

MCP43XXEV Evaluation Board User's Guide

© 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-397-4

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

MCP43XXEV EVALUATION BOARD USER'S GUIDE

Table of Contents

Preface	5
Chapter 1. Product Overview	
1.1 Introduction)
1.2 What is the MCP43XXEV Evaluation Board?)
1.3 What the MCP43XXEV Evaluation Board Kit Includes)
Chapter 2. Installation and Operation	
2.1 Introduction1	I
2.2 Features12	2
2.3 Getting Started13	3
2.4 MCP43XXEV Evaluation Board Description	3
2.5 Configuring The PICkit Serial Analyzer)
2.6 MCP4361 Demo Steps28	3
Appendix A. Schematic and Layouts	
A.1 Introduction	3
A.2 Schematics and PCB Layout	3
A.3 Board – Schematic	1
A.4 Board – Top Trace, Silk and Pads	5
A.5 Board – Bottom Trace and Pads	3
A.6 Board – Layer 2 Ground Plane	7
A.7 Board – Layer 3 Power Plane	3
A.8 Board Layout – Top Components)
A.9 Board – Bottom Silk, Trace and Pads40)
Appendix B. Bill of Materials (BOM)	
Worldwide Sales and Service 42	2

NOTES:

MCP43XXEV EVALUATION BOARD USER'S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXA", where "XXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP43XXEV Evaluation Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP43XXEV Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- **Chapter 1. "Product Overview"** Important information about the MCP43XXEV Evaluation Board.
- Chapter 2. "Installation and Operation" Includes instructions on how to get started with this evaluation board.
- Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the MCP43XXEV Evaluation Board.
- Appendix B. "Bill of Materials (BOM)" Lists the parts used to build the MCP43XXEV Evaluation Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples				
Arial font:						
Italic characters	Referenced books	MPLAB [®] IDE User's Guide				
	Emphasized text	is the only compiler				
Initial caps	A window	the Output window				
	A dialog	the Settings dialog				
	A menu selection	select Enable Programmer				
Quotes	A field name in a window or dialog	"Save project before build"				
Underlined, italic text with right angle bracket	A menu path	<u>File>Save</u>				
Bold characters	A dialog button	Click OK				
	A tab	Click the Power tab				
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1				
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>				

RECOMMENDED READING

This User's Guide describes how to use the MCP43XXEV Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

AN1080 Application Note, "Understanding Digital Potentiometer Resistor Variations", DS01080

AN1316 Application Note, "Using Digital Potentiometers for Programmable Amplifier Gain", DS01316

These data sheets provide detailed information regarding the MCP43xx product family:

MCP433X/5X Data Sheet, "7/8-Bit Quad SPI Digital POT with Volatile Memory", DS22242

MCP434X/6X Data Sheet, *"7/8-Bit Quad SPI Digital POT with Non-Volatile Memory"*, DS22233

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

In addition, there is a Development Systems Information Line which lists the latest versions of Microchip's development systems software products. This line also provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 - United States and most of Canada

1-480-792-7302 – Other International Locations

DOCUMENT REVISION HISTORY

Revision A (July 2010)

• Initial Release of this Document.

MCP43XXEV EVALUATION BOARD USER'S GUIDE

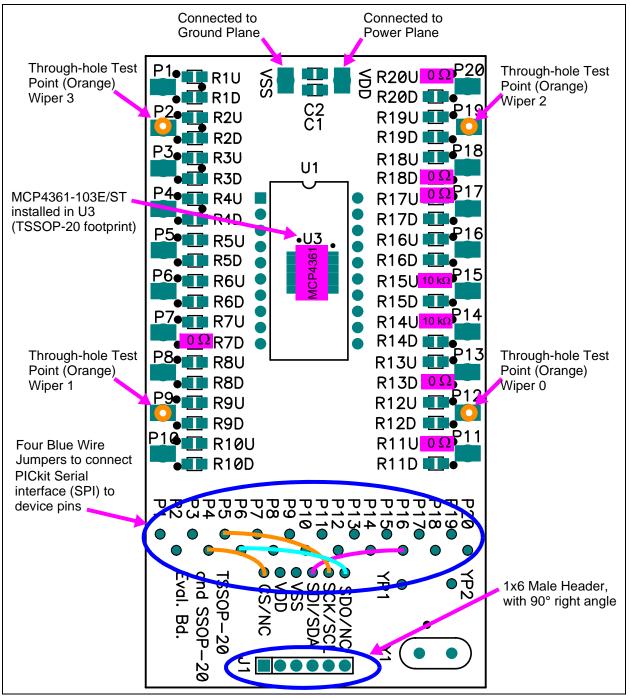
Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP43XXEV Evaluation Board and covers the following topics:

- What is the MCP43XXEV Evaluation Board?
- What the MCP43XXEV Evaluation Board kit includes

1.2 WHAT IS THE MCP43XXEV EVALUATION BOARD?


The MCP43XXEV Evaluation Board allows the system designer to quickly evaluate the operation of Microchip Technology's MCP4361 Digital Potentiometer device. This device is similar to the following devices:

- MCP4331
- MCP4332
- MCP4341
- MCP4342
- MCP4351
- MCP4352
- MCP4362
- MCP4231
- MCP4232
- MCP4241
- MCP4242
- MCP4251
- MCP4252
- MCP4261
- MCP4262

The board uses the TSSOP20EV Generic PCB and has been populated for the MCP4361. The 6-pin header (PICkit Serial) has been jumpered to the MCP4361's appropriate pins. This allows the PICkit Serial to communicate with the device.

Additional blank PCBs may be ordered by using the order number: TSSOP20EV. Each TSSOP20EV kit contains 5 PCBs.

Figure 1-1 shows the top view of the populated TSSOP20EV PCB, which creates the MCP43XXEV Evaluation Board.

FIGURE 1-1: MCP43XXEV Evaluation Board Using the TSSOP20EV Evaluation Board (MCP4361 installed in U3).

1.3 WHAT THE MCP43XXEV EVALUATION BOARD KIT INCLUDES

This MCP43XXEV Evaluation Board kit includes:

- MCP43XXEV Evaluation Board
- One TSSOP-20 and SSOP-20 Evaluation Board blank PCB, 102-00272. Extra blank PCBs can be ordered (order #: TSSOP20EV)
- Important Information Sheet

MCP43XXEV EVALUATION BOARD USER'S GUIDE

Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP43XXEV Evaluation Board allows the system designer to quickly evaluate the operation of the MCP4361 10 k Ω (-103) Digital Potentiometer device using the PICkit Serial Analyzer. The PICkit Serial Analyzer is available separately (order number: DV164122).

This board is a minimum configuration for the device. As well as the device, other desired passive components (resistors and capacitors) and connection posts may be installed.

The board can also be very easily jumpered into a customer's existing circuit. This gives an indication of the MCP4361 device performance, but is affected by the jumper lead length and the EM noise that the jumpers pick up.

The device's resistor networks 0 and 2 have be configured in a potentiometer mode with the A terminal connected to V_{DD} through a 0Ω resistor and the B terminal connected to V_{SS} with a 0Ω resistor. Resistor networks 1 and 3 can be evaluated for rheostat operation.

The MCP43XXEV Evaluation Board uses the generic TSSOP20EV Evaluation Board PCB. The kit includes a second PCB which is blank for the user to populate as desired. Additional PCBs may be ordered (order number: TSSOP20EV). The TSSOP20EV kit includes 5 blank PCBs.

Other boards can easily be built up using the TSSOP20EV PCB to allow evaluation of other resistance options (5 k Ω , 50 k Ω , or 100 k Ω) or any of the other digital potentiometer devices in the following packages:

- TSSOP-20 package
 - MCP4331, MCP4341, MCP4351, or MCP4361
- TSSOP-14 package
 - MCP4332, MCP4342, MCP4352, MCP4362, MCP4231, MCP4241, MCP4251, MCP4261, MCP4631, MCP4641, MCP4651, MCP4661, MCP42010, MCP42050, or MCP42100

The board also has a 6-pin interface (PICkit Serial, ICSP, etc.) whose signals can easily be jumpered to any of the device's pins.

Additional information on using the TSSOP20EV Evaluation Board PCB or for modifying the MCP43XXEV board is available in the TSSOP20EV User's Guide (DS51875). **Appendix A. "Schematic and Layouts"** has information of the PCB schematic and layout while Figure 2-2 shows components that are installed on the PCB.

2.2 FEATURES

The MCP43XXEV Evaluation Board has the following features:

- MCP4361-103E/ST is installed
- + 0 Ω resistors connect MCP4361 V_{DD} and V_{SS} signals to the appropriate Power or Ground plane (see Figure 2-2)
- 0Ω resistors connect MCP4361's Resistor Network 0 and 2 A terminal signal to Power plane, Resistor Network is in a voltage divider configuration (see Figure 2-2)

 0Ω resistors connect MCP4361's Resistor Network 0 and 2 B terminal signal to Ground plane, Resistor Network is in a voltage divider configuration (see Figure 2-2)

- Through-hole connection terminal (Orange) for all Wiper pins
- Connection terminal points for all device pins (either through-hole or surface-mount)
- Footprints for optional passive components (SMT 805 footprint) for:
 - Power supply filtering (C₁ and C₂ footprints)
 - Device bypass capacitor (RxD footprint for device pin connected to V_{DD})
- Silk-screen area to write specifics of implemented circuit (on back of PCB), such as MCP4361 10 $k\Omega$
- PICkit Serial Analyzer Header

The included TSSOP20EV Board has the following features:

- · Connection terminals may be either through-hole or surface-mount
- Three package type footprints supported:
 - TSSOP-20
 - TSSOP-14
 - TSSOP-8
 - SSOP-20
 - DIP-20 (600 mil body)
- Footprints for optional passive components (SMT 805 footprint) for:
 - Power supply filtering (C₁ and C₂ footprints)
 - Device bypass capacitor (RxD footprint for device pin connected to V_{DD})
 - Output filtering (RxD footprint)
 - Output pull-up resistor (RxU footprint)
 - Output pull-down resistor (RxD footprint)
 - Output loading resistor (RxD footprint)
- Silk-screen area to write specifics of implemented circuit (on back of PCB), such as MCP4361 10 $k\Omega$
- PICkit Serial Analyzer / PICkit 2 Programming (ICSP) Header

2.3 GETTING STARTED

The MCP43XXEV Evaluation Board allows quick evaluation of the MCP4361-103E/ST device. The understanding of the device characteristics (such as the resistor network) is applicable to any of the devices in the MCP43XX family. The MCP4361-103 device has a typically R_{AB} resistance of 10 k Ω . Evaluation can be done by:

- Using the PICkit Serial Analyzer for interface communication
- Jumpering the MCP43XXEV Evaluation Board into your application circuit to control the MCP4361-103 device

This User Guide will discuss the steps needed to evaluate the MCP4361-103E/ST device using the PICkit Serial Analyzer (order number: DV164122).

Section 2.5 "Configuring The PICkit Serial Analyzer" shows the steps to configure the PICkit Serial Analyzer as well as create User Script files which are used to communicate with the MCP4361, based on the devices SPI communication protocol format.

2.4 MCP43XXEV EVALUATION BOARD DESCRIPTION

The MCP43XXEV Evaluation Board uses the flexible TSSOP20EV Evaluation Board PCB. This simple Evaluation Board allows the system designer to quickly evaluate the operation of the MCP4361-103 device ($R_{AB(TYP)} = 10 \text{ k}\Omega$) using the PICkit Serial Analyzer or by jumpering the board into their application system. The PICkit Serial Analyzer is available separately (order number: DV164122).

2.4.1 The Hardware

Figure 2-2 shows the component layout of the MCP43XXEV Evaluation Board. This is a small four-layer board (3.9" x 2.1" (99.06 mm x 53.34 mm)). There are twenty two connection points/pads that can use either through-hole or surface-mount connector posts.

The pad labeled V_{DD} is connected to the PCB power plane, while the pad labeled V_{SS} is connected to the PCB ground plane. All the passive components that are connected to V_{DD} or V_{SS} are connected to either the power plane or ground plane.

The twenty remaining PCB pads correspond to the device pins (i.e.; pad 1 connects to pin 1).

Each pad has two passive components associated with them: a pull-up resistor and a pull-down resistor. The pull-up resistor is always RXU and the pull-down resistor is RXD. The "X" is a numeric value that corresponds to a particular pad (1 to 8). As an example, Pad 5's pull-up resistor is R5U. Capacitor C1 and C2 are the power supply filtering capacitors. For whichever pin is the device's V_{DD}, the RxD component footprint can be used for the device's bypass capacitor. Table 2-2 describes the components.

A 6-pin header interface is available to support the PICkit Serial or the PIC MCU In-Circuit Serial Programming (ICSP) interface.

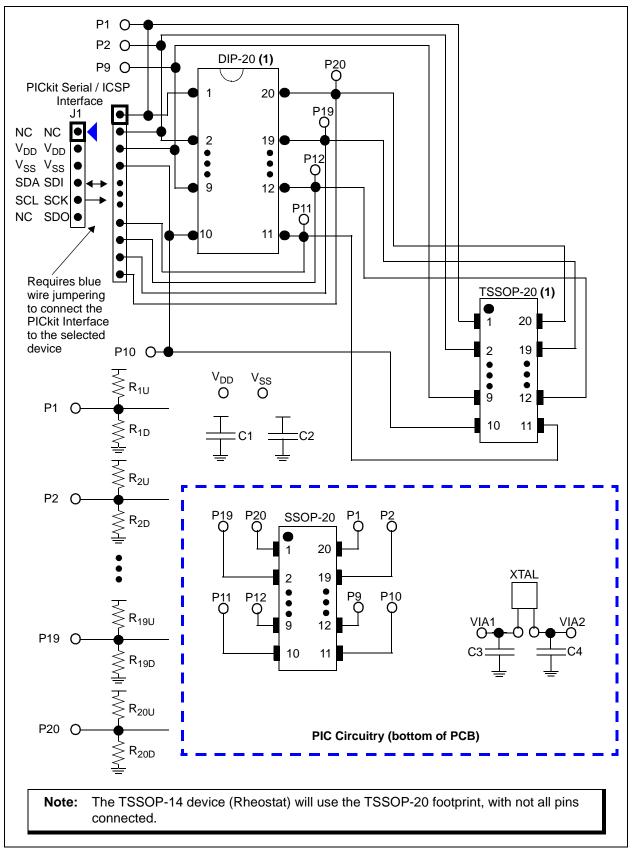
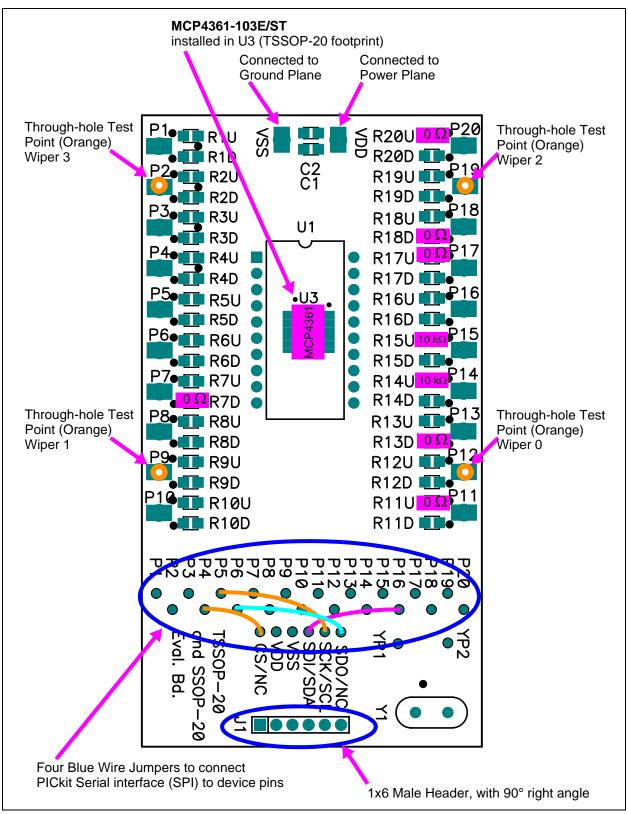



FIGURE 2-1: TSSOP20EV Evaluation Board Circuit.

FIGURE 2-2: MCP43XXEV Evaluation Board Component Placement Using the TSSOP20EV Evaluation Board (Top).

Component	Description	Comment	
R11U, R17U, R20U	0Ω SMT 805	Pull-up resistor	
R14U, R15U	10 kΩ SMT 805	Pull-up resistor	
R7D, R13D, R18D	0Ω SMT 805	Pull-down resistor ⁽¹⁾	
U3	MCP4361-103E/ST	$R_{AB(TYP)} = 10 \text{ k}\Omega$	
P2, P9, P12, P19	Test Point - through-hole connector (Orange)		
J1	1x6 Male Header, 100 mil spacing 90° angle.	PICkit Serial / ICSP header	
	Blue Wire: J1 CS/NC via to P4 via J1 SDI/SDA via to P16 via J1 SCK/SCL via to P5 via J1 SDO/NC via to P6 via	See Figure 2-2	

TABLE 2-1: INSTALLED PASSIVE COMPONENTS ⁽²⁾

Note 1: Whichever pin is the device's V_{DD} pin, that corresponding RXD footprint can be used for the device's bypass capacitor. So if Pin 8 is the device's V_{DD} pin, then install the bypass capacitor in the R8D footprint.

2: All passive components use the surface mount 805 footprint.

Component	Comment
C1, C2	Power supply bypass capacitors ⁽³⁾
C3, C4	PIC Crystal capacitors
R1U, R2U, R3U, R4U, R5U, R6U, R7U, R8U, R9U, R12U, R13U, R16U, R18U, R19U	Pull-up resistor
R1D, R2D, R3D, R4D, R5D, R6D, R8D, R9D, R10D, R11D, R12D, R14D, R15D, R16D, R17D, R19D, R20D	Pull-down resistor ⁽¹⁾
U1, U2	Alternate package footprints
VDD, GND	Power and Ground plane connection points
Y1	Can connect to either PIC' main oscillator or to the Timer oscillator circuit.
P1, P3, P4, P5, P6, P8, P10, P11, P13, P14, P15, P16, P17, P18, P20	Test Point connectors

TABLE 2-2: OPTIONAL PASSIVE COMPONENTS - NOT INSTALLED ⁽²⁾

Note 1: Whichever pin is the device's V_{DD} pin, that corresponding RXD footprint can be used for the device's bypass capacitor. So if Pin 8 is the device's V_{DD} pin, then install the bypass capacitor in the R8D footprint.

- 2: All passive components use the surface mount 805 footprint.
- **3:** If the board is powered via the V_{DD} and GND connection points, the use of bypass capacitors on C1 and C2 may improve performance. The benefit is reduced if the board is powered via the PICkit Serial interface.

2.4.2 The MCP4361 Device

To make variations to the commands sent to the MCP4361 device (from the commands shown in the demo section), one must know the device memory map (see Table 2-3) and the command formats (see Figure 2-3). For additional device operational information, refer to the MCP4361 device data sheet (DS22233).

Address	Function	Memory Type	Allowed Commands	Disallowed Commands ⁽²⁾
00h	Volatile Wiper 0	RAM	Read, Write, Increment, Decrement	—
01h	Volatile Wiper 1	RAM	Read, Write, Increment, Decrement	_
02h	Non-Volatile Wiper 0	EEPROM	Read, Write ⁽¹⁾	Increment, Decrement
03h	Non-Volatile Wiper 1	EEPROM	Read, Write ⁽¹⁾	Increment, Decrement
04h	Volatile TCON0 Register	,,		Increment, Decrement
05h	Status Register	RAM	Read	Write, Increment, Decrement
06h	Volatile Wiper 2	RAM	Read, Write, Increment, Decrement	_
07h	07h Volatile Wiper 3		Read, Write, Increment, Decrement	_
08h	Non-Volatile Wiper 2	EEPROM	Read, Write ⁽¹⁾	Increment, Decrement
09h	09h Non-Volatile Wiper 3 EEPROM Read, Write ⁽¹⁾		Read, Write ⁽¹⁾	Increment, Decrement
0Ah	Volatile TCON1 Register	RAM	Read, Write	Increment, Decrement
0Bh - 0Fh	Data EEPROM	EEPROM	Read, Write ⁽¹⁾	Increment, Decrement

TABLE 2-3:MEMORY MAP AND THE SUPPORTED COMMANDS

Note 1: When an EEPROM write is active, these are invalid commands and will generate an error condition. The user should use a read of the Status register to determine when the write cycle has completed. To exit the error condition, the user must take the \overline{CS} pin to the V_{IH} level and then back to the active state (V_{II} or V_{IHH}).

2: This command on this address will generate an error condition. To exit the error condition, the user must take the \overline{CS} pin to the V_{IH} level and then back to the active state (V_{IL} or V_{IHH}).

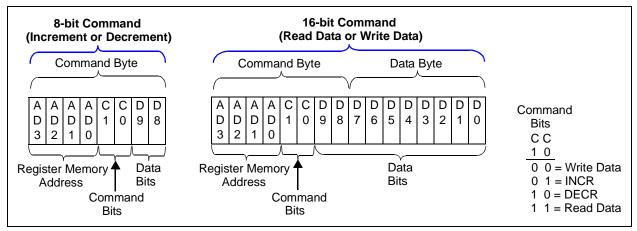


FIGURE 2-3: MCP43XX SPI Command Formats.

2.5 CONFIGURING THE PICKIT SERIAL ANALYZER

2.5.1 Modifying the "CommScripts.txt" file

Example 2-1 shows the User Scripts that need to be added to the PICkit Serial's "CommScripts.txt " file. The default install location of this file is:

C:\Program Files\Microchip\PICkit Serial Analyzer

Once these are saved in the "CommScripts.txt" file and the Master SPI mode is selected as the communication mode, these user scripts will be available to select from.

Ν	OT		
Ν	ΟΠ	L C	

- **Note 1:** It is recommended that you make a backup of your "CommScript.txt" file before making any edits with a text editor.
 - 2: It has been observed that copying the text from this PDF and pasting into the PICkit Serial's "CommScript.txt" file will cause errors due to the blank spacing used in the PDF file. Please copy from the "MCP43XX CommScript.txt" file available from the Microchip web site.

EXAMPLE 2-1: MCP43XX SCRIPT FILE (COMMSCRIPTS.TXT)

WriteWiper0	SPI	SPICSON	SPIDATOUT	0x02	0x00	0x3F	SPICSOFF
ReadWiper0	SPI	SPICSON	SPIDATIO	0x02	0x0C	0xA5	SPICSOFF
WriteWiper1	SPI	SPICSON	SPIDATOUT	0x02	0x10	0x3F	SPICSOFF
ReadWiper1	SPI	SPICSON	SPIDATIO	0x02	0x1C	0xA5	SPICSOFF
WriteWiper2	SPI	SPICSON	SPIDATOUT	0x02	0x60	0x3F	SPICSOFF
ReadWiper2	SPI	SPICSON	SPIDATIO	0x02	0x6C	0xA5	SPICSOFF
WriteWiper3	SPI	SPICSON	SPIDATOUT	0x02	0x70	0x3F	SPICSOFF
ReadWiper3	SPI	SPICSON	SPIDATIO	0x02	0x7C	0xA5	SPICSOFF
WriteWiper0NV	SPI	SPICSON	SPIDATOUT	0x02	0x20	0x3F	SPICSOFF
ReadWiper0NV	SPI	SPICSON	SPIDATIO	0x02	0x2C	0xA5	SPICSOFF
WriteTCON0	SPI	SPICSON	SPIDATOUT	0x02	0x40	0xFF	SPICSOFF
ReadTCON0	SPI	SPICSON	SPIDATIO	0x02	0x4C	0xA5	SPICSOFF
WriteTCON1	SPI	SPICSON	SPIDATOUT	0x02	0xA0	0xFF	SPICSOFF
ReadTCON1	SPI	SPICSON	SPIDATIO	0x02	0xAC	0xA5	SPICSOFF
ReadSTATUS	SPI	SPICSON	SPIDATIO	0x02	0x5C	0xA5	SPICSOFF
INCRWiper0	SPI	SPICSON	SPIDATIO	0x01	0x04	SPICS	OFF
DECRWiper0	SPI	SPICSON	SPIDATIO	0x01	0x08	SPICS	OFF

2.5.2 Working With the PICkit Serial Analyzer

Figure 2-4 shows the PICkit Serial Window after the program has started. The Transaction window indicates if the PICkit Serial GUI located the PICkit Serial Analyzer Hardware. When starting the PICkit Serial Analyzer for the first time, some setup questions may be asked. If you have any questions, please refer to the PICkit Serial Analyzer documentation, available at www.Microchip.com/PICkitSerial.

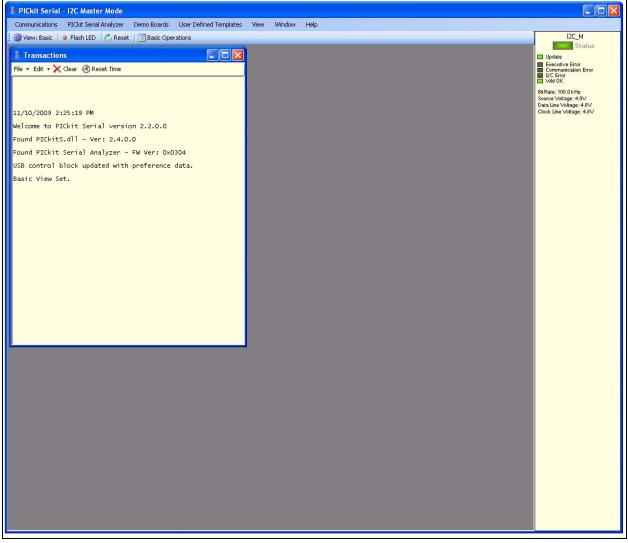


FIGURE 2-4: PICkit Serial Main Window at Startup.

We need to select the PICkit Serial Analyzer GUI to be in SPI Master mode. Figure 2-5 shows how to select the proper mode. Select *PICkit Serial Analyzer -> Select Communications Mode -> SPI Master* menu item (make sure the SPI Master item is checked).

PICkit Serial - SPI Master Mode		
Communications PICkit Serial Analyzer Demo Boards User Defined Ter	iplates View Window Help	
Advance Select Communications Mode Solect Communications Mode Configure Communications Mode Download PICIkit Serial Analyzer Firmware Run Configuration Wizard Perform System Reset File Edit Red Reset PICikit Serial Analyzer	I2C Master I2C Slave SPI Master USART Asynchronous USART Synchronous Master LIN Microwire Master	SPL_M Status Executive Error Executive Error Vdd OK Vdd OK BicRate: 9.77kba Source Voltage: 4.8V
12/1/2009 11:41:48 AM Welcome to PICkit Serial version 2.2.0.0 Found PICkit Serial Analyzer - FW Ver: 0x0304 USB control block updated with preference data. Advanced View Set.		Executive Controller Detail C Guil Overflow C Bull Overflow Data Error C Bull Overflow Data Error Switch Test Enabled Switch Relates and Timeout Time1 Timeout Time1 Timeout Time1 Data Error C Bull Overflow Data Error C Bull Overflow Executing Macro E Bull Deverflow Executing Macro E Bull Overflow SPD Overflow SPD Overflow SPD Overflow SPD Overflow SPD Overflow SPD Overflow SPD State SpD Gate SpD Gate SpD State SpD State

FIGURE 2-5: PICkit Serial Selecting Communications Mode.

Now we need to configure the mode that we selected. Figure 2-6 shows how to configure the communications mode. Select *PICkit Serial Analyzer -> Configure Communications Mode* menu item. This will open a new window:

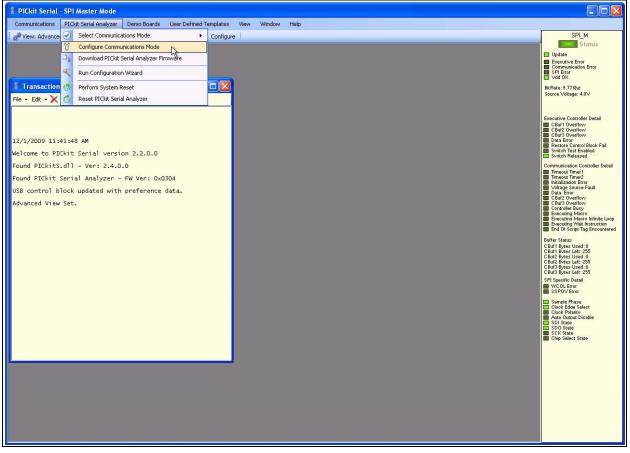


FIGURE 2-6: PICkit Serial Main Window at Startup.

Figure 2-7 shows the Configure Communications Mode window. Ensure that your window options and settings are the same as this window, and then select the "Save Changes" button. The "Configure Communications Mode" window may now be closed.

FIGURE 2-7: PICkit Serial Configure Communications Mode Window.

Now we are going to open the Script Builder window, select the Communications -> Script -> Script Builder menu item (see Figure 2-8).

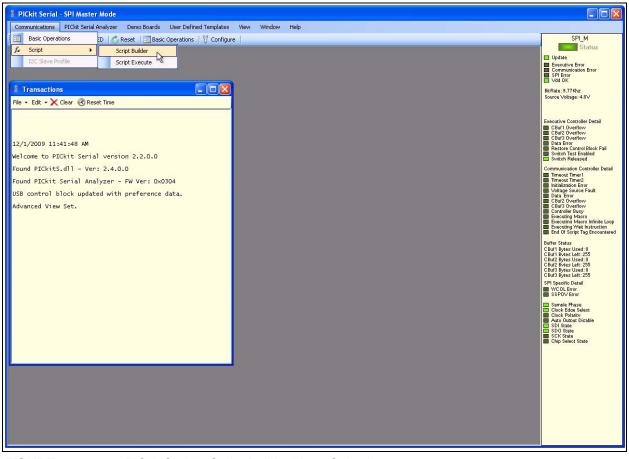
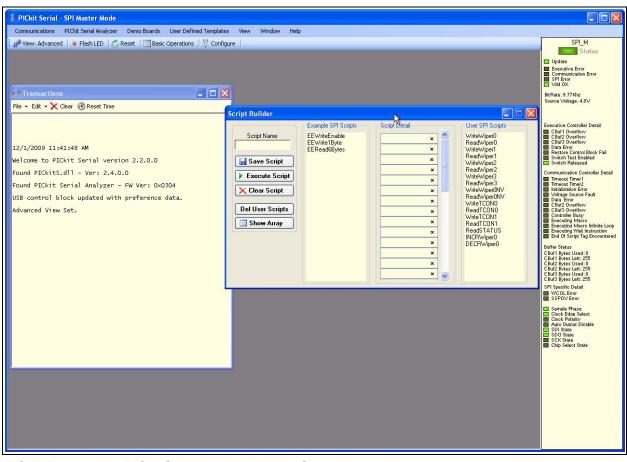



FIGURE 2-8: PICkit Serial - Script Builder Menu Selection.

The Script Builder window is shown in Figure 2-9. In this window we see the User SPI Scripts including the ones that were added to the "CommScripts.txt " file.

FIGURE 2-9: PICkit Serial Main Window at Startup.

Double clicking on the WriteWiper0 User SPI Script will load the Script Details. Figure 2-10 shows what the values mean in the Script Details. These values are hex numbers.

The first value (02h), is the number of bytes that will be written. The second byte is a data byte and contains the Device Register Address, the Device Command, and the two Most Significant bits (MSb) of the write data. The third byte is the second data byte and contains the remaining 8 bits of the write data.

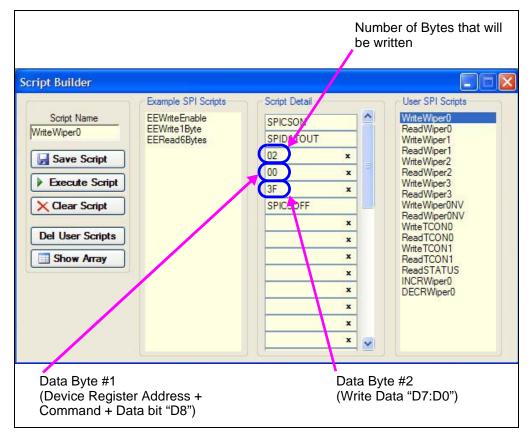


FIGURE 2-10: Example Write Script.

Double clicking on the ReadWiper0 User SPI Script will load the Script Details. Figure 2-11 shows what the values mean in the Script Details. These values are hex numbers.

The first value (02h), is the number of bytes that will be written. The second byte is a data byte and contains the Device Register Address, the Device Command, and the two Most Significant bits (MSb) of the read data. The third byte is the second data byte and contains the remaining 8 bits of the read data.

During read commands, the value of the two LSbs of Data Byte #1 and all of the bits of Data Byte #2 are not important. The bytes are required for the SPI clock generation.

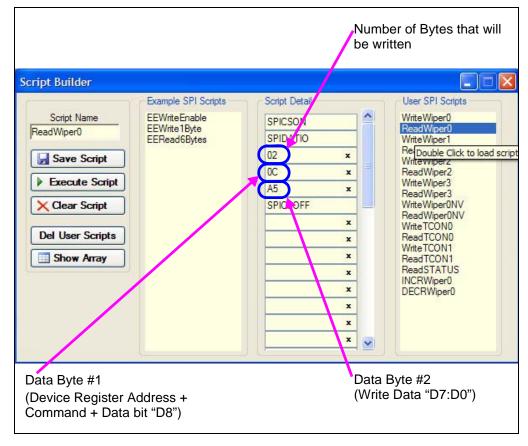


FIGURE 2-11: Example Read Script.

2.6 MCP4361 DEMO STEPS

This demo assumes that you know how to configure the PICkit Serial Analyzer for Master SPI operation. See **Section 2.5** "**Configuring The PICkit Serial Analyzer**" or the PICkit Serial Analyzer User's Guide (DS51647) for additional information.

- 1. Plug the PICkit Serial device into the PC's USB port.
- 2. Plug the MCP43XXEV board into the PICkit Serial.
- 3. Add the User Scripts (see Example 2-1) to the "CommScripts.TXT" file.
- 4. Start the PICkit Serial GUI.
- 5. Ensure the GUI is in Master SPI communication mode (see Figure 2-5).
- 6. Ensure that the Master SPI configuration is appropriately configured (see Figure 2-7).
- Measure the Wiper 0 voltage on the MCP43XXEV board (see Figure 2-2) using an oscilloscope or digital multimeter. Measure voltage from the ground plane (GND) to the Wiper (P12). The voltage on the Wiper should be ~ V_{DD}/2 (~2.5V).
- 8. Open the Script Builder window (see Figure 2-8).
- 9. Double click on the "WriteWiper0" script in the "Example SPI Scripts" column. This loads the Script Detail column (see Figure 2-10).
- Click on the Execute Script button. This executes the script shown in the script detail column, which will update the Wiper value to 3Fh. The Wiper voltage will now be ~V_{DD}/4 (~1.25V). The Transaction window (see Figure 2-14) will be updated to indicate the execution of the script.
- 11. Select the "ReadWiper0" script in the User SPI Scripts column. It should look like Figure 2-11.
- 12. Click on the **Execute Script** button. This executes the script shown in the script detail column. The Transaction window (see Figure 2-14) will be updated to indicate the execution of the script. The Data read is shown in the last line.
- Double click on the "WriteWiper0" script in the "Example SPI Scripts" column. This loads the Script Detail column and modifies the Wiper 0 data to 1FFh (see Figure 2-12).
- 14. Click on the Execute Script button. This executes the script shown in the script detail column, which will update the Wiper value to 1FFh. The Wiper voltage will now be ~V_{DD} (~5V). The Transaction window (see Figure 2-14) will be updated to indicate the execution of the script.
- 15. Select the "ReadWiper0" script in the User SPI Scripts column. It should look like Figure 2-11.
- 16. Click on the **Execute Script** button. This executes the script shown in the script detail column. The Transaction window (see Figure 2-14) will be updated to indicate the execution of the script. The Data read is shown in the last line.
- 17. Double click on the "WriteTCON1" script in the "Example SPI Scripts" column. This loads the Script Detail column.
- Click on the Execute Script button. This executes the script shown in the script detail column. The Transaction window (see Figure 2-15) will be updated to indicate the execution of the script.
- 19. Select the "ReadTCON1" script in the User SPI Scripts column. It should look like Figure 2-13.
- 20. Click on the **Execute Script** button. This executes the script shown in the script detail column. The Transaction window (see Figure 2-15) will be updated to indicate the execution of the script. The Data read is shown in the last line.
- 21. In the Transaction window, click the Clear button.
- 22. On the PICkit Serial Analyzer command bar, click the Reset button.

- 23. Select the "WriteWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button.
- 24. Select the "ReadWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button.
- 25. Select the "DECRWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button three times.
- 26. Select the "ReadWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button. The Transaction window shows the scripts that were executed and the current value of the Wiper 0 (see Figure 2-16).
- 27. In the Transaction window, click the Clear button.
- 28. On the PICkit Serial Analyzer command bar, click the **Reset** button.
- 29. Select the "WriteWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button.
- 30. Select the "ReadWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button.
- 31. Select the "INCRWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button three times.
- 32. Select the "ReadWiper0" script in the User SPI Scripts column and then click on the **Execute Script** button. The Transaction window shows the scripts that were executed and the current value of the Wiper 0 (see Figure 2-17).
- 33. You can repeat the sequence of writing values to the Wiper register, or by Writing then Reading the values back.

NOTICE

If at any time during script execution, an error message is generated in the transaction window, it is good practice to reset the PICkit Serial Analyzer (PKSA). The PKSA can be reset using the "Reset" toolbar icon. Verify that subsequent script operations do not generate errors.

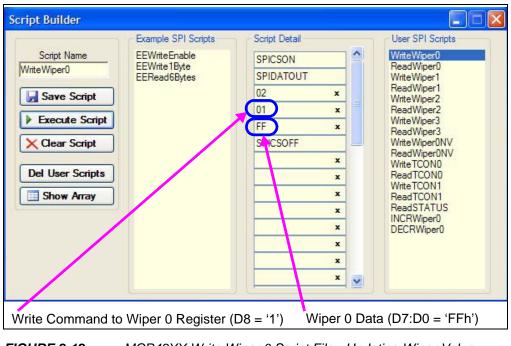
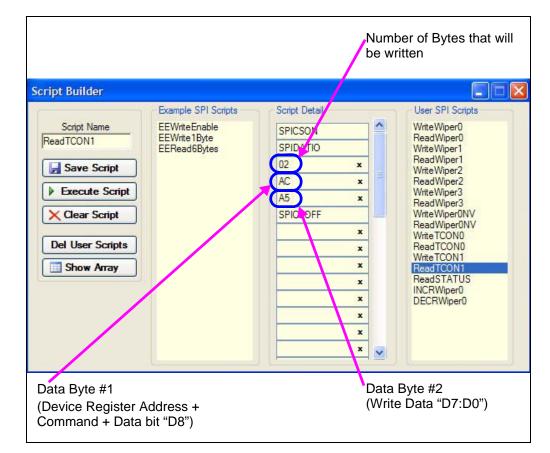
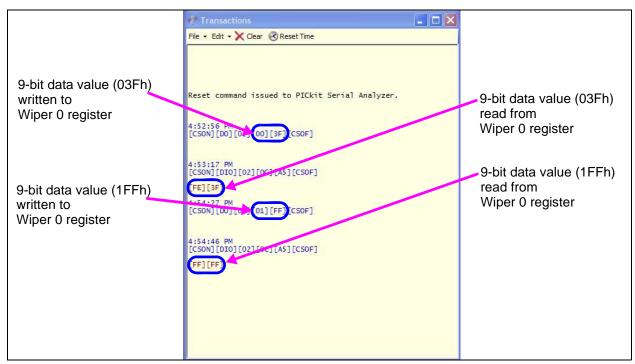
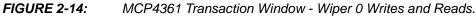





FIGURE 2-12: MCP43XX Write Wiper 0 Script File - Updating Wiper Value.

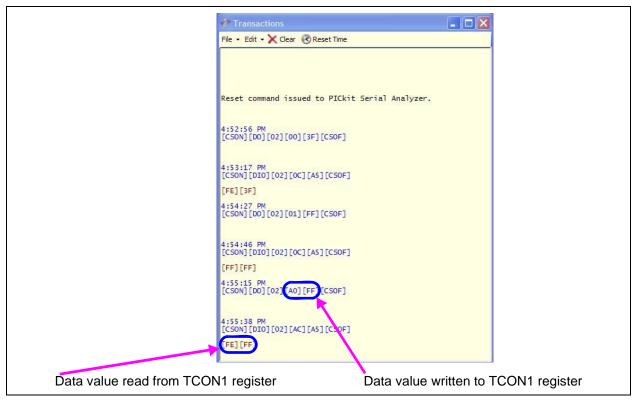


FIGURE 2-15: MCP4361 Transaction Window - TCON1 Writes and Reads.

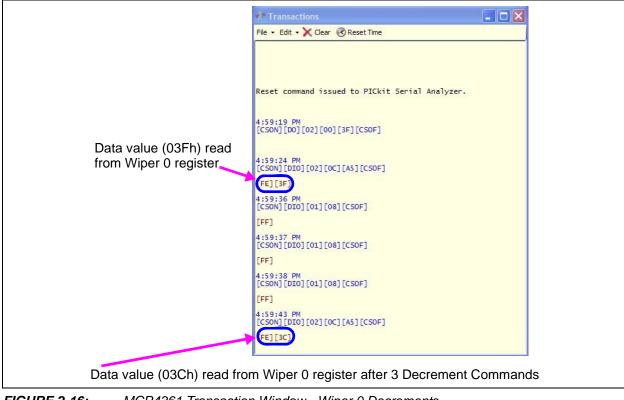


FIGURE 2-16: MCP4361 Transaction Window - Wiper 0 Decrements.

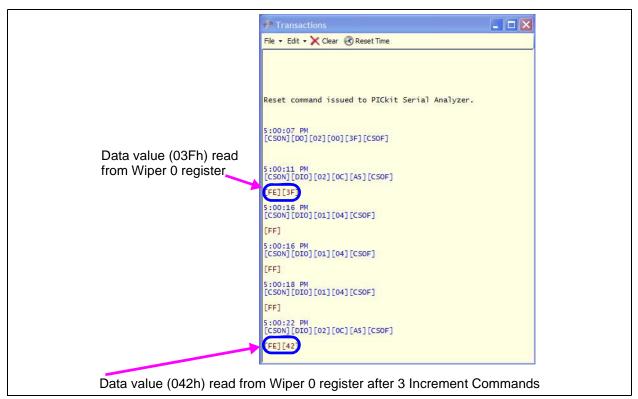


FIGURE 2-17: MCP4361 Transaction Window - Wiper 0 Increments.

2.6.1 The TSSOP20EV PCB and Supported Digital Potentiometers

Table 2-4 shows the current Digital Potentiometers that are supported by the TSSOP20EV PCB.

Device	TSSOP-20	TSSOP-14	Comment	
MCP4231	—	Yes	Dual Pot, SPI Interface	
MCP4241	—	Yes	Dual Pot, SPI Interface	
MCP4251	—	Yes	Dual Pot, SPI Interface	
MCP4261	—	Yes	Dual Pot, SPI Interface	
MCP4331	Yes	—	Quad Pot, SPI Interface	
MCP4341	Yes	—	Quad Pot, SPI Interface	
MCP4351	Yes	—	Quad Pot, SPI Interface	
MCP4361	Yes	—	Quad Pot, SPI Interface	
MCP4631	—	Yes	Dual Pot, I ² C Interface	
MCP4641	—	Yes	Dual Pot, I ² C Interface	
MCP4651	—	Yes	Dual Pot, I ² C Interface	
MCP4661	—	Yes	Dual Pot, I ² C Interface	
MCP42010	_	Yes	Dual Pot, SPI Interface	
MCP42050		Yes	Dual Pot, SPI Interface	
MCP42100		Yes	Dual Pot, SPI Interface	

TABLE 2-4:	TSSOP20EV PCB SUPPORTED DIGITAL POTENTIOMETERS
------------	--

MCP43XXEV EVALUATION BOARD USER'S GUIDE

Appendix A. Schematic and Layouts

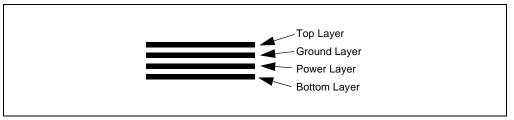
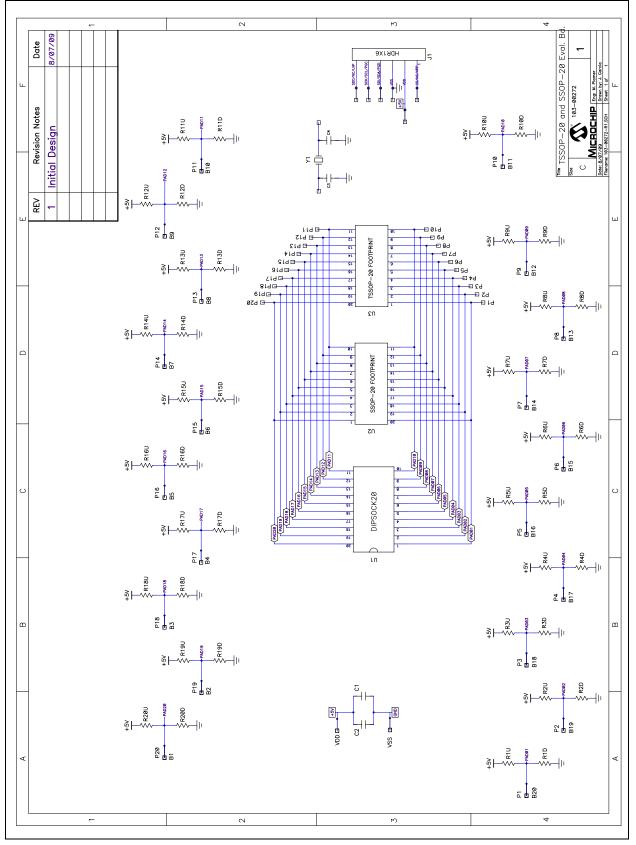
A.1 INTRODUCTION

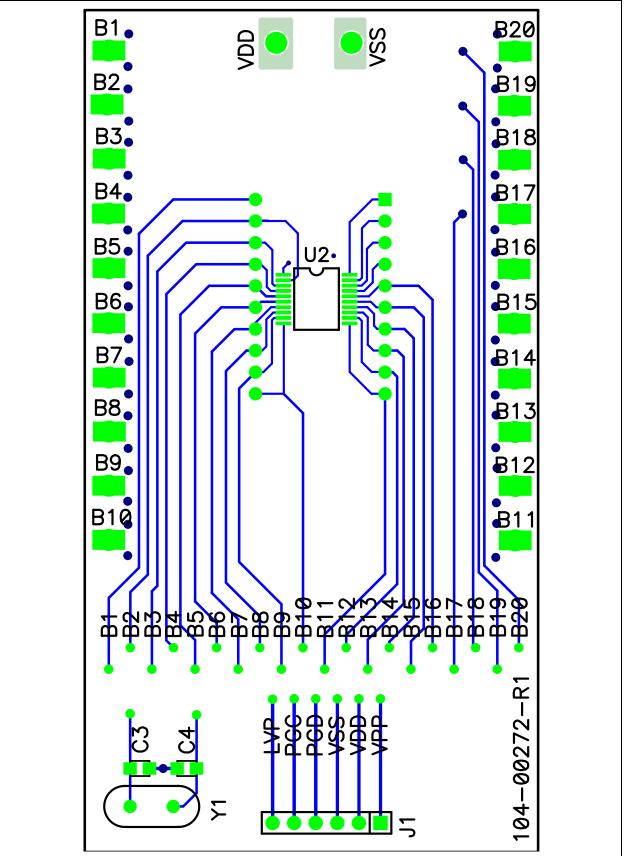
This appendix contains the schematics and layouts for the MCP43XXEV Evaluation Board. Diagrams included in this appendix:

- Board Schematic
- Board Top Trace, Silk and Pads
- Board Bottom Trace and Pads
- Board Layer 2 Ground Plane
- Board Layer 3 Power Plane
- Board Layout Top Components
- Board Bottom Silk, Trace and Pads

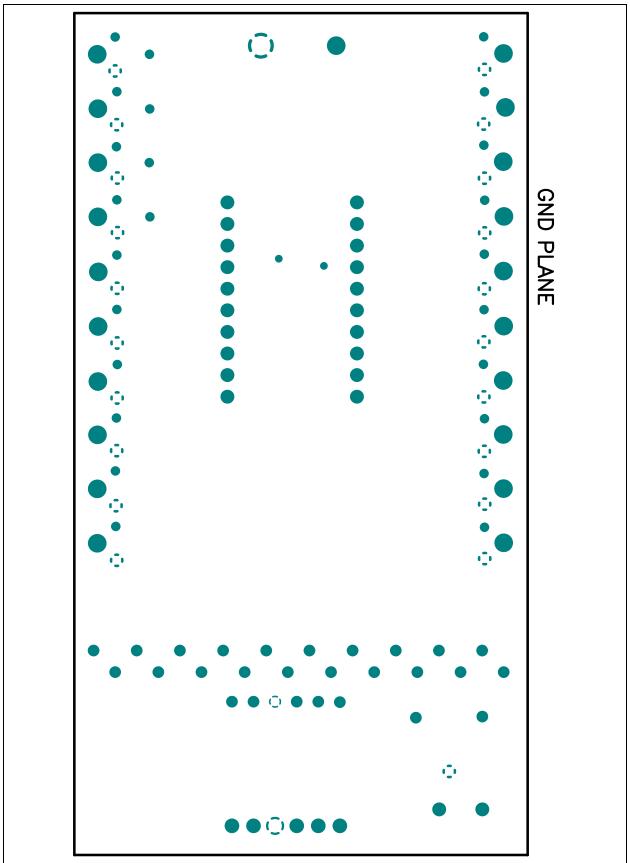
A.2 SCHEMATICS AND PCB LAYOUT

Board – Schematic shows the schematic of the MCP43XXEV Evaluation Board. The layer order is shown in Figure A-1.

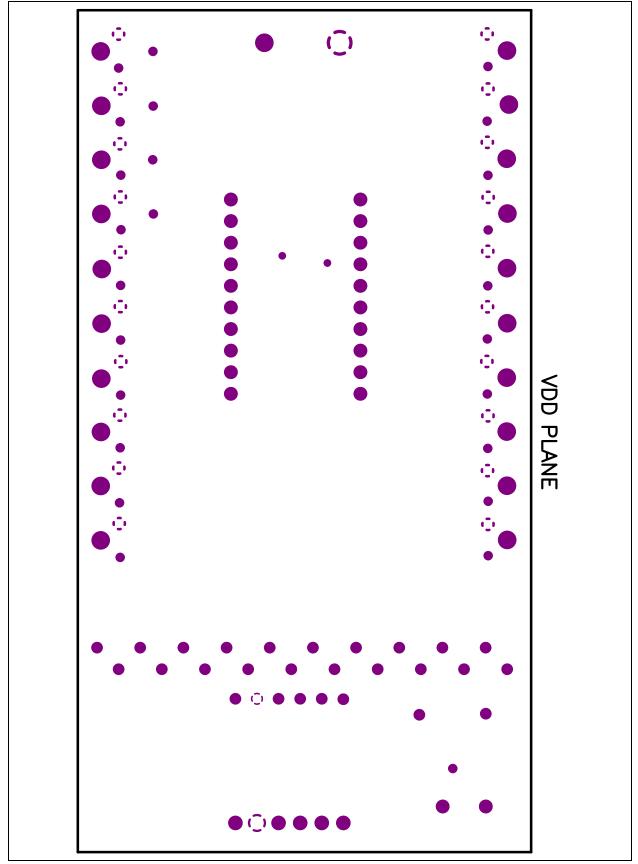



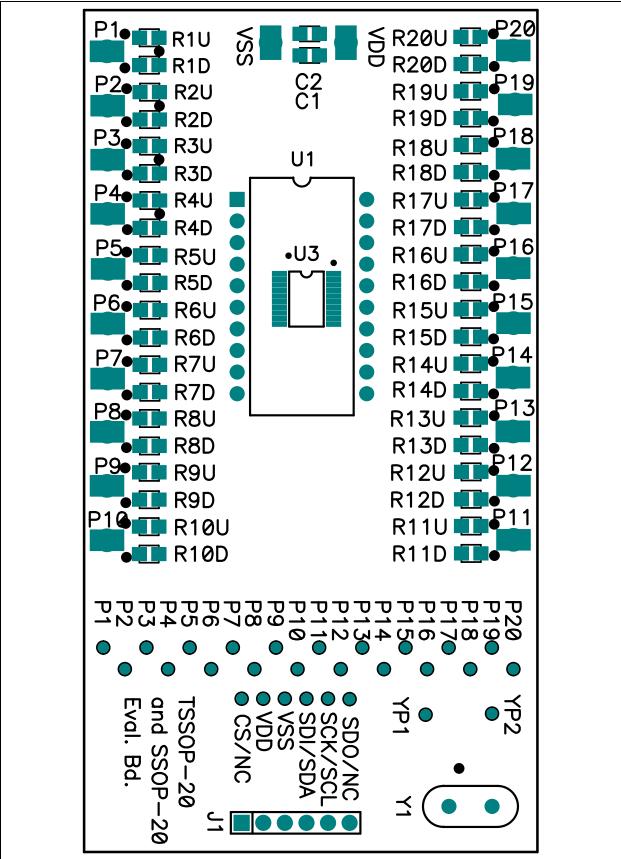

FIGURE A-1: Layer Order.

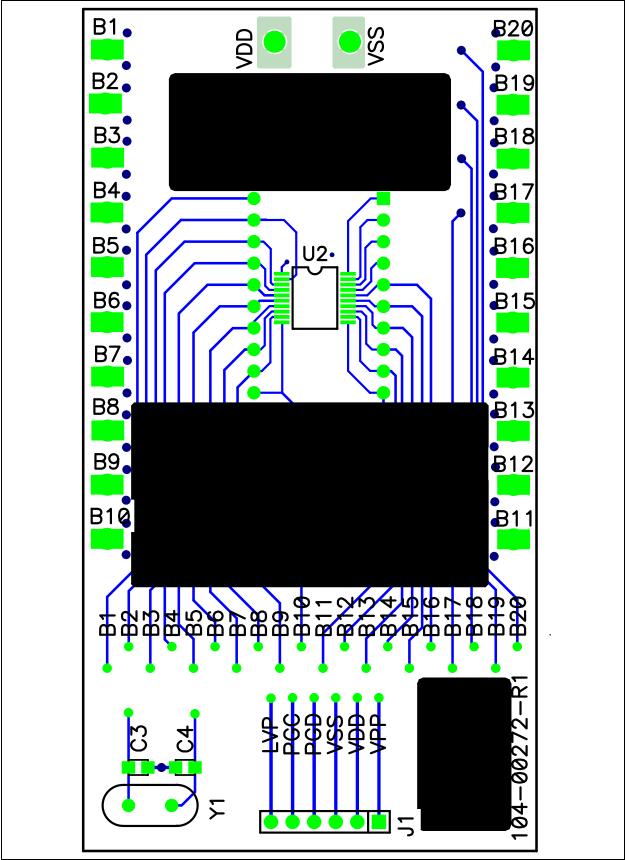
A.3 BOARD – SCHEMATIC



- P20 P1. R1U SSV R20D R1D C2 C1 P19 P2• R19U R2U R19D R20 P3. P18 **R18**U **R3 U1** R180 3D P4 217 **R**17U R4 R170 **4**D P5 P16 •U3 R1.6U R51 R5C **R16** P6. P15 R15U Rou R6D 5D R 14 **P7** R7U R R R7C213 **P8** R8I R R8D R 3D P12 P9• **R9** 2U R12D R9D P16 P11 R1ØU 1U R 1 **R11D R10D** ססס σ סס N ·OV4WO· 100 0 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Eval. Bd. and SSOP-20 Ď ᠣ SSOP-20 N ($\mathbf{\Sigma}$ _
- A.4 BOARD TOP TRACE, SILK AND PADS




A.6 BOARD – LAYER 2 GROUND PLANE


A.7 BOARD – LAYER 3 POWER PLANE

A.8 BOARD LAYOUT – TOP COMPONENTS

A.9 BOARD – BOTTOM SILK, TRACE AND PADS

MCP43XXEV EVALUATION BOARD USER'S GUIDE

Appendix B. Bill of Materials (BOM)

Qty	Reference	Description	Manufacturer	Part Number
1	PCB	Note 1	Microchip Technology Inc.	104-00272
8	R1U, R3D, R7D R8D, R10U, R17U R15U, R14U	RES 0.0 OHM 1/8W 5% 0805 SMD	Panasonic [®] - ECG	ERJ-6GEY0R00V
2	R14U, R15U	RES 10.0K OHM 1/8W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF1002V
1	U3	MCP4361 Quad SPI Digi-Pot (10K Ohm version)	Microchip Technology Inc.	MCP4361-103E/ST
4	P2, P9, P12, P19	TEST POINT PC MULTI PURPOSE ORG	Keystone Electronics [®]	5013
1	J1	CONN HEADER 6POS .100 R/A GOLD	Molex/Waldom Electronics Corp.	22-28-8062

TABLE B-1: BILL OF MATERIALS

Note 1: This assembly uses RoHS Compliant TSSOP-20 to DIP-20 Evaluation Board.

2: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А