The cathode is the pin by the flat spot at the base of the otherwise
cylindrical plastic case.

f. Try the other USB Ports on your PC.

g. Try one of the green LEDs from the PE Project Parts kit. The long (anode) pin should
plug into (RED, 10), and the shorter (cathode) pin into (L, 10).

h. Check all wiring details against Figure 3-5 on page 28, and Figure 3-6 on page 31.

Page 40 - Propeller Education Kit Labs: Fundamentals

3: Setup and Testing Lab

j

Remove the Propeller chip and EEPROM from the breadboard and repeat Test the PE
Platform Wiring on page 29. Continue through Connect Battery Power Supply on page
32, and hopefully you’ll catch the error this time around.

Contact Parallax Tech Support. (See page 18.)

(6) Common causes of the “No Propeller Chip found...” message are:

a.

b.
c.
d

J-

Battery disconnected. Connect the battery.

Dead battery, battery that needs to get recharged.

USB cable not connecting Propeller Plug to PC. Make sure both ends are plugged in.
Propeller Plug not plugged into the 4-pin header, or plugged in upside-down. It should
be parts side up (label side down).

Damaged or worn USB port. Most computers have more than one USB port. Try
another port.

Propeller chip or 24LC256 EEPROM not fully plugged in. The underside of the
Propeller chip and 24LC256 EEPROM should both be flush with the top of the
breadboard. If not, make sure all the pins are lined up with the breadboard holes, then
press down firmly on each chip.

FTDI USB drivers not installed. See entry (1)in this section.

Supply voltages — if you didn’t check the voltages with a voltmeter, it’s time to get one
and do that. (See Test the PE Platform Wiring on page 29.) If the supply voltages are
incorrect, see entry (3).

Propeller chip plugged in upside down. The semicircle Pin-1 indicator on the Propeller
chip sticker shown in Figure 3-6 on page 31 should be adjacent to row 11, not row 30.
Also, verify that the semicircle notch in the Propeller chip is under the printed semicircle
on the sticker, also adjacent to row 11.

Defective USB Cable. If you have a spare USB A to mini B cable, try it.

(7) If the test LED circuit does not light when you plug the jumper wire into (RED, 13):

a.

b.

The polarity on the LED may be backward. Check to make sure the LED’s cathode is
connected to a socket on the power connector next to the black line.

If the LED did not light when probing the power connector on the left, check to make
sure the jumper that that connects the red column in the middle-left power connector to
the red column on the far left power connector.

(8) If you get an “EEPROM programming error...” message when you use the Propeller Tool’s

Load EEPROM feature:

a. Check for loose USB and battery connections.

b. If the problem persists, try a different USB port.

c. Ifyou have a spare USB A to mini B cable, try it.

d. The Propeller chip may not be firmly socketed. See Socket the Propeller Chip and
EEPROM on page 30.

e. Check the following connections: (A, 8) to (A, 14), (A, 9) to (A, 13), (BLACK, 9) to (L,
9), (H, 6) to (H, 7), (I, 7) to (1, 8), (H, 8) to (H, 9), (E, 4) to (E, 7), (RED, 6) to (A, 6), and
the 10 kQ resistor across (D, 5) and (D, 9). See Figure 3-6 on page 31.

f. Make sure the 24L.C256 is not socketed upside-down. The reference notch on the top-
center of the chip should be between (F, 6) and (G, 6).

g. Ifthe problem still persists, contact Parallax Tech Support. (See page 18.)

(9) If the program downloads, but the test LED circuit does not flash:

a.

If you hand-entered the program, download it from the Propeller Education Kit page
instead. Open it with the Propeller Tool software, and use F11 to download it to
EEPROM. This will eliminate the possibility of a typing error during program entry.

Propeller Education Kit Labs: Fundamentals - Page 41

Setup and Testing Lab

b. If the LED does not start flashing, check to make sure the oscillator is plugged in to the
socket. (See the 5.00 MHz Crystal in Figure 3-2 on page 20 and check Figure 3-5 on
page 28 for the correct sockets for connecting the 5.00 MHz oscillator.)

¢. Remove the oscillator and plug it back in, then re-test.

d. Try changing the line in the PushButtonLedTestv1.0.spin that reads _clkmode = xtall +
pll16x to _clkmode = xtall + pll8x. If this change causes the light to start flashing,
change it back to pl116x, load this original program back into the Propeller chip and
verify that the light won’t flash. If that’s the case, please contact Parallax Tech Support.
(See page 18.)

(10) Propeller chip I/O pins are factory tested before shipment. If the LED or pushbutton
tests indicate a bad 1/0 pin:

a. Take a close look at the pin and verify that it did not miss the socket and bend under the
chip’s case.

b. Try touching the LED probe lead to the I/O pin. If the light blinks with this electrical
contact, but not when it is plugged into an adjacent socket:

i. Again, take a look to make sure the pin is not bent under the module.
ii. Try unsocketing the Propeller chip, and verify that the pin is not bent.
iii. If you have a multimeter, test continuity between the socket the I/O pin was in
and the socket the wire was plugged into. If there is no continuity, please contact
Parallax Tech Support. (See page 18.)

c. If the continuity in the breadboard row is good, and the pin is not bent, plug the Propeller
chip back into the breadboard, and test all I/O pins, and take notes on which ones work
and which ones don’t. Also, make notes of any events you observed during testing, and
then contact Parallax Tech Support. (See Tech Support Resources on page 18.)

d. Please see the Warranty Policy at www.parallax.com for more information on replacing a
module with damaged 1/O pins.

(11) 4 VDC or more across (RED, any) and (BLACK, any), or 6 VDC or more across (G, 3)
to (BLACK, any).

a. a. One of the 1000 uF capacitors may not be not properly connected. This is indicated
by a DC voltage measurement that is 1 to 2.5 V above what it should be.

i. Check to make sure the capacitor leads are inserted into the correct sockets.
ii. Check to make sure the capacitor leads are long enough and making sufficient
contact with the socket.

b. If the voltage across (G, 3) to (BLACK, any) turns out to be 9 V, a wiring mistake may
be shorting the battery's positive terminal (G..L, 1) to (G..L, 3).

c. Ifthe voltage across (RED, any) and (BLACK, any) measures 9 V, a wiring mistake may
be shorting the battery's positive terminal (G..L, 1) to either (G..L, 6) or to one of the red
power connectors.

d. If the problem still persists, contact Parallax Tech Support. (See page 18.)

Page 42 - Propeller Education Kit Labs: Fundamentals

http://www.parallax.com/

4:1/0 and Timing Basics Lab

4:1/0 and Timing Basics Lab

Introduction

Most microcontroller applications involve reading inputs, making decisions, and controlling outputs.
They also tend to be timing-sensitive, with the microcontroller determining when inputs are
monitored and outputs are updated. The pushbutton circuits in this lab will provide simple outputs
that the example applications can monitor with Propeller I/O pins set to input. Likewise, LED
circuits will provide a simple and effective means of monitoring propeller 1/O pin outputs and event
timing.

While this lab’s pushbutton and LED example applications might seem rather simple, they make it
possible to clearly present a number of important coding techniques that will be used and reused in
later labs. Here is a list of this lab’s example applications and the coding techniques they introduce:

e Turn an LED on — assigning I/O pin direction and output state

e Turn groups of LEDs on — group I/O assignments

e Signal a pushbutton state with an LED — monitoring an input, and setting an output
accordingly

e Signal a group of pushbutton states with LEDs — parallel I/O, monitoring a group of inputs
and writing to a group of outputs

¢ Synchronized LED on/off signals — event timing based on a register that counts clock ticks
Configure the Propeller chip’s system clock — choosing a clock source and configuring the
Propeller chip’s Phase-Locked Loop (PLL) frequency multiplier

o Display on/off patterns — Introduction to more Spin operators commonly used on I/O
registers

e Display binary counts — introductions to several types of operators and conditional looping
code block execution
Shift a light display — conditional code block execution and shift operations

o Shift a light display with pushbutton-controlled refresh rate — global and local variables
and more conditional code block execution

o Timekeeping application with binary LED display of seconds — Introduction to
synchronized event timing that can function independently of other tasks in a given cog.

Prerequisite Labs
e Setup and Testing

Parts List and Schematic
This lab will use six LED circuits and three pushbutton circuits.

(6) LEDs — assorted colors

(6) Resistors — 100 Q

(3) Resistor — 10 kQ

(3) Pushbutton — normally open
(misc) jumper wires

v" Build the schematic shown in Figure 4-1.

Propeller Education Kit Labs: Fundamentals - Page 43

/0 and Timing Basics Lab

Figure 4-1: LED Pushbutton Schematic

GND

s

LEDs 100 Q(all)
P4

P5 3.3V 3.3V 3.3V

P6 |:| Pushbutton |:| Pushbutton |:| Pushbutton
P7 P21 P22 P23

P8 10 kQ 10 kQ 10 kQ

P9

Propeller Nomenclature

The Propeller microcontroller’s documentation makes frequent references to cogs, Spin, objects,
methods, and global and local variables. Here are brief explanations of each term:

Cog — a processor inside the Propeller chip. The Propeller chip has eight cogs, making it
possible to perform lots of tasks in parallel. The Propeller is like a super-microcontroller
with eight high speed 32-bit processors inside. Each internal processor (cog) has access to
the Propeller chip’s I/O pins and 32 KB of global RAM. Each cog also has its own 2 KB of
RAM that can either run a Spin code interpreter or an assembly language program.

Spin language — The Spin language is the high-level programming language created by
Parallax for the Propeller chip. Cogs executing Spin code do so by loading a Spin interpreter
from the Propeller chip’s ROM. This interpreter fetches and executes Spin command codes
that get stored in the Propeller chip’s Global RAM.

Propeller cogs can also be programmed in low-level assembly language. Whereas high-
level Spin tells a cog what to do, low-level assembly language tells a cog how to do it.
Assembly language generates machine codes that reside in a cog’s RAM and get executed
directly by the cog. Assembly language programs make it possible to write code that
optimizes a cog’s performance; however, it requires a more in-depth understanding of the
Propeller chip’s architecture. The PE Kit Fundamentals labs focus on Spin programming.
Method — a block of executable Spin commands that has a name, access rule, and can
optionally create local (temporary) variables, receive parameters, and return a value.

Global and local variables — Global variables are available to all the methods in a given
object, and they reserve variable space as long as an application is running. Local variables
are defined in a method, can only be used within that method, and only exist while that
method executes commands. When it’s done, the memory these local variables used becomes
available to other methods and their local variables. Local and global variables are defined
with different syntax.

Object — an application building block comprised of all the code in a given .spin file. Some
Propeller applications use just one object but most use several. Objects have a variety of uses,
depending partially on how they are written and partially on how they get configured and
used by other objects. Some objects serve as top objects, which provide the starting point
where the first command in a given application gets executed. Other objects are written to
provide a library of useful methods for top objects or other objects to use.

Page 44

- Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

Objects can be written to use just one cog, or can include code that gets launched into one or more
additional cogs. Some objects have methods that provide a means to exchange information with
processes running in other cogs. One object can even make multiple copies of another object, and set
each one to a different task. Objects can use other objects, which in turn can use still other objects.
In more complex applications, a set of objects will form functional relationships that can be viewed as
a file structure with the Propeller Tool’s Object Info window.

The examples in this lab only involve single, top-level objects with just one method. Upcoming labs
will introduce various building-block techniques for using multiple objects and methods in an
application, as well as parallel multiprocessing applications using multiple cogs. Though the objects
in this lab are simple, many of them will be modified later to serve as building blocks for other
objects and/or future projects.

Lights on with Direction and Output Register Bits

The LedOnP4 object shown below has a method named LedOn, with commands that instruct a cog in
the Propeller chip to set its P4 1/O pin to output-high. This in turn causes the LED in the circuit
connected to P4 to emit light.

v" Load LedOnP4 into RAM by clicking Run — Compile Current — Load RAM (or press F10).

" File: LedOnP4.spin

PUB LedOn " Method declaration
diral4] =1 " Set P4 to output
outal4] =1 " Set P4 high
repeat " Endless loop prevents program from ending

How LedOnP4.spin Works

The first line in the program is a documentation comment. Single-line documentation comments are
denoted by two apostrophes (not a quotation mark) to the left of the documentation text.

v" Click the Documentation radio button above the code in the Propeller Editor.
While commands like dira :=... and repeat don’t show in documentation mode, notice that the text
to the right of the double apostrophe documentation comments does appear. Notice also that the non-
documentation comments in the code, preceded by single apostrophes, do not appear in

Documentation mode.

v" Try the other radio buttons and note what elements of the object they do and do not show.

Block Comments: There are also documentation block comments that can span multiple lines. They have to
begin and end with double-braces like this: {{ block of documentation comments }}. Non-documentation
comments can also span multiple lines, beginning and ending with single-braces like this: { block of non-

documentation comments }.

All Spin language commands that the Propeller chip executes have to be contained within a method
block. Every method block has to be declared with at least an access rule and a name. Access rules
and method names will be explored in depth in upcoming labs; for now, just keep in mind that PUB
LedOn is a method block declaration with a public (PUB) access rule and the name LedOn.

Propeller Education Kit Labs: Fundamentals - Page 45

/0 and Timing Basics Lab

Bold or not bold? In the discussion paragraphs, the Parallax font used in the Propeller Tool is also used for
all text that is part of a program. The portions that are reserved words or operators will be in bold. The
portions that are defined by the user, such as method, variable, and constant names and values, will not be in
@ bold text. This mimics the Propeller Tool software’s syntax highlighting Spin scheme. Code listings and
snippets are not given the extra bolding. To see the full syntax-highlighted version, view it in the Propeller
Tool with the Spin scheme. Go to Edit— Preferences— Appearance to find the Syntax Highlighting Scheme
menu.

The dira register is one of several special purpose registers in cog RAM; you can read and write to
the dira register, which stores I/O pin directions for each I/O pin. A 1 in a given dira register bit sets
that I/O pin to output; a 0 sets it to input. The symbol “:="is the Assignment operator; the command
dira[4] := 1 assigns the value 1 to the dira register’s Bit 4, which makes P4 an output. When an
I/0 pin is set to output, the value of its bit in the outa register either sets the I/O pin high (3.3 V) with
a1, or low (0 V) with a 0. The command outal4] := 1 sets I/O pin P4 high. Since the P4 LED
circuit terminates at ground, the result is that the LED emits light.

1/0 Sharing among Cogs? Each cog has its own I/O Output (outa) and I/O Direction (dira) registers. Since
our applications use only one cog, we do not have to worry about two cogs trying to use the same I/O pin for
G) different purposes at the same time. When multiple cogs are used in one application, each 1/O pin 's direction
and output state is the "wired--OR" of the entire cogs collective. How this works logically is described in the
1/0O Pin section in Chapter 1 of the Propeller Manual.

The repeat command is one of the Spin language’s conditional commands. It can cause a block of
commands to execute repeatedly based on various conditions. For repeat to affect a certain block of
commands, they have to be below it and indented further by at least one space. The next command
that is not indented further than repeat is not part of the block, and will be the next command
executed after the repeat loop is done.

Since there’s nothing below the repeat command in the LedOnP4 object, it just repeats itself over
and over again. This command is necessary to prevent the Propeller chip from automatically going
into low power mode after it runs out of commands to execute. If the repeat command weren’t there,
the LED would turn on too briefly to see, and then the chip would go into low power mode. To our
eyes it would appear that nothing happened.

Modifying LedOnP4

More than one assignment can be made on one line.

v" Replace this:

diral[4] =1
outal4] =1
...with this:
diral[4] := outal[4] := 1

Of course, you can also expand the LedOn method so that it turns on more than one LED.

v" Modify the LedOn method as shown here to turn on both the P4 and P5 LEDs:

PUB LedOn
diral4] := outa[4] := 1
dira[5] := outal[5] := 1
repeat

Page 46 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

If the repeat command was not the last command in the method, the LEDs would turn back off again
so quickly that it could not be visually discerned as on for any amount of time. Only an oscilloscope
or certain external circuits would be able to catch the brief “on” state.

v" Try running the program with the repeat command commented with an apostrophe to its left.
v"If you have an oscilloscope, set it to capture a single edge, and see if you can detect the
signal.

/0 Pin Group Operations

The Spin language has provisions for assigning values to groups of bits in the dira and outa registers.
Instead of using a single digit between the brackets next to the outa command, two values separated
by two dots can be used to denote a contiguous group of bits. The binary number indicator % provides
a convenient way of defining the bit patterns that get assigned to the group of bits in the outa or dira
registers. For example, diral4..9] := #111111 will set bits 4 through 9 in the dira register (to
output.) Another example, outal4..9] := %101010 sets P4, clears P35, sets P6, and so on. The result
should be that the LEDs connected to P4, P6, and P8 turn on while the others stay off.

v" Load GrouploSet.spin into RAM (F10).
v" Verify that the P4, P6, and P8 LEDs turn on.

" File: GrouploSet.spin

PUB LedsOn
diral4..9] := %111111
outal4..9] := %101010
repeat

Modifying GrouploSet.spin

Notice that outal4..9] := %101010 causes the state of the outa register’s bit 4 to be set (to 1), bit 5
cleared (to 0), and so on. If the pin group’s start and end values are swapped, the same bit pattern
will cause bit 9 to be set, bit 8 to be cleared, and so on...

v" Replace
outal4..9] := %101010
...with this
outal9..4] = %101010

v" Load the modified program into the Propeller chip’s RAM and verify that the LEDs display a
reversed bit pattern.

It doesn’t matter what value is in an outa register bit if its dira register bit is zero. That’s because the
I/0 pin functions as an input instead of an output when its dira register bit is cleared. An I/O pin
functioning as an input detects high and low signals instead of sending them. While a pin configured
to function as an output either transmits 3.3 or 0 V, a pin configured to input doesn’t transmit at all
because it is instead monitoring the voltage applied to the pin.

An I/O pin set to output-high connected to an LED circuit turns the light on when it applies 3.3 V to
the LED circuit. Since the other end of the LED circuit is connected to ground (0 V), the electrical

Propeller Education Kit Labs: Fundamentals - Page 47

/0 and Timing Basics Lab

pressure across the LED circuit causes current to flow through the circuit, which turns the light on.
An I/O pin set to output-low turns the light off because it applies 0 V to the LED circuit. With 0 V at
both ends of the circuit, there is no electrical pressure across the circuit, so no current flows through
it, and the light stays off. The light also stays off when the I/O pin is set to input, but for a different
reason. An I/O pin set to input doesn’t apply any voltage at all because it is instead sensing voltage
applied to it by the circuit. The result is the same, the LED stays off.

Since an I/O pin set to input doesn’t apply any voltage to a circuit, it doesn’t matter what value is in
the corresponding outa register bit. The LED circuit connected to that pin will remain off. Here is an
example that sets all the bits in outa[4. .9] but not all the bits in dira[4..9]. The LEDs connected to
P6 and P7 will not turn on because their /O pins have been set to input with zeros in the dira
register.

v" Set all the outal4. .9] bits.

outal4..9] := %111111

v" Clear bits 6 and 7 in diral4..9].

diral4..9] := %110011

v" Load the modified program into the Propeller chip’s RAM and verify that the 1’s in the
outa[6] and outal[7] bits cannot turn on the P6 and P7 LEDs because their I/O pins have
been set to inputs with zeros in dira[6] and dira[7].

Reading an Input, Controlling an Output

The ina register is a read-only register in Cog RAM whose bits store the voltage state of each I/O pin.
When an I/O pin is set to output, its ina register bit will report the same value as the outa register bit
since ina bits indicate high/low I/O pin voltages with 1 and 0. If the I/O pin is instead an input, its
ina register bit updates based on the voltage applied to it. If a voltage above the I/O pin’s 1.65 V
logic threshold is applied, the ina register bit stores a 1; otherwise, it stores a 0. The ina register is
updated with the voltage states of the I/O pins each time an ina command is issued to read this
register.

The pushbutton connected to P21 will apply 3.3 V to P21 when pressed, or 0 V when not pressed. In
the ButtonToLed object below, dira[21] is set to 0, making I/O pin P21 function as an input. So, it
will store 1 if the P21 pushbutton is pressed, or 0 if it is not pressed. By repeatedly assigning the
value stored in ina[21] to outa[6], the ButtonLed method makes the P6 LED light whenever the P21
pushbutton is pressed. Notice also that the command outal6] := ina[21] is indented below the
repeat command, which causes this line to get executed over and over again indefinitely.

v" Load ButtonToLed.spin into RAM.
v" Press and hold the pushbutton connected to P21 and verify that the LED connected to P6
lights while the pushbutton is held down.

" File: ButtonTolLed.spin
" Led mirrors pushbutton state.

PUB ButtonlLed ' Pushbutton/Led Method
dira[6] :=1 " P6 -+ output
dira[21] := 0 " P21 » input (this command is redundant)
repeat " Endless loop
outal[6] := inal[21] " Copy P21 input to P6 output

Page 48 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

Read Multiple Inputs, Control Multiple Outputs

A group of bits can be copied from the ina to outa registers with a command like outal6..4] :=
ina[21..23]. The diral6] := 1 command will also have to be changed to dira[6..4] := %111
before the pushbuttons will make the LEDs light up.

v Save a copy of ButtonToLed, and modify it so that it makes the P23, P22, and P21
pushbuttons light up the P4, P5 and P6 LEDs respectively. Hint: you need only one outa
command.

v Try reversing the order of the pins in outal[6..4]. How does this affect the way the
pushbutton inputs map to the LED outputs? What happens if you reverse the order of bits in
inal[21..23]?

Timing Delays with the System Clock

Certain I/O operations are much easier to study with code that controls the timing of certain events,
such as when an LED lights or how long a pushbutton is pressed. The three basic Spin building
blocks for event timing are:

e cnt —aregister in the Propeller chip that counts system clock ticks.
clkfreq — a command that returns the Propeller chip’s system clock frequency in Hz.
Another useful way to think of it is as a value that stores the number of Propeller system
clock ticks in one second.

e waitent —a command that waits for the cnt register to get to a certain value.

The waitent command waits for the ent register to reach the value between its parentheses. To
control the amount of time waitent waits, it’s best to add the number of clock ticks you want to wait
to cnt, the current number of clock ticks that have elapsed.

The example below adds clkfreq, the number of clock ticks in 1 second, to the current value of ent.
The result of the calculation between the parentheses is the value the cnt register will reach 1 s later.
When the ent register reaches that value, waitent lets the program move on to the next command.

waitent (clkfreq + cnt) " wait for 1 s.

To calculate delays that last for fractions of a second, simply divide clkfreq by a value before adding
it to the cnt register. For example, here is a waitent command that delays for a third of a second, and
another that delays for 1 ms.

waitent (clkfreq/3 + cnt) " wait for 1/3 s
waitent (clkfreq/1000 + cnt) " wait for 1 ms

The LedOnOffP4.spin object uses the waitent command to set P4 on, wait for V4 s, turn P4 off, and
wait for %4 s. The LED will flash on/off at 1 Hz, and it will stay on for 25 % of the time.

" File: LedOnOffP4.spin

PUB LedOnOff

diral4] := 1

repeat
outal4] := 1
waitent (clkfreq/4 + cnt)
outal4] := 0

waitent (clkfreq/4*3 + cnt)

Propeller Education Kit Labs: Fundamentals - Page 49

/0 and Timing Basics Lab

v Load LedOnOffP4 object into the Propeller chip’s RAM and verify that the light flashes
roughly every second, on % of the time and off % of the time.

Remember that indentation is important! Figure 4-2 shows a common mistake that can cause unexpected
results. On the left, all four lines below the repeat command are indented further than repeat. This means
they are nested in the repeat command, and all four commands will be repeated. On the right, the lines below
repeat are not indented. They are at the same level as the repeat command. In that case, the program never
gets to them because the repeat loop does nothing over and over again instead!

Notice the faint lines that connect the “r" in repeat to the commands below it. These lines indicate the
commands in the block that repeat operates on.

To enable this feature in the Propeller Tool software, click Edit and select Preferences. Under the Appearance
tab, click the checkmark box next to Show Block Group Indicators. Or, use the shortcut key Ctrl+l.

Figure 4-2: Repeat Code Block The commands below repeat are not
9 P indented further, so they are not part of the
This repeat loop repeats four commands repeat loop.
ol ioix]
LedOn0fiP4 | Leddn0fiP4: |
i+ Full Source " Condensed Summary Documentation i+ Full Source i~ Condensed " Summary i~ Documentation
" File: LedOn0ffFi. spin =1 "' File: LedOnOffP4. spin =
PUB LedOnOff PUB LedOnOff
diralt] := 1 diral[4] :=1
repeat repeat
outals] = 1 outals] := 1
waitent (clkfreq/t + cnt) waitenti(clkfreq/4 + cnt)
outals] = 0@ outals] =0
waitent (clkfreq/4*3 + cnt) s waitenticlkfreq/4*3 + cnt) L

Inside waitcnt(clkfreq + cnt)

When Run — Compile Current — Load... is used to download an object, the Propeller Tool software
examines it for certain constant declarations that configure the Propeller chip’s system clock. If the
object does not have any such clock configuration constants, the Propeller Tool software stores
default values in the Propeller chip’s CLK register which set it to use the internal RC oscillator to fast
mode (approximately 12 MHz) for the system clock. With the default 12 MHz system clock, the
instruction waitent (clkfreq + cnt) is equivalent to the instruction waitent (12_000_000 + cnt).

Figure 4-3 shows how waitent (12_000_000 + cnt) waits for the ent register to accumulate 12 million
more clock ticks than when the waitent command started. Keep in mind that the cnt register has
been incrementing with every clock tick since the Propeller chip was either reset or booted. In this
example, ent reached the 50,000,008™ clock tick at the point when the waitent command was
executed. Then, the ent value that waitent waits for is 12,000,000 + 50,000,008 = 62,000,008. So,
the cog executing waitent (12_000_000 + cnt) is not allowed to move on to the next command until
the cnt register reaches the 62,000,008™ clock tick.

Page 50 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

Figure 4-3: The waitcnt Command and the cnt Register

System Clock
=~ 12MHz Default .
cnt register 1 2 3 4 5 i::)

) > B P 0 & G G
. ~ S S Y Y Y Y Y
cnt re gis ter 000 090 000 090 %0 %O %0 %0
R 0% w 00 \ 00(9 S Oo ~ 0;0 “ O% R OO) \ O%)
cnt
A
waitent (12 000 000 + ent) >

System Clock Configuration and Event Timing

Up to this point, our programs have been using the Propeller chip's default internal 12 MHz clock.
Next, let's modify them to use the external 5.00 MHz oscillator in our PE Platform circuit. Both Spin
and Propeller Assembly have provisions for declaring constants that configure the system clock and
making sure that all the objects know its current operating frequency. The CON block designator
defines a section of code for declaring Propeller configuration settings, as well as global constant
symbols for program use.

Declarations similar to ones in the CON block below can be added to a top object to configure the
Propeller chip’s system clock. This particular set of declarations will make the Propeller chip’s
system clock run at top speed, 80 MHz.

CON
_xinfreq
_clkmode

5 _000_000
xtall + plllbx

The line _xinfreq = 5_000_000 defines the expected frequency from the external oscillator, which in
the PE Platform’s case is 5.00 MHz. The line clkmode = xtall + pll16x causes the Propeller Tool
software’s Spin compiler to set certain bits in the chip’s CLK register when it downloads the
program. (See the Propeller Manual for more information.) The xtall clock mode setting
configures certain XO and XI pin circuit characteristics to work with external crystals in the 4 to 16
MHz range.

The frequency of the external crystal provides the input clock signal which the Propeller chip’s
phase-locked loop (PLL) circuit multiplies for the system clock. pll16x is a predefined clock mode
setting constant which makes the PLL circuit multiply the 5 MHz frequency by 16 to supply the
system with an 80 MHz clock signal. The constant p118x can be used with the same oscillator to run
the Propeller chip’s system clock at 40 MHz. pll4éx will make the Propeller chip’s system clock run
at 20 MHz, and so on. The full listing of valid _clkmode constant declarations can be found in the
Propeller Manual's Spin Language Reference _CLKMODE section.

Propeller Education Kit Labs: Fundamentals - Page 51

/0 and Timing Basics Lab

Crystal Precision

The Propeller chip's internal RC clock serves for non-timing-sensitive applications, such as controlling outputs
based on inputs and blinking lights. For applications that are timing-sensitive like serial communication, tone
generation, servo control, and timekeeping, the Propeller chip can be connected to crystal oscillators and other
higher-precision external clock signals via its XI and XO pins.

The Propeller chip’s internal oscillator in its default RCFAST mode is what the Propeller chip uses if the program
does not specify the clock source or mode. This oscillator's nominal frequency is 12 MHz, but its actual
frequency could fall anywhere in the 8 to 20 MHz range. That's an error of +66 to — 33%. Again, for
applications that do not require precise timing, it suffices. On the other hand, an application like asynchronous
serial communication can only tolerate a total of 5 % error, and that's the sum of both the transmitter's and
receiver’s timing errors. In practical designs, it would be best to shoot for an error of less than 1%. By using
an external crystal for the Propeller chip’s clock source, the clock frequency can be brought well within this
tolerance, or even within timekeeping device tolerances.

The PE Platform has an ESC Inc. HC-49US quartz crystal connected to the Propeller chip’s Xl and XO pins
that can be used in most timing-sensitive applications. The datasheet for this part rates its room temperature
frequency tolerance at +/- 30 PPM, meaning +/- 30 clock ticks for every million. That's a percent error of only
+/- 0.003%. Obviously, this is more than enough precision for asynchronous serial communication, and it's
also great for servo control and tone generation. It's not necessarily ideal for watches or clocks though; this
crystal’s error could cause an alarm clock or watch to gain or lose up to 2.808 s per day. This might suffice for
datalogging or clocks that periodically check in with an atomic clock for updates. Keep in mind that to make
the Propeller chip function with digital wristwatch precision, all it takes is a more precise oscillator.

The HC-49US datasheet also has provisions for temperature (+/- 50 PPM) and aging (+/- 5 PPM per year).
Even after 5 years, and at its rated -10 to + 70 ° C, the maximum error would be 105 PPM, which is still only
+/- 0.0105% error. That's still great for asynchronous serial communication, tone generation, and servo
control, but again, an alarm clock might gain or lose up to 9 s per day.

Since clkfreq stores the system clock frequency, object code can rely on it for correct timing,
regardless of the system clock settings. The clkfreq command returns the number of ticks per second
based on the Propeller chip’s system clock settings. For example, this CON block uses _xinfreq =
5 000 000 and _clkmode = xtall + plll6x, so clkfreq will return the value of 5,000,000 x 16,
which equals 80,000,000.

ConstantBlinkRate.spin can be configured to a variety of system clock rates to demonstrate how
clkfreq keeps the timing constant regardless of the clock frequency.

v

v
v

CON

_xinfreq
_clkmode

Load ConstantBlinkRate.spin into the Propeller chip’s RAM (F10). The system clock will be
running at 80 MHz.

Verify that the blink rate is 1 Hz.

Modify the _clkmode constant declaration to read _clkmode = xtall + pll8x to make the
system clock run at 40 MHz, and load the program into RAM (F10).

File: ConstantBlinkRate.spin

= 5 _000_000
xtall + plllbx

PUB LedOnOff

diral4] := 1

repeat
outal[4] =1
waitent (clkfreq/2 + cnt)
outal4] := 0

waitent (clkfreq/2 + cnt)

Page 52

Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

The Propeller chip’s system clock is now running at 40 MHz. Is the LED still blinking on/off at 1 Hz?

v" Repeat for plléx, pl12x, and plllix. There should be no change in the blink rate at any of
these system clock frequencies.

Timing with clkfreq vs. Timing with Constants

Let’s say that a constant value is used in place of clkfreq to make the program work a certain way at
one particular system clock frequency. What happens when the Propeller system clock frequency
changes?

v" Save a copy of the ConstantBlinkRate object as BlinkRatesWithConstants.spin.

v Make sure the PLL multiplier is set to p111x so that the system clock runs at 5 MHz.

v" For a 1 Hz on/off signal, replace both instances of clkfrq/2 with 2_500_000. (The Propeller
Tool accepts underscores, but not commas, in long numbers to make them more legible.)

v" Load the object into the Propeller chip’s RAM and verify that the LED blinks at 1 Hz.

v" Next, change the PLL multiplier to p112x. Load the modified object into the Propeller chip’s
RAM. Does the light blink twice as fast? Try plléx, pl18x, and pl116x.

When a constant value was used instead of clkfreq, a change in the system clock caused a change in
event timing. This is why objects should use clkfreq when predictable delays are needed, especially
for objects that are designed to be used by other objects. That way, the programmer can choose the
best clock frequency for the application without having to worry about whether or not any of
application’s objects will behave differently.

More Output Register Operations

In the I/0 Pin Group Operations section, binary values were assigned to groups of bits in the dira and
outa registers. There are lots of shortcuts and tricks for manipulating groups of 1/O pin values that
you will see used in published code examples.

The Post-Set “~~” and Post-Clear “~” Operators

Below are two example objects that do the same thing. While the object on the left uses techniques
covered earlier to set and clear all the bits in diral4..9] and outal4..9], the one on the right does it
differently, with the Post-Set “~~"and Post-Clear “~”operators. These operators come in handy when
all the bits in a certain range have to be set or cleared.

"'File: LedsOnOff.spin "'File: LedsOnOffAgain.spin
""All LEDS on for 1/4 s and off "'All LEDS on for 1/4 s and off
"'for 3/4 s. "'"for 3/4 s with post set/clear.
PUB BlinklLeds PUB BlinklLeds
diral4..9] := %111111 diral4..9]~~
repeat repeat
outal4..9] := %111111 outalk..9]~~
waitent (clkfreq/4 + cnt) waitent (clkfreq/4 + cnt)
outal4..9] := %000000 outal4..9]~
waitent (clkfreq/4*3 + cnt) waitent (clkfreq/4*3 + cnt)

v" Load each program into the Propeller chip’s RAM and verify that they function identically.

Propeller Education Kit Labs: Fundamentals - Page 53

/0 and Timing Basics Lab

v Examine how the Post-Set operator replaces := %111111 and the Post-Clear operator replaces
:= %000000.

v Try modifying both programs so that they only affect P4..P7. Notice that the Post-Set and
Post-Clear operators require less maintenance since they automatically set or clear all the bits
in the specified range.

The Bitwise Not “!” Operator

Here are two more example programs that do the same thing. This time, they both light alternate
patterns of LEDs. The one on the left has familiar assignment operators in the repeat loop. The one
on the right initializes the value of outal4..9] before the repeat loop. Then in the repeat loop, it
uses the Bitwise NOT “!” operator on outal4..9]. If outal4..9] stores %100001, the command
toutal4..9] inverts all the bits (1s become 0Os, Os become 1s). So, the result of !outal4..9] will be
%011110.

v" Load each object into the Propeller chip’s RAM and verify that they function identically.
v" Try doubling the frequency of each object.

"'File: LedsOnOff50Percent.spin "'File: LedsOn0ff50PercentAgain.spin
"'Leds alternate on/off 50% of "'Leds alternate on/off 50% of
"'the time. ""the time with the ! operator.
PUB BlinklLeds PUB BlinklLeds
diral4..9]~~ diral4..9]~~
outal4..9] := %100001
repeat
repeat
outal4..9] := %100001
waitent (clkfreq/4 + cnt) loutal4..9]
outal4..9] = %011110 waitent (clkfreq/4 + cnt)

waitent (clkfreq/4 + cnt)

Register Bit Patterns as Binary Values

A range of bits in a register can be regarded as digits in a binary number. For example, in the
instruction outa[9..4] := %000000,recall that % is the binary number indicator; %#000000 is a 6-bit
binary number with the value of zero. Operations can be performed on this value, and the result
placed back in the register. The IncrementOuta object below adds 1 to outa[9..4] each time through
arepeat loop. The result will be the following sequence of binary values, displayed on the LEDs:

Binary Value = Decimal Equivalent

%000000 0
2000001 1
%000010 2
%000011 3
%000100 4
%000101 5
etc...

%111101 61
%I111110 62
%I111111 63

Page 54 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

v" Load IncrementOuta.spin it into RAM.

" File: IncrementOuta.spin

PUB BlinkLeds

dira[9..4]~~
outal9..4]~
repeat
waitent (clkfreq/2 + cnt) "change to (clkfreq + cnt) to slow down the loop

outal9..4] = outal9..4] + 1

The loop starts by setting LED I/O pins to output with dira[9..4]~~. Next, outal[9..4]~ clears all
the bits in the outa register range 9..4 to %000000, binary zero. The first time through the repeat
loop, 1 is added to it, the equivalent of outa[9..4] := %000001, which causes the P4 LED to light up.
As the loop repeats indefinitely, the LED pattern cycles through every possible permutation.

The Increment “++” operator

The Increment “++’operator can be used instead of + 1 to increment a value. The command
outa[9..4]++ is equivalent to outa[9..4] = outa[9..4] + 1.

v Modify the outa command in the repeat loop to use only outa[9. .4]++.
v" Load the modified object into RAM. Do the LEDs behave the same way?

Conditional Repeat Commands

Syntax options for repeat make it possible to specify the number of times a block of commands is
repeated. They can also be repeated until or while one or more conditions exist, or even to sweep a
variable value from a Start value to a Finish value with an optional step Delta.

v" Read the syntax explanation in the REPEAT section of the Propeller Manual's Spin Language
Reference, if you have it handy.

Let's modify IncrementOuta.spin further to stop after the last value (%111111 = 63) has been
displayed. To limit the loop to 63 cycles just add an optional Count expression to the repeat
command, like this:

repeat 63

v" Save IncrementOuta.spin as BinaryCount.spin.

v Add the Count value 63 after the repeat command.

v" To keep the LEDs lit after the repeat block terminates, add a second repeat command below
the block. Make sure it is not indented further than the first repeat.

v" Load the BinaryCount object into the Propeller chip’s RAM and verify that the LEDs light up
according to the Binary Value sequence.

There are a lot of different ways to modify the repeat loop to count to a certain value and then stop.
Here are a few repeat loop variations that count to decimal 20 (binary %010100); the second
example uses the Is Equal “==" operator, the third uses the Is Less Than “<” operator.

repeat 20 " Repeat loop 20 times
repeat until outa[9..4] == 20 " Repeat until outa[9..4] is equal to 20
repeat while outa[9..4] < 20 " Repeat while outa[9..4] is less than 20

Propeller Education Kit Labs: Fundamentals - Page 55

/0 and Timing Basics Lab

Operations in Conditions and Pre and Post Operator Positions

(11 more ways to count to 20)

The outal9..4]++ command can be removed from the code block in the repeat loop and incremented
right inside the repeat command conditions. The IncrementUntilCondition.spin object shows an
example that counts to 20 with outa[9. . 4] incremented by ++ right in the repeat loop’s condition.

" File: IncrementUntilCondition.spin
PUB BlinkLeds
diral4..9]~~
repeat until outa[9..4]++ == 19
waitent (clkfreq/2 + cnt)

repeat

outa and dira initialize to zero when the program starts, so there is no need to include outa[9..4]~.

v" Load IncrementUntilCondition.spin into the Propeller and verify that it counts to 20.

Note that the loop repeats until 19, but the program actually counts up to 20. Another way to use ++
in the repeat loop’s condition is to place it before outal9. . 4], like this:

repeat until ++outa[9..4] == 20

Modify the IncrementUntilCondition object’s repeat command, with its condition being until
++outal9..4] == 20. Verify that it still stops counting at 20.

What’s the difference? If the ++ is placed to the left of outal[9..4], it is typically called
Pre-Increment and the operation is performed before the ++outa[9..4] ==... condition is evaluated.
(The operator “--" placed to the left called Pre-Decrement.) Likewise, if ++ or -- is placed to the
right of outa[9..4], it is typically called Post-Increment or Post-Decrement, and the operation is
performed after the condition is evaluated.

With repeat until outal9..4]++ == 19, the loop delays at waitent when outal9..4] stores 0, 1,
2...19. When outal9..4] stores 19, the loop does not repeat the waitent. However, since the post-
incrementing occurs after the condition is evaluated, another 1 gets added to outal9. . 4] even though
the loop doesn't get repeated again.

With repeat until ++outa[8..4] == 20, outa[9..4] is pre-incremented, so the first delay doesn’t
occur until after outal9..4] gets bumped up to 1. The next delay occurs after 2, 3, and so on up
through 19. The next repetition, outal9..4] becomes 20, so waitent command inside the loop does
not execute, but again, the last value that outa[9. . 4] holds is 20.

Instead of repeating until a condition is true, a loop can be repeated while a condition is true. Here
are examples that count to 20 using the while condition, with Post- and Pre-Increment operators
adding 1 to outal[9. . 4]:

Page 56 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

repeat while outa[9..4]++ < 19 ' Repeat while outa[9..4] post-incremented is less
" than 19.

repeat while ++outa[9..4] < 20 " Repeat while outa[9..4] pre-incremented is less
" than 20.

Notice that the post-incremented loop counts to 20, repeating while outa[9. . 4] is less than 19, but the
pre-incremented version repeats while outal9. . 4] is less than 20. Notice that with repeat while...,
the Is Less Than “<” operator is used instead of the Is Equal “=="operator. These two approaches
demonstrate the distinction between repeating until something is equal to a value as opposed to
repeating while something is less than a value.

Of course, you could also use the Is Equal or Less “=<” operator, or even the Is Not Equal “<>”
operator. Here are examples of those; in each case the LED display will stop at binary 20.

repeat while outa[9..4]++ =< 18 ' Repeat while outa[9..4] post-incremented is less
" than or equal to 18.

repeat while ++outa[9..4] =< 19 " Repeat while outa[9..4] pre-incremented is less
" than 19.

repeat while ++outa[9..4] <> 20 " Repeat while outa[9..4] pre-incremented is not
' equal to 20.

Is Greater “>” or even Is Equal or Greater “=>" also be used with repeat until...

repeat until outa[9..4]++ > 18 " Repeat until outa[9..4] post-incremented is
' greater than 18.

repeat until ++outa[9..4] > 19 " Repeat until outa[9..4] pre-incremented is
' greater than 19.

repeat until ++outa[9..4] => 20 " Repeat until outa[9..4] pre-incremented is equal
" or greater than 20.

repeat until outa[9..4]++ => 19 " Repeat until outa[9..4] post-incremented is equal

or greater than 19.

v' Examine each of the repeat commands and try each one in the IncrementUntilCondition
object.

If there are any question marks in your brain about this, don’t worry right now. The point of this
section is to demonstrate that there is a variety of ways to make comparisons and to increment values.
Upcoming labs will include better ways to display each loop repetition so that you can test each
approach.

More Repeat Variations with From...To...
(Or, Another 3 Ways to Count to 20)

Here is one more condition for repeat, repeating outal9. . 4] from one value fo another value. With
each repetition of the loop, this form of repeat automatically adds 1 to the count each time through.
Take a look at the code snippet below. The first time through the loop, outal9..4] starts at 0. The
second time through, 1 is automatically added, and the condition is checked to make sure outal9..4]
is greater than or equal to 0 or less than or equal to 19. 1 is added each time through the loop. After
the repetition where outal9. . 4] is equal to 19, it adds 1 to outa[9. . 4], making 20. Since 20 is not in
the "from 0 to 19" range, the code in the loop does not execute.

repeat outal[9..4] from @ to 19 " Add 1 to outal[9..4] with each repetition
" start at 0 and count through 19. Repeats Code
" block when outa[9..4] gets to 20.

Propeller Education Kit Labs: Fundamentals - Page 57

/0 and Timing Basics Lab

Here is a repeat command that serves a similar function using and. It tests for two conditions, both of
which must be true in order for the loop to repeat. Here we need to increment outal9. . 4] within the
loop block:

repeat while (outal9..4] => 0) and (outa[9..4] =< 19)
outal9..4]++

Another nice thing about the repeat...from...to... form is you can use an optional step argument.
For example, if you want to repeat what’s in a loop with outa[9..4] at all even values, and exit the
loop leaving outa[9..4] at 20, here’s a way to do it:

Repeat outal[9..4] from @ to 18 step 2

v' Try the various repeat command variations in this section in the IncrementUntilCondition
object.

Some Operator Vocabulary

Unary operators have one operand. For example, the Negate operator in the expression -1 is a
unary operator, and 1 is the operand. Binary operators have two operands; for example, the Subtract

operator “-” in the expression x - y is a binary operator, and both x and y are operands.

@_s

Normal operators, such as Add “+”, operate on their operands and provide a result for use by the rest
of the expression without affecting the operand(s). Some operators we have used such as :=, ~~, ~,
and ! are assignment operators. Unary assignment operators, such as ~ , ~~, and ++ write the result of
the operation back to the operand whereas binary assignment operators, such as :=, assign the result
to the operand to the immediate left. In both cases the result is available for use by the rest of the
expression.

The shift operators Shift Right “>>"and Shift Left“<<” take the binary bit pattern of the value in the
first operand and shift it to the right or the left by the number of bits specified by a second operand,
and returns the value created by the new bit pattern. If an assignment form is used (>>= or <<=) the
original value is overwritten with the result. The shift operators are part of a larger group, Bitwise
operators, which perform various bit manipulations. The Bitwise NOT “!”operator we used earlier
is an example.

Some normal and assignment operators have the additional characteristic of being a comparison
operator. A comparison operator returns true (-1) if the values on both sides of the operator make the
expression true, or false (0) if the values on both sides make the expression false. (These binary
comparison operators are also called Boolean operators; there is also a unary Boolean operator, NOT.)

Conditional Blocks with if

As with many programming languages, Spin has an if command that allows a block of code to be
executed conditionally, based on the outcome of a test. An if command can be used on its own, or as
part of a more complex series of decisions when combined with elseif, elseifnot and else.
Comparison operators are useful to test conditions in if statements:

if outal9..4] ==
outal9..4] := %100000

waitent (clkfreq/10 + cnt)

Page 58 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

If the condition is true, the block of code (one line in this case) below it will be executed. Otherwise,
the program will skip to the next command that’s at the same level of indentation as the if statement
(here it is waitent).

Shifting LED Display

The next example object, ShiftRightP9toP4.spin, makes use of several types of operators to
efficiently produce a shifting light pattern with our 6 LED circuits.

v" Load ShiftRightP9toP4 into the Propeller chip’s RAM.

v" Orient your PE platform so that the light appears to be shifting from left to right over and
over again.

v" Verify that the pattern starts at P9 and ends at P4 before repeating.

" File: ShiftRightP9toP4.spin

" Demonstrates the right shift operator and if statement.
PUB ShiftlLedslLeft
diral[9..4] ~~
repeat

if outal[9..4] ==
outal9..4] := %100000

waitent (clkfreq/10 + cnt)
outal[9..4] >>= 1

Each time through the repeat loop, the command if [9..4] == 0 uses the == operator to compare
outa[9. . 4] against the value 0. If the expression is true, the result of the comparison is -1. If it’s
false, the result is 0. Remember that by default outa[9..4] is initialized to zero, so the first time
through the repeat loop outal9..4] == 0 evaluates to true. This makes the if statement execute the
command outa[9..4] := %100000, which turns on the P9 LED.

After a 1/10 s delay, >>= (the Shift Right assignment operator) takes the bit pattern in outa[9. . 4] and
shifts it right one bit with this instruction: outa[9..4] >>= 1. The rightmost bit that was in outa[4] is
discarded, and the vacancy created in outa[9] gets filled with a 0. For example, if outal9..4] stores
%011000 before outal9..4] >>= 1, it will store %001100 afterwards. If the command was
outa[9..4] >>= 3, the resulting pattern would instead be %000011.

Each time through the loop, the outa[9..4] >>= 1 command shifts the pattern to the right, cycling
through %100000, %010000, %001000,..., %000001, %000000. When outal9..4] gets to
%000000, the if command sees that outal9. . 4], stores a 0, so stores %100000 in outal[9..4], and the
shifting LED light repeats.

v" Try changing the second operand in the shift right operation from 1 to 2, to make the pattern
in outal9..4] shift two bits at a time. You should now see every other LED blink from left
to right.

Propeller Education Kit Labs: Fundamentals - Page 59

/0 and Timing Basics Lab

Variable Example

The ButtonShiftSpeed object below is an expanded version of ShiftRightP9toP4 that allows you to
use pushbuttons to control the speed at which the lit LED shifts right. If you hold the P21 pushbutton
down the shift rate slows down; hold the P22 pushbutton down and the shift rate speeds up. The
speed control is made possible by storing a value in a variable. The pattern that gets shifted from left
to right is also stored in a variable, making a number of patterns possible that cannot be achieved by
performing shift operations on the bits in outal9. . 4].

v" Load ButtonShiftSpeed.spin into RAM.
v" Try holding down the P22 pushbutton and observe the change in the LED behavior, then try
holding down the P21 pushbutton.

" File: ButtonShiftSpeed.spin
" LED pattern is shifted left to right at variable speeds controlled by pushbuttons.

VAR
Byte pattern, divide
PUB ShiftlLedslLeft

dira[9..4] ~~
divide := 5

repeat

if pattern =
pattern

]
%11000000

if inal[22] == 1
divide ++
divide <#= 254

elseif inal[21] ==
divide --
divide #>= 1

waitent (clkfreq/divide + cnt)
outa[9..4] := pattern
pattern >>= 1

ButtonShiftSpeed has a variable (VAR) block that declares two byte-size variables, pattern and
divide. The pattern variable stores the bit pattern that gets manipulated and copied to outa[9..4],
and divide stores a value that gets divided into clkfreq for a variable-length delay.

Byte is one of three options for variable declarations, and it can store a value from 0 to 255. Other
options are word (0 to 65535) and long (-2,147,483,648 to 2,147,483,647). Variable arrays can be
declared by specifying the number of array elements in brackets to the right of the variable name. For
example, byte myBytes[20] would result in a 20-eclement array named myBytes. This would make
available the VaﬁableSmngtes[@],mgBytes[l],mngtes[Z],”.,myBgtes[18],and myBytes[19]

The first if block in the repeat loop behaves similarly to the one in the ShiftRightP9toP4 object.
Instead of outa[9. . 4], the if statement examines the contents of the pattern variable, and if it’s zero,
the next line reassigns pattern the value %11000000.

Page 60 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

The Limit Minimum “#>"and Limit Maximum “<#” Operators

Spin has Limit Minimum “#>” and Limit Maximum “<#”operators that can be used to keep the value
of variables within a desired range as they are redefined by other expressions. In our example object,
the second if statement in the repeat loop is part of an if..elseif.. statement that checks the
pushbutton states. If the P22 pushbutton is pressed, divide gets incremented by 1 with divide ++, and
then divide is limited to 254 with <#=, the assignment form of the Limit Maximum operator. So, if
divide ++ resulted in 255, the next line, divide <#= 254 reduces its value back to 254. This prevents
the value of divide from rolling over to 0, which is important because divide gets divided into
clkfreq in a waitent command later in the repeat loop. If the P21 pushbutton is pressed instead of
P22, the divide variable is decremented with divide --, which subtracts 1 from divide. The #>=
assignment operator is used to make sure that divide never gets smaller than 1, again preventing it
from getting to 0.

After the if...elseif... statement checks the pushbutton states and either increments or decrements
the divide variable if one of the pushbuttons is pressed, it uses waitent (clkfreq/divide + ent) to
wait for a certain amount of time. Notice that as divide gets larger, the time waitent waits gets
smaller. After the waitcnt delay that’s controlled by the divide variable, pattern gets stored in outa
with outa[9..4] := pattern. Last of all, the pattern variable gets shifted right by 1 for the next
time through the loop.

Comparison Operations vs. Conditions

Comparison operators return true (-1) or false (0). When used in if and repeat blocks, the specified
code is executed if the condition is non-zero. This being the case, if ina[22] can be used instead of
if ina[22] == 1. The code works the same, but with less processing since the comparison operation
gets skipped.

When the button is pressed, the condition in if ina[22] == 1 returns -1 since ina[22] stores a 1
making the comparison true. Using just if ina[22] will still cause the code block to execute when
the button is pressed since ina[22] stores 1, which is still non-zero, causing the code block to
execute. When the button is not pressed, ina[22] stores 0, and ina[22] == 1 returns false (0). In
either case, the if statement’s condition is 0, so the code below either if ina[22] == @ or if ina[22]
gets skipped.

v Change if ina[22] == 1...elseif ina[21] == 1 to if ina[22]...elseif ina[21]..., and
verify that the modified program still works.

Local Variables

While all the example objects in this lab have only used one method, objects frequently have more
than one method, and applications typically are a collection of several objects. Methods in
applications pass program control, and optionally parameters, back and forth between other methods
in the same object as well as methods in other objects. In preparation for working with multiple
methods in the next labs, let's look at how a method can create a local variable.

Variables declared in an object’s VAR section are global to the object, meaning all methods in a given
object can use them. Each method in an object can also declare local variables for its own use. These
local variables only last as long as the method is being executed. If the method runs out of commands
and passes program control back to whatever command called it, the local variable name and memory
locations get thrown back in the heap for other local variables to use.

Propeller Education Kit Labs: Fundamentals - Page 61

/0 and Timing Basics Lab

The two global variables in the ButtonShiftSpeed object can be replaced with local variables as
follows:

v Remove the VAR block (including its byte variable declarations).
v" Add the pipe | symbol to the right of the method block declaration followed by the two
variable names separated by commas, then test the program verify it still functions properly.

PUB ShiftLedsLeft | pattern, divide
The pattern and divide variables are now local, meaning other methods in the object could not use
them; since our object has just one method this is of no consequence here. There is one other
difference. When we used the VAR block syntax, we had the option of defining our global variables as
byte, word, or long in size. However, local variables are automatically defined as longs and there is
no option for byte or word size local variables.

Timekeeping Applications

For clock and timekeeping applications, it’s important to eliminate all possible errors, except for the
accuracy of the crystal oscillator. Take a look at the two objects that perform timekeeping.
Assuming you have a very accurate crystal, the program on the left has a serious problem! The
problem is that each time the loop is repeated, the clock ticks elapsed during the execution of the
commands in the loop are not accounted for, and this unknown delay accumulates along with
clkfreq + cnt. So, the number of seconds the seconds variable will be off by will grow each day
and will be significantly more than just the error introduced by the crystal’s rated +/- PPM.

"'File: TimekeepingBad.spin "'File: TimekeepingGood.spin
CON CON
_xinfreq = 5 000 000 _xinfreq = 5_000_000
_clkmode = xtall + plllx _clkmode = xtall + plllx
VAR VAR
long seconds long seconds, dT, T
PUB BadTimeCount PUB GoodTimeCount
diral[4]~~ dira[9..4]~~
repeat dT := clkfreq
waitent (clkfreq + cnt) T = cnt
seconds ++
! outal4] repeat
T += dT

waitent (T)
seconds ++
outal[9..4] := seconds

The program on the right solves this problem with two additional variables: T and dT. A time
increment is set with dT := clkfreq which makes dT equal to the number of ticks in one second. A
particular starting time is marked with T := cnt. Inside the loop, the next cnt value that waitent has
to wait for is calculated with T += dT. (You could alsouse T := T + dT.) Adding dT to T each time
through the loop creates a precise offset from original marked value of T. With this system, each new
target value for waitent is exactly 1 second’s worth of clock ticks from the previous. It no longer
matters how many tasks get performed between waitent command executions, so long as they take
under 1 second to complete. So, the program on the right will never lose any clock ticks and maintain

Page 62 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

a constant 1 s time base that’s as good as the signal that the Propeller chip is getting from the external
crystal oscillator.

Tip:
In TimeKeepingGood.spin, two lines:
@ T +=dT
waitent (T)
can be replaced with this single line:

waitent (T += dT).

v" Try running both objects. Without an oscilloscope, there should be no noticeable difference.
v Add a delay of 0.7 s to the end of each object (inside each repeat loop). The object on the left
will now repeat every 1.7 s; the one on the right should still repeat every 1 s.

Instead of a delay, imagine how many other tasks the Propeller chip could accomplish in each second
and still maintain an accurate time base!

Various multiples of a given time base can have different meanings and uses in different applications.
For example, these objects have seconds as a time base, but we may be interested in minutes and
hours. There are 60 seconds in a minute, 3,600 seconds in an hour and 86,400 seconds in a day.
Let’s say the application keeps a running count of seconds. A convenient way of determining
whether another minute has elapsed is by dividing seconds by 60 to see if there is a remainder. The
Modulus “//”operator returns the reminder of division problems. As the seconds pass, the result of
seconds // 60 is 0 when seconds is 0, 60, 120, 180, and so on. The rest of the time, the Modulus
returns whatever is left over. For example, when seconds is 121, the result of seconds // 60 is 1.
When seconds is 125, the result of seconds // 60 1is 5, and so on.

This being the case, here’s an expression that increments a minutes variable every time another 60
seconds goes by:

if seconds // 60 ==

minutes ++

Here’s another example with hours:

if seconds // 3600 ==

hours ++

For every hour that passes, when minutes gets to 60, it should be reset to zero. Here is an example of
a nested if statement that expands on the previous minutes calculation:

if seconds // 60 ==
minutes ++
if minutes == 60
minutes = 0

The TimeCounter object below uses synchronized timekeeping and a running total of seconds with
the Modulus operator to keep track of seconds, minutes, hours, and days based on the seconds count.
The value of seconds is displayed in binary with the 6 LED circuits. Study this program carefully,
because it contains keys to this lab’s projects that increment a time setting based in different durations
of holding down a button. It also has keys to another project in which LEDs are blinked at different
rates without using multiple cogs. (When you use multiple cogs in later labs, it will be a lot easier!)

Propeller Education Kit Labs: Fundamentals - Page 63

/0 and Timing Basics Lab

v" Load TimeCounter.spin into EEPROM, and verify that it increments the LED count every
Is.

v Modify the code so that the last command copies the value held by minutes into outal9..4],
and verify that the LED display increments every minute.

"'File: TimeCounter.spin
CON

5_000_000
xtall + plllx

_xinfreq
_clkmode

VAR

long seconds, minutes, hours, days, dT, T
PUB GoodTimeCount

dira[9..4]~~

dT :
T

clkfreq
cnt

repeat

T +=dT
waitent (T)
seconds++

if seconds // 60 == 0

minutes++
if minutes == 60
minutes = 0
if seconds // 3600 == 0
hours++
if hours == 24
hours = 0
if seconds // 86400 ==
days++
outal[9..4] := seconds

Eventually, the seconds variable will reach variable storage limitations. For example, when it gets to
2,147,483,647, the next value will be -2,147843,648, and after that, -2,147,843,647, -2,147,843,646,
and so on down to -2, -1. So, how long will it take for the seconds counter to get to 2,147,483,647?
The answer is 68 years. If this is still a concern for your application, consider resetting the second
counter every year.

Study Time

Questions

1) How many processors does the PE Kit’s Propeller microcontroller have?

2) How much global RAM does the Propeller microcontroller have?

3) What’s the Propeller chip’s supply voltage? How does this relate to an I/O pin’s high and
low states?

4) Where does the Propeller chip store Spin code, and how is it executed?

5) How does executing Spin codes differ from executing assembly language codes?

6) What’s the difference between a method and an object?

Page 64 - Propeller Education Kit Labs: Fundamentals

4:1/0 and Timing Basics Lab

7) What’s a top object?

8) What do bits in the dira and outa registers determine?

9) Without optional arguments the repeat command repeats a block of code indefinitely. What
types of optional arguments were used in this lab, and how did they limit the number of loop
repetitions?

10) What Spin command used with waitent makes it possible to control timing without knowing
the Propeller chip’s system clock frequency in advance?

11) If commands are below a repeat command, how do you determine whether or not they will
be repeated in the loop?

12) What was the most frequent means of calculating a target value for the waitent command,
and what register does the waitent command compare this target value to?

13) What’s the difference between _xinfreq and _clkmode?

14) What does the phase-locked loop circuit do to the crystal clock signal?

15) Why is it so important to use a fraction of clkfreq instead of a constant value for delays?

16) Which clock signal will be more accurate, the Propeller’s internal RC clock or an external
crystal?

17) What registers control I/O pin direction and output? If an I/O pin is set to input, what
register’s values will change as the application is running, and how are the values it returns
determined by the Propeller?

18) What’s the difference between dira/outa/ina syntax that refers to single bit in the register and
syntax that denotes a group of bits?

19) What indicator provides a convenient means of assigning a group of bit values to a
contiguous group of bits in a dira/outa/ina register?

20) How does an I/0 pin respond if there is a 0 in its dira register bit and a 1 in its outa register
bit?

21) If bits in either dira or outa are not initialized, what is their default value at startup?

22) What assignment operators were introduced in this lab?

23) What comparison operators were used in this lab?

24) What’s the difference between the :=and == operators?

25) Are comparison operators necessary for if conditions?

26) What are the two different scopes a variable can have in an object?

27) What are the three different variable sizes that can be declared? What number range can each
hold? Does the scope of a variable affect its size?

28) How does a method declare local variables? What character is required for declaring more
than one local variable?

Exercises

1) Write a single line of code that sets P8 through P12 to output-high.

2) Write commands to set P9 and P13 through P15 to outputs. P9 should be made output-high,
and P13 through P15 should be low.

3) Write a single initialization command to set PO through P2 to output and P3 through P8 to
input.

4) Write a repeat block that toggles the states of P8 and P9 every 1/100 s. Whenever P8 is on,
P9 should be off, and vice versa.

5) Write a repeat loop that sets PO through P7 to the opposite of the states sensed by P8 through
P15. You may want to consult the Propeller Manual’s list of assignment operators for the
best option.

6) Write a CON block to make the Propeller chip’s system clock run at 10 MHz.

7) Write code for a five-second delay.

8) Write code that sets P5 through P11 high for 3 seconds, then sets P6, P8, and P10 low.
Assume the correct dira bits have already been set.

Propeller Education Kit Labs: Fundamentals - Page 65

/0 and Timing Basics Lab

9) Write a method named LightsOn with a repeat loop that turns on P4 the first second, P5 the
second, P6 the third, and so on through P9. Assume that the I/O pin direction bits have not
been set. Make sure the lights stay on after they have all been turned on.

10) Write a method that turns an LED connected to P27 on for 5 s if a pushbutton connected to
PO has been pressed, even if the button is released before 5 s. Don’t assume 1/O directions
have been set. Make sure to turn the P27 LED off after 5 s.

11) Write a second countdown method that displays on the P4 through P9 LEDs. It should count
down from 59 to 0 in binary.

12) Write a second countdown method that displays on the P4 through P9 LEDs. It should count
down from 59 to 0 in binary, over and over again, indefinitely.

13) Write a method named PushTwoStart that requires you to press the buttons connected to P21
and P23 at the same time to start the application. For now, the application can do as little as
turn an LED on and leave it on.

14) Write a method named PushTwoCountdown that requires you to press the buttons connected to
P21 and P23 at the same time to start the application. The application should count down
from 59 to 0 using P9 through P4.

Projects

1) Connect red LEDs to P4 and P7, yellow LEDs to P5 and P8, and green LEDs to P6 and P9.
Assume that one set of LEDs is pointing both directions on the north south street, and the
other set is pointing both ways on the east west street. Write an non-actuated street controller
object (one that follows a pattern without checking to find out which cars are at which
intersections).

2) Repeat the previous project, but assume that the N/S street is busy, and defaults to green
while the E/W street has sensors that trigger the lights to change.

3) Use a single cog to make LEDs blink at different rates (this is much easier with multiple
cogs, as you will see in later labs). Make P4 blink at 1 Hz, P5 at 2 Hz, P6 at 3 Hz, P7 at 7 Hz,
P8 at 12 Hz and P9 at 13 Hz.

4) Buttons for setting alarm clock times typically increment or decrement the time slowly until
you have held the button down for a couple of seconds. Then, the time
increments/decrements much more rapidly. Alarm clock buttons also let you
increment/decrement the time by rapidly pressing and releasing the pushbutton. Write an
application that lets you increase or decrease the binary count for minutes (from 0 to 59) with
the P21 and P23 pushbuttons. As you hold the button, the first ten minutes increase/decrease
every 2 s, then if you continue to hold down the button, the minutes increase/decrease 6
times as fast. Use the P9 through P4 LEDs to display the minutes in binary.

5) Extend project 4 by modifying the object so that it is a countdown timer that gets set with the
P21 and P23 buttons and started by the P22 button.

Page 66 - Propeller Education Kit Labs: Fundamentals

5: Methods and Cogs Lab

5: Methods and Cogs Lab

Introduction

Objects are organized into code building blocks called methods. In Spin, method names can be used
to pass program control and optionally parameter values from one method to another. When one
method uses another method’s name to pass it program control, it’s called a method call. When the
called method runs out of commands, it automatically returns program control and a result value to
the line of code in the method that called it. Depending on how a method is written, it may also
receive one or more parameter values when it gets called. Common uses for parameter values include
configuration, defining the method’s behavior, and input values for calculations.

Methods can also be launched into separate cogs so that their commands get processed in parallel
with commands in other methods. The Spin language has commands for launching methods into
cogs, identifying cogs, and stopping cogs. When Spin methods are launched into cogs, global
variable arrays have to be declared to allocate memory for the methods to store return addresses,
return values, parameters, and values used in calculations. This memory is commonly referred to as a
as stack space.

This lab demonstrates techniques for writing methods, calling methods, passing parameters to
methods, and returning values from methods. It also demonstrates using method calls in commands
that launch instances of methods into separate cogs, along with an overview of estimating how much
stack space will be required for one or more Spin methods that get executed by a given cog.

Prerequisite Labs

e Setup and Testing
e /O and Timing Basics

Parts List and Schematic
This lab will use six LED circuits and three pushbutton circuits (the same as I/O and Timing Basics)

(6) LEDs — assorted colors

(6) Resistors — 100 Q

(3) Resistor — 10 kQ

(3) Pushbutton — normally open
(misc) jumper wires

v" Build the circuits shown in Figure 5-1.

Propeller Education Kit Labs: Fundamentals - Page 67

Methods and Cogs Lab

Figure 5-1: LED Pushbutton Schematic

LEDs 100 Q (all)
P4

P5 3.3V 3.3V 3.3V

P6 b Pushbutton h Pushbutton h Pushbutton
P7 P21 P22 P23

P8 10 kQ 10 kQ 10 kQ

P9 — — —

it

GND

Defining a Method’s Behavior with Local Variables

The AnotherBlinker object below uses three local variables, pin, rate, and reps, to define its repeat
loop’s LED on/off behavior. With the current variable settings, it makes P4 blink at 3 Hz for 9 on/off
repetitions. Since the repeat loop only changes the LED state (instead of a complete on/off cycle),
the object needs twice the number of state changes at half the specified delay between each state
change. So, the reps variable has to be multiplied by 2 and rate has to be divided by 2. That’s why
the repeat loop repeats for reps * 2 iterations instead of just reps iterations, and that’s also why the
waitent command uses rate/2 instead of rate for the 3 Hz blink rate.

v" Run the AnotherBlinker.spin object, and verify that it makes the P4 LED blink at 3 Hz for 9
repetitions.

v' Try a variety of pin, rate and reps settings and verify that they correctly define the repeat
loop’s behavior.

" AnotherBlinker.spin
PUB Blink | pin, rate, reps

pin = &4
rate ‘= c
reps = 9

lkfreq/3

diralpin]~~
outa[pin]N

repeat reps * 2
waitent (rate/2 + cnt)
loutalpin]

Calling a Method

The Blink method is used again in the next example object, CallBlink, along with another method
named Main. Figure 5-2 shows how the Blink method is called from within the Main method.
Program execution begins at Main, the first PUB block. When the program gets to the Blink line in the
Main method, program control gets passed to the Blink method. That’s a minimal version of a method

Page 68 - Propeller Education Kit Labs: Fundamentals

5: Methods and Cogs Lab

call. When the Blink method is done blinking the LED 9 times, program control gets passed back to
the Blink method call in the Main method. That’s the method return, or just the “return.”

Let's take a closer look at the CallBlink object’s Main method. It starts by turning on the P9 LED, to
let the user know that the P23 pushbutton can be pressed. The repeat until ina[23] loop keeps
repeating itself until the P23 button is pressed and the program moves on, turning off the P9 LED
with outa[9] := 8. Then, it calls the Blink method, which blinks P4 at 3 Hz for 9 reps, and then
returns. The next command is waitent (clkfreq/2*3 + cnt) which pauses for 3/2 s. Then, the
outermost repeat loop in the Main method starts its next iteration. At that point, the P9 LED turns on
again, indicating that the P23 pushbutton can again trigger the P4, 3 Hz, 9 reps sequence.

v" Load the CallBlink.spin object into the Propeller chip.

v" When the P9 LED turns on, press/release the P23 pushbutton.

v Wait for the P9 LED to turn on again after the P4 LED has blinked 9 times.
v" Press/release the P23 pushbutton again to reinitiate the sequence.

Figure 5-2: Calling a Method
" CallBlink.spin

PUB Main

repeat
outal[9] := dira[9] := 1
repeat until ina[23]
outal[9] := 0 Next

Methog BLANK | oooooeeeecammmsmsmsemeessesss™ Command
Ca%i://’zéf""UéIEEnt(clkfreq/2*3 + cnt)
PUB Blink | pin, rate, reps

4
clkfreq/3
9

pin
rate :
reps -

Method

diralpin]~~ Return

outa[pin]”

repeat reps * 2
waitent (rate/2 + cnt)
loutal[pin]

Parameter Passing

The Blink method we just used sets the values of its pin, rate, and reps local variables with
individual var : = expression instructions. To make methods more flexible and efficient to use, the
value of their local variables can be defined in the method call instead of within the method itself.

Figure 5-3 below shows how this works in the BlinkWithParams object. The modified Blink method
declaration now reads: Blink(pin, rate, reps). The group of local variables between the
parentheses is called the parameter list. Notice how the Blink method call in the BlinkTest method
also has a parameter list. These parameter values get passed to the local variables in the Blink
method declaration’s parameter list. In this case, the BlinkTest passes 4 to pin, clkfreq/3 to rate,
and 9 to reps. The result is the same as the AnotherBlinker object, but now code in one method
can pass values to local variables in another method.

Propeller Education Kit Labs: Fundamentals - Page 69

Methods and Cogs Lab

v" Load BlinkWithParams.spin into the Propeller chip and verify that the result is the same the
previous AnotherBlinker object.
v" Try adjusting the parameter values in the method call to adjust the Blink method’s behavior.

Figure 5-3: Parameter Passing

" BlinkWithParams.spin
PUB BlinkTest

Blink (4, clkfreq/3, 9)

PUB Blink(pin, rate, reps)

diralpin]~~
outa[pin]~

repeat reps * 2
waitent (rate/2 + cnt)
loutal[pin]

Methods can be re-used with different parameter values in each method call; here Blink is called
three times with different parameters, and a 1 s pause in between.

PUB BlinkTest

Blink (4, clkfreq/3, 9)
waitent (clkfreq + cnt)
Blink (5, clkfreq/7, 21)
waitent (clkfreq + cnt)
Blink (6, clkfreq/11, 39)

Here is another example that blinks a different LED each time the pushbutton is pressed and released.
This is a variation of the CallBlink object’s Main method, with a local variable named led and a
repeat loop that sets the led variable to 4, 5, ..., 8,9, 4,5, ...8,9, An updated Blink method call
passes the value in the led variable to the Blink method's pin parameter. Since led changes with each
iteration of the repeat led.... loop, the pin variable will receive a different value each time Blink is
called. The result? Each time the pushbutton is pressed (after P9 lights up), a different LED will
blink at 3 Hz for 9 reps.

PUB BlinkTest | led
repeat
repeat led from 4 to 9

outal[9] := dira[9] := 1

repeat until ina[23]
outal9] := 0
Blink (led, clkfreq/3, 9)
waitent (clkfreq/2%3 + cnt)

The BlinkTest method's local variable led could have been named pin because it’s a local variable,
so only code in the BlinkTest method uses it. Code in the Blink method also has a local variable pin,
but again, only code in the Blink method will be aware of that pin variable’s value.

v" Try the two modified versions of BlinkTest just discussed and make sure they make sense.
v" Try changing the parameters so that the P4 LED blinks four times, P5 blinks 5 times, and so
on.

Page 70 - Propeller Education Kit Labs: Fundamentals

5: Methods and Cogs Lab

Launching Methods into Cogs

All the methods in the objects up to this point have executed in just one of the Propeller chip’s cogs,
Cog 0. Each time the Blink method was called, it was called in sequence, so the LEDs blinked one at
a time. The Blink method can also be launched into several different cogs, each with a different set
of parameters, to make the LEDs all blink at different rates simultaneously. The BlinkWithCogs
object shown in Figure 5-4 demonstrates how to do this with three cognew commands.

The first method in a top object automatically gets launched into Cog 0, so the Blinker object’s
LaunchBlinkerCogs method starts in Cog 0. It executes three cognew commands, and then runs out of
instructions, so Cog 0 shuts down. Meanwhile, three other cogs have been started, each of which runs
for about three seconds. After the last cog runs out of commands, the Propeller chip goes into low
power mode.

Figure 5-4: Launching Methods Into Cogs with Parameter Passing

" BlinkWithCogs.spin

VAR

long stack[30] Cog 0
5’ LaunchBlinkerCogs commands
PUB LaunchBlinkCogs

cognew (Blink (4, clkfreq/3, 9), @stack[0])
cogneuw (Blink (5, clkfreq/7, 21), @stack[10])

Launch into
Cog 1

Launch into

Cog 2 Launch inis cogneuw (Blink (6, clkfreq/11, 39), estack[20])
Cog 3 Cog 1
: : Blinker(4, clkfreq/3, 9)
PUB Blink(pin, rate, reps) RAM @stack[0]
diralpin]~~
outal[pin]~ Cog 2
Blinker(5, clkfreq/7, 21)
repeat reps * 2 RAM @stack[10]
waitent(rate/2 + cnt)
loutal[pin]
Cog 3
Blinker(6, clkfreq/11, 39)
RAM @stack[20]

While Cog 0 accesses unused Global RAM that comes after the program codes to store method call
return addresses, local variables and intermediate expression calculations, other cogs that execute
Spin methods have to have variables set aside for them. Such variable space reserved in Global RAM
for those temporary storage activities is called stack space, and the data stored there at any given
moment is the stack. Notice that the BlinkWithCogs object in Figure 5-4 has a long stack[30]
variable declaration. This declares an array of long variables named stack with 30 elements:
stack[@], stack[l], stack[Z], e, stack[28], stack[29].

The command cognew (Blink (4, <clkfreq/3, 9), @stack[@]) calls the Blink method with the
parameters &4, clkfreq/3, and 9 into the next available cog, which happens to be Cog 1. The
@stack[0] argument passes the address of the stack[@] array element to Cog 1. So Cog 1 starts
executing Blink (4, clkfreq/3, 9) using stack[0] and upward for its return address, local variables,
and intermediate calculations. The command cognew (Blink (5, clkfreq/7, 21), @stack[10])
launches Blink (5, clkfreq/7, 21) into Cog 2, with a pointer to stack[10]’s address in RAM so it
uses from stack[10] and upwards. Then cognew (Blink (6, clkfreq/11, 39), estack[20]) does it
again with different Blink method parameters and a different address in the stack array.

Propeller Education Kit Labs: Fundamentals - Page 71

Methods and Cogs Lab

v Load the BlinkWithCogs object into the Propeller chip and verify that it makes the three
LEDs blink at different rates at the same time (instead of in sequence).
v" Examine the program and make notes of the new elements.

The unused RAM that Cog 0 uses for its stack can be viewed with the Object Info window shown in
Figure 5-5 (F8, then Show Hex.) The gray color-coded bytes at the top are initialization codes that
launch the top object into a cog, set the Propeller chip’s CLK register, and various other initialization
tasks. The red memory addresses store Spin program codes, the yellow indicates global variable space
(the 30-long variable stack array). What follows is blue unused RAM, some of which will be used by
Cog 0 for its stack. The beginning RAM address of Cog 0’s stack space is hexadecimal 00FO0.

Figure 5-5: Object Info Window
x|

BRRR A 1B BY AQ 0@ BF 1R AR 7@ AQ FA AR AC @A F4 AQ | Initialization g
2910 6@ @A A3 AR OC A AA AR 42 AA PA AR 37 A1 35 cA |- [-=LEEEREE TSR
BA20 (37 21 FG6 38 @9 39 @3 @2 35 DB @A 15 2C 35 A5 35 7! 6d_13++50

AP4R BE 35 CA 35 @0 FA 38 27 39 M3 02 38 14 DB PO 15 |45A8 |68'8+*8¥E|Ef
QA5 |2C 32 64 30 D6 1C 64 30 D4 18 BC 37 @A F4 PG BE |, 2d=id4d=0417EaTe
ABER |68 37 @A FE 3F 91 EC 23 64 30 D& 47 P39 72 32 A0 |hiflo7|i#d=06]r2[

$0010 RAM Usage $7FFF A0ED
ABFA

I | oo
9118

Program : 24 Longs - gi%s
: } 9140
Variable : 30 Longs [B150
) 9168

Stack / Free - 8.134 Longs || 9170
9150

9138

) 91AE

Clock Mode - RCFAST il
Clock Freq : ~ 12 MHz Gl

XIN Freq : <ignored> A1ER

LCloze I Hide Hex Load Rk |\ Load EEPROM Open File Save Binary File Save EEPROM File |

First unused RAM
address for Cog 0’s
stack

Stopping Cogs

With cognew commands, the Propeller chip always looks for the next available cog and starts it
automatically. In the BlinkWithCogs object, the pattern of cog assignments is predictable: the first
cognew command launches Blink (4, clkfeq/3, 9) into Cog 1, Blink (5, clkfreq/7, 21) into Cog 2,
and Blink (6, clkfreq/11, 39) into Cog 3.

Choose your Cog: Instead of using the next available cog, you can specify which cog you wish to launch by
@ using the coginit command instead of cognew. For example, this command will launch the Blink method into
Cog 6:

coginit (6, Blink (4, clkfreq/3, 9), @stack[0])

The cogstop command can be used to stop each of these cogs. Here is an example with each reps
parameter set so that the object will keep flashing LEDs until one million repetitions have elapsed.
After a 3 second delay, cogstop commands shut down each cog at one-second intervals using the
predicted cog ID so that none of the methods get close to executing one million reps.

Page 72 - Propeller Education Kit Labs: Fundamentals

5: Methods and Cogs Lab

PUB LaunchBlinkCogs

cognew (Blink (4, clkfreq/3, 1_000 000), estack[0])
cognew (Blink (5, clkfreq/7, 1_000 000), estack[10])
cognew (Blink (6, clkfreq/11, 1_0@@_@00), @stack[20])

waitent (clkfreq * 3 + cnt)
cogstop (1)

waitent (clkfreq + cnt)
cogstop (2)

waitent (clkfreq + cnt)
cogstop (3)

With some indexing tricks, the cogs can even be launched and shut down with repeat loops. Below
is an example that uses an index local variable in a repeat loop to define the I/O pin, stack array
element, and cog ID. It does exactly the same thing as the modified version of the LaunchBlinkCogs
method above. Notice that the local variable index is declared with the pipe symbol. Then,
repeat index from 0 to 2 increments index each time through the three cognew command
executions. When index is 0, the Blink method call’s pin parameter is @ + 4, passing 4 to the Blink
method’s pin parameter. The second time through, index is 1, so pin becomes 5, and the third time
through, it makes pin 6. For the clkfreq sequence of 3, 7, 11 with index values of 0, 1, and 2,
(index * &) + 3 fits the bill. For 0, 10, and 20 as the array element, index * 10 fits the bill. To stop
cogs 1, 2, and 3, the second repeat loop sweeps index from 1 to 3. The first time through the loop,
index is 1, SO cogstop (index) becomes cogstop(l). The second time through, index is 2, so
cogstop (2), and the third time through, index is 3 resulting in cogstop (3) .

PUB LaunchBlinkCogs | index

repeat index from @ to 2

cognew (Blink (index + 4, clkfreq/ ((index*4) + 3), 1 000 _000), estack[index * 10])
waitent (clkfreq * 3 + cnt)

repeat index from 1 to 3
cogstop (index)
waitent (clkfreq + cnt)

v" Try the modified versions of the LaunchBlinkCogs methods.

Objects can be written so that they keep track of which cog is executing a certain method. One
approach will be introduced in the Cog ID Indexing section on page 76. Other approaches will be
introduced in the upcoming Objects lab.

How Much Stack Space for a Method Launched into a Cog?
Below is a list of the number of longs each method adds to the stack when it gets called.

2 — return address

1 — return result

number of method parameters

number of local variables

workspace for intermediate expression calculations

Assume you have an object with three methods: A, B and C. When method A calls method B, the stack
will grow, containing two sets of these longs, one for method A, and one for method B. If method B
calls method C, there will be a third set. When method C returns, the stack drops down to two sets.

Propeller Education Kit Labs: Fundamentals - Page 73

Methods and Cogs Lab

The workspace is for storing values that exist during certain tasks and expression evaluations. For
example, the Blink method’s repeat reps * 2 uses the workspace in two different ways. First, the
reps * 2 expression causes two elements to be pushed to the stack: the value stored by reps and 2.
After the * calculation, 2 is popped from the stack, and the result of the calculation is stored in a
single element. This element stays on the stack until the repeat loop is finished. Inside the
repeat reps * 2 loop, two similar expansions and contractions of the stack occur with
waitent (rate/2 + cnt), first with rate/2, and again when the result of rate/2 is added to ent.

In this case of the Blink method, the most it uses for workspace and intermediate expression
calculations is 3 longs: one long for holding the result of reps * 2 until the repeat loop is done, and
two more for the various calculations with binary operators such as multiply (*) and divide (/).
Knowing this, we can tally up the number of long variables a cog’s stack will need to execute this
method are listed below. So, the total amount of stack space (i.e. number of long variables) a cog
needs to execute the Blink method is 10.

2 — return address
e 1 —result variable (every method has this built-in, whether or not a return value is specified.
This will be introduced in the next section.)
e 3 —pin, freq, and reps parameters
e 1 — time local variable
e 3 —workspace for calculations.

e 10— Total

As mentioned earlier, one cog needs enough stack space to for all the memory it might use, along
with all the stack space of any method it calls. Some methods will have nested method calls, where
method A calls method B, which in turn calls method C. All those methods would need stack memory
allocated if method A is the one getting launched into the cog.

Err on the side of caution: The best way to set aside stack space for a cog that gets a Spin method launched
into it is to err on the side of caution and declare way more memory that you think you’ll need. Then, you can
use an object in the Propeller Tool's object library (the folder the Propeller.exe file lives in) named
Stack Length.spin to find out how many variables the method actually used. The Objects Lab will feature a
project that uses the Stack Length object to verify the number of long variables required for a Spin method that
gets launched into a cog.

Declaring a long variable array named stack in an object’s VAR code block is a way of setting aside
extra RAM for a cog that’s going to run a Spin interpreter. The name of the array doesn’t have to be
stack; it just has to be a name the Spin language can use for variable name. The names blinkStack or
methodStack would work fine too, so long as the name that is chosen is also the one whose address
gets passed to the cog by the cognew command. Remember that the @ operator to the left of the
variable name is what specifies the variable’s Global RAM address.

About _STACK: The Spin language also has an optional _stack constant, which can be used in a CON block. It
@ is a one-time settable constant to specify the required stack space of an application. Read more about it in the
Spin Language Reference section of the Propeller Manual.

Method Calls and the Result Variable

Every public and private method has a built-in, predefined local variable named result. Each time a
given method is called, its result variable is initialized to zero. Then, the value of result can be
defined by the code within the method. When that method is done executing, the current value of

Page 74 - Propeller Education Kit Labs: Fundamentals

5: Methods and Cogs Lab

result is returned. At that point, that method call can be used like a value (being the value of result)
in expressions. When a method call appears in an expression, the method is executed to obtain its
result value before the expression is evaluated.

About Method Calls in Expressions: A method call can be used in expressions in all the same ways a value
can, including conditions, comparisons and normal operators. However, this excludes using it in an operation
that attempts to change it. Therefore, a method call cannot be used with unary assignment operators, or as

the “target” operand on the left side of a binary assignment operator.

One handy use of this feature allows us to take a value defined by processes in one method and make
it available for use by other methods. Our example ButtonBlink.spin uses three methods to
demonstrate: Main, Blink, and ButtonTime. In this application, pressing and then releasing a
pushbutton on P23 will cause an LED on P4 to blink 10 times (using the Blink method), and the
blink rate is determined by how long the pushbutton was held down (using the ButtonTime method).

Figure 5-6: Using a Method’s Result Variable

" ButtonBlink.spin
(Step 3) ButtonTime
method’s result value PUB Main | time
is assigned to the Main

method’s time variable /wfeat

(Step 4) time is used in
the Blink method call

/

PUB Blink (pin, rate, reps)

rallainlle (Step 5) BLink method
[p in]~ receives time as the
outalpin value to use in its rate

parameter
repeat reps * 2

waitent (rate/2 + cnt)
loutalpin]

(Step 1) ButtonTime
method call passes
23 to ButtonTime’s
pin parameter

(Step 2) ButtonTime
method defines the
result variable and
returns this value to
the method call

PUB ButtonTime (pin) | tl1, t2

repeat until inalpin]

tl = cnt
repeat while inalpin]
t2 = cnt

result = t2 - tl

Take a look at Figure 5-6. ButtonBlink’s Main method declares just one variable, time. It contains
just two method calls in a repeat loop. In the first one, ButtonTime (23) calls the ButtonTime method
and passes the value 23 to its pin parameter (Step 1). The code in ButtonTime defines the value of its
result variable, which represents how long the P23 pushbutton was held down. This value is returned
to the point of the method call (Step 2). The expression time := ButtonTime (23)assigns the value
returned by the ButtonTime method call to the Main method’s time variable. (Step 3). Then, time is
ready to be used in the next method call Blink (4, time, 10) (Step 4), as the value to pass to the
Blink method’s rate parameter (Step 5).

v" Load ButtonBlinkTime into the Propeller chip.
v" Press and release the