

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

March 2016

FOD8163, FOD8163T 3.3 V / 5 V, 10 Mbit/sec, Logic Gate Optocoupler in Stretched Body SOP 6-Pin

Features

- 8 mm Creepage and Clearance Distance, and 0.4 mm Insulation Distance to Achieve Reliable and High Voltage Insulation
- High Noise Immunity Characterized by Common Mode Transient Immunity (CMTI)
 - 20 kV/µs Minimum CMTI
- Specifications Guaranteed Over 3 V to 5.5 V Supply Voltage and -40°C to 100°C Extended Industrial Temperature Range
- High-Speed, 10 Mbit/s Data Rate (NRZ)
- Safety and Regulatory Approvals
 - UL1577, 5,000 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 1,140 V Peak Working Immunity Insulation Voltage

Applications

- Isolating Intelligent Power Module
- Isolating Industrial Communication Interface

Related Resources

- www.fairchildsemi.com/products/optoelectronics/
- www.fairchildsemi.com/pf/FO/FOD8160.html
- www.fairchildsemi.com/pf/FO/FODM8061.html
- www.fairchildsemi.com/pf/FO/FODM611.html

Description

The FOD8163 series is a 3.3 V / 5 V high-speed logic gate optocoupler with open-collector output, which supports isolated communications allowing digital signals to communicate between systems without conducting ground loops or hazardous voltages.

The FOD8163 series utilizes stretched body package to achieve 8 mm creepage and clearance distances (FOD8163T), and optimized IC design to achieve reliably high-insulation voltage and high-noise immunity.

The FOD8163 series consists of an aluminium gallium arsenide (AlGaAs) light emitting diode and an integrated high-speed photodetector. The output of the detector IC is an open collector schottky-clamped transistor. The electrical and switching characteristics are guaranteed over the extended industrial temperature range of -40°C to 100°C and a V_{CC} range of 3 V to 5.5 V.

Functional Schematic

Truth Table

LED	v _o
Off	HIGH
On	LOW

Pin Definitions

Pin #	Name		Description
1	ANODE	Anode	
2	NC	Not Connected	
3	CATHODE	Cathode	
4	GND	Output Ground	
5	V _O	Output Voltage	
6	V _{CC}	Output Supply Voltage	

Pin Configuration

Figure 3. Pin Configuration

Safety and Insulation Ratings

As per DIN EN/IEC60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Charact	eristics
Farameter	FOD8163	FOD8163T	
	< 150 V _{RMS}	I–IV	I–IV
Installation Classifications per DIN VDE 0110/1.89 Tab	< 300 V _{RMS}	I–IV	I–IV
For Rated Mains Voltage	< 450 V _{RMS}	I–III	I–IV
	< 600 V _{RMS}	I–III	I–III
Climatic Classification		40/100/21	40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2	2
Comparative Tracking Index		175	175

Symbol	Parameter	Va	lue	Unit
Symbol	Parameter	FOD8163	FOD8163T	Unit
V	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1,671	2,137	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1,426	1,824	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	891	1,140	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6,000	8,000	V _{peak}
	External Creepage	≥ 8.0	≥ 8.0	mm
	External Clearance	≥ 7.0	≥ 8.0	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	≥ 0.4	mm
	Safety Limit Values – Maximum Values Allowed in the Event of a Failure,			
Τ _S	Case Temperature	150	150	°C
I _{S,INPUT}	Input Current	200	200	mA
P _{S,OUTPUT}	Output Power	600	600	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V	10 ⁹	10 ⁹	Ω

FOD8163, FOD8163T — 3.3 V / 5 V, 10 Mbit/sec, Logic Gate Optocoupler in Stretched Body SOP 6-Pin

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
TJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 sec	°C
Input Charact	teristics		
١ _F	Average Forward Input Current	25	mA
V _R	Reverse Input Voltage	5.0	V
PDI	Input Power Dissipation ⁽¹⁾	45	mW
Output Chara	cteristics		
V _{CC}	Supply Voltage	0 to 7.0	V
V _O	Output Voltage	-0.5 to V _{CC} + 0.5	V
۱ ₀	Average Output Current	50	mA
PDO	Output Power Dissipation ⁽¹⁾	85	mW

Note:

1. No derating required up to 100°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
T _A	Ambient Operating Temperature	-40	+100	°C
V _{CC}	Supply Voltages ⁽²⁾	3.0	5.5	V
V _{FL}	Logic Low Input Voltage	0	0.8	V
I _{FL}	Logic Low Input Current		250	μA
I _{FH}	Logic High Input Current	6.0	15	mA
N	Fan Out (at $R_L = 1 k\Omega$)		5	TTL loads
RL	Output Pull-up Resistor	330	4000	Ω

Note:

2. 0.1 μ F bypass capacitor must be connected between pins 4 and 6.

Isolation Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	$\begin{array}{l} T_{A} = 25^{\circ}C, \ R.H. < 50\%, \ t = 1.0 \ min, \\ I_{I-O} \leq 20 \ \mu A^{(3)(4)} \end{array}$	5,000			VAC _{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V^{(3)}$		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0 V$, frequency = 1.0 MHz ⁽³⁾		1.0		pF

Apply over all recommended conditions, typical value is measured at $T_A = 25^{\circ}C$.

Notes:

3. Device is considered a two-terminal device: pins 1, 2 and 3 are shorted together and pins 4, 5, and 6 are shorted together.

4. 5,000 VAC_{RMS} for 1-minute duration is equivalent to 6,000 VAC_{RMS} for 1-second duration.

Electrical Characteristics

Apply over all recommended conditions; $T_A = -40^{\circ}C$ to $+100^{\circ}C$, $3.0 \text{ V} \le V_{CC} \le 5.5 \text{ V}$; unless otherwise specified. Typical value is measured at $T_A = 25^{\circ}C$ and $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit	Figure
Input Charact	eristics							
V _F	Forward Voltage			1.05	1.45	1.80	V	4
$\Delta(V_{F} / T_{A})$	Temperature Coefficient of Forward Voltage	۱ _F =	10 mA		-1.8		mV/°C	
BV _R	Input Reverse Breakdown Voltage	I _R =	- 10 μA	5.0			V	
I _{FHL}	Threshold Input Current		= 0.6 V, (sink) = 13 mA		2.0	6.0	mA	5
Output Chara	cteristics							
V _{OL}	Logic Low Output Voltage		rated I _{FHL} , (sink) = 13 mA		0.4	0.6	V	6
	Logic High Output	I _F =	250 μ A, V _O = 3.3 V		8.0	50.0	μΑ	7
I _{ОН}	Current	I _F =	250 μ A, V _O = 5.0 V		3.0	40.0	μΑ	7
	Logic Low Output	I _F =	10 mA, V _{CC} = 3.3 V		5.3	8.5	mA	8, 10
ICCL	Supply Current	I _F =	10 mA, V _{CC} = 5.0 V		7.1	10.0	mA	8, 10
	Logic High Output	I _F =	0 mA, V _{CC} = 3.3 V		3.5	7.0	mA	9, 10
ССН	Supply Current	I _F =	0 mA, V_{CC} = 5.0 V		5.3	9.0	mA	9, 10

Switching Characteristics

Apply over all recommended conditions; $T_A = -40^{\circ}C$ to $+100^{\circ}C$, $3.3 \text{ V} \le V_{CC} \le 5 \text{ V}$, $I_F = 6.0 \text{ mA}$; unless otherwise specified. Typical value is measured at $T_A = 25^{\circ}C$ and $V_{CC} = 3.3 \text{ V}$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	Figure
Data Rate		R _L = 350 Ω			10	Mbit/sec	
t _{PHL}	Propagation Delay to Logic Low Output	$R_L = 350 \ Ω, C_L = 15 \ pF$		42	80	ns	11, 13, 16
t _{PLH}	Propagation Delay to Logic High Output	R _L = 350 Ω, C _L = 15 pF		53	90	ns	11, 13, 16
PWD	Pulse Width Distortion, t _{PHL} - t _{PLH}	R_L = 350 Ω, C_L = 15 pF		11	35	ns	12, 14, 16
t _{PSK}	Propagation Delay Skew	R_L = 350 Ω, C_L = 15 pF ⁽⁵⁾			40	ns	
t _R	Output Rise Time (10% to 90%)	R _L = 350 Ω, C _L = 15 pF		20		ns	15, 16
t _F	Output Fall Time (90% to 10%)	R _L = 350 Ω, C _L = 15 pF		10		ns	15, 16
CM _H	Common-Mode Transient Immunity at Output High	$I_F = 0 \text{ mA}, V_O > 2 \text{ V},$ $V_{CM} = 1500 \text{ V}^{(6)}$	20	40		kV/μs	17
CM _L	Common-Mode Transient Immunity at Output Low	$I_F = 6.0 \text{ mA}, V_O < 0.8 \text{ V},$ $V_{CM} = 1500 \text{ V}^{(6)}$	20	40		kV/μs	17

Notes:

5. t_{PSK} is equal to the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} between any two units from the same manufacturing date code that are operated at same case temperature (±5°C), at same operating conditions, with equal loads ($R_L = 350 \Omega$, $C_L = 15 pF$), and with an input rise time less than 5 ns.

 Common-mode transient immunity at output HIGH is the maximum tolerable positive dVcm/dt on the leading edge of the common-mode impulse signal, V_{CM}, to assure that the output remains HIGH. Common-mode transient immunity at output LOW is the maximum tolerable negative dVcm/dt on the trailing edge of the common pulse signal, V_{CM}, to assure that the output remains LOW.

Profile Freature	Pb-Free Assembly Profile			
Temperature Minimum (T _{smin})	150°C			
Temperature Maximum (T _{smax})	200°C			
Time (t_S) from (T_{smin} to T_{smax})	60 s to 120 s			
Ramp-up Rate (t _L to t _P)	3°C/second maximum			
Liquidous Temperature (T _L)	217°C			
Time (t_L) Maintained Above (T_L)	60 s to 150 s			
Peak Body Package Temperature	260°C +0°C / –5°C			
Time (t _P) within 5°C of 260°C	30 s			
Ramp-Down Rate (T _P to T _L)	6°C/s maximum			
Time 25°C to Peak Temperature	8 minutes maximum			

Figure 18. Reflow Profile

Ordering Information

Part Number	Package	Packing Method
FOD8163	Stretched Body SOP 6-Pin	Tube (100 units per tube)
FOD8163R2	Stretched Body SOP 6-Pin	Tape and Reel (1,000 units per reel)
FOD8163V	Stretched Body SOP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 units per tube)
FOD8163R2V	Stretched Body SOP 6-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (1,000 units per reel)
FOD8163T	Stretched Body SOP 6-Pin, Wide Lead	Tube (100 units per tube)
FOD8163TR2	Stretched Body SOP 6-Pin, Wide Lead	Tape and Reel (1,000 units per reel)
FOD8163TV	Stretched Body SOP 6-Pin, Wide Lead, DIN EN/IEC60747-5-5 Option	Tube (100 units per tube)
FOD8163TR2V	Stretched Body SOP 6-Pin, Wide Lead, DIN EN/IEC60747-5-5 Option	Tape and Reel (1,000 units per reel)

All packages are lead free per JEDEC: J-STD-020B standard.

Marking Information

Definiti	ons
1	Fairchild Logo
2	Device Number, e.g. 8163
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One Digit Year Code, e.g. '5'
5	Two Digit Work Week Ranging from '01' to '53'
6	Assembly Package Code

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А