
NPN Silicon RF Transistor

- For low noise, high-gain amplifiers up to 2GHz
- For linear broadband amplifiers
- $f_{T} = 7.5 \text{ GHz}$

F = 1.3 dB at 900 MHz

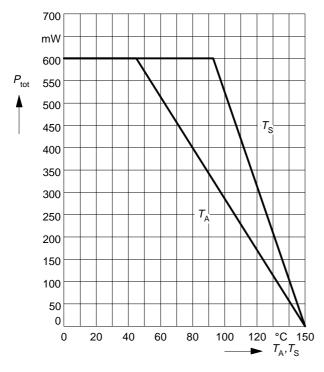
ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Ordering Code	Pin Configuration		Package	
BFQ 193	RCs	Q62702-F1312	1 = B	2 = C	3 = E	SOT-89

Maximum Ratings

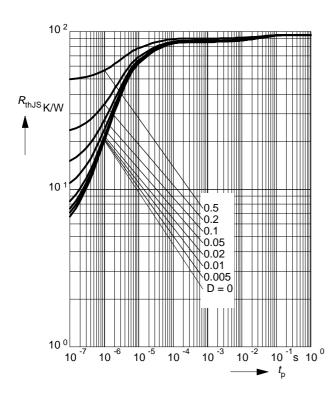
Parameter	Symbol	Values	Unit	
Collector-emitter voltage	V _{CEO}	12	V	
Collector-base voltage	V _{CBO}	20		
Emitter-base voltage	V_{EBO}	2		
Collector current	I _C	80	mA	
Base current	I _B	10		
Total power dissipation	P _{tot}		mW	
<i>T</i> _S ≤ 93 °C		600		
Junction temperature	T _j	150	°C	
Ambient temperature	T _A	- 65 + 150 - 65 + 150		
Storage temperature	T _{stg}			
Thermal Resistance			•	
Junction - soldering point 1)	R _{thJS}	≤ 95	K/W	

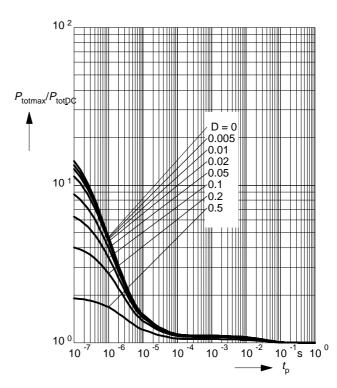
Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.


Parameter	Symbol		Values		
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}				V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$		12	-	-	
Collector-emitter cutoff current	I _{CES}				μΑ
$V_{CE} = 20 \text{ V}, \ V_{BE} = 0$		-	-	100	
Collector-base cutoff current	I _{CBO}				nA
$V_{\rm CB} = 10 \text{ V}, I_{\rm E} = 0$		-	-	100	
Emitter-base cutoff current	I _{EBO}				μA
$V_{\rm EB} = 1 \text{ V}, I_{\rm C} = 0$		-	-	1	
DC current gain	h _{FE}				-
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}$		50	100	200	

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics		•			·
Transition frequency	f_T				GHz
$I_{C} = 50 \text{ mA}, \ V_{CE} = 8 \text{ V}, \ f = 500 \text{ MHz}$		5.5	7.5	-	
Collector-base capacitance	C _{cb}				pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$		-	0.78	1.2	
Collector-emitter capacitance	C _{ce}				
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$		-	0.36	-	
Emitter-base capacitance	C _{eb}				
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}$		-	2.1	-	
Noise figure	F				dB
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$					
f = 900 MHz		-	1.3	-	
f = 1.8 GHz		-	2.1	-	
Power gain ²⁾	G _{ma}				
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$					
$Z_{L} = Z_{Lopt}$					
f = 900 MHz		-	14	-	
f = 1.8 GHz		-	8	-	
Transducer gain	$ S_{21e} ^2$				
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω					
f = 900 MHz		-	11.5	-	
<i>f</i> = 1.8 GHz		-	6	-	


Total power dissipation $P_{\text{tot}} = f(T_{A}^*, T_{S})$


^{*} Package mounted on epoxy

Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load $P_{\text{totmax}}/P_{\text{totDC}} = f(t_p)$

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А