
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

PCI Express Compiler

User Guide

MegaCore Version: 6.1
Document Version: 6.1 rev. 2
Document Date: December 2006

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide User Guide

UG-PCI10605-1.4.1

Altera Corporation PCI Express Compiler Version 6.1 iii
December 2006

Contents

About This User Guide
Revision History ... ix
How to Contact Altera ... xi
Typographic Conventions ... xii

Chapter 1. About This Compiler
Release Information ... 1–1
Device Family Support ... 1–1
New in PCI Express Compiler Version 6.1 .. 1–2
Features ... 1–2
General Description ... 1–3

Testbench & Example Designs: Simple DMA and Chaining DMA .. 1–5
OpenCore Plus Evaluation .. 1–6

Performance .. 1–7

Chapter 2. Getting Started
Design Flow .. 2–1
PCI Express Walkthrough .. 2–2

Launch the MegaWizard Plug-In Manager .. 2–3
Parameterize ... 2–5
Set Up Simulation ... 2–9
Generate Files .. 2–11

Simulate the Design ... 2–14
IP Functional Simulation Model .. 2–14

Compile the Design ... 2–15
Program a Device .. 2–16
Set Up Licensing .. 2–16

iv PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Contents

Chapter 3. Specifications
Functional Description .. 3–1

Endpoint Types .. 3–2
Transaction Layer ... 3–2
Data Link Layer .. 3–7
Physical Layer ... 3–10
Analyzing Throughput .. 3–11
Configuration Space Register Content .. 3–18
Active State Power Management (ASPM) .. 3–22
Error Handling ... 3–24
Stratix GX PCI Express Compatibility .. 3–29
OpenCore Plus Time-Out Behavior ... 3–30

Parameter Settings ... 3–31
System Settings Page ... 3–31
Capabilities Page Parameters ... 3–35
Buffer Setup Page ... 3–37
Power Management Page ... 3–41

Signals ... 3–43
Transmit Interface Operation Signals .. 3–45
Receive Interface Operation Signals .. 3–61
Clocking ... 3–72
Utility Signals .. 3–78
alt2gxb Support Signals ... 3–89
Physical Layer Interface Signals ... 3–90

MegaCore Verification .. 3–94
Simulation Environment ... 3–94
Compatibility Testing Environment .. 3–94

Chapter 4. External PHYs
External PHY Support ... 4–1

16-bit SDR Mode ... 4–2
16-bit SDR Mode with a Source Synchronous TxClk .. 4–3
8-bit DDR Mode .. 4–5
8-bit DDR with a Source Synchronous TxClk .. 4–6
8-bit SDR Mode ... 4–8
8-bit SDR with a Source Synchronous TxClk ... 4–9
16-bit PHY Interface Signals ... 4–11
8-bit PHY Interface Signals ... 4–13

Selecting an External PHY .. 4–15
External PHY Constraint Support ... 4–16

Using External PHYs With the Stratix GX Device Family ... 4–17

Altera Corporation PCI Express Compiler Version 6.1 v
December 2006 PCI Express Compiler User Guide

Contents

Chapter 5. Testbench & Example Designs
Testbench .. 5–3
Simple DMA Example Design ... 5–5

Example Design BAR/Address Map .. 5–8
Chaining DMA Example Design ... 5–11

Example Design BAR/Address Map .. 5–16
Chaining DMA Descriptor Tables ... 5–17

Test Driver Modules .. 5–20
BFM Test Driver Module For Simple DMA Example Design ... 5–20
BFM Test Driver Module for Chaining DMA Example Design .. 5–23

Root Port BFM .. 5–27
BFM Memory Map ... 5–29
Configuration Space Bus and Device Numbering .. 5–29
Configuration of Root Port and Endpoint .. 5–30
Issuing Read & Write Transactions to the Application Layer ... 5–32

BFM Procedures and Functions ... 5–33
BFM Read and Write Procedures ... 5–34
BFM Performance Counting ... 5–41
BFM Read/Write Request Procedures .. 5–42
BFM Configuration Procedures ... 5–44
BFM Shared Memory Access Procedures ... 5–46
BFM Log & Message Procedures ... 5–50
Verilog HDL Formatting Functions ... 5–56
Procedures and Functions Specific to the chaining DMA Design .. 5–61

Appendix A.
Configuration Signals

Configuration Signals for x1 and x4 MegaCore Functions ... A–1
Configuration Signals for x8 MegaCore Functions ... A–6

Appendix B.
Transaction Layer Packet Header Formats

Content Without Data Payload .. B–1
Content with Data Payload ... B–2

Appendix C.
Test Port Interface Signals

Test-Out Interface Signals for
x1 and x4 MegaCore Functions .. C–2
Test-Out Interface Signals for x8 MegaCore Functions .. C–19
Test-In Interface .. C–22

vi PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Contents

Altera Corporation PCI Express Compiler Version 6.1 vii
December 2006 PCI Express Compiler User Guide

About This User Guide

About This User Guide

Revision History The table below displays the revision history for the chapters in this User
Guide.

Chapter Date Version Changes Made

1 December 2006 6.1 ● Added support for the Stratix® III device family
● Updated version and performance information

April 2006 2.1.0 ● Rearranged content
● Updated performance information

October 2005 2.0.0 ● Added x8 support
● Added device support for Stratix II GX and Cyclone® II
● Updated performance information

June 2005 1.0.0 ● First release

2 December 6.1 ● Updated screen shots and version numbers
● Modified text to accommodate new MegaWizard® interface
● Updated installation diagram
● Updated walkthrough to accommodate new MegaWizard

interface

April 2006 2.1.0 ● Updated screen shots and version numbers
● Added steps for sourcing Tcl constraint file during compilation to

the walkthrough in the section “Compile the Design” on
page 2–15

● Moved installation information to release notes

October 2005 2.0.0 ● Updated screen shots and version numbers

June 2005 1.0.0 ● First release

3 December 2006 6.1 ● Updated screen shots and parameters for new MegaWizard
interface

● Corrected timing diagrams

April 2006 2.1.0 ● Added section “Analyzing Throughput” on page 3–11
● Updated screen shots and version numbers
● Updated System Settings, Capabilities, Buffer Setup, and Power

Management Pages and their parameters
● Added three waveform diagrams:

Transfer for a single write
Transaction layer not ready to accept packet
Transfer with wait state inserted for a single DWORD

October 2005 2.0.0 ● Updated screen shots and version numbers

June 2005 1.0.0 ● First release

viii PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Revision History

4 December 2006 6.1 ● Modified file names to accommodate new project directory
structure

● Added references for high performance, Chaining DMA Example

April 2006 2.1.0 ● New chapter, “External PHYs”, added for external PHY support

5 December 2006 6.1 ● Added high performance, Chaining DMA Example

April 2006 2.1.0 ● Updated chapter number to chapter 5
● Added section
● Added two BFM Read/Write Procedures:

ebfm_start_perf_sample Procedure
ebfm_disp_perf_sample Procedure

October 2005 2.0.0 ● Updated screen shots and version numbers

June 2005 1.0.0 ● First release

Appendix A April 2006 2.1.0 ● Removed restrictions for x8 ECRC

June 2005 1.0.0 ● First release

Appendix B October 2005 2.1.0 ● Minor corrections

June 2005 1.0.0 ● First release

Appendix C April 2.1.0 ● Updated ECRC to include ECRC support for x8

October 2005 1.0.0 ● Updated ECRC noting no support for x8

June 2005 ● First release

all April 2006 2.1.0
rev 2

● Minor format changes throughout user guide

Chapter Date Version Changes Made

Altera Corporation PCI Express Compiler Version 6.1 ix
December 2006 PCI Express Compiler User Guide

About This User Guide

How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera website at www.altera.com. For technical support on this product,
go to www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com literature@altera.com

Nontechnical customer
service

(800) 767-3753 + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

x PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Typographic Conventions

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (for example, the
VHDL keyword BEGIN), as well as logic function names (for example, TRI) are
shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation PCI Express Compiler Version 6.1 1–1
December 2006 Preliminary

1. About This Compiler

Release
Information

Table 1–1 provides information about this release of the Altera® PCI
Express Compiler.

Device Family
Support

MegaCore® functions provide either full or preliminary support for target
Altera device families:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution.

Table 1–1. PCI Express Compiler Release Information

Item Description

Version 6.1

Release Date December 2006

Ordering Code IP-PCIE/1
IP-PCIE/4
IP-PCIE/8

Product IDs 00A9
00AA
00AB

Vendor ID 6A66

1–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

New in PCI Express Compiler Version 6.1

Table 1–2 shows the level of support offered by the PCI Express Compiler
to each Altera device family.

New in PCI
Express
Compiler
Version 6.1

The following features have been added to this version:

■ Stratix III device support
■ New MegaWizard® interface
■ High performance example design with chaining DMA
■ Reduced latency for common clock applications

Features ■ Support for x1, x4, and x8 endpoint applications including
nontransparent bridging applications
● Cyclone II, , HardCopy II, Stratix II, Stratix II GX, Stratix III, and

Stratix GX support
● Embedded transceiver support for x1, x4, and x8 applications

• x8 support in Stratix II GX devices
● Extensive external PHY support for the x1 and x4 MegaCore

functions
■ Compliance for PCI Express Base Specification 1.1
■ Easy integration into customer design

● Functional simulation models for use in Altera-supported
VHDL and Verilog HDL simulators

● Simple DMA example design
● High performance chaining DMA example design

■ Highly flexible and configurable MegaCore functions
● Up to 4 virtual channels
● Maximum payload up to 2Kbyte (128, 256, 512, 1,024, or 2,048

bytes)
● Retry buffer size up to 16Kbytes (from 256 bytes to 16 KBytes)

Table 1–2. Device Family Support

Device Family Support

Cyclone® II Full

HardCopy® II Preliminary

Stratix® II Full

Stratix II GX Preliminary

Stratix III Preliminary

Stratix GX Full

Other device families No support

Altera Corporation PCI Express Compiler Version 6.1 1–3
December 2006 PCI Express Compiler User Guide

About This Compiler

■ Access to high reliability features
● Optional end-to-end cyclic redundancy code (ECRC)/advanced

error reporting (AER) support for x1, x4, and x8 lanes
■ Free evaluation using OpenCore Plus

General
Description

The PCI Express Compiler generates customized PCI Express MegaCore
functions you use to design PCI Express endpoints, including non-
transparent bridges, or truly unique designs combining multiple PCI
Express components in a single Altera device. The PCI Express MegaCore
functions are PCI Express Base Specification Revision 1.1 or PCI Express™
Base Specification Revision 1.0a compliant, and implement all required and
most optional features of the specification for the transaction, data link,
and physical layers.

The PCI Express Compiler allows you to select from 3 MegaCore
functions that support x1, x4, or x8 operation and that are suitable for
endpoint applications. Figure 1–1 shows how the PCI Express MegaCore
functions can be used in an example system. If you target the MegaCore
function for Stratix GX or Stratix II GX devices, the MegaCore function
includes a complete PHY layer, including the MAC, PCS, and PMA
layers. If you target other device architectures, the PCI Express Compiler
generates the MegaCore function with the Intel-designed PIPE interface,
making the MegaCore function usable with other PIPE-compliant
external PHY devices.

When selecting your external PHY, the PCI Express MegaCore functions
support a wide range of PHYs including the TI XIO1100 PHY in 8-bit
DDR mode or 16-bit SDR mode; Philips PX1011A for 8-bit SDR mode, a
serial PHY for Stratix II GX and Stratix GX devices, and a range of custom
PHYs using 8-bit/16-bit SDR with or without source synchronous
transmit cock modes and 8-bit DDR with or without source synchronous
transmit clock modes.

1–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

General Description

Figure 1–1. Example PCI Express System

Optimized for Altera devices, the PCI Express Compiler supports all
memory, I/O, configuration, and message transactions. The MegaCore
functions have a highly optimized application interface to achieve
maximum effective throughput. Because the Compiler is
parameterizable, you can customize them to meet design requirements
by using the MegaWizard interface in the Quartus® II software. For
example, the MegaCore functions can support up to 4 virtual channels for
x1 or x4 configurations, or up to 2 channels for x8 configurations. You also
can customize the payload size, buffer sizes, and configuration space
(base address registers support and other registers). Additionally, the PCI
Express Compiler supports end-to-end cyclic redundancy code (ECRC)
and advanced error reporting for x1, x4, and x8 configurations.

The PCI Express MegaCore functions also include debug features that
allow observation and control of the MegaCore functions. These
additional inputs and outputs help with faster debugging of system-level
problems.

Root
Complex

Switch

Stratix GX or Stratix II GX Device

User Application
Logic

PCI Express
MegaCore Function

Endpoint

Stratix II or Cyclone II Device

User Application
Logic

PCI Express
MegaCore Function

Endpoint

PIPE Interface

PCI Express Link

External PHY

PCI Express Link

Altera Corporation PCI Express Compiler Version 6.1 1–5
December 2006 PCI Express Compiler User Guide

About This Compiler

Testbench & Example Designs: Simple DMA and Chaining DMA

The PCI Express Compiler includes an endpoint testbench that
incorporates a basic root port bus functional model (BFM) and two
endpoint design examples: simple DMA and chaining DMA. Both
endpoint design examples illustrate the application interface to the PCI
Express MegaCore function and are delivered as clear-text source-code
(VHDL and Verilog HDL) suitable for both simulation and synthesis, as
well as OpenCore Plus evaluation of the MegaCore function in hardware.
The basic root port BFM incorporates a driver and an IP functional
simulation model of a root port. Figure 1–2 illustrates the endpoint
testbench setup for the simple DMA example. Figure 1–3 illustrates the
testbench for the chaining DMA example.

Figure 1–2. Testbench for the Simple DMA Example

Endpoint Simple DMA Example

Root Port Driver

x8 Root Port Model

User Interface

Root Port BFM

Target
Control

PCI Express
MegaCore Function

Endpoint Application
Layer Example

DMA
Control

Registers

DMA
Control

Target
Memory

(32 KBytes)

DMA
Memory

(32 KBytes)

Traffic Control/Virtual Channel Mapping
Request/Completion Routing

User Interface

PCI Express Link

1–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

General Description

You can replace the endpoint application layer example shown in
Figure 1–2 or Figure 1–3 with your own application layer design and then
modify the BFM driver to generate the transactions needed to test your
application layer.

Figure 1–3. Testbench for the Chaining DMA Example

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a MegaCore function within your system
■ Verify the functionality of your design, as well as quickly and easily

evaluate its size and speed

Endpoint Example

Root Port Driver

x8 Root Port Model

User Interface

Root Port BFM

PCI Express
MegaCore Function

Endpoint Application
Layer Example

DMA
Write

RC
Slave

(Optional)

Endpoint
Memory

(32 KBytes)

Traffic Control/Virtual Channel Mapping
Request/Completion Routing

User Interface

PCI Express Link

DMA
Read

Altera Corporation PCI Express Compiler Version 6.1 1–7
December 2006 PCI Express Compiler User Guide

About This Compiler

■ Generate time-limited device programming files for designs that
include MegaCore functions

■ Program a device and verify your design in hardware

You only need to purchase a license for the MegaCore function when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

f For more information on OpenCore Plus hardware evaluation using the
PCI Express compiler, see “OpenCore Plus Time-Out Behavior” on
page 3–30 and AN 320: OpenCore Plus Evaluation of Megafunctions.

Performance Tables in this section show typical expected performance for various
parameters using the Quartus II software, version 6.1 for the device
families listed.

For the performance data in Table 1–3 through Table 1–7, the parameters
below were set.

■ On the Buffer Setup page, for x1, x4, and x8 configurations, the
following values were set:
● Maximum payload size was set to 256 Bytes unless specified

otherwise.
● Desired performance for received requests and Desired

performance for completions were both set to Medium. unless
otherwise specified.

1 For a description of the Buffer Setup page settings, see
Table 3–20 on page 3–38.

■ On the Capabilities page, the number of Tags supported was set as
to 16 for all configurations unless specified otherwise.

1 For a description of Capabilities page settings, see
Table 3–19 on page 3–35.

1–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Performance

Table 1–3 shows the typical expected performance for different
parameters, using the Quartus II software, version 6.1 for Cyclone II
(EP2C35F484C6) devices.

Table 1–3. Performance - Cyclone II Devices

Parameters Memory
Blocks

x1/x4 Internal
Clock MHz

Number of
Virtual

Channels

Logic
Elements M4K

x1 125 1 9500 10

x1 125 2 12400 15

x1(1) 62.5 1 7800 11

x1 62.5 2 10500 18

x4 125 1 12100 18

x4 125 2 15200 27

Notes for Table 1–3
(1) Max payload was set to 128B, the number of Tags supported was set to 4, and Desired

performance for received requests and Desired performance for completions were both set to
Low.

Altera Corporation PCI Express Compiler Version 6.1 1–9
December 2006 PCI Express Compiler User Guide

About This Compiler

6.1 Table 1–4 shows the typical expected performance for different
parameters, using the Quartus II software, version 6.1 for Stratix II
(EP2S130GF1508C3) devices.

Table 1–4. Performance - Stratix II Devices

Parameters Memory Blocks

x1/x4
Internal
Clock
MHz

Number of
Virtual

Channels

Combinational
ALUTs

Dedicated
Registers M512 M4K

x1 125 1 6600 3400 2 8

x1 125 2 8900 4500 3 12

x4 125 1 8700 4400 6 12

x4 125 2 11000 5600 7 20

1–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Performance

Table 1–5 shows the typical expected performance for different
parameters, using the Quartus II software version 6.1 for Stratix II GX
(EP2SGX130GF1508C3) devices.

Table 1–5. Performance - Stratix II GX Devices

Parameters Memory Blocks

x1/x4/x8
Internal
Clock
MHz

Number of
Virtual

Channels

Combinational
ALUTs

Dedicated
Registers M512 M4K

x1 125 1 6600 3400 2 8

x1 125 2 8900 4500 3 12

x4 125 1 8700 4400 6 12

x4 125 2 11000 5600 7 20

x8 250 1 8300 5800 10 12

x8 250 2 10200 6900 11 20

Altera Corporation PCI Express Compiler Version 6.1 1–11
December 2006 PCI Express Compiler User Guide

About This Compiler

Table 1–6 shows the typical expected performance for different
parameters, using the Quartus II software version 6.1 for Stratix III
(EP3SL200F1152C3) devices.

Table 1–7 shows the typical expected performance for different
parameters, using the Quartus II software version 6.1 for Stratix GX
(EP1SGX25CF672C5) devices.

Table 1–6. Performance - Stratix III Devices

Parameters Memory
Blocks

x1/x4
Internal
Clock
MHz

Max
Payload

Bytes

Number
of Virtual
Channels

Combinational
ALUTs

Dedicated
Registers M9K

x1 125 256 1 6500 3400 5

x1 125 256 2 8700 4500 9

x4 125 256 1 8500 4500 7

x4 125 256 2 10900 5600 12

Table 1–7. Performance - Stratix GX

Parameters Memory Blocks

x1/x4 Internal
Clock MHz

Number of
Virtual

Channels

Logic
Elements M512 M4K

x1 125 1 9500 2 9

x1 125 2 12300 2 14

x4 125 1 14500 6 16

x4 125 2 17100 7 24

1–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Performance

The following table shows the recommended device family speed grades
for the supported link widths and internal clock frequencies. When the
internal clock frequency is 125 MHz or 250 MHz, the recommended
setting is that the Quartus II Analysis & Synthesis Optimization
Technique be set to Speed.

f See the Quartus II Development Software Handbook for more information
on how to set this.

Table 1–8. Recommended Device Family and Speed Grades

Device Family Link Width Internal Clock
Frequency

Recommended Speed
Grades

Cyclone II x1, x4 125MHz -6

x1 62.5MHz -6, -7, -8(4)

Stratix II GX x1, x4 125MHz -3, -4, -5 (1)

x8 250MHz -3(1), -4(2),(3)

Stratix II x1, x4 125MHz -3, -4, -5 (1)

x1 62.5Mhz -3, -4, -5

Stratix III x1, x4 125MHz -2,-3,-4

x1 62.5MHz -2,-3,-4

Stratix GX x1, x4 125MHz -5(1)

x1 62.5MHz -5,-6

Notes:
(1) To achieve timing closure for these speed grades and variations enabling Physical Synthesis

in the Quartus II Fitter Settings is required with these options enabled: Perform physical
synthesis for combinational logic, perform register duplication, and perform register
retiming. See the Quartus II Development Software Handbook for more information on how to set
these options.

(2) Achieving timing closure for x8 in Stratix II GX -4 will require use of the Quartus Design Space
Explorer with multiple seeds.

(3) Multiple VCs, ECRC support, and greater than 16 tags are not recommended for x8 variations
in Stratix II GX -4.

(4) In the -8 speed grade, the External PHY 16-bit SDR or 8-bit SDR modes are recommended

Altera Corporation PCI Express Compiler Version 6.1 2–1
December 2006 Preliminary

2. Getting Started

Design Flow To evaluate the PCI Express Compiler using the OpenCore Plus feature
include these steps in your design flow:

1. Obtain and install the PCI Express Compiler.

The PCI Express Compiler is part of the MegaCore® IP Library, which is
distributed with the Quartus II software and downloadable from the
Altera website, www.altera.com.

For system requirements and installation instructions, refer to Quartus II
Installation & Licensing for Windows or Quartus II Installation & Licensing for
UNIX & Linux on the Altera website at

www.altera.com/literature/lit-qts.jsp

Figure 2–1 shows the directory structure after you install the PCI Express
Compiler, where <path> is the installation directory. The default
installation directory on Windows is c:\altera\61; on UNIX and Linux it
is /opt/altera/61.

Figure 2–1. Directory Structure

 common
Contains shared components.

 pci_express_compiler
Contains the PCI Express Compiler files and documentation.

 doc
 Contains documentation for the MegaCore function.

 lib
 Contains encrypted lower-level design files and other support files.

<path>
Installation directory

 ip
 Contains the MegaCore IP Library

2–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

2. Create a custom variation using the PCI Express Compiler.

3. Implement the rest of your design using the design entry method of
your choice.

4. Use the IP functional simulation model to verify the operation of
your design.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Development Software Handbook.

5. Use the Quartus II software to compile your design.

1 You can also generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

6. Purchase a license for the PCI Express Compiler.

After you have purchased a license for the PCI Express Compiler
Compiler, follow these additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera® device(s) on your
board.

3. Program the Altera device(s) with the completed design.

PCI Express
Walkthrough

The PCI Express Compiler comes with 2 example designs. This
walkthrough guides you through the process of launching the
MegaWizard interface using the MegaWizard Plug-in Manager,
parameterizing the MegaCore, and simulating the MegaCore with your
choice of the 2 supplied example designs. After generating a custom
variation of the PCI Express MegaCore function, you can incorporate it
into your overall project.

This walkthrough consists of the following steps:

■ Launch the MegaWizard Plug-In Manager
■ Parameterize
■ Set Up Simulation
■ Generate Files

Altera Corporation PCI Express Compiler Version 6.1 2–3
December 2006 PCI Express Compiler User Guide

Getting Started

The PCI Express Compiler MegaWizard interface creates two example
top-level designs to connect with the PCI Express MegaCore function
variation that you create. The example top-level designs can be compiled
for an Altera device by the Quartus II software. The example simple DMA
top-level design is named <variation name>_example_top. This
walkthrough uses pex as the variation name and pex_example_top as the
simple DMA top-level example design.

The example chaining DMA top-level design is named
pex_example_chaining_top.

Launch the MegaWizard Plug-In Manager

To launch the MegaWizard® Plug-In Manager in the Quartus II software,
follow these steps:

1. Start the MegaWizard Plug-In Manager by choosing MegaWizard
Plug-In Manager (Tools menu). The MegaWizard Plug-In Manager
dialog box displays (see Figure 2–2).

1 Refer to the Quartus II Help for more information on how
to use the MegaWizard Plug-In Manager.

Figure 2–2. MegaWizard Plug-In Manager

2. Specify that you want to create a new custom megafunction
variation and click Next.

2–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

3. Expand the Interfaces directory under Installed Plug-Ins by
clicking the + icon left of the directory name, then click PCI Express
Compiler v6.1.

4. Choose the device family you want to use for this MegaCore
function variation. For example, Stratix II GX.

5. Select the output file type for your design; the MegaWizard Plug-In
Manager supports VHDL and Verilog HDL. In this example, choose
Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you
specified. Append a variation name for the MegaCore function
output files <project path>\<variation name>. For this walkthrough,
specify pex for the name of the MegaCore function files:

c:\altera\pcie_project\pex.vhd

Figure 2–3 shows the MegaWizard Plug-In Manager after you have
made these settings.

Figure 2–3. Select the MegaCore Function

Altera Corporation PCI Express Compiler Version 6.1 2–5
December 2006 PCI Express Compiler User Guide

Getting Started

7. Click Next to display the Parameter Settings page for the PCI
Express Compiler (see Figure 2–4).

1 You can change the page that the MegaWizard Plug-In
Manager displays by clicking Next or Back at the bottom of
the dialog box. You can move directly to a named page by
clicking Parameter Settings, Simulation Model, or
Summary tab.

Also, you can directly display individual parameter
settings by clicking on options on specific parameter pages.

Parameterize

To parameterize your MegaCore function, follow these steps:

1 For this section, you can use the parameter settings shown
in the figures or your own settings. The example design is
generated to adapt to most settings, although some tests
may not run for specific settings. The parameter settings
required to use the testbench fully are noted for each
MegaWizard page.

1. Click the Parameter Settings tab in the MegaWizard interface (see
Figure 2–4).

The System Settings page is the first page displayed. Set parameters
on this page that are appropriate for the MegaCore function instance
you will implement. See Figure 2–4.

2–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

Figure 2–4. System Settings Page

To enable all of the tests in the provided testbench and Simple DMA
example design, make the BAR assignments shown in Table 2–1
below.

1 Many other BAR settings allow full testing of the Simple DMA
example design. See the “BFM Test Driver Module For Simple
DMA Example Design” on page 5–20 for a description of what
settings the test module uses.

Table 2–1. BAR Assignments

BAR BAR TYPE BAR Size

1:0 64-Bit Prefetchable Memory 16 MBytes - 24 bits

2 32-bit Non-Prefetchable Memory 256 Kbytes -18 bits

Altera Corporation PCI Express Compiler Version 6.1 2–7
December 2006 PCI Express Compiler User Guide

Getting Started

See “Parameter Settings” on page 3–31 for a detailed description
of the available parameters.

2. Click Next to display the Capabilities page.

3. With the Capabilities page open, make the appropriate settings and
click Next to display the Buffer Setup page. See Figure 2–5.

Figure 2–5. Capabilities Page

2–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

4. The Buffer Setup page opens. Make the appropriate settings and
click Next. See Figure 2–6.

Figure 2–6. Buffer Setup Page

To determine the appropriate settings for the Desired performance for
received requests and Desired performance for received completions
parameters, refer to Table 3–20 on page 3–38. For additional information
regarding data credits, refer to Table 3–2 on page 3–15.

Altera Corporation PCI Express Compiler Version 6.1 2–9
December 2006 PCI Express Compiler User Guide

Getting Started

5. The Power Management page opens. Make the appropriate
settings. See Figure 2–7.

Figure 2–7. Power Management Page

6. To apply the settings, click Finish.

7. Click Next (or the Simulation Model page) to display the
simulation setup page (see Figure 2–8).

Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software. The model allows for
fast functional simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

2–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

c You may only use these simulation model output files for
simulation purposes and expressly not for synthesis or any
other purposes. Using these models for synthesis will create a
nonfunctional design.

To generate an IP functional simulation model for your MegaCore
function, follow these steps:

1. Click the Simulation Model tab (see Figure 2–8).

Figure 2–8. Set Up Simulation

2. Click the checkbox to enable the Generate Simulation Model (see
Figure 2–8).

3. Choose the language in the Language list pulldown.

Altera Corporation PCI Express Compiler Version 6.1 2–11
December 2006 PCI Express Compiler User Guide

Getting Started

4. Click Next (or the Summary tab) to display the summary page (see
Figure 2–9).

Figure 2–9. Summary

Generate Files

To generate the files, follow these steps:

1. Turn on the files you wish to generate.Use the check boxes on the
Summary page to enable or disable the generation of specified files.
A gray checkmark indicates a file that is automatically generated;
any other checkmark indicates an optional file.

1 At this stage you can still click Back or any of the tabs,
Parameters Setting, Simulation Model, or Summary, tabs
to display any of the other pages in the MegaWizard Plug-
In Manager, if you want to change any of the parameters.

2–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

PCI Express Walkthrough

2. To generate the specified files and close the MegaWizard Plug-In
Manager, click Finish.

The Generation Panel displays file generation status. When all files
have been generated, the Generation panel returns a Generation
Successful status message. Click Exit to close the panel. The
generation phase can take several minutes to complete. A generation
report, written to the project directory and named <variation
name>.html, lists the files and ports generated.

Figure 2–10. Generation Panel

Table 2–2 describes the generated files and other files that may be in your
project directory. The names and types of files specified in the summary
vary based on whether you created your design using VHDL or Verilog
HDL.

Table 2–2. Generated Files Notes (1)& (2) (Part 1 of 2)

Filename Description

<variation name>.ppf This XML file describes the MegaCore pin attributes to
the Quartus II Pin Planner. MegaCore pin attributes
include pin direction, location, I/O standard
assignments, and drive strength. If you launch the
MegaWizard outside of the Pin Planner application,
you must explicitly load this file to use Pin Planner.

<variation name>.ppx This XML file is a Pin Planner support file that Pin
Planner automatically uses. This file must remain in the
same directory as the pex.ppf file.

<variation name>.html MegaCore function report file.

Altera Corporation PCI Express Compiler Version 6.1 2–13
December 2006 PCI Express Compiler User Guide

Getting Started

You can now integrate your custom MegaCore function variation into
your design, simulate, and compile.

Quartus II software also creates a three-level subdirectory in your project
directory named <variation name>_examples. Figure 2–11 illustrates this
directory structure. This subdirectory contains a PCI Express BFM and
testbench for testing both the Simple DMA example design and the
chaining DMA example design. The directory also includes scripts for
running the testbench in the ModelSim simulator. See Chapter 5,
Testbench & Example Designs for a list and brief description of the files
created for the testbench.

<variation name>.vhd or
<variation name>.v

This file instantiates the <variation name>_core
module (or entity) that is described elsewhere in this
table and includes additional logic required to support
the specific external or internal PHY you have chosen
for your variation. You must instantiate this file inside of
your design. You should include this file when you
compile your design in the Quartus II software and in
your simulation project.

<variation name>_core.vhd or
<variation name>_core.v

This file instantiates the PCI Express Transaction, Data
Link, and Physical layers. It is instantiated inside the
<variation name> module (or entity). Include this file
when you compile your design in the Quartus II
software.

<variation name>_core.vho or
or <variation name>_core.vo

This file includes the VHDL or Verilog HDL IP functional
simulation model of the <variation name>_core entity
(or module). Include this file when simulating your
design.

Notes to Table 2–1:
(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by the MegaWizard Plug-In Manager.

Table 2–2. Generated Files Notes (1)& (2) (Part 2 of 2)

Filename Description

2–14 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Simulate the Design

Figure 2–11. PCI Express Directory Structure With Example Directory

Simulate the
Design

You can simulate your design using the MegaWizard-generated VHDL
and Verilog HDL IP functional simulation models.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Development Software Handbook.

IP Functional Simulation Model

To run the testbench in the ModelSim simulator, follow these steps:

1. Start the ModelSim simulator.

2. From the ModelSim File menu, use Change Directory to change the
working directory to the appropriate example design directory.

For the simple DMA example design, change to the directory:
<your project directory>/<variation name>_examples/simple_dma

 <Quartus II project>.qpf

 <variation_name>.v or <variation_name>.vhd

 <PCI Express variation_name>_examples

chaining_dma
directory contains the files:
<PCIe variation_name>_example_chaining_top>.v or
<PCIe variation_name>_example_chaining_top>.vhd,
<PCIe variation_name>_example_chaining_pipen1b>.v or
<PCIe variation_name>_example_chaining_pipen1b>.vhd, a
<PCIe variation_name>_example_chaining_top.qpf

testbench
altpcietb_bfm_driver_chaining.v
top_chaining_testbench.v

common

testbench

testbench
contains the files:
altpcietb_bfm_driver.v
top_testbench.v

simple_dma
contains the files:
<PCIe variation_name>_example_top.v or
<PCIe variation_name>_example_top.vhd,
<PCIe variation_name>_example_pipen1b.v or
<PCIe variation_name>_example_pipen1b.vhd, and
<PCIe variation_name>_example_top.qpf

Altera Corporation PCI Express Compiler Version 6.1 2–15
December 2006 PCI Express Compiler User Guide

Getting Started

or

for the chaining DMA example design, change to the directory:
<variation name>_examples/chaining_dma

Click OK.

3. In the ModelSim Transcript window, execute the command do
runtb.do, which sets up the required libraries, compiles the netlist
files, and runs the testbench. The ModelSim Transcript window
displays messages from the BFM reflecting various values read from
the variation file’s configuration space. These messages reflect the
values entered during the parameterize step of the walkthrough.

1 Altera also provides the DOS command window batch file
runtb.bat and the shell script runtb.sh to run the testbench
in ModelSim command-line mode.

f For more information on the testbench, BFM, and included example
application, see Chapter 5, Testbench & Example Designs.

Compile the
Design

You can use the Quartus II software to compile the example designs. Refer
to Quartus II Help for instructions on compiling your design. In the
Quartus II software, open the Simple DMA example design project that
you created in “PCI Express Walkthrough” on page 2–2:

c:\altera\pcie_project\pex_examples\simple_dma\pex_example_top

This example Quartus II project has the recommended synthesis, fitter,
and timing analysis settings for the parameters chosen in the variation
used in this example design.

To verify the PCI Express assignments in your project, follow these steps:

1. Choose Start Compilation (Processing menu) in the Quartus II
software.

2. After compilation, expand the Timing Analyzer or TimeQuest
Timing Analyzer folder in the Compilation Report panel by clicking the
+ icon next to the folder name. Note whether the timing constraints were
successfully met from this section of the Compilation Report.

2–16 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Program a Device

1 If your design does not initially meet the timing constraints,
try using the Design Space Explorer in the Quartus II
software to find the optimal Fitter settings for your design
to meet the timing constraints. To use the Design Space
Explorer, choose Launch Design Space Explorer (Tools
Menu).

Program a
Device

After you have compiled your design, program your targeted Altera
device, and verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the
PCI Express MegaCore function before you purchase a license. OpenCore
Plus evaluation allows you to generate an IP functional simulation model
and produce a time-limited programming file.

f For more information on IP functional simulation models, see the
Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Development Software Handbook.

You can simulate the PCI Express MegaCore function in your design and
perform a time-limited evaluation of your design in hardware.

f For more information on OpenCore Plus hardware evaluation using the
PCI Express MegaCore function, see “OpenCore Plus Time-Out
Behavior” on page 3–30 and AN 320: OpenCore Plus Evaluation of
Megafunctions.

Set Up Licensing You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

After you purchase a license for the PCI Express MegaCore function, you
can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not
have Internet access, contact your local Altera representative.

Altera Corporation PCI Express Compiler Version 6.1 3–1
December 2006 Preliminary

3. Specifications

Functional
Description

Figure 3–1 broadly describes the roles of each layer of the PCI Express
MegaCore function.

Figure 3–1. The MegaCore Function’s Three Layers

The PCI Express MegaCore functions comply with the PCI Express Base
Specification 1.1 or the PCI Express Base Specification Revision 1.0a, and
implements all three layers of the specification:

■ Transaction Layer—The transaction layer contains the configuration
space, which manages communication with the your application
layer: the receive and transmit channels, the receive buffer, and flow
control credits.

■ Data Link Layer—The data link layer, located between the physical
layer and the transaction layer, manages packet transmission and
maintains data integrity at the link level. Specifically, the data link
layer:
● Manages transmission and reception of data link layer packets
● Generates all transmission cyclical redundancy code (CRC)

checks and checks all CRCs during reception

tx_desc

tx _data

rx_desc

rx _data

Tx

Rx

Transaction Layer Data Link Layer Physical Layer

PCI Express MegaCore Function

Towards Application Layer Towards Link

With information sent
by the application
layer, the transaction
layer generates a TLP,
which includes a
header and, optionally,
a data payload.

The data link layer
ensures packet
integrity, and adds a
sequence number and
link cyclic redundancy
code (LCRC) check to
the packet.

The physical layer
encodes the packet
and transmits it to the
receiving device on the
other side of the link.

The transaction layer
disassembles the
transaction and
transfers data to the
application layer in a
form that it recognizes.

The data link layer
verifies the packet's
sequence number and
checks for errors.

The physical layer
decodes the packet
and transfers it to the
data link layer.

3–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

● Manages the retry buffer and retry mechanism according to
received ACK/NAK data link layer packets

● Initializes the flow control mechanism for data link layer
packets and routes flow control credits to and from the
transaction layer

■ Physical Layer—The physical layer initializes the speed, lane
numbering, and lane width of the PCI Express link according to
packets received from the link and directives received from higher
layers.

Endpoint Types

The MegaCore function can implement either a native PCI Express
endpoint or a legacy endpoint. Altera recommends using native PCI
Express endpoints for new applications; they support memory space read
and write transactions only. Legacy endpoints provide compatibility with
existing applications and can support I/O space read and write
transactions.

f See the PCI Express specification endpoint description for further
information on the differences between native PCI Express and legacy
endpoints.

Transaction Layer

The transaction layer lies between the application layer and the data link
layer. It generates and receives transaction layer packets. Figure 3–2
illustrates the transaction layer of a component with two initialized
virtual channels. The transaction layer contains three general subblocks:
the transmit data path, the configuration space, and the receive data path,
which are shown with vertical braces in Figure 3–2.

Altera Corporation PCI Express Compiler Version 6.1 3–3
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–2. Architecture of the Transaction Layer: Dedicated Receive Buffer per Virtual Channel

Tx1 Data

Tx1 Descriptor

Tx1 Request
Sequencing

Tx1 Control
Flow Control

Check & Reordering

Virtual Channel 1

Tx0 Data

Tx0 Descriptor

Tx0 Request
Sequencing

Tx0 Control
Flow Control

Check & Reordering

Virtual Channel 0

Rx Flow
Control Credits

Tx Transaction Layer
Packet Description
& Data

Virtual Channel
Arbitration & Tx

Sequencing

Rx0 Data

Rx0 Descriptor

Rx0 Sequencing
& Reordering

Rx0 Control
& Status

Flow Control Update

Virtual Channel 0

Rx1 Data

Rx1 Descriptor

Rx1 Sequencing
& Reordering

Rx1 Control
& Status

Virtual Channel 1

Type 0 Configuration Space

Transaction Layer
Packet FIFO

Receive Buffer

Posted & Completion

Non-Posted

Tx Flow
Control Credits

Flow Control Update

Transaction Layer
Packet FIFO

Receive Buffer

Posted & Completion

Non-Posted

Rx Transaction
Layer Packet

Interface Established per Virtual Channel Interface Established per Component

Transmit
Data Path

Configuration
Space

Receive
Data Path

Towards Data Link LayerTowards Application Layer

3–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Tracing a transaction through the receive data path involves the following
steps:

1. The transaction layer receives a transaction layer packet from the
data link layer.

2. The configuration space determines whether the transaction layer
packet is well formed and directs the packet to the appropriate
virtual channel based on TC/virtual channel mapping.

3. Within each virtual channel, transaction layer packets are stored in a
specific part of the receive buffer depending on the type of
transaction (posted, non-posted, and completion).

4. The transaction layer packet FIFO block stores the address of the
buffered transaction layer packet.

5. The receive sequencing and reordering block shuffles the order of
waiting transaction layer packets as needed, fetches the address of
the priority transaction layer packet from the transaction layer
packet FIFO block, and initiates the transfer of the transaction layer
packet to the application layer. Receive logic separates the
descriptor from the data of the transaction layer packet and
transfers them across the receive descriptor bus rx_desc[135:0],
and receive data bus rx_data[63:0] to the application layers.

Tracing a transaction through the transmit data path involves the
following steps:

1. The MegaCore function informs the application layer with transmit
credit tx_cred[21:0] that sufficient flow control credits exist for
a particular type of transaction. The application layer may choose to
ignore this information.

2. The application layer requests a transaction layer packet
transmission. The application layer must provide the PCI Express
transaction header on the tx_desc[127:0] bus and be prepared
to provide the entire data payload on the tx_data[63:0] bus in
consecutive cycles.

3. The MegaCore function verifies that sufficient flow control credits
exist, and acknowledges or postpones the request.

4. The transaction layer packet is forwarded by the application layer,
the transaction layer arbitrates among virtual channels, and then
forwards the priority transaction layer packet to the data link layer.

Altera Corporation PCI Express Compiler Version 6.1 3–5
December 2006 PCI Express Compiler User Guide

Specifications

Transmit Virtual Channel Arbitration

The PCI Express MegaCore function allows you to divide the virtual
channels into high and low priority groups as specified in Chapter 6 of
the PCI Express Base Specification 1.1 or the PCI Express Base Specification
Revision 1.0a.

Arbitration of high-priority virtual channels uses a strict priority
arbitration scheme in which higher numbered virtual channels always
have higher priority than lower numbered virtual channels. Low-priority
virtual channels use a fixed round robin arbitration scheme.

You can use the settings on the Buffer Setup page accessible from the
Parameter Settings tab in the MegaWizard interface to specify the
number of virtual channels and the number of virtual channels in the low
priority group. See “Buffer Setup Page” on page 3–37.

Configuration Space

The configuration space implements all configuration registers and
associated functions below.

■ Type 0 Configuration Space
■ PCI Power Management Capability Structure
■ Message Signaled Interrupt (MSI) Capability Structure
■ PCI Express Capability Structure
■ Virtual Channel Capabilities

The configuration space also generates all messages (PME#, INT, error,
power slot limit, etc.), MSI requests, and completion packets from
configuration requests that flow in the direction of the root complex,
except power slot limit messages, which are generated by a downstream
port in the direction of the PCI Express link. All such transactions are
dependent upon the content of the PCI Express configuration space as
described in the PCI Express™ Base Specification Revision 1.0a.

f See “Configuration Space Register Content” on page 3–18 or Chapter 7
in the PCI Express Base Specification 1.1 or the PCI Express Base Specification
Revision 1.0a for the complete content of these registers.

3–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Transaction Layer Routing Rules

Transactions follow these routing rules.

■ In the receive direction (i.e., from the PCI Express link), memory and
I/O requests that match to the defined BARs route to the receive
interface. The application layer logic processes the requests and
generates the read completions, if needed.

■ Received type 0 configuration requests route to the internal
configuration space and the MegaCore function generates and
transmits the completion.

■ The MegaCore function internally handles supported received
message transactions (power management and slot power limit).

■ The transaction layer treats all other received transactions (including
memory or I/O requests that do not match a defined BAR) as
unsupported requests. The transaction layer sets the appropriate
error bits and transmits a completion, if needed. These unsupported
requests are not made visible to the application layer, the header and
data is dropped.

■ The transaction layer sends all memory and I/O requests, as well as
completions generated by the application layer and passed to the
transmit interface, to the PCI Express link.

■ The MegaCore function can generate and transmit power
management, interrupt, and error signaling messages automatically
under the control of dedicated signals. Additionally, the MegaCore
function can generate MSI requests under the control of the
dedicated signals.

Receive Buffer Bypass Mode

If the receive buffer is empty and the rx_descriptor register of a given
virtual channel does not contain valid data, the MegaCore function
bypasses the receive buffer, which decreases latency.

In reality, the receive buffer is not truly bypassed, because the descriptor
is written simultaneously to the receive buffer and the rx_descriptor
register. However, barring the need to resend the transaction layer packet,
the data in the receive buffer is never accessed.

Altera Corporation PCI Express Compiler Version 6.1 3–7
December 2006 PCI Express Compiler User Guide

Specifications

Receive Buffer Reordering

The receive data path implements a receive buffer reordering function
that allows posted and completion transactions to pass non-posted
transactions (as allowed by PCI Express ordering rules) when the
application layer is unable to accept additional non-posted transactions.

The application layer dynamically enables the Rx Buffer reordering by
asserting the rx_mask signal. rx_mask masks non-posted request
transactions made to the application interface so that only posted and
completion transactions are presented to the application.

The MegaCore function operates in receive buffer bypass mode when
rx_mask is asserted. However, if masked requests exist, the MegaCore
function exits receive buffer bypass mode upon deassertion of rx_mask.

Data Link Layer

The data link layer is located between the transaction layer and the
physical layer. It is responsible for maintaining packet integrity and for
communication (by data link layer packet transmission) at the PCI
Express link level (as opposed to component communication by
transaction layer packet transmission within the fabric). Specifically, the
data link layer is responsible for the following:

■ Link management through the reception and transmission of data
link layer packets, which are used:
● To initialize and update flow control credits for each virtual

channel
● For power management of data link layer packet reception and

transmission
● To transmit and receive ACK/NACK packets

■ Data integrity through generation and checking of CRCs for
transaction layer packets and data link layer packets

■ Transaction layer packet retransmission in case of NAK data link
layer packet reception using the retry buffer

■ Management of the retry buffer
■ Link retraining requests in case of error (through the LTSSM of the

physical layer)

Figure 3–3 illustrates the architecture of the data link layer.

3–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Figure 3–3. Data Link Layer

The data link layer has the following subblocks:

■ Data Link Control and Management State Machine—This state machine
is synchronized with the physical layer’s LTSSM state machine and
is also connected to the configuration space registers. It initializes the
link and virtual channel flow control credits and reports status to the
configuration space. (Virtual channel 0 is initialized by default, as are
additional virtual channels if they have been physically enabled and
the software permits them.)

■ Power Management—This function handles the handshake to enter
low power mode. Such a transition is based on register values in the
configuration space and received PM DLLPs.

■ Data Link Layer Packet Generator and Checker—This block is associated
with the data link layer packet’s 16-bit CRC and maintains the
integrity of transmitted packets.

Transaction Layer
Packet Generator

Retry Buffer

AckNack
Packets

Power
Management

Function

Data Link Control
& Management
State Machine

DLLP
Checker

DLLP
Generator

Transaction Layer
Packet Checker

Configuration Space

Control
& Status

Rx Transaction Layer
Packet Description & Data

Rx Packets

Rx Flow Control Credits

Tx Transaction Layer
Packet Description & Data

Tx Flow Control Credits

Tx Packets

Transmit
Data Path

Receive
Data Path

Towards Physical LayerTowards Transaction Layer

Tx Arbitration

Altera Corporation PCI Express Compiler Version 6.1 3–9
December 2006 PCI Express Compiler User Guide

Specifications

■ Transaction Layer Packet Generator—This block generates transmit
packets according to the descriptor and data received from the
transaction layer, generating a sequence number and a 32-bit CRC.
The packets are also sent to the retry buffer for internal storage. In
retry mode, the transaction layer packet generator receives the
packets from the retry buffer and generates the CRC for the transmit
packet.

■ Retry Buffer—The retry buffer stores transaction layer packets and
retransmits all unacknowledged packets in the case of NAK DLLP
reception. For ACK DLLP reception, the retry buffer discards all
acknowledged packets.

■ ACK/NACK Packets—The ACK/NACK block handles ACK/NACK
data link layer packets and generates the sequence number of
transmitted packets.

■ Transaction Layer Packet Checker—This block checks the integrity of
the received transaction layer packet and generates a request for
transmission of an ACK/NACK data link layer packet.

■ Tx Arbitration—This block arbitrates transactions, basing priority on
the following order:

a. Initialize FC data link layer packet

b. ACK/NAK data link layer packet (high priority)

c. Update FC data link layer packet (high priority)

d. PM data link layer packet

e. Retry buffer transaction layer packet

f. Transaction layer packet

g. Update FC data link layer packet (low priority)

h. ACK/NAK FC data link layer packet (low priority)

3–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Physical Layer

The physical layer is located at the lowest level of the MegaCore function,
i.e., it is the layer closest to the link. It encodes and transmits packets
across a link and accepts and decodes received packets. The physical
layer connects to the link through a high-speed SERDES running at
2.5 Gbps. The physical layer is responsible for the following actions:

■ Initializing the link
■ Scrambling/descrambling and 8b/10b encoding/decoding of 2.5

Gbps per lane
■ Serializing and deserializing data

Physical Layer Architecture

Figure 3–4 illustrates the physical layer architecture.

Figure 3–4. Physical Layer

Scrambler
8B/10B
Encoder

Lane n
Tx+ / Tx-

Scrambler
8B/10B
Encoder

Lane 0
Tx+ / Tx-

Descrambler
8B/10B
Decoder

Lane n
Rx+ / Rx-Elastic

Buffer

LTSSM
State Machine

SKIP
Generation

Control & Status
PIPE

Emulation Logic

Li
nk

 S
er

ia
liz

er
fo

r
an

 x
8

Li
nk

Tx Packets

Rx MAC
Lane

S
tr

at
ix

 G
X

 T
ra

ns
ce

iv
er

 (
pe

r
La

ne
)

w
ith

 2
.5

 G
bp

s
S

E
R

D
E

S
 &

 P
LL

Descrambler
8B/10B
Decoder

Lane 0
Rx+ / Rx-Elastic

Buffer

Rx MAC
Lane

PIPE
Interface

M
ul

til
an

e
D

es
ke

w

Li
nk

 S
er

ia
liz

er
 fo

r
an

 x
8

Li
nk

Rx Packets

Transmit
Data Path

Receive
Data Path

MAC Layer PHY layer

Towards LinkTowards Data Link Layer

Altera Corporation PCI Express Compiler Version 6.1 3–11
December 2006 PCI Express Compiler User Guide

Specifications

The physical layer is itself subdivided by the PIPE Interface Specification
into two layers (bracketed horizontally in Figure 3–4):

■ Media Access Controller (MAC) Layer—The MAC layer includes the
link training and status state machine and the
scrambling/descrambling and multilane deskew functions.

■ PHY Layer—The PHY layer includes the 8B/10B encode/decode
functions, elastic buffering, and serialization/deserialization
functions.

The physical layer integrates both digital and analog elements. Intel
designed the PIPE interface to separate the MAC from the PHY. The
MegaCore function is compliant with the PIPE interface, allowing
integration with other PIPE-compliant external PHY devices.

The MegaCore function automatically instantiates a complete PHY layer
when targeting the Stratix GX/Stratix II GX device family.

Lane Initialization

Connected PCI Express components may not support the same number
of lanes. The x4 MegaCore function supports initialization and operation
with components that have 1, 2, or 4 lanes.

The x8 MegaCore function supports initialization and operation with
components that have 1, 4, or 8 lanes. Components with 2 lanes operate
with 1 lane.

Analyzing Throughput

Throughput analysis requires that you understand the Flow Control
Loop (see Figure 3–5 on page 3–13). This section discusses the Flow
Control Loop and issues that will help you improve throughput.

Throughput of Posted Writes

The throughput of Posted Writes is limited primarily by the Flow Control
Update loop shown in Figure 3–5 on page 3–13. If the requester of the
Writes sources the data as quickly as possible and the completer of the
Writes consumes the data as quickly as possible, then the Flow Control
Update loop can be the biggest determining factor in Write throughput,
besides the actual bandwidth of the link.

3–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Figure 3–5, Flow Control Update Loop, shows the main components of
the Flow Control Update loop. In Figure 3–5, you see two communicating
PCI Express ports:

■ Write Requester
■ Write Completer

As the PCI Express specification describes, each Transmitter, the Write
Requester in this case, maintains a Credit Limit register and Credits
Consumed register. The Credit Limit register is the sum of all credits
issued by the Receiver, the Write Completer in this case. The Credit Limit
register is initialized during the flow control initialization phase of link
initialization and then updated during operation by Flow Control (FC)
Update DLLPs. The Credits Consumed register is the sum of all credits
consumed by packets transmitted. Separate Credit Limit and Credits
Consumed registers exist for each of the six types of Flow Control:

■ Posted Headers
■ Posted Data
■ Non-Posted Headers
■ Non-Posted Data
■ Completion Headers
■ Completion Data

Each Receiver also maintains a Credit Allocated counter which is
initialized to the total available space in the Rx Buffer (for the specific
Flow Control class) and then incremented as packets are pulled out of the
Rx Buffer by the application layer. The value of this register is sent as the
FC Update DLLP value.

Altera Corporation PCI Express Compiler Version 6.1 3–13
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–5. Flow Control Update Loop

The following numbered steps describe each step in the Flow Control
Update loop. The corresponding numbers on the diagram above show
the general area to which they correspond.

1. When the Application Layer has a packet to transmit, the number of
credits required is calculated. If the current value of the Credit Limit
minus Credits Consumed is greater than or equal to the required
credits, then the packet can be transmitted immediately. However, if
the Credit Limit minus Credits Consumed is less than the required
credits, then the packet must be held until the Credit Limit is raised
to a sufficient value by an FC Update DLLP. This check is performed
separately for both the header and data credits, a single packet only
consumes a single header credit.

2. After the packet is selected to transmit, the Credits Consumed
register is incremented by the number of credits consumed by this
packet. This happens for both the header and data Credit
Consumed registers.

3. The packet is received at the other end of the link and placed in the
Rx Buffer.

4. At some point the packet is read out of the Rx Buffer by the
Application Layer. After the entire packet is read out of the Rx
Buffer, the Credit Allocated register can be incremented by the
number of credits the packet has used. There are separate Credit
Allocated registers for the Header and Data credits.

Credits

Consumed
Counter

Credit

Limit

Data Packet

Flow

Control
Gating

Logic

(Credit

Check)

Allow

Incr

Rx

Buffer
Data Packet

Credit

Allocated

FC
Update

DLLP

Generate

FC
Update

DLLP
Decode

FC Update DLLP

App

Layer

Transaction

Layer

Data Link

Layer

Physical

Layer

Incr

Physical

Layer

Data Link

Layer

Transaction

Layer

App

Layer

Data Source

PCI

Express

Link

Data Sink

1 2
3

4
5

6

7

3–14 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

5. The value in the Credit Allocated register is used to create an FC
Update DLLP.

6. After an FC Update DLLP is created, it arbitrates for access to the
PCI Express Link. The FC Update DLLPs are typically scheduled
with a low priority. This means that a continuous stream of
Application Layer TLPs or other DLLPs (such as ACKs) can delay
the FC Update DLLP for a long time. To prevent starving the
attached transmitter, FC Update DLLPs are raised to a high priority
under three circumstances:

a. When the Last Sent Credit Allocated counter minus the amount
of received data is less than a Max Sized Payload and the
current Credit Allocated counter is greater than the Last Sent
Credit Counter. Essentially, this means the Data Sink knows the
Data Source has less than a full Max Payload worth of credits,
and therefore is starving.

b. When an internal timer expires from the time the last FC
Update DLLP was sent, which is configured to 30 us to meet the
PCI Express specification for resending FC Update DLLPs.

c. When the Credit Allocated counter minus the Last Sent Credit
Allocated counter is greater than or equal to 25% of the total
credits available in the Rx Buffer, then the FC Update DLLP
request is raised to High Priority.

After arbitrating the FC Update DLLP to be the next item
transmitted, in the worst case, the FC Update DLLP may need to wait
for a currently being transmitted maximum sized TLP to complete
before it can be sent.

7. The FC Update DLLP is received back at the original Write
Requester and the Credit Limit value is updated. If there were
packets stalled waiting for credits, they now can be transmitted.

To allow the Write Requester in the above description to transmit packets
continuously, the Credit Allocated and the Credit Limit counters must be
initialized with sufficient credits to allow multiple TLPs to be transmitted
while waiting for the FC Update DLLP that corresponds to freeing of the
credits from the very first TLP transmitted.

Altera Corporation PCI Express Compiler Version 6.1 3–15
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–1, “FC Update Loop Delay Components For Stratix II GX,” shows
the delay components for the FC Update in which the PCI Express
MegaCore functions are used with a Stratix II GX device. These delay
components are the delays independent of the packet length. The total
delays in the loop are increased by the packet length.

Based on the above FC Update Loop delays and additional arbitration
and packet length delays, Table 3–2 shows the number of flow control
credits that need to be advertised to cover the delay. The Rx Buffer needs
to be sized to support this number of credits to maintain full bandwidth.

The above credits assume that there are devices with PCI Express
MegaCore function and Stratix II GX delays at both ends of the PCI
Express Link. Some devices at the other end of the link could have smaller
or larger delays, which would affect the minimum number of credits

Table 3–1. FC Update Loop Delay Components For Stratix II GX

Delay
x8 Function x4 Function x1 Function

Min Max Min Max Min Max

From decrement of Transmit Credit Consumed
counter to PCI Express Link (ns).

60 68 104 120 272 288

From PCI Express Link until packet is available
at Application Layer interface (ns).

124 168 200 248 488 536

From Application Layer draining packet to
generation and transmission of FC Update
DLLP on PCI Express Link (assuming no
arbitration delay) (ns).

60 68 120 136 216 232

From receipt of FC Update DLLP on the PCI
Express Link to updating of transmitter's Credit
Limit register (ns).

116 160 184 232 424 472

Table 3–2. Data Credits Required By Packet Size

Max Packet Size
x8 Function x4 Function x1 Function

Min Max Min Max Min Max

128 64 96 56 80 40 48

256 80 112 80 96 64 64

512 128 160 128 128 96 96

1024 192 256 192 192 192 192

2048 384 384 384 384 384 384

3–16 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

required. If the application layer cannot drain received packets
immediately in all cases, it also may be necessary to offer additional
credits to cover this delay.

Setting the Desired performance for received requests to High on the
Buffer Setup page under the Parameter Settings tab in the MegaWizard
interface will configure the Rx Buffer with enough space to meet the
above required credits. You can adjust the Desired performance for
received request up or down from the High setting to tailor the Rx Buffer
size to your delays and required performance.

Throughput of Non-Posted Reads

To support a high throughput of read data, you must analyze the overall
delay from the application layer issuing the read request until all of the
completion data has been returned. The application must be able to issue
enough read requests, and the read completer must be capable of
processing (or at least offering enough non-posted header credits) to
cover this delay.

However, much of the delay encountered in this loop is well outside the
PCI Express MegaCore function and is very difficult to estimate. PCI
Express switches can be inserted in this loop, which makes determining a
bound on the delay more difficult.

However, maintaining maximum throughput of completion data packets
is important. PCI Express Endpoints must offer an infinite number of
completion credits. However, the PCI Express MegaCore function must
buffer this data in the Rx Buffer until the application can process it. The
difference is that the PCI Express MegaCore function is no longer
managing the Rx Buffer through the flow control mechanism. Instead, the
application is managing the Rx Buffer by the rate at which it issues read
requests.

To determine the appropriate settings for the amount of space to reserve
for completions in the Rx Buffer, you must make an assumption about
how long read completions take to be returned. This can be estimated in
terms of an additional delay above the FC Update Loop Delay as
discussed in the section “Throughput of Posted Writes” on page 3–11. The
paths for the Read Requests and the Completions are not exactly the same
as those for the Posted Writes and FC Updates within the PCI Express
Logic. However, the delay differences are probably small compared with
the inaccuracy in guessing what the external Read to Completion delays
are.

Altera Corporation PCI Express Compiler Version 6.1 3–17
December 2006 PCI Express Compiler User Guide

Specifications

Assuming there is a PCI Express switch in the path between the read
requester and the read completer and assuming typical read completion
times for root ports, Table 3–3 shows the estimated completion space
required to cover the read round trip delay.

Note also that the Completions can be broken up into multiple
completions that are less than the Maximum Packet Size. To do this, there
needs to be more room for completion headers than the completion data
space divided by the maximum packet size. Instead, the room for headers
needs to be the completion data space (in bytes) divided by 64 because
this is the smallest possible Read Completion Boundary. Setting the
Desired performance for received completions to High on the Buffer
Setup page when using Parameter Settings in your MegaCore function
will configure the Rx Buffer with enough space to meet the above
requirements. You can adjust the Desired performance for received
completions up or down from the High setting to tailor the Rx Buffer size
to your delays and required performance.

An additional constraint is the amount of read request data that can be
outstanding at one time. This is limited by the number of header tag
values that can be issued by the application and the maximum read
request size that can be issued. The number of header tag values that can
be used is also limited by the PCI Express MegaCore function. For the x1
and x4 functions, you can specify up to 256 tags to be used, though
configuration software can restrict the application to use only 32 tags.
However, 32 tags should be enough.

In the x8 core case, the MegaCore function offers a maximum of 8 tags.
But PCI Express systems today allow a maximum read request size of 512
or more, even when the Max Payload Size is restricted to 128 Bytes. The
512-byte read requests equate to reads of 32 credits. Therefore, issuing
eight (tag limit) 512 Byte read requests consumes 256 data credits, which
is enough to keep the Read Request loop full and maximize the
throughput.

Table 3–3. Completion Data Space (in Credit units) to Cover Read Round Trip Delay

Max Packet Size x8 Function
Typical

x4 Function
Typical

x1 Function
Typical

128 120 96 56

256 144 112 80

512 192 160 128

1024 256 256 192

2048 384 384 384

4096 768 768 768

3–18 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Configuration Space Register Content

This section describes the configuration space registers. See chapter 7 of
the PCI Express Base Specification Revision 1.0a for more details.

Table 3–4 shows the common configuration space header. The following
tables provide more details.

Table 3–4. Common Configuration Space Header

31:24 23:16 15:8 7:0 Byte Offset

Type 0 configuration registers (see Table 3–5 for details.) 000h..03Ch

Reserved 040h..04Ch

MSI capability structure (see Table 3–6 for details.) 050..05Ch

Reserved 060h..074h

Power management capability structure (see Table 3–7 for details.) 078..07Ch

PCI Express capability structure (see Table 3–8 for details.) 080h..0A0h

Reserved 0A4h..0FCh

Virtual channel capability structure (see Table 3–9 for details.) 100h..16Ch

Reserved 170h..17Ch

Virtual channel arbitration table 180h..1FCh

 Port VC0 arbitration table (Reserved) 200h..23Ch

 Port VC1 arbitration table (Reserved) 240h..27Ch

 Port VC2 arbitration table (Reserved) 280h..2BCh

 Port VC3 arbitration table (Reserved) 2C0h..2FCh

 Port VC4 arbitration table (Reserved) 300h..33Ch

 Port VC5 arbitration table (Reserved) 340h..37Ch

 Port VC6 arbitration table (Reserved) 380h..3BCh

 Port VC7 arbitration table (Reserved) 3C0h..3FCh

Reserved 400h..7FCh

AER (optional) 800..834

Reserved 838..FFF

Altera Corporation PCI Express Compiler Version 6.1 3–19
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–5 describes the type 0 configuration settings.

Table 3–6 describes the MSI capability structure.

Table 3–5. Type 0 Configuration Settings

31:24 23:16 15:8 7:0 Byte Offset

Device ID Vendor ID 000h

Status Command 004h

Class Code Revision ID 008h

0x00 Header Type 0x00 Cache Line Size 00Ch

Base Address 0 010h

Base Address 1 014h

Base Address 2 018h

Base Address 3 01Ch

Base Address 4 020h

Base Address 5 024h

Reserved 028h

Subsystem ID Subsystem Vendor ID 02Ch

Expansion ROM base address 030h

Reserved Capabilities PTR 034h

Reserved 038h

0x00 0x00 Int. Pin Int. Line 03Ch

Table 3–6. MSI Capability Structure

31:24 23:16 15:8 7:0 Byte Offset

Message Control Next Pointer Cap ID 050h

Message Address 054h

Message Upper Address 058h

Reserved Message Data 05Ch

3–20 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Table 3–7 describes the power management capability structure.

Table 3–8 describes the PCI Express capability structure.

Table 3–7. Power Management Capability Structure

31:24 23:16 15:8 7:0 Byte Offset

Capabilities Register Next Cap PTR Cap ID 078h

Data PM Control/Status
Bridge Extensions

Power Management Status & Control 07Ch

Table 3–8. PCI Express Capability Structure

31:24 23:16 15:8 7:0 Byte Offset

Power Management Capabilities Next Cap PTR Capability ID 080h

Device capabilities 084h

Device Status Device control 088h

Link capabilities 08Ch

Link Status Link control 090h

Slot capabilities 094h

Slot Status Slot Control 098h

RsvdP Root Control 09Ch

Root Status 0A0h

Altera Corporation PCI Express Compiler Version 6.1 3–21
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–9 describes the virtual channel capability structure.

Table 3–10 describes the PCI Express advanced error reporting extended
capability structure.

Table 3–9. Virtual Channel Capability Structure

31:24 23:16 15:8 7:0 Byte Offset

Next Cap PTR Vers. Extended Cap ID 100h

RsvdP Port VC Cap 1 104h

VAT offset RsvdP VC arbit. cap 108h

Port VC Status Port VC control 10Ch

PAT offset 0 (31:24) VC Resource Capability Register (0) 110h

VC Resource Control Register (0) 114h

VC Resource Status Register (0) RsvdP 118h

PAT offset 1 (31:24) VC Resource Capability Register (1) 11Ch

VC Resource Control Register (1) 120h

VC Resource Status Register (1) RsvdP 124h

...

PAT offset 7 (31:24) VC Resource Capability Register (7) 164h

VC Resource Control Register (7) 168h

VC Resource Status Register (7) RsvdP 16Ch

Table 3–10. PCI Express Advanced Error Reporting Extended Capability Structure

31:24 23:16 15:8 7:0 Byte Offset

PCI Express Enhanced Capability Header 800h

Uncorrectable Error Status Register 804h

Uncorrectable Error Mask Register 808h

Uncorrectable Error Severity REgister 80Ch

Correctable Error Status Register 810h

Correctable Error Mask Register 814h

Advanced Error Capabilities and Control Register 818h

Header Log Register 81Ch

Root Error Command 82Ch

Root Error Status 830h

Error Source Identification Register Correctable Error Source ID Register 834h

3–22 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Active State Power Management (ASPM)

The PCI Express protocol mandates link power conservation, even if a
device has not been placed in a low power state by software. ASPM is
initiated by software but is subsequently handled by hardware. The
MegaCore function automatically shifts to one of two low power states to
conserve power:

■ L0s ASPM—The PCI Express protocol specifies the automatic
transition to L0s. In this state, the MegaCore function passes to
transmit electrical idle but can maintain an active reception interface
(i.e., only one component across a link moves to a lower power state).
Main power and reference clocks are maintained.

1 L0s ASPM is not supported when using the Stratix GX internal
PHY. It can be optionally enabled when using the Stratix II GX
internal PHY. It is supported for other device families to the
extent allowed by the attached external PHY device.

■ L1 ASPM—Transition to L1 is optional and conserves even more
power than L0s. In this state, both sides of a link power down
together, i.e., neither side can send or receive without first
transitioning back to L0

1 L1 ASPM is not supported when using the Stratix GX or Stratix
II GX internal PHY. It is supported for other device families to
the extent allowed by the attached external PHY device.

Exit from L0s or L1

How quickly a component awakens from a low-power state, and even
whether a component has the right to transition to a low power state in
the first place, depends on exit latency and acceptable latency.

Exit Latency
A component’s exit latency is defined as the time it takes for the
component to awake from a low-power state to L0, and depends on the
SERDES PLL synchronization time and the common clock configuration
programmed by software. A SERDES generally has one transmit PLL for
all lanes and one receive PLL per lane.

■ Transmit PLL—When transmitting, the transmit PLL must be locked.

■ Receive PLL—Receive PLLs train on the reference clock. When a lane
exits electrical idle, each receive PLL synchronizes on the receive
data (clock data recovery operation). If receive data has been
generated on the reference clock of the slot, and if each receive PLL

Altera Corporation PCI Express Compiler Version 6.1 3–23
December 2006 PCI Express Compiler User Guide

Specifications

trains on this same reference clock, the synchronization time of the
receive PLL is lower than if the reference clock is not the same for
both components.

Each component must report in the configuration space if they use the
slot’s reference clock. Software then programs the common clock register,
depending on the reference clock of each component. Software also
retrains the link after changing the common clock register value to update
each exit latency. Table 3–11 describes the L0s and L1 exit latency. Each
component maintains two values for L0s and L1 exit latencies; one for the
common clock configuration and the other for the separated clock
configuration.

Acceptable Latency
The acceptable latency is defined as the maximum latency permitted for
a component to transition from a low power state to L0 without
compromising system performance. Acceptable latency values depend
on a component’s internal buffering, and are maintained in a
configuration space registry. Software compares the link exit latency with
the endpoint’s acceptable latency to determine whether the component is
permitted to use a particular power state.

Table 3–11. L0s & L1 Exit Latency

Power State Description

L0s L0s exit latency is calculated by the MegaCore function based on the number of fast training
sequences specified on the Power Management page of the MegaWizard interface and
maintained in a configuration space registry. Main power and the reference clock remain present
and the PHY should resynchronize quickly for receive data.

Resynchronization is performed through fast training order sets, which are sent by the opposite
component. A component knows how many sets to send because of the initialization process, at
which time the required number of sets are determined through TS1 and TS2.

L1 L1 exit latency is specified on the Power Management page of the MegaWizard interface and
maintained in a configuration space registry. Both components across a link must transition to L1
low-power state together. When in L1, a component’s PHY is also in P1 low-power state for
additional power savings. Main power and the reference clock are still present, but the PHY can
shut down all PLLs to save additional power. However, shutting down PLLs causes a longer
transition time to L0.

L1 exit latency is higher than L0s exit latency. When the transmit PLL is locked, the LTSSM moves
to recovery, and back to L0 once both components have correctly negotiated the recovery state.
Thus, the exact L1 exit latency depends on the exit latency of each component (i.e., the higher
value of the two components). All calculations are performed by software; however, each
component reports its own L1 exit latency.

3–24 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

■ For L0s, the opposite component and the exit latency of each
component between the root port and endpoint is compared with the
endpoint’s acceptable latency. For example, for an endpoint
connected to a root port, if the root port’s L0s exit latency is 1 µs and
the endpoint’s L0s acceptable latency is 512 ns, software will
probably not enable the entry to L0s for the endpoint.

■ For L1, software calculates the L1 exit latency of each link between
the endpoint and the root port, and compares the maximum value
with the endpoint’s acceptable latency. For example, for an endpoint
connected to a root port, if the root port’s L1 exit latency is 1.5 µs and
the endpoint’s L1 exit latency is 4 µs, and the endpoint acceptable
latency is 2 µs, the exact L1 exit latency of the link will be 4 µs and
software will probably not enable the entry to L1.

Some time adjustment may be necessary if one or more switches are
located between the endpoint and the root port.

1 To maximize performance, Altera recommends that you set L0s
and L1 acceptable latency values to their minimum values.

Error Handling

Each PCI Express compliant device must implement a basic level of error
management and can optionally implement advanced error
management. The MegaCore function does both, as described in this
section. Given its position and role within the fabric, error handling for a
root port is more complex than that of an endpoint.

The PCI Express specifications defines three types of errors, outlined in
Table 3–12.

Table 3–12. Error Classification

Type Responsible Agent Description

Correctable Hardware While correctable errors may affect system performance, data
integrity is maintained.

Uncorrectable, Non-Fatal Device Software Uncorrectable nonfatal errors are defined as errors in which
data is lost, but system integrity is maintained, i.e., the fabric
may lose a particular TLP, but it still works without problems.

Uncorrectable, Fatal System Software Errors generated by a loss of data and system failure are
considered uncorrectable and fatal. Software must determine
how to handle such errors: whether to reset the link or
implement other means to minimize the problem.

Altera Corporation PCI Express Compiler Version 6.1 3–25
December 2006 PCI Express Compiler User Guide

Specifications

Physical Layer

Table 3–13 describes errors detected by the physical layer.

Data Link Layer

Table 3–14 describes errors detected by the data link layer.

Table 3–13. Errors Detected by the Physical Layer

Error Type Description

Receive Port Error Correctable This error has three potential causes:

● Physical coding sublayer error when a lane is in L0 state. The error is
reported per lane on rx_status[2:0]:
100: 8B/10B Decode Error
101: Elastic Buffer Overflow
110: Elastic Buffer Underflow
111: Disparity Error

● Deskew error caused by overflow of the multilane deskew FIFO.
● Control symbol received in wrong lane.

Training Error (1) Uncorrectable
(fatal)

A training error occurs when the MegaCore function exits to LTSSM
detect state from any state other than the following: hot reset, disable,
loopback, or L2.

Note to Table 3–13:
(1) Considered optional by the PCI Express specification.

Table 3–14. Errors Detected by the Data Link Layer

Error Type Description

Bad TLP Correctable This error occurs when a LCRC verification fails or with a sequence number
error.

Bad DLLP Correctable This error occurs when a CRC verification fails.

Replay Timer Correctable This error occurs when the replay timer times out.

Replay Num
Rollover

Correctable This error occurs when the replay number rolls over.

Data Link Layer
Protocol

Uncorrectable
(fatal)

This error occurs when a sequence number specified by the
AckNak_Seq_Num does not correspond to an unacknowledged TLP.

3–26 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Transaction Layer

Table 3–15 describes errors detected by the transaction layer.

Table 3–15. Errors Detected by the Transaction Layer (Part 1 of 2)

Error Type Description

Poisoned TLP
Received

Uncorrectable
(Non-Fatal)

This error occurs if a received transaction layer packet has the EP poison
bit set.
The received TLP is presented on the rx_desc and rx_data busses
and the application layer logic must take application appropriate action in
response to the poisoned TLP.

ECRC Check
Failed (1)

Uncorrectable
(Non-Fatal)

This error is caused by an ECRC check failing despite the fact that the
transaction layer packet is not malformed and the LCRC check is valid.
The MegaCore function handles this transaction layer packet
automatically. If the TLP is a non-posted request, the MegaCore function
generates a completion with completer abort status. In all cases the TLP
is deleted internal to the MegaCore function and not presented to the
application layer.

Unsupported
Request

Uncorrectable
(Non-Fatal)

This error occurs whenever a component receives an unsupported
request, including any of the following:

● Completion transaction for which the RID does not match the
bus/device.

● Unsupported message.
● A type 1 configuration request transaction layer packet.
● A locked memory read (MEMRDLK) on native endpoint.
● A locked completion transaction.
● A 64-bit memory transaction in which the 32 MSBs of an address are

set to 0.
● A memory or I/O transaction for which there is no BAR match.

If the TLP is a non-posted request the MegaCore function generates a
completion with unsupported request status. In all cases the TLP is
deleted internal to the MegaCore function and not presented to the
application layer.

Completion
Timeout

Uncorrectable
(Non-Fatal)

This error occurs when a request originating from the application layer
does not generate a corresponding completion transaction layer packet
within the established time. It is the responsibility of the application layer
logic to provide the completion timeout mechanism. The completion
timeout should be reported to the transaction layer via the cpl_err[0]
signal.

Completer
Abort (1)

Uncorrectable
(Non-Fatal)

The application layer reports this error via the cpl_err[1]signal when
it aborts reception of a transaction layer packet.

Unexpected
Completion

Uncorrectable
(Non-Fatal)

This error is caused by an unexpected completion transaction, either input
from the application layer via the cpl_err[2] signal or when the
requestor ID does not match the endpoint's configured ID.

Altera Corporation PCI Express Compiler Version 6.1 3–27
December 2006 PCI Express Compiler User Guide

Specifications

Error Logging & Reporting

How the endpoint handles a particular error depends on the
configuration registers of the device. Figure 3–6 is a flowchart of device
error signaling and logging for an endpoint.

Receiver
Overflow (1)

Uncorrectable
(Fatal)

This error occurs when a component receives a transaction layer packet
that violates the FC credits allocated for this type of transaction layer
packet. In all cases the TLP is deleted internal to the MegaCore function
and is not presented to the application layer.

Flow Control
Protocol Error
(FCPE) (1)

Uncorrectable
(Fatal)

This error occurs when a component does not receive update flow control
credits within the 200 μs limit.

Malformed TLP Uncorrectable
(Fatal)

This error is caused by any of the following conditions:

● The data payload of a received transaction layer packet exceeds the
maximum payload size.

● The TD field is asserted but no transaction layer packet digest exists,
or a transaction layer packet digest exists but the TD field is not
asserted.

● A transaction layer packet violates a byte enable rule. The MegaCore
function checks for this violation, which is considered optional by the
PCI Express specifications.

● A transaction layer packet for which the type and length fields do not
correspond with the total length of the transaction layer packet.

● A transaction layer packet for which the combination of format and type
is not specified by the PCI Express specification.

● A request specifies an address/length combination that causes a
memory space access to exceed a 4-KByte boundary. The MegaCore
function checks for this violation, which is considered optional by the
PCI Express specification.

● Messages, such as Assert_INTx, power management, error
signaling, unlock, and Set_Slot_power_limit, must be
transmitted across the default traffic class.

● A transaction layer packet that uses an uninitialized virtual channel.

The malformed TLP is deleted internal to the MegaCore function and not
presented to the application layer.

Note to Table 3–15:
(1) Considered optional by the PCI Express specification.

Table 3–15. Errors Detected by the Transaction Layer (Part 2 of 2)

Error Type Description

3–28 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

Figure 3–6. Endpoint Device Error Logging & Reporting

Is the detected
error correctable?

Adjust severity according
to uncorrectable error

severity register.

Set fatal/nonfatal error
detected bit in device

status register.

Set corresponding bit
in uncorrectable error

status register.

If first error pointer is not
valid, update first error

pointer and header registers.

Set correctable error
detected bit in device

status register.

Set corresponding bit
in correctable error

status register.

Masked in
uncorrectable error mask

register?

Masked in
correctable error mask

register?

Uncorrectable error
reporting enabled in device

control register? Correctable error
reporting enabled in device

control register?

Fatal?

YesNo

End

End

End

End

Yes

NoYes

No

Yes

No

Yes

No

YesNo

Send ERR_FATAL
Message

End

Send ERR_NONFATAL
Message

End

Send ERR_CORR
Message

End

Advanced Error
Management Only

Start

Altera Corporation PCI Express Compiler Version 6.1 3–29
December 2006 PCI Express Compiler User Guide

Specifications

Data Poisoning

The MegaCore function implements data poisoning, a mechanism for
indicating that the data associated with a transaction is corrupted.
Poisoned transaction layer packets have the error/poisoned bit of the
header set to 1 and observe the following rules:

■ Received poisoned transaction layer packets are sent to the
application layer and status bits are automatically updated in the
configuration space.

■ Received poisoned configuration write transaction layer packets are
not written in the configuration space.

■ The configuration space never generates a poisoned transaction
layer packet, i.e., the error/poisoned bit of the header is always set to
0.

Poisoned transaction layer packets can also set the parity error bits in the
PCI configuration space status register. Parity errors are caused by the
conditions specified in Table 3–16.

Poisoned packets received by the MegaCore function are passed to the
application layer. Poisoned transmit transaction layer packets are
likewise sent to the link.

Stratix GX PCI Express Compatibility

If during the PCI Express receiver detection sequence, some other PCI
Express devices cannot detect the Stratix GX receiver, the other device
remains in the LTSSM Detect state, the Stratix GX device remains in the
Compliance state, and the link is not initialized. This occurs because
Stratix GX devices do not exhibit the correct receiver impedance
characteristics when the receiver input is at electrical idle. Stratix GX
devices were designed before the PCI Express specification was

Table 3–16. Parity Error Conditions

Status Bit Conditions

Detected Parity Error
(status register bit 15)

Set when any received transaction layer packet is poisoned.

Master Data Parity Error
(status register bit 8)

This bit is set when the command register parity enable bit is set and one of the
following conditions is true:

● Transmission of a write request transaction layer packet with poisoned bit set.
● Reception of a completion transaction layer packet with poison bit set.

3–30 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Functional Description

developed. Stratix II GX devices were designed to meet the PCI Express
protocol and do not have this issue. However, a Stratix II GX is one of the
PCI Express devices that is unable to detect Stratix GX.

The resulting design impact is that Stratix GX will not interoperate with
some other PCI Express devices. However, you can workaround this
issue by doing either of the following:

■ If possible, force the other PCI Express device to ignore the results of
the Rx Detect protocol and try to train the link anyway.

■ Migrate Stratix GX PCI Express designs to Stratix II GX.

OpenCore Plus Time-Out Behavior

OpenCore® Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all MegaCore functions
in a design, the device can operate for a longer time or indefinitely

All MegaCore functions in a device time out simultaneously when the
most restrictive evaluation time is reached. If there is more than one
MegaCore function in a design, a specific MegaCore function’s time-out
behavior may be masked by the time-out behavior of the other MegaCore
functions.

1 For MegaCore functions, the untethered time out is 1 hour; the
tethered time-out value is indefinite.

When the hardware evaluation time expires, the MegaCore function does
the following:

1. The link training and status state machine are forced to the detect
quiet state and held there. This disables the PCI Express link
preventing additional data transfer.

2. The PCI Express capability registers in the configuration space are
held in a reset state.

f For more information on OpenCore Plus hardware evaluation, see
“OpenCore Plus Evaluation” on page 1–6 and AN 320: OpenCore Plus
Evaluation of Megafunctions.

Altera Corporation PCI Express Compiler Version 6.1 3–31
December 2006 PCI Express Compiler User Guide

Specifications

Parameter
Settings

This section describes the PCI Express function parameters, which can
only be set using the MegaWizard interface Parameter Settings tab.

System Settings Page

The first page of the MegaWizard interface contains the parameters for
the overall system settings and the base address registers. See Figure 3–7.

Figure 3–7. System Settings Page

3–32 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Table 3–17 describes the parameters you can set on this page.

Table 3–17. System Settings Page Parameters (Part 1 of 2)

Parameter Value Description

PHY type Custom Allows all PHY interfaces (except serial), allows x1 and
x4 lanes

Stratix GX Stratix GX uses the Stratix GX device family's built-in
altgxb transceiver. Selecting this PHY allows only a
serial PHY interface and restricts the Number of Lanes
to be x1 or x4.

Stratix II GX Stratix II GX uses the Stratix II GX device family's built-in
alt2gxb transceiver. Selecting this PHY allows only serial
PHY interface and the Number of Lanes can be x1, x4,
or x8.

TI XIO1100 TI XIO1100 allows an 8 -bit DDR with a transmit clock
(txclk) or a 16-bit SDR with a transmit clock PHY
interface. Both of these restricts the Number of Lanes
to x1.

Philips PX1011A Philips PX1011A uses a PHY interface of 8-bit SDR with
a TxClk. This option restricts the number of lanes to x1.

PHY interface Serial,
16-bit SDR,
16-bit SDR w/TxClk,
8-bit DDR,
8-bit DDR w/TxClk,
8-bit SDR,
8-bit SDR w/TxClk

This selects the specific type of external PHY interface
based on datapath width and clocking mode. See
Chapter 4, External PHYs for additional detail on specific
PHY modes.
Stratix II GX and Stratix GX are serial only PHY
interfaces, and they are the only available serial
interfaces.

Lanes x1, x4, x8 Specifies the maximum number of lanes supported.
The x8 value is supported only for a Stratix II GX PHY.

Port type Native Endpoint, Legacy
Endpoint

Specifies the port type. Altera recommends Native
endpoint for all new designs. Select Legacy Endpoint
only when you require I/O transaction support for
compatibility. See “Endpoint Types” on page 3–2 for
more information.

Xcvr ref_clk 100 MHz, 125 MHz,
156.25 MHz

Specifies the frequency of the refclk input clock signal
when using the Stratix GX PHY. The Stratix GX PHY can
use either a 125- or 156.25-MHz clock directly. If you
select 100 MHz, the MegaCore function uses a Stratix
GX PLL to create a 125-MHz clock from the 100-MHz
input.

If you use a generic PIPE, the refclk is not required.
A Stratix II GX PHY requires a 100 MHz clock.

PCI Express version 1.0A or 1.1 Selects the PCI Express specification that the variation
will be compatible with

Altera Corporation PCI Express Compiler Version 6.1 3–33
December 2006 PCI Express Compiler User Guide

Specifications

MegaCore Function BAR Support

The x1 and x4 MegaCore functions support Memory Space BARs ranging
in size from 128 bytes to the maximum allowed by a 32-bit or 64-bit BAR.
The x8 MegaCore functions support Memory Space BARs from 4 KBytes
to the maximum allowed by a 32-bit or 64-bit BAR.

The x1 and x4 MegaCore functions in Legacy Endpoint mode support
I/O Space BARs sized from 16 Bytes to 4 KBytes. The x8 MegaCore
function only supports I/O Space BARs of 4 KBytes.

Configure transceiver
block

Enable fast recovery
mode or Enable rate
match fifo

Displays a dialog box that allows you to configure the
transceiver block. This option is valid only when you
select a Stratix II GX PHY. See Table 3–18 and
Figure 3–8 for details on these available options.

Internal clock 62.5, 125, 250 MHz Specifies the frequency of the internal clock which is
based on the number of lanes and the selected PHY
type. This is also the frequency at which the application
layer interface of the core operates.

For x8 configurations, the internal clock is fixed at 250
MHz. For x4 configurations, the internal clock is fixed at
125 MHz. For x1 configurations in Stratix II GX, the
internal clock is fixed at 125 MHz. For other x1
configurations, the Internal Clock can be selected to be
either 62.5 MHz or 125 MHz.

BAR Table (BAR0) BAR type and size BAR0 size and type mapping (I/O space, memory space,
prefetchable). BAR0 and BAR1 can be combined to form
a 64-bit BAR.

BAR Table (BAR1) BAR type and size BAR1 size and type mapping (I/O space, memory space,
prefetchable).

BAR Table (BAR2) BAR type and size BAR2 size and type mapping (I/O space, memory space,
prefetchable). BAR2 and BAR3 can be combined to form
a 64-bit BAR.

BAR Table (BAR3) BAR type and size BAR3 size and type mapping (I/O space, memory space,
prefetchable).

BAR Table (BAR4) BAR type and size BAR4 size and type mapping (I/O space, memory space,
prefetchable).

BAR Table (BAR5) BAR type and size BAR5 size and type mapping (I/O space, memory space,
prefetchable). BAR4 and BAR5 can be combined to form
a 64-bit BAR.

BAR Table (EXP-ROM) BAR type and size Expansion ROM BAR size and type mapping (I/O space,
memory space, prefetchable).

Table 3–17. System Settings Page Parameters (Part 2 of 2)

Parameter Value Description

3–34 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Configure Transceiver Block for Stratix II GX PHY

When you use the Stratix II GX PHY, you can configure the transceiver
block by modifying the settings in the dialog box available from
Configure transceiver block on the System Settings page.

Figure 3–8. Configure Transceiver Dialog

Table 3–18. Configure Transceiver Block Parameters

Parameter Description

Enable fast recovery mode When enabled this option adds additional logic to
allow a faster exit from the Rx ASPM L0s state.
When disabled exit from Rx ASPM L0s will typically
require link recovery to be invoked.

Enable rate match fifo When enabled this option enables the Rate
Matching FIFO to allow different clocks with PPM
differences at each end of the PCI Express link.

When disabled the rate match FIFO is bypassed,
allowing for lower latency, but it is required that the
ports at both ends of the PCI Express link use the
same clock source. There can be no PPM
difference between the clocks at each end.

Altera Corporation PCI Express Compiler Version 6.1 3–35
December 2006 PCI Express Compiler User Guide

Specifications

Capabilities Page Parameters

The Capabilities page contains the parameters for the PCI read-only
registers and main capability settings. See Figure 3–9.

Figure 3–9. Capabilities Page

Table 3–19 describes the parameters that you can set on this page.

Table 3–19. Capabilities Page Parameters (Part 1 of 2)

Parameter Value Description

Device ID 16-bit Hex Sets the read-only value of the device ID register.

Vendor ID 16-bit Hex Sets the read-only value of the vendor ID register. This parameter
can not be set to 0xFFFF per the PCI Express Specification.

Class code 24-bit Hex Sets the read-only value of the class code register.

Revision ID 8-bit Hex Sets the read-only value of the revision ID register.

3–36 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Subsystem ID 16-bit Hex Sets the read-only value of the subsystem device ID register.

Subsystem vendor ID 16-bit Hex Sets the read-only value of the subsystem vendor ID register. This
parameter can not be set to 0xFFFF per the PCI Express
Specification.

Link common clock On/Off Indicates if the common reference clock supplied by the system is
used as the reference clock for the PHY. This parameter sets the
read-only value of the slot clock configuration bit in the link status
register.

Implement advanced
error reporting

On/Off Implement the advanced error reporting capability.

Implement ECRC check On/Off Enable ECRC checking capability. Sets the read-only value of the
ECRC check capable bit in the advanced error capabilities and
control register. This parameter requires you to implement the
advanced error reporting capability.

Implement ECRC
generation

On/Off Enable ECRC generation capability. Sets the read-only value of the
ECRC generation capable bit in the advanced error capabilities and
control register. This parameter requires you to implement the
advanced error reporting capability.

Link port number 8-bit Hex Sets the read-only values of the port number field in the link
capabilities register.

Tags supported 4, 8, 16, 32,
64, 128, 256

Indicates the number of tags supported for non-posted requests
transmitted by the application layer. The transaction layer tracks all
outstanding completions for non-posted requests made by the
application. This parameter configures the transaction layer for the
maximum number to track. The Application Layer must set the Tag
values in all Non-Posted PCI Express headers to be less than this
value. Values greater than 32 also set the Extended Tag Field
Supported bit in the configuration space device capabilities register.
The application can only use tag numbers greater than 31 if
configuration software sets the Extended Tag Field Enable bit of the
device control register. This bit is available to the application as
cfg_devcsr[8]. This value is limited to a maximum of 8 for the x8
MegaCore function.

MSI messages requested 1, 2, 4, 8, 16,
32

Indicates how many messages the application requests. Sets the
value of the multiple message capable field of the message control
register. See “MSI & INTx Interrupt signals” on page 3–82 for more
information.

MSI message 64-bit
capable

On/Off Indicates whether the MSI capability message control register is 64-
bit addressing capable. PCI Express native endpoints always support
MSI 64-bit addressing.

Table 3–19. Capabilities Page Parameters (Part 2 of 2)

Parameter Value Description

Altera Corporation PCI Express Compiler Version 6.1 3–37
December 2006 PCI Express Compiler User Guide

Specifications

Buffer Setup Page

The Buffer Setup page contains the parameters for the receive and retry
buffers. See Figure 3–10.

Figure 3–10. Buffer Setup Page

3–38 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Table 3–20 describes the parameters you can set on this page.

Table 3–20. Buffer Setup Page Parameters (Part 1 of 3)

Parameter Value Description

Maximum payload
size

128 Bytes,
256 Bytes,
512 Bytes,
1 KByte,
2 KBytes

Specify the maximum payload size supported. This parameter sets the
Read Only value of the max payload size supported field of the device
capabilities register and optimizes the MegaCore function for this size
payload.

Number of virtual
channels

1 - 4 Specify the number of virtual channels supported. This parameter sets
the read-only extended virtual channel count field of the port virtual
channel capability register 1 and controls how many virtual channel
transaction layer interfaces are implemented.

Number of low
priority VCs

None, 2, 3, 4 Specify the number of virtual channels in the low-priority arbitration
group. The virtual channels numbered less than this value are low
priority. Virtual channels numbered greater than or equal to this value
are high priority. See “Transmit Virtual Channel Arbitration” on
page 3–5 for more information. This parameter sets the read-only low-
priority extended virtual channel count field of the port virtual channel
capability register 1.

Auto configure retry
buffer size

On/Off Controls automatic configuration of the retry buffer based on the
maximum payload size.

Retry buffer size 512 Bytes to 16
KBytes (powers
of 2)

Set the size of the retry buffer for storing transmitted PCI Express
packets until acknowledged.

Maximum retry
packets

4 to 256 (powers
of 2)

Set the maximum number of packets that can be stored in the retry
buffer.

Altera Corporation PCI Express Compiler Version 6.1 3–39
December 2006 PCI Express Compiler User Guide

Specifications

Desired performance
for received requests

Low, Medium,
High, Maximum

Specify how to configure the Rx Buffer size and the flow control
credits.

● Low—Provides the minimal amount of space for desired traffic.
Select this option when the throughput of the received requests is
not critical to the system design. Doing this will minimize the device
resource utilization.

● Medium—Provides a moderate amount of space for received
requests. Select this option when the received request traffic does
not need to use the full link bandwidth, but is expected to
occasionally use bursts of a couple maximum sized payload
packets.

● High—Provides enough buffer space to maintain full link bandwidth
of received requests with typical external link delays and FC
Update processing delays by the attached PCI Express port. Use
this setting in most circumstances where full link bandwidth is
needed. This is the default.

● Maximum—Provides additional space to allow for additional
external delays (link side and application side) and still allows full
throughput.

If you need more buffer space than this parameter supplies, select
a larger payload size and this setting. Doing this increases the
buffer size and slightly increase the number of logic elements (LEs)
to support a larger Payload size than will be used.

For more information, see data credits in the section, “Analyzing
Throughput” on page 3–11.

Table 3–20. Buffer Setup Page Parameters (Part 2 of 3)

Parameter Value Description

3–40 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Desired performance
for received
completions

Low, Medium,
High, Maximum

Specify how to configure the Rx Buffer size and the flow control
credits.

● Low—Provides the minimal amount of space for received
completions. Select this option when the throughput of the received
completions is not critical to the system design. This would also be
used when you application is expected to never initiate read
requests on the PCI Express links. Selecting this option will
minimize the device resource utilization.

● Medium—Provides a moderate amount of space for received
completions. Select this option when the received completion
traffic does not need to use the full link bandwidth, but is expected
to occasionally use bursts of a couple maximum sized payload
packets.

● High—Provides enough buffer space to main full link bandwidth of
received requests with typical external link delays and FC Update
processing delays by the attached PCI Express port. Use this
setting in most circumstances where full link bandwidth is needed.
This is the default.

● Maximum—Provides additional space to allow for additional
external delays (link side and application side) and still allows full
throughput.

If you need more buffer space than this parameter supplies, select
a larger payload size and this setting. Doing this increases the
buffer size and slightly increase the number of logic elements (LEs)
to support a larger Payload size than will be used.

For more information, see data credits in the section, “Analyzing
Throughput” on page 3–11.

RX Buffer Space
Allocation

Read-Only Table The Rx Buffer Space Allocation table shows the credits and space
allocated for each flow-controllable type, based on the Rx Buffer Size
setting. All virtual channels use the same Rx Buffer space allocation.

The table does not show non-posted data credits because the
MegaCore function always advertises infinite non-posted data credits
and automatically has room for the maximum 1 DWORD of data that
can be associated with each non-posted header.

The numbers shown for completion headers and completion data
indicate how much space is reserved in the Rx Buffer for completions.
However, infinite completion credits are advertised on the PCI Express
link as is required for endpoints. It is up to the application layer to
manage the rate of non-posted requests made to ensure that the Rx
Buffer completion space does not overflow.

Table 3–20. Buffer Setup Page Parameters (Part 3 of 3)

Parameter Value Description

Altera Corporation PCI Express Compiler Version 6.1 3–41
December 2006 PCI Express Compiler User Guide

Specifications

Power Management Page

The Power Management page contains the parameters for setting various
power management properties of the MegaCore function. See
Figure 3–11.

Figure 3–11. Power Management Page

3–42 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Parameter Settings

Table 3–21 describes the parameters you can set on this page.

Table 3–21. Power Management Page Parameters (Part 1 of 2)

Parameter Value Description

Idle threshold for L0s
entry

256 ns to 8,192 ns (in
256-ns increments)

Indicate the idle threshold for L0s entry. This parameter
specifies the amount of time the link must be idle before the
transmitter transitions to L0s state. The PCI Express
specification states that this time should be no more than
7 μs, but the exact value is implementation-specific. If you
select the Stratix GX PHY or Stratix II GX PHY, this
parameter is disabled and set to its maximum value If you
are using an external PHY; consult the PHY vendor's
documentation to determine the correct value for this
parameter.

Endpoint L0s acceptable
latency

< 64 ns to > 4 μs Indicate the acceptable endpoint L0s latency for the device
capabilities register. Sets the read-only value of the endpoint
L0s acceptable latency field of the device capabilities
register. This value should be based on how much latency
the application layer can tolerate.

Number of Fast Training
Sequences
Common clock

0 - 255 Indicate the number of fast training sequences needed in
common clock mode. The number of fast training sequences
required is transmitted to the other end of the link during link
initialization and is also used to calculate the L0s exit latency
field of the device capabilities register. If you select the
Stratix GX PHY or Stratix II GX PHY, this parameter is
disabled and set to its maximum value. If you are using an
external PHY, consult the PHY vendor's documentation to
determine the correct value for this parameter.

Number of Fast Training
Sequences
Separate clock

0 - 255 Indicate the number of fast training sequences needed in
separate clock mode. The number of fast training sequences
required is transmitted to the other end of the link during link
initialization and is also used to calculate the L0s exit latency
field of the device capabilities register. If you select the
Stratix GX PHY or Stratix II GX PHY, this parameter is
disabled and set to its maximum value. If you are using an
external PHY, consult the PHY vendor's documentation to
determine the correct value for this parameter.

Enable L1 ASPM On/Off Set the L1 active state power management support bit in the
link capabilities register. If you select the Stratix GX PHY or
Stratix II GX PHY, this option is turned off and disabled.

Endpoint L1 acceptable
latency

< 1μs to > 64 μs Indicate the endpoint L1 acceptable latency. Sets the read-
only value of the endpoint L1 acceptable latency field of the
device capabilities register. This value should be based on
how much latency the application layer can tolerate.

Altera Corporation PCI Express Compiler Version 6.1 3–43
December 2006 PCI Express Compiler User Guide

Specifications

Signals The application interface has four categories of signals:

■ Transmit data path interface signals
■ Receive data path interface signals
■ Configuration interface signals
■ Global signals

Figure 3–12 shows all PCI Express MegaCore function signals.

Transmit and receive signals apply to each implemented virtual channel,
while configuration and global signals are common to all virtual channels
on a link.

L1 Exit Latency
Common clock

< 1μs to > 64 μs Indicate the L1 exit latency for the separate clock. Used to
calculate the value of the L1 exit latency field of the device
capabilities register. If you select the Stratix GX PHY or
Stratix II GX PHY, this parameter is disabled and set to its
maximum value. If you are using an external PHY, consult
the PHY vendor's documentation to determine the correct
value for this parameter.

L1 Exit Latency
Separate clock

< 1μs to > 64 μs Indicate the L1 exit latency for the common clock. Used to
calculate the value of the L1 exit latency field of the device
capabilities register. If you select the Stratix GX PHY or
Stratix II GX PHY, this parameter is disabled and set to its
maximum value. If you are using an external PHY, consult
the PHY vendor's documentation to determine the correct
value for this parameter.

Table 3–21. Power Management Page Parameters (Part 2 of 2)

Parameter Value Description

3–44 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–12. MegaCore Function I/O Signals

tx_req0

tx_desc0

tx_ack0

tx_dfr0

tx_dv0

tx_data0[63:0]

tx_ws0

tx_cred0[21:0]

rx_req0

rx_desc0[135:0]

rx_ack0

rx_abort0

rx_retry0

rx_mask0

rx_dfr0

rx_dv0

rx_data0[63:0]

rx_be0[7:0]

rx_ws0

pme_to_cr

pme_to_sr

cfg_pmcsr[31:0]

app_msi_req

app_msi_ack

ack_msi_tc[2:0]

msi_num[4:0]

cfg_msicsr[15:0]

pex_msi_num[4:0]

app_int_sts

refclk

clk125_in

clk125_out

npor

srst

crst

12_exit

hotrst_exit

dlup_exit

cfg_tcvcmap[23:0]

cfg_busdev[12:0]

cfg_prmcfr[31:0]

cfg_devcsr[31:0]

cfg_linkcsr[31:0]

cpl_err[2:0]

cpl_pending

test_in[31:0]

test_out[511:0]

PCI Express
MegaCore Function

1-Bit Serial

tx[7:0]

rx[7:0]

pipe_mode

txdata0_ext[15:0]

txdatak0_ext[1:0]

txdetectrx0_ext

txelecidle0_ext

txcompliance0_ext

rxpolarity0_ext

powerdown0_ext[1:0]

rxdata0_ext[15:0]

rxdatak0_ext[1:0]

rxvalid0_ext

phystatus0_ext

rxelecidle0_ext

rxstatus0_ext[2:0]

16-Bit PIPE for x1 and x4
(Repeated for Lanes 1 - 3
in the x4 MegaCore Function)

Transmit Data
Path (for VC0)

Receive Data
Path (for VC0)

Power Management

Interrupt

Global

Configuration

Completion Interface

Test Interface

txdata0_ext[7:0]

txdatak0_ext

txdetectrx0_ext

txelecidle0_ext

txcompliance0_ext

rxpolarity0_ext

powerdown0_ext[1:0]

rxdata0_ext[7:0]

rxdatak0_ext

rxvalid0_ext

phystatus0_ext

rxelecidle0_ext

rxstatus0_ext[2:0]

8-Bit PIPE for x8
(Repeated for Lanes 1 - 7
in the x8 MegaCore Function)

(1)

(2)

(3)

(3)

(4)

Notes SignalChanges for x 8 MegaCore Functions:
(1) clk125_in for the x1, x4 MegaCore function
 is changed to clk250_in for a x8 MegaCore function
(2) clk125_out for the x1 or x4 MegaCore function
 is changed to clk250_out for the x8 MegaCore function
(3) srst & crst are removed for the x8 MegaCore function
(4) test_out[511:0] for the x1 or x4 MegaCore function is changed
 to test_out[127:0] for the x8 MegaCore function.

Altera Corporation PCI Express Compiler Version 6.1 3–45
December 2006 PCI Express Compiler User Guide

Specifications

Transmit Interface Operation Signals

The transmit interface is established per initialized virtual channel and is
based on two independent busses, one for the descriptor phase
(tx_desc[127:0]) and one for the data phase (tx_data[63:0]).
Every transaction includes a descriptor. A descriptor is a standard
transaction layer packet header as defined by the PCI Express Base
Specification Revision 1.0a with the exception of bits 126 and 127, which
indicate the transaction layer packet group as described in the following
section. Only transaction layer packets with a normal data payload
include one or more data phases.

Transmit Data Path Signals

The MegaCore function assumes that transaction layer packets sent by
the application layer are well-formed, i.e., the MegaCore function will not
detect if the application layer sends it a malformed transaction layer
packet.

Transmit data path signals can be divided into two groups:

■ Descriptor Phase signals
■ Data Phase signals

1 In the following tables, transmit interface signal names suffixed
with 0 are for virtual channel 0. If the MegaCore function
implements additional virtual channels, there are an additional
set of signals suffixed with the virtual channel number.

3–46 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Table 3–22 describes the standard descriptor phase signals.

Table 3–22. Standard Descriptor Phase Signals

Signal I/O Description

tx_reqn (1), (2) I Transmit request. This signal must be asserted for each request. It is always
asserted with the tx_desc[127:0] and must remain asserted until tx_ack is
asserted. This signal does not need to be deasserted between back-to-back
descriptor packets.

tx_descn[127:0]
(1), (2)

I Transmit descriptor bus. The transmit descriptor bus, bits 127:0 of a transaction,
can include a 3 or 4 DWORDS PCI Express transaction header. Bits have the same
meaning as a standard transaction layer packet header as defined by the PCI
Express Base Specification Revision 1.0a. Byte 0 of the header occupies bits
127:120 of the tx_desc bus, byte 1 of the header occupies bits 119:112, and so
on, with byte 15 in bits 7:0. See Appendix B, Transaction Layer Packet Header
Formats for the header formats.

The following bits have special significance:

● tx_desc[2] or tx_desc[34] indicate the alignment of data on tx_data.
● tx_desc[2] (64-bit address) set to 0: The first DWORD is located on

tx_data[31:0].
● tx_desc[34] (32-bit address) set to 0: The first DWORD is located on bits

tx_data[31:0].
● tx_desc[2] (64-bit address) set to 1: The first DWORD is located on bits

tx_data[63:32].
● tx_desc[34] (32-bit address) set to 1: The first DWORD is located on bits

tx_data[63:32].

Bit 126 of the descriptor indicates the type of transaction layer packet in transit:

● tx_desc[126] set to 0: transaction layer packet without data
● tx_desc[126] set to 1: transaction layer packet with data

The following list provides a few examples of bit placement on this bus:

● tx_desc[105:96]: length[9:0]
● tx_desc[126:125]: fmt[1:0]
● tx_desc[126:120]: type[4:0]

tx_ackn
(1), (2)

O Transmit acknowledge. This signal is asserted for one clock cycle when the
MegaCore function acknowledges the descriptor phase requested by the
application through the tx_req signal. On the following clock cycle, a new
descriptor can be requested for transmission through the tx_req signal (kept
asserted) and the tx_desc.

Notes for Table 3–22
(1) where n is the virtual channel number; For x1 and x4, n can be 0 - 3
(2) For x8, n can be 0 or 1

Altera Corporation PCI Express Compiler Version 6.1 3–47
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–23 describes the standard data phase signals.

Table 3–23. Standard Data Phase Signals (Part 1 of 2)

Signal I/O Description

tx_dfrn
(1), (2)

I Transmit data phase framing. This signal is asserted on the same clock cycle as
tx_req to request a data phase (assuming a data phase is needed). This signal
must be kept asserted until the clock cycle preceding the last data phase.

tx_dvn
(1), (2)

I Transmit data valid. This signal is asserted by the user application interface to
signify that the tx_data[63:0] signal is valid. This signal must be asserted on
the clock cycle following assertion of tx_dfr until the last data phase of
transmission. The MegaCore function will accept data only when this signal is
asserted and as long as tx_ws is not asserted.

The application interface can rely on the fact that the first data phase will never
occur before a descriptor phase is acknowledged (through assertion of tx_ack).
However, the first data phase can coincide with assertion of tx_ack if the
transaction layer packet header is only 3 DWORDS.

tx_wsn
(1), (2)

O Transmit wait states. This signal is used by the MegaCore function to insert wait
states to prevent data loss. This signal might be used in the following
circumstances:

● To give a DLLP transmission priority.
● To give a high-priority virtual channel or the retry buffer transmission priority

when the link is initialized with fewer lanes than are permitted by the link.

If the MegaCore function is not ready to acknowledge a descriptor phase (through
assertion of tx_ack), it will automatically assert tx_ws to throttle
transmission.When tx_dv is not asserted, tx_ws should be ignored.

3–48 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Table 3–24 describes the advanced data phase signals.

tx_datan[63:0]
(1), (2)

I Transmit data bus. This signal transfers data from the application interface to the
link. It is 2 DWORDS wide and is naturally aligned with the address in one of two
ways, depending on bit 2 of the transaction layer packet address, which is located
on bit 2 or 34 of the tx_desc (depending on the 3 or 4 DWORDS transaction
layer packet header bit 125 of the tx_desc signal).

● tx_desc[2] (64-bit address) set to 0: The first DWORD is located on
tx_data[31:0].

● tx_desc[34] (32-bit address) set to 0: The first DWORD is located on bits
tx_data[31:0].

● tx_desc[2](64-bit address) set to 1: The first DWORD is located on bits
tx_data[63:32].

● tx_desc[34] (32-bit address) set to 1: The first DWORD is located on bits
tx_data[63:32].

This natural alignment allows you to connect the tx_data[63:0] directly to a
64-bit data path aligned on a QWORD address (in the little endian convention).

Bit 2 is set to 1 (5 DWORDS transaction).

Bit 2 is set to 0 (5 DWORDS transaction).

Notes for Table 3–23
(1) where n is the virtual channel number; For x1 and x4, n can be 0 - 3
(2) For x8, n can be 0 or 1

Table 3–23. Standard Data Phase Signals (Part 2 of 2)

Signal I/O Description

tx_data[63:32]

tx_data[31:0]

1 2 3 4 5 6

Clock Cycles

X DW 2DW 0 XDW 4

X DW 3DW 1 X

tx_data[63:32]

tx_data[31:0]

1 2 3 4 5 6

Clock Cycles

X DW 2DW 0 XDW 4

X DW 3DW 1 X

Altera Corporation PCI Express Compiler Version 6.1 3–49
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–24. Advanced Data Phase Signals

Signal I/O Description

tx_credn[65:0]
(1),(2)

O Transmit credit. This signal is used to inform the application layer whether it can
transmit a transaction layer packet of a particular type based on available flow control
credits. This signal is optional because the MegaCore function always checks for
sufficient credits before acknowledging a request. However, by checking available
credits with this signal, the application can improve system performance by dividing
a large transaction layer packet into smaller transaction layer packets based on
available credits or arbitrating among different types of transaction layer packets by
sending a particular transaction layer packet across a virtual channel that advertises
available credits. See Table 3–25 for the bit detail.

Once a transaction layer packet is acknowledged by the MegaCore function, the
corresponding flow control credits are consumed and this signal is updated 1 clock
cycle after assertion of tx_ack.

For a component that has received infinite credits at initialization, each field of this
signal is set to its highest potential value.

For the x1 and x4 MegaCore functions this signal is 22 bits wide with some encoding
of the available credits to make it easier for the application layer to check the
available credits. Table 3–22 for details.

In the x8 MegaCore function this signal is 66 bits wide and provides the exact
number of available credits for each flow control type. See Table 3–26 for details.

tx_errn
(1)

I Transmit error. This signal is used to discard or nullify a transaction layer packet, and
is asserted for one clock cycle during a data phase. The MegaCore function will
automatically commit the event to memory and wait for the end of the data phase.

Upon assertion of tx_err, the application interface should stop transaction layer
packet transmission by deasserting tx_dfr and tx_dv.

This signal only applies to transaction layer packets sent to the link (as opposed to
transaction layer packets sent to the configuration space). If unused, this signal can
be tied to zero. This signal is not available in the x8 MegaCore function.

Notes for Table 3–24
(1) where n is the virtual channel number; For x1 and x4, n can be 0 - 3
(2) For x8, n can be 0 or 1

3–50 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Table 3–25 shows the bit information for tx_cred0[21:0] for the x1
and x4 MegaCore functions.

Table 3–26 shows the bit information for tx_credn[65:0] for the x8
MegaCore functions.

Table 3–25. tx_cred0[21:0] Bits for the x1 and x4 MegaCore Functions

Bit Value Description

0 ● 0: No credits available
● 1: Sufficient credit available for at least 1

transaction layer packet

Posted header.

9:1 ● 0: No credits available
● 1-256: number of credits available
● 257-511: reserved

Posted data: 9 bits permit advertisement of 256 credits,
which corresponds to 4KBytes, the maximum payload
size.

10 ● 0: No credits available
● 1: Sufficient credit available for at least 1

transaction layer packet

Non-Posted header.

11 ● 0: No credits available
● 1: Sufficient credit available for at least 1

transaction layer packet

Non-Posted data.

12 ● 0: No credits available
● 1: Sufficient credit available for at least 1

transaction layer packet

Completion header.

21:13 9 bits permit advertisement of 256 credits,
which corresponds to 4 KBytes, the
maximum payload size.

Completion data, posted data.

Table 3–26. tx_cred[65:0] bits for x8 MegaCore Function (Part 1 of 2)

Bit Value Description

tx_cred[7:0] ● 0 No credits available
● 1 Sufficient credit available for at least 1

TLP

Posted header
Ignore this field if the value of Posted
Header credits, tx_cred[60], are set
to 1.

tx_cred[19:8] ● 0: No credits available
● 1-256: number of credits available
● 257-511: reserved

Posted Data: 9 bits permit advertisement
of 256 credits, which corresponds to 4KB,
the Maximum Payload Size. Ignore this
field if value of the Posted Data credits,
tx_cred[61], set to 1.

tx_cred[27:20]

● 0: No credits available
● 1: Sufficient credit available for at least 1

TLP

Non-Posted Header
Ignore this field if value of the Non-Posted
Header credits, tx_cred[62], set to 1.

Altera Corporation PCI Express Compiler Version 6.1 3–51
December 2006 PCI Express Compiler User Guide

Specifications

Transaction Examples Using Transmit Signals

This section provides examples that illustrate how transaction signals
interact:

■ Ideal case transmission
■ Transaction layer not ready to accept packet
■ Possible wait state insertion
■ Priority given elsewhere
■ Transmit request can remain asserted between transaction layer

packets
■ Transaction layer inserts wait states because of 4-DWORD header
■ Multiple wait states throttle transmission of data
■ Error asserted and transmission is nullified

In each waveform, a strong horizontal line separates descriptor signals
from data signals.

tx_cred[39:28]

● 0: No credits available
● 1: Sufficient credit available for at least 1

TLP

Non-Posted Data
Ignore this field if value of the Non-Posted
Data credits, tx_cred[63], set to 1.

tx_cred[47:40]

● 0: No credits available
● 1: Sufficient credit available for at least 1

TLP

Completion Header

tx_cred[59:48]

● 0: No credits available
● 1-256: number of credits available
● 257-511: reserved

Completion Data: Posted Data: 9 bits
permit advertisement of 256 credits,
which corresponds to 4KB, the Maximum
Payload Size.

tx_cred[60] ● 0: Posted Header Credits are not infinite
● 1: Posted Header Credits are infinite

Posted Header credits are infinite when
set to 1.

tx_cred[61] ● 0: Posted Data Credits are not infinite
● 1: Posted Data Credits are infinite

Posted Data credits are infinite.when set
to 1.

tx_cred[62] ● 0: Non-Posted Header Credits are not
infinite

● 1: Non-Posted Header Credits are infinite

Non-Posted Header credits are infinite
when set to 1.

tx_cred[63] ● 0: Non-Posted Data Credits are not
infinite

● 1: Non-Posted Data Credits are infinite

Non-Posted Data credits are infinite when
set to 1.

tx_cred[64] ● 0: Completion Credits are not infinite
● 1: Completion Credits are infinite

Completion Header credits are infinite
when set to 1.

tx_cred[65] ● 0: Completion Data Credits are not infinite
● 1: Completion Data Credits are infinite

Completion Data credits are infinite when
set to 1.

Table 3–26. tx_cred[65:0] bits for x8 MegaCore Function (Part 2 of 2)

Bit Value Description

3–52 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Ideal Case Transmission
In the ideal case, the descriptor and data transfer are independent of each
other, and can even happen simultaneously. See Figure 3–13. The
MegaCore function transmits a completion transaction of 8 DWORDS.
Address bit 2 is set to 0.

In clock cycle 4, the first data phase is acknowledged at the same time as
transfer of the descriptor.

Figure 3–13. 64-Bit Completion with Data Transaction of 8 DWORD Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPLD

DW1 DW3 DW5 DW7X X

DW0 DW2 DW4 DW6X X

Clock Cycles

Altera Corporation PCI Express Compiler Version 6.1 3–53
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–14 shows the MegaCore function transmitting a memory write
of 1 DWORD.

Figure 3–14. Transfer for A Single DWORD Write

tx_desc[127:0]

tx_ack

_data[63:32]

tx_ws

1 2 3 4 5 6 7 10 11 12 13 14 15
Clock Cycles

tx_err

tx_dfr

tx_req

8 9

tx_dv

tx_data[31:0]

MEMWR32

DW0

X

X

X

X

Descriptor
Signals

tx
Data

Signals

3–54 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Transaction Layer Not Ready to Accept Packet
In this example, the application transmits a 64-bit memory read
transaction of 6 DWORDs. Address bit 2 is set to 0. See Figure 3–15.

Data transmission cannot begin if the MegaCore function’s transaction
layer state machine is still busy transmitting the previous packet, as is the
case in this example.

Figure 3–15. State Machine Is Busy with the Preceding Transaction Layer Packet Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMRD64

Clock Cycles

Altera Corporation PCI Express Compiler Version 6.1 3–55
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–16 shows that the application layer must wait to receive an
acknowledge before write data can be transferred.

Figure 3–16. Transaction Layer Not Ready to Accept Packet

Possible Wait State Insertion
If the MegaCore function is not initialized with its maximum potential
lanes, data transfer is necessarily hindered. See Figure 3–18. The
application transmits a 32-bit memory write transaction of 8 DWORDS.
Address bit 2 is set to 0.

In clock cycle 3, data transfer can begin immediately as long as the
transfer buffer is not full.

In clock cycle 5, once the buffer is full and the MegaCore function
implements wait states to throttle transmission; 4 clock cycles are
required per transfer instead of 1 because the MegaCore function is not
configured with the maximum possible number of lanes implemented.

Figure 3–17 shows how the transaction layer extends the a data phase by
asserting the wait state signal.

tx_desc[127:0]

tx_ack

tx_data[63:32]

tx_ws

1 2 3 4 5 6 7 10 11 12 13 14 15
Clock Cycles

tx_err

tx_dfr

tx_req

8 9

tx_dv

tx_data[31:0]

MEMWR32

DW0

X

X

X

X

Descriptor
Signals

Data
Signals

3–56 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–17. Transfer with Wait State Inserted for a Single DWORD Write

Figure 3–18. Signal Activity When MegaCore Function Has Fewer than Maximum Potential Lanes Waveform

tx_desc[127:0]

tx_ack

tx_data[63:32]

tx_ws

1 2 3 4 5 6 7 10 11 12 13 14 15
Clock Cycles

tx_err

tx_dfr

tx_req

8 9

tx_dv

tx_data[31:0]

MEMWR32

DW0

X

X

X

X

Descriptor
Signals

Data
Signals

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMW32

Clock Cycles

X DW1 DW3 DW5 DW7 X

X DW0 DW2 DW4 DW6 X

Altera Corporation PCI Express Compiler Version 6.1 3–57
December 2006 PCI Express Compiler User Guide

Specifications

Transaction Layer Inserts Wait States because of 4-DWORD Header
In this example, the application transmits a 64-bit memory write
transaction. Address bit 2 is set to 1. See Figure 3–19. No wait states are
inserted during the first two data phases because the MegaCore function
implements a small buffer to give maximum performance during
transmission of back-to-back transaction layer packets.

In clock cycle 3, the MegaCore function inserts a wait state because the
memory write 64-bit transaction layer packet request has a 4-DWORD
header. In this case, tx_dv could have been sent one clock cycle later.

Figure 3–19. Inserting Wait States because of 4-DWORD Header Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMWR64

Clock Cycles

X DW4DW0 DW2 DW6 X

X DW3DW1 DW5 DW7 X

3–58 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Priority Given Elsewhere
In this example, the application transmits a 64-bit memory write
transaction of 8 DWORDS. Address bit 2 is set to 0. The transmit path has
a 3-deep 64-bit buffer to handle back-to-back transaction layer packets as
fast as possible, and it accepts the tx_desc and first tx_data without
delay. See Figure 3–20.

In clock cycle 5, the MegaCore function asserts tx_ws a second time to
throttle the flow of data because priority was not given immediately to
this virtual channel. Priority was given to either a pending data link layer
packet, a configuration completion, or another virtual channel. The
tx_err is not available in the x8 MegaCore function.

Figure 3–20. 64-Bit Memory Write Request Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMWR64

Clock Cycles

X DW1 DW3 DW5 DW7 X

X DW0 DW2 DW4 DW6 X

Altera Corporation PCI Express Compiler Version 6.1 3–59
December 2006 PCI Express Compiler User Guide

Specifications

Transmit Request Can Remain Asserted Between Transaction Layer
Packets
In this example, the application transmits a 64-bit memory read
transaction followed by a 64-bit memory write transaction. Address bit 2
is set to 0. See Figure 3–21.

In clock cycle 4, tx_req is not deasserted between transaction layer
packets.

In clock cycle 5, the second transaction layer packet is not immediately
acknowledged because of additional overhead associated with a 64-bit
address, such as a separate number and an LCRC. This situation leads to
an extra clock cycle between two consecutive transaction layer packets.

Figure 3–21. 64-Bit Memory Read Request Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMRD64

Clock Cycles

X DW1 DW3 DW5 DW7 X

X DW0 DW2 DW4 DW6 X

MEMWR64

3–60 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Multiple Wait States Throttle Data Transmission
In this example, the application transmits a 32-bit memory write
transaction. Address bit 2 is set to 0. See Figure 3–22. No wait states are
inserted during the first two data phases because the MegaCore function
implements a small buffer to give maximum performance during
transmission of back-to-back transaction layer packets.

In clock cycles 5, 7, 9, and 11, the MegaCore function inserts wait states to
throttle the flow of transmission.

Figure 3–22. Multiple Wait States that Throttle Data Transmission Waveform

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMWR64

Clock Cycles

X DW5DW1 DW3 DW7 XDW9 DW11

X DW4DW0 DW2 DW6 XDW8 DW10

Altera Corporation PCI Express Compiler Version 6.1 3–61
December 2006 PCI Express Compiler User Guide

Specifications

Error Asserted & Transmission Is Nullified
In this example, the application transmits a 64-bit memory write
transaction of 14 DWORDS. Address bit 2 is set to 0. See Figure 3–23.

In clock cycle12, tx_err is asserted which nullifies transmission of the
transaction layer packet on the link. Nullified packets have the LCRC
inverted from the calculated value and use the end bad packet (EDB)
control character instead of the normal END control character.

Figure 3–23. Error Assertion Waveform

Receive Interface Operation Signals

The receive interface, like the transmit Interface, is based on two
independent busses, one for the descriptor phase (rx_desc[135:0])
and one for the data phase (rx_data[63:0]). Every transaction
includes a descriptor. A descriptor is a standard transaction layer packet
header as defined by the PCI Express Base Specification Revision 1.0a with
two exceptions. Bits 126 and 127 indicate the transaction layer packet
group and bits 135:128 describe BAR and address decoding information
(see rx_desc[135:0] below for details).

Receive Data Path Signals

Receive data path signals can be divided into two groups:

■ Descriptor phase signals
■ Data phase signals

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMWR64

Clock Cycles

DW5DW1 DW3 DW7 DW9 DWB DWD DWF

DW4DW0 DW2 DW6 DW8 DWA DWC DWE

3–62 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

1 In the following tables, transmit interface signal names suffixed
with 0 are for virtual channel 0. If the MegaCore function
implements additional virtual channels, there are an additional
set of signals suffixed with the virtual channel number.

Table 3–27 describes the standard descriptor phase signals.

Table 3–27. Standard Descriptor Phase Signals (Part 1 of 2)

Signal I/O Description

rx_req0
(1),(2)

O Receive request. This signal is asserted by the MegaCore function to request a
packet transfer to the application interface. It is asserted when the first two
DWORDS of a transaction layer packet header are valid. This signal is asserted
for a minimum of two clock cycles and rx_abort, rx_retry, and rx_ack
cannot be asserted at the same time as this signal. The complete descriptor is
valid on the second clock cycle that this signal is asserted.

rx_descn[135:0]
(1),(2)

O Receive descriptor bus. Bits (125:0) have the same meaning as a standard
transaction layer packet header as defined by the PCI Express Base
Specification Revision 1.0a. Byte 0 of the header occupies bits 127:120 of the
rx_desc bus, byte 1 of the header occupies bits 119:112, and so on, with byte
15 in bits 7:0. See Appendix B, Transaction Layer Packet Header Formats for the
header formats.

For bits 135:128 (descriptor and BAR decoding), see Table 3–28. Completion
transactions received by an endpoint do not have any bits asserted and must be
routed to the master block in the application layer.

rx_desc[127:64] begins transmission on the same clock cycle that rx_req
is asserted, allowing precoding and arbitrating to begin as quickly as possible.
The other bits of rx_desc are not valid until the following clock cycle as shown in
the following diagram.

Bit 126 of the descriptor indicates the type of transaction layer packet in transit:

● rx_desc[126] set to 0: transaction layer packet without data
● rx_desc[126] set to 1: transaction layer packet with data

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

1 2 3 4 5 6

Clock Cycles

X Valid X

X Valid X

X Valid X

Altera Corporation PCI Express Compiler Version 6.1 3–63
December 2006 PCI Express Compiler User Guide

Specifications

The MegaCore function generates the eight MSBs of this signal with BAR
decoding information. See Table 3–28.

rx_ackn
(1),(2)

I Receive acknowledge. This signal is asserted for 1 clock cycle when the
application interface acknowledges the descriptor phase and starts the data
phase, if any. The rx_req signal is deasserted on the following clock cycle and
the rx_desc is ready for the next transmission.

rx_abortn
(1),(2)

I Receive abort. This signal is asserted by the application interface if the
application cannot accept the requested descriptor. In this case, the descriptor is
removed from the receive buffer space, flow control credits are updated, and, if
necessary, the application layer generates a completion transaction with
unsupported request (UR) status on the transmit side.

rx_retryn
(1),(2)

I Receive retry. The application interface asserts this signal if it is not able to
accept a non-posted request. In this case, the application layer must assert
rx_mask0 along with rx_retry0 so that only posted and completion
transactions are presented on the receive interface for the duration of
rx_mask0.

rx_maskn
(1),(2)

I Receive mask (non-posted requests). This signal is used to mask all non-posted
request transactions made to the application interface to present only posted and
completion transactions. This signal must be asserted with rx_retry0 and
deasserted when the MegaCore function can once again accept non-posted
requests.

Notes for Table 3–27
(1) where n is the virtual channel number; For x1 and x4, n can be 0 - 3
(2) For x8, n can be 0 or 1

Table 3–27. Standard Descriptor Phase Signals (Part 2 of 2)

Signal I/O Description

Table 3–28. rx_desc[135:128]: Descriptor & BAR Decoding

Bit Type 0 Component

128 = 1: BAR 0 decoded

129 = 1: BAR 1 decoded

130 = 1: BAR 2 decoded

131 = 1: BAR 3 decoded

132 = 1: BAR 4 decoded

133 = 1: BAR 5 decoded

134 = 1: Expansion ROM decoded

135 Reserved

3–64 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Table 3–29 describes the data phase signals.

Table 3–29. Data Phase Signals (Part 1 of 2)

Signal I/O Description

rx_ben[7:0]
(1),(2)

O Receive byte enable. These signals qualify data on rx_data[63:0]. Each bit of
the signal indicates whether the corresponding byte of data on rx_data[63:0]
is valid. These signals are not available in the x8 MegaCore function.

rx_dfrn
(1),(2))

O Receive data phase framing. This signal is asserted on the same or subsequent
clock cycle as rx_req to request a data phase (assuming a data phase is
needed). It is deasserted on the clock cycle preceding the last data phase to signal
to the application layer the end of the data phase. The application layer does not
need to implement a data phase counter.

rx_dvn
(1),(2)

O Receive data valid. This signal is asserted by the MegaCore function to signify that
rx_data[63:0] contains data.

rx_datan[63:0]
(1),(2)

O Receive data bus. This bus transfers data from the link to the application layer. It is
2 DWORDS wide and is naturally aligned with the address in one of two ways,
depending on bit 2 of rx_desc.

● rx_desc[2] (64-bit address) set to 0: The first DWORD is located on
rx_data[31:0].

● rx_desc[34] (32-bit address) set to 0: The first DWORD is located on bits
rx_data[31:0].

● rx_desc[2] (64-bit address) set to 1: The first DWORD is located on bits
rx_data[63:32].

● rx_desc[34] (32-bit address) set to 1: The first DWORD is located on bits
rx_data[63:32].

This natural alignment allows you to connect rx_data[63:0] directly to a 64-bit
data path aligned on a QW address (in the little endian convention).

Bit 2 is set to 1 (5 DWORD transaction)

Bit 2 is set to 0 (5 DWORD transaction)

rx_wsn
(1),(2)

I Receive wait states. With this signal, the application layer can insert wait states to
throttle data transfer.

rx_data[63:32]

rx_data[31:0]

1 2 3 4 5 6

Clock Cycles

X DW 2DW 0 XDW 4

X DW 3DW 1 X

rx_data[63:32]

rx_data[31:0]

1 2 3 4 5 6

Clock Cycles

X DW 2DW 0 XDW 4

X DW 3DW 1 X

Altera Corporation PCI Express Compiler Version 6.1 3–65
December 2006 PCI Express Compiler User Guide

Specifications

Transaction Examples Using Receive Signals

This section provides additional examples that illustrate how transaction
signals interact:

■ Transaction without data payload
■ Retried transaction and masked non-posted transactions
■ Transaction aborted
■ Transaction with data payload
■ Transaction with data payload and wait states

In each waveform, a strong horizontal line separates descriptor signals
from data signals.

Notes for Table 3–29
(1) where n is the virtual channel number; For x1 and x4, n can be 0 - 3
(2) For x8, n can be 0 or 1

Table 3–29. Data Phase Signals (Part 2 of 2)

Signal I/O Description

3–66 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Transaction without Data Payload
In Figure 3–24, the MegaCore function receives three consecutive
transactions, none of which have data payloads:

■ Memory read request (64-bit addressing mode)
■ Memory read request (32-bit addressing mode)
■ I/O read request

In clock cycles 4, 7, and 12, the MegaCore function updates flow control
credits after each transaction layer packet has either been acknowledged
or aborted. When necessary, the MegaCore function generates flow
control DLLPs to advertise flow control credit levels.

In clock cycle 8, the I/O read request initiated at clock cycle 8 is not
acknowledged until clock cycle 11 with assertion of rx_ack. The
relatively late acknowledgment could be due to possible congestion.

Figure 3–24. Three Transactions without Data Payloads Waveform

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

XX MEMRD64 MEMRD32 X I/O RD X

X

X

X

XX Valid X Valid X

XX Valid X Valid X

Valid

Valid

Altera Corporation PCI Express Compiler Version 6.1 3–67
December 2006 PCI Express Compiler User Guide

Specifications

Retried Transaction & Masked Non-Posted Transactions
When the application layer can no longer accept non-posted requests, one
of two things happen: either the application layer requests the packet be
resent or it asserts rx_mask. For the duration of rx_mask, the MegaCore
function masks all non-posted transactions and reprioritizes waiting
transactions in favor of posted and completion transactions. When the
application layer can once again accept non-posted transactions,
rx_mask is deasserted and priority is given to all non-posted
transactions that have accumulated in the receive buffer.

Each virtual channel has a dedicated data path and associated buffers,
and no ordering relationships exist between virtual channels. While one
virtual channel may be temporarily blocked, data flow continues across
other virtual channels without impact. Within a virtual channel,
reordering is mandatory only for non-posted transactions to prevent
deadlock. Reordering is not implemented in the following cases:

■ Between traffic classes mapped in the same virtual channel
■ Between posted and completion transactions
■ Between transactions of the same type regardless of the relaxed-

ordering bit of the transaction layer packet

In Figure 3–25, the MegaCore function receives a memory read request
transaction of 4 DWORDS that it cannot immediately accept. A second
transaction (memory write transaction of 1 DWORD) is waiting in the
receive buffer. Bit 2 of rx_data[63:0] for the memory write request is set to
1.

In clock cycle 3, transmission of non-posted transactions is not permitted
for as long as rx_mask is asserted.

Flow control credits are updated only after a transaction layer packet has
been extracted from the receive buffer and both the descriptor phase and
data phase (if any) have ended. This update happens in clock cycles 8 and
12 in Figure 3–25.

3–68 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–25. Retried Transaction & Masked Non-Posted Transaction Waveform

Transaction Aborted
In Figure 3–26, a memory read of 16 DWORDS is sent to the application
layer. Having determined it will never be able to accept the transaction
layer packet, the application layer discards it by asserting rx_abort. An
alternative design might implement logic whereby all transaction layer
packets are accepted and, after verification, potentially rejected by the
application layer. An advantage of asserting rx_abort is that
transaction layer packets with data payloads can be discarded in 1 clock
cycle.

Having aborted the first transaction layer packet, the MegaCore function
can transmit the second, a 3 DWORD completion in this case. The
MegaCore function does not treat the aborted transaction layer packet as
an error and updates flow control credits as if the transaction were
acknowledged. In this case, the application layer is responsible for
generating and transmitting a completion with completer abort status
and to signal a completer abort event to the MegaCore function
configuration space through assertion of cpl_err.

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

XX ValidValid X Valid X

X

XX DW 0

00h00h F0h

XX MEMWR 1DWMEMRD 4DW X MEMRD 4DW X

XX ValidValid X Valid X

Altera Corporation PCI Express Compiler Version 6.1 3–69
December 2006 PCI Express Compiler User Guide

Specifications

In clock cycle 6, rx_abort is asserted and transmission of the next
transaction begins on clock cycle 8.

Figure 3–26. Aborted Transaction Waveform

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

Valid X Valid X

XX DW 1

0FhX FFh X

DW 2X DW 0 X

MEMRD 16DW X CPL 3DW X

Valid X Valid X

3–70 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Transaction with Data Payload
In Figure 3–27, the MegaCore function receives a completion transaction
of 8 DWORDS and a second memory write request of 3 DWORDS. Bit 2
of rx_data[63:0] is set to 0 for the completion transaction and to 1 for
the memory write request transaction.

Normally, rx_dfr is asserted on the same or following clock cycle as
rx_req; however, in this case the signal is already asserted until clock
cycle 7 to signal the end of transmission of the first transaction. It is
immediately reasserted on clock cycle 8 to request a data phase for the
second transaction.

Figure 3–27. Transaction with a Data Payload Waveform

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

ValidValid X

FFhX FFh X

DW 2X DW 0 X

X X

DW 3DW 1 DW 7DW 5 X

X DW 1 XDW 2DW 0 DW 6DW 4 X

F0h

MEMWR AD1 3DWCPLD 8DW XX X

ValidValid XX X

Altera Corporation PCI Express Compiler Version 6.1 3–71
December 2006 PCI Express Compiler User Guide

Specifications

Transaction with Data Payload & Wait States
The application layer can assert rx_ws as often as it likes. In Figure 3–28,
the MegaCore function receives a completion transaction of 4 DWORDS.
Bit 2 of rx_data[63:0] is set to 1. Both the application layer and the
MegaCore function insert wait states. Normally rx_data[63:0] would
contain data in clock cycle 4, but the MegaCore function has inserted a
wait state by deasserting rx_dv.

In clock cycle 11, data transmission does not resume until both of the
following conditions are met:

■ The MegaCore function asserts rx_dv at clock cycle 10, thereby
ending a MegaCore function-induced wait state.

■ The application layer deasserts rx_ws at clock cycle 11, thereby
ending an application interface-induced wait state.

Figure 3–28. Transaction with a Data Payload & Wait States Waveform

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

Valid

X DW 1 X

X X

DW 3X

FFhX F0h X0FhX

DW 2X DW 0 X

CPLD 4DWX X

ValidX X

3–72 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Dependencies Between Receive Signals

Table 3–30 describes the minimum and maximum latency values in clock
cycles between various receive signals.

Clocking

The Altera PCI Express MegaCore functions use one of several possible
clocking configurations, depending on the PHY (generic PIPE or
Stratix GX) and the reference clock frequency. The functions have two
clock input signals, refclk and clk125_in.

The functions also have an output clock, clk125_out, that is a 125-MHz
transceiver clock. In Stratix GX PHY implementations, clk125_out is a
125-MHz version of the transceiver reference clock and must be used to
generate clk125_in. In generic PIPE PHY implementations, this signal
is driven from the refclk input.

■ refclk–This signals provides the reference clock for the transceiver
for Stratix GX PHY implementations. For generic PIPE PHY
implementations, refclk is driven directly to clk125_out.

■ clk125_in–This signal is the clock for all of the function’s registers,
except for a small portion of the receive PCS layer that is clocked by
a recovered clock in Stratix GX PHY implementations. All
synchronous application layer interface signals are synchronous to
this clock. clk125_in must be 125 MHz and in Stratix GX PHY
implementations it must be the exact same frequency as
clk125_out. In generic PIPE PHY implementations, it must be
connected to the pclk signal from the PHY.

1 Implementing the x4 MegaCore function in Stratix GX devices
uses 4 additional clock resources for the recovered clocks on a
per lane basis. The PHY layer elastic buffer uses these clocks.

Table 3–30. Minimum & Maximum Latency Values in Clock Cycles Between Receive Signals

Signal 1 Signal 2 Min Typical Max Notes

rx_req rx_ack 1 1 N

rx_req rx_dfr 0 0 0 Always asserted on the same clock cycle if a data payload
is present, except when a previous data transfer is still in
progress. See Figure 3–27 on page 3–70.

rx_req rx_dv 1 1-2 N Assuming data is sent.

rx_retry rx_req 1 2 N rx_req refers to the next transaction request.

Altera Corporation PCI Express Compiler Version 6.1 3–73
December 2006 PCI Express Compiler User Guide

Specifications

Generic PIPE PHY Clocking Configuration

When you implement a generic PIPE PHY in the MegaCore function, you
must provide a 125-MHz clock on the clk125_in input. Typically, the
generic PIPE PHY provides the 125-MHz clock across the PIPE interface.

All of the function’s interfaces, including the user application interface
and the PIPE interface, are synchronous to the clk125_in input. You are
not required to use the refclk and clk125_out signals in this case. See
Figure 3–29.

Figure 3–29. Generic PIPE PHY Clock Configuration (1)

Note to Figure 3–29:
(1) User and PIPE interface signals are synchronous to clk125_in.

Stratix GX PHY, 100 MHz Reference Clock

If you implement a Stratix GX PHY with a 100-MHz reference clock, you
must provide a 100-MHz clock on the refclk input. Typically, this clock
is the 100-MHz PCI Express reference clock as specified by the Card
Electro-Mechanical (CEM) specification.

In this configuration, the 100-MHz refclk connects to an enhanced PLL
within the MegaCore function to create a 125-MHz clock for use by the
Stratix GX transceiver and as the clk125_out signal. The 125-MHz clock
is provided on the clk125_out signal.

You must connect clk125_out back to the clk125_in input, for
example, through a distribution circuit needed in the application. All of
the function’s interfaces, including the user application interface and the
PIPE interface, are synchronous to the clk125_in input. See
Figure 3–30.

altpcie_64b_x4_pipen1b: External PHY

refclk

clk125_in

clk125_outNot Required Not Required

clk

All Logic in
MegaCore Function

125-MHz pclk
from PIPE PHY

3–74 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–30. Stratix GX PHY, 100 MHz Reference Clock Configuration (1)

Note to Figure 3–30:
(1) User and PIPE interface signals are synchronous to clk125_in.

If you want to use other outputs of the enhanced PLL for other purposes
or with different phases or frequencies, you should use the 125-MHz
reference clock mode and use a 100- to 125-MHz PLL external to the
MegaCore function.

Stratix GX PHY, 125 MHz Reference Clock

When implementing the Stratix GX PHY with a 125-MHz reference clock,
you must provide a 125-MHz clock on the refclk input. The same clock
is provided to the clk125_out signal with no delay.

You must connect clk125_out back to the clk125_in input, for
example, through a distribution circuit needed in the application. All of
the function’s interfaces, including the user application interface and the
PIPE interface, are synchronous to the clk125_in input. See
Figure 3–31.

altpcie_64b_x4_pipen1b: Stratix GX 100 MHz

refclk

clk125_in

clk125_out

clk

All Logic in
MegaCore Function

100-MHz
Clock Source PLL

100 -> 125

inclk
rx_cruclk

tx_coreclk

ALTGXB Transceiver

Altera Corporation PCI Express Compiler Version 6.1 3–75
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–31. Stratix GX PHY, 125 MHz Reference Clock Configuration (1)

Note to Figure 3–31:
(1) User and PIPE interface signals are synchronous to clk125_in.

Stratix GX PHY, 156.25 MHz Reference Clock

When implementing the Stratix GX PHY with a 156.25-MHz reference
clock, you must provide a 156.25-MHz clock on the refclk input. The
156.25-MHz clock goes directly to the Stratix GX transceiver. The
transceiver’s coreclk_out output becomes the function’s 125-MHz
clk125_out output.

You must connect clk125_out back to the clk125_in input, for
example, through a distribution circuit needed in the application. All of
the function’s interfaces, including the user application interface and the
PIPE interface, are synchronous to the clk125_in input. See
Figure 3–32.

altpcie_64b_x4_pipen1b: Stratix GX 125 MHz

refclk

clk125_in

clk125_out

clk

All Logic in
MegaCore Function

125-MHz
Clock Source

inclk
rx_cruclk

tx_coreclk

ALTGXB Transceiver

3–76 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–32. Stratix GX PHY, 156.25 MHz Reference Clock Configuration (1)

Note to Figure 3–32:
(1) User and PIPE interface signals are synchronous to clk125_in.

Stratix II GX PHY X1 & X4 100 MHz Reference Clock

When implementing the Stratix II GX PHY in a x1 or x4 configuration, the
100 MHz clock is connected directly to the ALT2GXB transceiver. The
clk125_out is driven by the output of the ALT2GXB transceiver.

The clk125_out must be connected back to the clk125_in input, possibly
through any distribution circuit needed in the specific application. All of
the interfaces of the function, including the user application interface and
the PIPE interface are synchronous to the clk125_in input. See Figure 3–34
on page 3–78 for this clocking configuration.

altpcie_64b_x4_pipen1b: Stratix GX 156.25 MHz

refclk

clk125_in

clk125_out

clk

All Logic in
MegaCore Function

156.25-MHz
Clock Source inclk

rx_cruclk

tx_coreclk

ALTGXB Transceiver

coreclk_out

Altera Corporation PCI Express Compiler Version 6.1 3–77
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–33. Stratix II GX PHY x1 & x4 100 MHz Reference Clock

Stratix II GX PHY X8 100 MHz Reference Clock

When the Stratix II GX PHY is used in a x8 configuration the 100 MHz
clock is connected directly to the ALT2GXB transceiver. The clk250_out is
driven by the output of the ALT2GXB transceiver.

The clk250_out must be connected back to the clk250_in input, possibly
through any distribution circuit needed in the specific application. All of
the interfaces of the function, including the user application interface and
the PIPE interface are synchronous to the clk250_in input. See Figure 3–34
on page 3–78 for this clocking configuration.

altpcie_64b_x4_pipen1b: Stratix II GX (or x1)

refclk

clk125_in

clk125_out
100-MHz

Clock Source

ALTGXB Transceiver

All Logic in
MegaCore Function

clk

pll_inclk

coreclkout

User and PIPE
interface signals
are synchronous
to clk125_in

3–78 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–34. Stratix II GX PHY x8 100 MHz Reference Clock

Utility Signals

Refer to Figure 3–12 on page 3–44 for a diagram of all PCI Express
MegaCore function signals.

Table 3–31 describes the function’s global signals.

altpcie_64b_x8_pipen1b: Stratix II GX

refclk

clk250_in

clk250_out
100-MHz

Clock Source

ALTGXB Transceiver

All Logic in
MegaCore Function

clk

pll_inclk

coreclkout

User and PIPE
interface signals
are synchronous
to clk250_in

Table 3–31. Global Signals (Part 1 of 2)

Signal I/O Description

refclk I Reference clock for the MegaCore function. It must be the frequency specified on the
System Settings page accessible from the Parameter Settings tab in the MegaWizard
interface. This signal is only required for Stratix GX PHY implementations. For generic
PIPE implementations, this signal drives the clk125_out signal directly.

clk125_in I Input clock for the x1 and x4 MegaCore function. All of the MegaCore function I/O signals
(except refclk, clk125_out, and npor) are synchronous to this clock signal. This
signal must be a 125-MHz clock signal. In Stratix GX PHY implementations, the
clk125_out signal can drive it, if desired. In Stratix GX PHY implementations that use
a 125-MHz reference clock, the reference clock can also drive this signal. In generic PIPE
implementations, the pclk supplied by the PIPE PHY device typically drives
clk125_in. This signal is not on the x8 MegaCore function.

clk125_out O Output clock for the x1 and x4 MegaCore function. 125-MHz clock output derived from
the refclk input in Stratix GX PHY implementations. In generic PIPE PHY
implementations, the refclk input drives this signal. This signal is not on the x8
MegaCore function.

Altera Corporation PCI Express Compiler Version 6.1 3–79
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–35 shows the function’s global reset signals.

clk250_in I Input clock for the x8 MegaCore function. All of the MegaCore function I/O signals (except
refclk, clk250_out, and npor) are synchronous to this clock signal. This signal
must be identical in frequency to the clk250_out clock signal. This signal is only on
the x8 MegaCore Function.

clk250_out O Output from the x8 MegaCore function. 250-MHz clock output derived from the refclk
input. This signal is only on the x8 MegaCore Function.

rstn I Asynchronous Reset of Configuration Space and Data Path Logic. Active Low. This
signal is only available on the x8 MegaCore function.

npor I Power on reset. This signal is the asynchronous active-low power-on reset signal. This
reset signal is used to initialize all configuration space sticky registers, PLL, and SERDES
circuitry. In 100- or 156.25-MHz reference clock implementations, clk125_out is held
low while npor is asserted.

srst I Synchronous data path reset. This signal is the synchronous reset of the data path state
machines of the MegaCore function. It is active high. This signal is only available on the
x1 and x4 MegaCore functions.

crst I Synchronous configuration reset. This signal is the synchronous reset of the nonsticky
configuration space registers of the MegaCore function. It is active high. This signal is
only available on the x1 and x4 MegaCore functions.

app_clk O Output clock from x1 MegaCore function to the application layer. The clock can be
125Mhz or 62.5Mhz and is derived from refclk. This signal is only on the x1Megacore
function.

l2_exit O L2 exit. The PCI Express specifications define fundamental hot, warm, and cold reset
states. A cold reset (assertion of crst and srst) must be performed when the LTSSM
exits L2 state (signaled by assertion of this signal). This signal is active low and otherwise
remains high.

hotrst_exit O Hot reset exit. This signal is asserted for 1 clock cycle when the LTSSM exists hot reset
state. It informs the application layer that it is necessary to assert a global reset (crst
and srst). This signal is active low and otherwise remains high.

dlup_exit O DL up exit. This signal indicates the transition from DL_UP to DL_DOWN. It is another
source of internal reset and should cause the assertion of the crst and srst
synchronous resets. This signal is active low.

Table 3–31. Global Signals (Part 2 of 2)

Signal I/O Description

3–80 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–35. Global Reset Signals for x1 and x4 MegaCore Functions

The x1 and x4 MegaCore functions have three reset inputs, npor, srst,
and crst. npor is used internally for all sticky registers (registers that
may not be reset in L2 low power mode or by the fundamental reset).
npor is typically generated by a logical OR of the power-on-reset
generator and the perst signal as specified in the PCI Express card
electromechanical specification.

The srst signal is a synchronous reset of the data path state machines.
The crst signal is a synchronous reset of the nonsticky configuration
space registers. srst and crst should be asserted whenever the
l2_exit, hotrst_exit, or dlup_exit signals are asserted.

The reset block shown in Figure 3–36 is not included as part of the
MegaCore function to provide some flexibility for implementation-
specific methods of generating a reset.

Figure 3–35 shows the function’s global reset signals.

Figure 3–36. Global Reset Signals for x8 MegaCore Functions

Other Power
On Reset

PCI Express
 x1 or x4 MegaCore

Function

perst#
npor

srst
crst

l2_exit
hotrst_exit
dlup_exit

Other Power
On Reset

PCI Express
x8 MegaCore

Function

perst#
npor

rstn

l2_exit
hotrst_exit
dlup_exit

Altera Corporation PCI Express Compiler Version 6.1 3–81
December 2006 PCI Express Compiler User Guide

Specifications

The x8 MegaCore function has two reset inputs, npor and rstn. The
npor reset is used internally for all sticky registers (registers that may not
be reset in L2 low power mode or by the fundamental reset). npor is
typically generated by a logical OR of the power-on-reset generator and
the perst signal as specified in the PCI Express card electromechanical
specification.

The rstn signal is an asynchronous reset of the data path state machines
and the nonsticky configuration space registers. rstn should be asserted
whenever the l2_exit, hotrst_exit, or dlup_exit signals are
asserted.

The reset block shown in Figure 3–36 is not included as part of the
MegaCore function to provide some flexibility for implementation-
specific methods of generating a reset.

Table 3–32 shows the function’s power management signals.

Table 3–32. Power Management Signals (Part 1 of 2)

Signal I/O Description

pme_to_cr I Power management turn off control register. This signal is asserted to
acknowledge the PME_turn_off message by sending pme_to_ack to the
root port.

pme_to_sr O Power management turn off status register. This signal is asserted when the
endpoint receives the PME_turn_off message from the root port. It is asserted
until pme_to_cr is asserted.

3–82 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–37 illustrates the behavior of pme_to_sr and pme_to_cr in an
endpoint. First, the MegaCore function receives the PME_turn_off
message. Then, the application attempts to send the PME_to_ack
message to the root port.

Figure 3–37. pme_to_sr & pme_to_cr in an Endpoint Waveform

MSI & INTx Interrupt signals

The MegaCore function supports both message signaled interrupt (MSI)
and INTx interrupts. MSI transactions are write transaction layer packets.

cfg_pmcsr[31:0] O Power management capabilities register. This register is read only and provides
information related to power management for a specific function.

● cfg_pmcsr[31:24]: Data register: This field indicates which power states
a function can assert PME#.

● cfg_pmcsr[23:16]: Reserved.
● cfg_pmcsr[15]: PME_status: When this signal is set to 1, it indicates

that the function would normally assert the PME# signal independent of the
state of the PME_en bit.

● cfg_pmcsr[14:13]: Data_scale: This field indicates the scaling factor
when interpreting the value retrieved from the Data register. This field is read
-only.

● cfg_pmcsr[12:9]: Data_select: This field indicates which data should
be reported through the Data register and the Data_scale field.

● cfg_pmcsr[8]: PME_EN:
1: indicates that the function can assert PME#
0: indicates that the function cannot assert PME#

● cfg_pmcsr[7:2]: Reserved
● cfg_pmcsr[1:0]: PM_STATE

Table 3–32. Power Management Signals (Part 2 of 2)

Signal I/O Description

Data Register

31 24 23 16 012789131415 12

Reserved

PME_status

Data_scale

Data_select

PME_EN

Reserved

PM_state

pme_to_sr

pme_to_cr

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clock Cycles

15

Altera Corporation PCI Express Compiler Version 6.1 3–83
December 2006 PCI Express Compiler User Guide

Specifications

Table 3–33 describes MegaCore function’s interrupt signals.

Table 3–33. Interrupt Signals (Part 1 of 2)

Signal I/O Description

app_msi_req I Application MSI request. This signal is used by the application to request an MSI.

app_msi_ack O Application MSI acknowledge. This signal is sent by the MegaCore function to
acknowledge the application’s request for an MSI.

app_msi_tc[2:0] I Application MSI traffic class. This signal indicates the traffic class used to send
the MSI (unlike INTx interrupts, any traffic class can be used to send MSIs).

app_msi_num[4:0] I Application MSI offset number. This signal is used by the application to indicate
the offset between the base message data and the MSI to send.

cfg_msicsr[15:0] O Configuration MSI control status register. This bus provides MSI software control.
● cfg_msicsr[15:9]: Reserved.
● cfg_msicsr[8]: Per vector masking capable

1: function supports MSI per vector masking
0: function does not support MSI per vector masking

● cfg_msicsr[7]: 64-bit address capable
1: function capable of sending a 64-bit message address
0: function not capable of sending a 64-bit message address

● cfg_msicsr[6:4]: Multiple message enable: This field indicates
permitted values for MSI signals. For example, if “100” is written to this field
16 MSI signals are allocated.
000: 1 MSI allocated
001: 2 MSI allocated
010: 4 MSI allocated
011: 8 MSI allocated
100: 16 MSI allocated
101: 32 MSI allocated
110: Reserved
111: Reserved

● cfg_msicsr[3:1]: Multiple message capable: This field is read by system
software to determine the number of requested MSI messages.
000: 1 MSI requested
001: 2 MSI requested
010: 4 MSI requested
011: 8 MSI requested
100: 16 MSI requested
101: 32 MSI requested
110: Reserved
111: Reserved

● cfg_msicsr[0]: MSI enable: If set to 0, this component is not permitted to
use MSI.

3–84 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–38 illustrates the architecture of the MSI handler block.

Figure 3–38. MSI Handler Block

Figure 3–39 illustrates a possible implementation of the MSI handler
block with a per vector enable bit. A global application interrupt enable
can also be implemented instead of this per vector MSI.

pex_msi_num[4:0] I Power management MSI number. This signal is used by power management
and/or hot plug to determine the offset between the base message interrupt
number and the message interrupt number to send through MSI.

app_int_sts I Application interrupt status. This signal indicates the status of the application
interrupt. When asserted, an INT# message is generated and the status is
maintained in the int_status register.

Table 3–33. Interrupt Signals (Part 2 of 2)

Signal I/O Description

MSI Handler
Block

app_msi_req
app_msi_ack
app_msi_tc
app_msi_num
pex_msi_num
app_int_sts

cfg_msicsr[31:0]

Altera Corporation PCI Express Compiler Version 6.1 3–85
December 2006 PCI Express Compiler User Guide

Specifications

Figure 3–39. Example Implementation of the MSI Handler Block

There are 32 possible MSI messages. The number of messages requested
by a particular component does not necessarily correspond to the number
of messages allocated. For example, in Figure 3–40, the endpoint requests
eight MSI but is only allocated two. In this case, the application layer
must be designed to use only two allocated messages.

Figure 3–40. MSI Request Example

app_int_en0

app_int_sts0

app_msi_req0

app_int_en1

app_int_sts1

app_msi_req1

app_int_sts

MSI
Arbitration

msi_enable & Master Enable

app_msi_req

app_msi_ack

Vector 1

Vector 0

R/W

R/W

Endpoint

8 Requested
2 Allocated

Root Complex

Root
Port

Interrupt
Block

CPU

Interrupt Register

3–86 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Figure 3–41 illustrates the interactions among MSI interrupt signals for
the root port in Figure 3–40. The minimum latency possible between
app_msi_req and app_msi_ack is 1 clock cycle.

Figure 3–41. MSI Interrupt Signals Waveform

Table 3–34 describes 3 example implementations; one in which all 32 MSI
messages are allocated and two in which only four are allocated.

MSI generated for hot plug, power management events, and system
errors always use TC0. MSI generated by the application layer can use
any traffic class. For example, a DMA that generates an MSI at the end of
a transmission can use the same traffic control as was used to transfer
data.

app_msi_req

app_msi_tc[2:0]

app_msi_num[4:0]

app_msi_ack

1 2 3 4 5 6 7 8 9 10 11 12 13

Clock Cycles

Valid

Valid

Table 3–34. MSI Messages Requested, Allocated & Mapped

MSI
Allocated

32 4 4

System error 31 3 3

Hot plug and power management event 30 2 3

Application 29:0 1:0 2:0

Altera Corporation PCI Express Compiler Version 6.1 3–87
December 2006 PCI Express Compiler User Guide

Specifications

Configuration Space Signals

The signals in Table 3–35 reflect the current values of several
configuration space registers that the application layer may need to
access.

Table 3–35. Configuration Space Signals

Signal I/O Description

cfg_tcvcmap[23:0] O Configuration traffic class/virtual channel mapping: The application layer uses this
signal to generate a transaction layer packet mapped to the appropriate virtual
channel based on the traffic class of the packet.

● cfg_tcvcmap[2:0]: Mapping for TC0 (always 0).
● cfg_tcvcmap[5:3]: Mapping for TC1.
● cfg_tcvcmap[8:6]: Mapping for TC2.
● cfg_tcvcmap[11:9]: Mapping for TC3.
● cfg_tcvcmap[14:12]: Mapping for TC4.
● cfg_tcvcmap[17:15]: Mapping for TC5.
● cfg_tcvcmap[20:18]: Mapping for TC6.
● cfg_tcvcmap[23:21]: Mapping for TC7.

cfg_busdev[12:0] O Configuration bus device: This signal generates a transaction ID for each transaction
layer packet, and indicates the bus and device number of the MegaCore function.
Because the MegaCore function only implements one function, the function number
of the transaction ID must be set to 000b.

● cfg_busdev[12:5]: Bus number.
● cfg_busdev[4:0]: Device number.

cfg_prmcsr[31:0] O Configuration primary control status register. The content of this register controls the
PCI status.

cfg_devcsr[31:0] O Configuration dev control status register. See PCI Express specification for details.

cfg_linkcsr[31:0] O Configuration link control status register. See PCI Express specification for details.

3–88 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Completion Interface Signals

Table 3–36 shows the function’s completion interface signals.

Table 3–36. Completion Interface Signals

Signal I/O Description

cpl_err[2:0] I Completion error. This signal reports completion errors to the configuration space. The
three types of errors that the application layer must report are:

● Completion time out error: cpl_err[0]: This signal must be asserted when a
master-like interface has performed a non-posted request that never receives a
corresponding completion transaction after the 50 ms time-out period. The
MegaCore function automatically generates an error message that is sent to the
root complex.

● Completer abort error: cpl_err[1]: This signal must be asserted when a target
block cannot process a non-posted request. In this case, the target block generates
and sends a completion packet with completer abort (CA) status to the requestor
and then asserts this error signal to the MegaCore function. The block automatically
generates the error message and sends it to the root complex.

● Unexpected completion error: cpl_err[2]: This signal must be asserted when a
master block detects an unexpected completion transaction, i.e., no completion
resource is waiting for a specific packet.

cpl_pending I Completion pending. The application layer must assert this signal when a master block
is waiting for completion, i.e., a transaction is pending. If this signal is asserted and low
power mode is requested, the MegaCore function waits for deassertion of this signal
before transitioning into low-power state.

Altera Corporation PCI Express Compiler Version 6.1 3–89
December 2006 PCI Express Compiler User Guide

Specifications

Maximum Completion Space Signals

Table 3–37 shows the maximum completion space signals.

alt2gxb Support Signals

This section describes signals alt2gxb support signals, which are only
present on variants that use the Stratix II GX integrated PHY, ALT2GXB.
They are connected directly to the ALT2GXB instance. In many cases
these signals need to be shared with ALT2GXB instances that will be
implemented in the same device. The following signals exist:

■ cal_blk_clk
■ reconfig_clk
■ reconfig_togxb
■ reconfig_fromgxb

Table 3–38 describes these alt2gxb support signals.

Table 3–37. Maximum Completion Space Signals

Signal I/O Description

ko_cpl_spc_vcn[19:0]
where n is 0 - 3 for the x1 and
x4 cores, and 0 - 1 for the x8
core

O This static signal reflects the amount of Rx Buffer space reserved for
completion headers and data. It provides the same information as what is
shown in the Rx buffer space allocation table of the wizard’s Buffer Setup
page (see “Buffer Setup Page” on page 3–37). The bit field assignments for
this signal are:

● ko_cpl_spc_vcn[7:0] : Number of completion headers that can
be stored in the Rx buffer.

● ko_cpl_spc_vcn[19:8] : Number of 16-byte completion data
segments that can be stored in the Rx buffer.

The application layer logic is responsible for making sure that the
completion buffer space does not overflow. It needs to limit the number and
size of non-posted requests outstanding to ensure this.

3–90 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Physical Layer Interface Signals

This section describes signals for the three possible types of physical
interfaces (1-bit, 20-bit, or PIPE). Refer to Figure 3–12 on page 3–44 for a
diagram of all of the PCI Express MegaCore function signals.

Table 3–38. alt2gxb Support Signals

Signal I/O Description

cal_blk_clk I The cal_blk_clk input signal is connected to the ALT2GXB calibration block
clock (cal_blk_clk) input. All instances of ALT2GXB in the same device must
have their cal_blk_clk inputs connected to the same signal because there is
only one calibration block per device. This input should be connected to a clock
operating as recommended by the Stratix II GX Device Handbook.

reconfig_clk I The reconfig_clk input signal is the ALT2GXB dynamic reconfiguration clock.
ALT2GXB dynamic reconfiguration is not supported for PCI Express. Therefore,
this signal usually can be tied low in your design. This signal is provided for cases
in which the PCI Express instance shares a Stratix II GX transceiver quad with
another protocol that supports dynamic reconfiguration. In these cases, this signal
must be connected as described in the Stratix II GX Device Handbook.

reconfig_togxb I The reconfig_togxb[2:0] input bus is the ALT2GXB dynamic reconfiguration
data input. ALT2GXB dynamic reconfiguration is not supported for PCI Express.
Therefore, this bus usually can be tied '010' in your design. This bus is provided for
cases in which the PCI Express instance shares a Stratix II GX transceiver quad
with another protocol that supports dynamic reconfiguration. In these cases, this
signal must be connected as described in the Stratix II GX Device Handbook.

reconfig_fromgxb O The reconfig_fromgxb output signal is the ALT2GXB dynamic reconfiguration
data output. ALT2GXB dynamic reconfiguration is not supported for PCI Express.
Therefore, this output signal can be left unconnected in your design. This signal is
provided for cases in which the PCI Express instance shares a Stratix II GX
transceiver quad with another protocol that supports dynamic reconfiguration. In
these cases, this signal must be connected as described in the Stratix II GX Device
Handbook.

Altera Corporation PCI Express Compiler Version 6.1 3–91
December 2006 PCI Express Compiler User Guide

Specifications

Serial Interface Signals

Table 3–39 describes the serial interface signals. Signals that include lane
number 0 also exist for lanes 1 - 3, as marked in the table. These signals
are available if you use the Stratix GX PHY or the Stratix II GX PHY.

PIPE Interface Signals

The x1 and x4 MegaCore function is compliant with the 16-bit version of
the PIPE interface, enabling use of an external PHY. The x8 MegaCore
function is compliant with the 8-bit version of the PIPE interface. These
signals are available even when you select the Stratix GX PHY or
Stratix II GX PHY so that you can simulate using both the 1-bit and the
PIPE interface. Typically, simulation is much faster using the PIPE
interface. See Table 3–40. Signals that include lane number 0 also exist for
lanes 1-7, as marked in the table.

Table 3–39. 1-Bit Interface Signals

Signal I/O Description

tx_outn
where n is
the lane
number
ranging from
0-7

O Transmit input 0. This signal is the serial output of lane 0 (2.5 Gbps on differential signals).

rx_inn
where n is
the lane
number 0-7

I Receive input 0. This signal is the serial input of lane 0 (2.5 Gbps on differential signals).

pipe_mode I pipe_mode selects whether the MegaCore function uses the PIPE interface or the 1-bit
interface. Setting pipe_mode to a 1 selects the PIPE interface, setting it to 0 selects the
1-bit interface. When simulating, you can set this signal to indicate which interface is used
for the simulation. When compiling your design for an Altera device, set this signal to 0.

3–92 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Signals

Table 3–40. PIPE Interface Signals (Part 1 of 2)

Signal I/O Description

txdatan_extn[15:0](1) O Transmit data 0 (2 symbols on lane 0). This bus transmits data on lane 0.
The first transmitted symbol is txdata_ext[7:0] and the second
transmitted symbol is txdata0_ext[15:8]. For the x8 MegaCore

function or 8-bit PIPE mode only txdata0_ext[7:0] is available.
txdatakn_ext[1:0]
(1)

O Transmit data control 0 (2 symbols on lane 0). This signal serves as the
control bit for txdatan_ext; txdatakn_ext[0] for the first
transmitted symbol and txdatakn_ext[1] for the second (8b/10b
encoding). For the x8 MegaCore function or 8-bit PIPE mode only the
single bit signal txdatakn_ext is available.

txdetectrxn_ext
(1)

O Transmit detect receive 0. This signal is used to tell the PHY layer to start
a receive detection operation or to begin loopback.

txelecidlen_ext
(1)

O Transmit electrical idle 0. This signal forces the transmit output to electrical
idle.

txcompln_ext
(1)

O Transmit compliance 0. This signal forces the running disparity to negative
in compliance mode (negative COM character).

rxpolarityn_ext
(1)

O Receive polarity 0. This signal instructs the PHY layer to do a polarity
inversion on the 8b/10b receiver decoding block.

powerdownn_ext[1:0]
(1)

O Power down 0. This signal requests the PHY to change it’s power state to
the specified state (P0, P0s, P1, or P2).

rxdatan_ext[15:0]
(1)

I Receive data 0 (2 symbols on lane 0). This bus receives data on lane 0.
The first received symbol is rxdatan_ext[7:0] and the second is
rxdatan_ext[15:8]. For the x8 MegaCore function or 8 Bit PIPE
mode only rxdatan_ext[7:0] is available.

rxdatakn_ext[1:0]
(1)

I Receive data control 0 (2 symbols on lane 0). This signal is used for
separating control and data symbols. The first symbol received is aligned
with rxdatakn_ext[0] and the second symbol received is aligned
with rxdatan_ext[1]. For the x8 MegaCore function or 8 Bit PIPE
mode only the single bit signal rxdatakn_ext is available.

rxvalidn_ext
(1)

I Receive valid 0. This symbol indicates symbol lock and valid data on
rxdatan_ext and rxdatakn_ext.

phystatusn_ext
(1)

I PHY status 0. This signal is used to communicate completion of several
PHY requests.

rxelecidlen_ext
(1)

I Receive electrical idle 0. This signal forces the receive output to electrical
idle.

rxstatusn_ext[2:0]
(1)

I Receive status 0: This signal encodes receive status and error codes for
the receive data stream and receiver detection.

Altera Corporation PCI Express Compiler Version 6.1 3–93
December 2006 PCI Express Compiler User Guide

Specifications

Test Signals

Table 3–40 describes the available test signals.

pipe_rstn O Asynchronous reset to external phy. It is tied high and expects a pull-down
resistor on the board. During FPGA configuration, the pull-down resistor
will reset the phy and after that the FPGA will drive the phy out of reset.
This signal is only on MegaCore function configured for the external phy.

pipe_txclk O Transmit data path clock to external phy. This clock is derived from
refclk and it provides the source synchronous clock for the transmit
data of the phy.

Notes for Table 3–40
(1) where n is the lane number ranging from 0-7

Table 3–40. PIPE Interface Signals (Part 2 of 2)

Signal I/O Description

Table 3–41. Test Interface Signals

Signal I/O Description

test_in[31:0] I The test_in bus provides run-time control for specific MegaCore
features as well as error injection capability. See Appendix C, Test Port
Interface Signals for a complete description of the individual bits in this
bus. For normal operation this bus can be driven to all 0s.

test_out[511:0]for x1 or x4
test_out[127:0] for x8

O The test_out bus provides extensive monitoring of the internal state
of the MegaCore function. See Appendix C, Test Port Interface Signals
for a complete description of the individual bits in this bus. For normal
operation this bus can be left unconnected.

3–94 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

MegaCore Verification

MegaCore
Verification

To ensure PCI Express compliance, Altera has performed extensive
validation of the PCI Express MegaCore functions. Validation includes
both simulation and hardware testing.

Simulation Environment

Altera’s verification simulation environment for the PCI Express
MegaCore functions uses multiple testbenches consisting of industry-
standard bus functional models driving the PCI Express link interface. A
custom bus functional model connects to the application-side interface.

Altera ran the following tests in the simulation environment:

■ Directed tests that test all types and sizes of transaction layer packets
and all bits of the configuration space.

■ Error injection tests that inject errors in the link, transaction layer
packets, data link layer packets, and check for the proper response
from the MegaCore functions.

■ PCI-SIG Compliance Checklist tests that specifically test the items in
the checklist.

■ Random tests that test a wide range of traffic patterns across one or
more virtual channels.

Compatibility Testing Environment

Altera has performed significant hardware testing of the PCI Express
MegaCore functions to ensure a reliable solution. The MegaCore
functions have been tested at various PCI-SIGs PCI Express Compliance
Workshops in 2005 and 2006 with Stratix II GX and various external
PHYs, and they have passed all PCI-SIG gold tests and interoperability
tests with a wide selection of motherboards and test equipment. In
addition, Altera internally tests every release with motherboards and
switch chips from a variety of manufacturers. All PCI-SIG compliance
tests are also run with each release.

Altera Corporation PCI Express Compiler Version 6.1 4–1
December 2006

4. External PHYs

External PHY
Support

This chapter discusses external PHY support, which includes the new
external PHYs and interface modes shown in Table 4–1.

When an external PHY is selected additional logic required to connect
directly to the external PHY is included in the <variation name> module or
entity.

The user logic must instantiate this module or entity in his design. The
implementation details for each of these modes are discussed in the
following sections.

Table 4–1. External PHY Interface Modes

PHY Interface Mode Clock Frequency Notes

16-bit SDR 125 MHz In this generic 16-bit PIPE interface, both the Tx and
Rx data are clocked by the pclk from the PHY.

16-bit SDR Mode (with source
synchronous transmit cock)

125 MHz This enhancement to the generic PIPE interface
adds a TxClk to clock the TxData source
synchronously to the External PHY. The
TIXIO1100 Phy uses this mode.

8-bit DDR 125 MHz This double data rate version saves I/O pins without
increasing the clock frequency. It uses a single pclk
from the PHY for clocking data in both directions.

8-bit DDR Mode (with 8-bit DDR
source synchronous transmit cock)

125 MHz This double data rate version saves I/O pins without
increasing the clock frequency. A TxClk clocks the
data source synchronously in the transmit direction.
he TIXIO1100 Phy uses this mode.

8-bit SDR 250 MHz This is the generic 8-bit PIPE interface. Both the Tx
and Rx data are clocked by the pclk from the PHY.
The Philips PX1011APHY uses this mode.

8-bit SDR Mode (with Source
Synchronous Transmit Clock)

250 MHz This enhancement to the generic PIPE interface
adds a TxClk to clock the TxData source
synchronously to the external PHY.

4–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

16-bit SDR Mode

The implementation of this 16-bit SDR mode PHY support is shown in
Figure 4–1 and is included in the file <variation name>.v or
<variation name>.vhd and includes a PLL. The PLL inclock is driven by
refclk and has the following 3 outputs:

1 The refclk is the same as pclk, the parallel clock provided by
the external PHY. This documentations uses the terms refclk
and pclk interchangeably.

■ clk125_out is a 125 MHz output that has the same phase-offset as
refclk. The clk125_out must drive the clk125_in input in the
user logic as shown in the Figure 4–1. The clk125_in is used to
capture the incoming receive data and also is used to drive the
clk125_in input of the MegaCore.

■ clk125_early is a 125 MHz output that is phase shifted. This
phase-shifted output clocks the output registers of the transmit data.
Based on your board delays, you may need to adjust the phase-shift
of this output. To alter the phase shift, copy the PLL source file
referenced in your variation file from the <path>/ip/PCI Express
Compiler/lib directory to your project directory. Then use the
MegaWizard Plug In Manger in the Quartus II software to edit the
PLL source file to set the required phase shift. Then add the modified
PLL source file to your Quartus II project.

■ tlp_clk62p5 is a 62.5 MHz output that drives the tlp_clk input
of the MegaCore function when the MegaCore internal clock
frequency is 62.5 MHz.

Altera Corporation PCI Express Compiler Version 6.1 4–3
December 2006 PCI Express Compiler User Guide

External PHYs

Figure 4–1. 16-bit SDR Mode

16-bit SDR Mode with a Source Synchronous TxClk

The implementation of the 16-bit SDR mode with a source synchronous
TxClk is shown in Figure 4–2 and is included in the file
<variation name>.v or <variation name>.vhd. In this mode the following
clocking scheme is used:

■ refclk is used as the clk125_in for the core

■ refclk clocks a single data rate register for the incoming receive
data

■ refclk clocks the Transmit Data Register (txdata) directly

A

D

Q1

Q4

ENB

refclk

rxdata

A

D

Q 1

Q 4

ENB

txdata

125Mhz SDR Mode without txclk

A

D

Q1

Q4

ENB

PCIe IP MegaCore

Mode 1
PLL tlp_clk_62p5

clk125_out

refclk clk125_out

clk125_in

clk125_in

A

D

Q1

Q4

ENB

External connection in user logic

tlp_clk
clk125_early

4–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

■ refclk also clocks a DDR register that is used to create a center
aligned TxClk.

This is the only external PHY mode that does not require a PLL. However,
if the slow tlp_clk feature is used with this PIPE interface mode, then a
PLL is required to create the slow tlp_clk. In the case of the slow
tlp_clk, the circuit is similar to the one shown previously in Figure 4–1,
the 16-bit SDR, but with TxClk output added.

Figure 4–2. 16-bit SDR Mode with a Source Synchronous TxClk

125Mhz 16-bit SDR Mode with txclk
tlp_clk @ 125Mhz

A

D

Q1

Q4

ENB

DDIO

txclk (~refclk)

A

D

Q1

Q4

ENB

refclk

rxdata

A

D

Q 1

Q 4

ENB

txdata A

D

Q1

Q4

ENB PCIe IP MegaCore

clk125_out

refclk clk125_out

ck125_in

clk125_in

External connection in user logic

tlp_clk

Altera Corporation PCI Express Compiler Version 6.1 4–5
December 2006 PCI Express Compiler User Guide

External PHYs

8-bit DDR Mode

The implementation of the 8-bit DDR mode shown in Figure 4–3 is
included in the file <variation name>.v or <variation name>.vhd and
includes a PLL. The PLL inclock is driven by refclk (pclk from the
external PHY) and has the following 3 outputs:

■ A zero delay copy of the 125 MHz refclk. The zero delay PLL
output is used as the clk125_in for the core and clocks a double
data rate register for the incoming receive data.

■ A 250 MHz "early" output this is multiplied from the 125 MHz
refclk is early in relation to the refclk. The 250 MHz early clock
PLL output is used to clock an 8-bit SDR transmit data output
register. A 250 MHz single data rate register is used for the 125 MHz
DDR output because this allows the use of the SDR output registers
in the Cyclone II IOB. The early clock is required to meet the required
clock to out times for the common refclk for the PHY. You may
need to adjust the phase shift for your specific PHY and board
delays. To alter the phase shift, copy the PLL source file referenced in
your variation file from the <path>/ip/PCI Express Compiler/lib
directory to your project directory. Then use the MegaWizard Plug In
Manger in the Quartus II software to edit the PLL source file to set
the required phase shift. Then add the modified PLL source file to
your Quartus II project.

■ An optional 62.5 MHz TLP Slow clock is provided for x1
implementations.

An edge detect circuit is used to detect the relationships between the 125
MHz clock and the 250 MHz rising edge to properly sequence the 16-bit
data into the 8-bit output register.

4–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

Figure 4–3. 8-Bit DDR Mode

8-bit DDR with a Source Synchronous TxClk

The implementation of the 8-bit DDR mode with a source synchronous
transmit clock (TxClk) is shown in Figure 4-4 and is included in the file
<variation name>.v or <variation name>.vhd and includes a PLL. The PLL
inclock is driven by refclk (pclk from the external PHY) and has the
following 3 outputs:

■ A zero delay copy of the 125 MHz refclk used as the clk125_in
for the MegaCore function and also to clock DDR input registers for
the Rx data and status signals.

clk125_in

rxdata

8-bit DDR without txclk

Edge Detect and Sync

0

0

0

0

0

txdata_h

txdata_l

A

D

Q1

Q4

ENB

txdata

PCIe IP MegaCore

A

D

Q1

Q4

ENB

DDIO

Mode 3
PLL tlp_clk

clk250_early

clk125_out

refclk

Clk125_pll_in

clk125_out

refclk

clk125_in

Tlp_clkt

A

D

Q1

Q4

ENB

External connection in user logic

out txclk

Altera Corporation PCI Express Compiler Version 6.1 4–7
December 2006 PCI Express Compiler User Guide

External PHYs

■ A 250 MHz "early" clock PLL output clocks an 8-bit SDR transmit
data output register. This 250 MHz early output is multiplied from
the 125 MHz refclk and is early in relation to the refclk. A 250
MHz single data rate register for the 125 MHz DDR output allows
you to use the SDR output registers in the Cyclone II IOB.

■ An optional 62.5 MHz TLP Slow clock is provided for x1
implementations.

An edge detect circuit is used to detect the relationships between the 125
MHz clock and the 250 MHz rising edge to properly sequence the 16-bit
data into the 8-bit output register.

Figure 4–4. 8-bit DDR Mode with a Source Synchronous Transmit Clock

clk125_in

rxdata

8-bit DDR Mode with txclk

Edge Detect and Sync

0

0

0

0

0

txdata_h

txdata_l

A

D

Q 1

Q 4

ENB

txdata

A

D

Q 1

Q 4

ENB

txclk

PCIe IP MegaCore

A

D

Q1

Q4

ENB

DDIO

Mode 3
PLL tlp_clk

clk250_early

clk125_out

pclk

clk125_out

refclk

clk125_in

tlp_clk

A

D

Q 1

Q 4

ENB

 External connection in user logic

4–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

8-bit SDR Mode

The implementation of the 8-bit SDR mode is shown in Figure 4–5 and is
included in the file <variation name>.v or <variation name>.vhd and
includes a PLL. The PLL inclock is driven by refclk (pclk from the
external PHY) and has the following 3 outputs:

■ A 125 MHz output derived from the 250 MHz refclk used as the
clk125_in for the core and also to transition the incoming 8-bit data
into a 16-bit register for the rest of the logic.

■ A 250 MHz "early" output that is skewed early in relation to the refclk
that is used to clock an 8-bit SDR transmit data output register. The
early clock PLL output is used to clock the transmit data output
register. The early clock is required to meet the required clock to out
times for the common clock. You may need to adjust the phase shift
for your specific PHY and board delays. To alter the phase shift, copy
the PLL source file referenced in your variation file from the
<path>/ip/PCI Express Compiler/lib directory to your project
directory. Then use the MegaWizard Plug In Manger in the Quartus
II software to edit the PLL source file to set the required phase shift.
Then add the modified PLL source file to your Quartus II project.

■ An optional 62.5 MHz TLP Slow clock is provided for x1
implementations.

An edge detect circuit is used to detect the relationships between the 125
MHz clock and the 250 MHz rising edge to properly sequence the 16-bit
data into the 8-bit output register.

Altera Corporation PCI Express Compiler Version 6.1 4–9
December 2006 PCI Express Compiler User Guide

External PHYs

Figure 4–5. 8-bit SDR Mode

8-bit SDR with a Source Synchronous TxClk

The implementation of the 16-bit SDR mode with a source synchronous
TxClk is shown in Figure 4–6 and is included in the file
<variation name>.v or <variation name>.vhd and includes a PLL. The PLL
inclock is driven by refclk (pclk from the external PHY) and has the
following 3 outputs:

■ A 125 MHz output derived from the 250 MHz refclk. This 125
MHz PLL output is used as the clk125_in for the MegaCore
function.

■ A 250 MHz "early" output that is skewed early in relation to the
refclk the 250 MHz early clock PLL output is used to clock an 8-bit
SDR transmit data output register.

clk125_in

A

D

Q1

Q4

ENB

refclk (250 Mhz)

rxdata

250Mhz SDR Mode

Edge Detect and Sync

0

0

0

0

0

txdata_h

txdata_l

A

D

Q1

Q4

ENB

txdata

PCIe IP MegaCore

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

rxdata_h

rxdata_l

Mode 4
PLL

tlp_clk

clk250_early

clk125_out

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

clk125_in

tlp_clk

refclk
External connection in user logic

4–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

■ An optional 62.5 MHz TLP Slow clock is provided for x1
implementations.

An edge detect circuit is used to detect the relationships between the 125
MHz clock and the 250 MHz rising edge to properly sequence the 16-bit
data into the 8-bit output register.

Figure 4–6. 8-bit SDR Mode with Source Synchronous Transmit Clock

A

D

Q1

Q4

ENB

refclk (250 Mhz)

rxdata

250Mhz SDR Mode with txclk

Edge Detect and Sync

0

0

0

0

0

txdata_h

txdata_l

A

D

Q1

Q4

ENB

txdata

txclk

PCIe IP MegaCore

A

D

Q1

Q4

ENB

A

D

Q 1

Q 4

ENB

rxdata_h

rxdata_l

Mode 4
PLL

clk125_zero

tlp_clkclk250_early

clk125_out

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

External connection in user logic

clk125_in

refclk

tlp_clk

Altera Corporation PCI Express Compiler Version 6.1 4–11
December 2006 PCI Express Compiler User Guide

External PHYs

16-bit PHY Interface Signals

The external I/O signals for the 16-bit PIPE Interface Modes are
summarized in Table 4–2. Depending on the number of lanes selected and
whether the PHY mode has a TxClk, some of the signals may not be
available as noted.

Table 4–2. 16-bit PHY Interface Signals (Part 1 of 2)

Signal Name Direction Description Availability

pcie_rstn I PCI Express Reset signal, active low. Always

phystatus_ext I PIPE Interface phystatus signal. PHY is signaling
completion of the requested operation

Always

powerdown_ext[1:0] O PIPE Interface powerdown signal, requests the
PHY to enter the specified power state.

Always

refclk I Input clock connected to the PIPE Interface pclk
signal from the PHY. 125 MHz clock used to clock
all of the status and data signals

Always

pipe_txclk O Source synchronous transmit cock signal for
clocking Tx Data and Control signals going to the
PHY.

Only in modes that
have the TxClk

rxdata0_ext[15:0] I PIPE Interface Lane 0 Rx Data signals, carries
the parallel received data.

Always

rxdatak0_ext[1:0] I PIPE Interface Lane 0 Rx Data K-character flags. Always

rxelecidle0_ext I PIPE Interface Lane 0 Rx Electrical Idle
Indication.

Always

rxpolarity0_ext O PIPE Interface Lane 0 Rx Polarity Inversion
Control

Always

rxstatus0_ext[1:0] I PIPE Interface Lane 0 Rx Status flags. Always

rxvalid0_ext I PIPE Interface Lane 0 Rx Valid indication Always

txcompl0_ext O PIPE Interface Lane 0 Tx Compliance control Always

txdata0_ext[15:0] O PIPE Interface Lane 0 Tx Data signals, carries
the parallel transmit data.

Always

txdatak0_ext[1:0] O PIPE Interface Lane 0 Tx Data K-character flags. Always

txelecidle0_ext O PIPE Interface Lane 0 Tx Electrical Idle Control Always

rxdata1_ext[15:0] I PIPE Interface Lane 1 Rx Data signals, carries
the parallel received data.

Only in x4

rxdatak1_ext[1:0] I PIPE Interface Lane 1 Rx Data K-character flags. Only in x4

rxelecidle1_ext I PIPE Interface Lane 1 Rx Electrical Idle
Indication.

Only in x4

rxpolarity1_ext O PIPE Interface Lane 1 Rx Polarity Inversion
Control

Only in x4

4–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

rxstatus1_ext[1:0] I PIPE Interface Lane 1 Rx Status flags. Only in x4

rxvalid1_ext I PIPE Interface Lane 1 Rx Valid indication Only in x4

txcompl1_ext O PIPE Interface Lane 1 Tx Compliance control Only in x4

txdata1_ext[15:0] O PIPE Interface Lane 1 Tx Data signals, carries
the parallel transmit data.

Only in x4

txdatak1_ext[1:0] O PIPE Interface Lane 1 Tx Data K-character flags. Only in x4

txelecidle1_ext O PIPE Interface Lane 1 Tx Electrical Idle Control Only in x4

rxdata2_ext[15:0] I PIPE Interface Lane 2 Rx Data signals, carries
the parallel received data.

Only in x4

rxdatak2_ext[1:0] I PIPE Interface Lane 2 Rx Data K-character flags. Only in x4

rxelecidle2_ext I PIPE Interface Lane 2 Rx Electrical Idle
Indication.

Only in x4

rxpolarity2_ext O PIPE Interface Lane 2 Rx Polarity Inversion
Control

Only in x4

rxstatus2_ext[1:0] I PIPE Interface Lane 2 Rx Status flags. Only in x4

rxvalid2_ext I PIPE Interface Lane 2 Rx Valid indication Only in x4

txcompl2_ext O PIPE Interface Lane 2 Tx Compliance control Only in x4

txdata2_ext[15:0] O PIPE Interface Lane 2 Tx Data signals, carries
the parallel transmit data.

Only in x4

txdatak2_ext[1:0] O PIPE Interface Lane 2 Tx Data K-character flags. Only in x4

txelecidle2_ext O PIPE Interface Lane 2 Tx Electrical Idle Control Only in x4

rxdata3_ext[15:0] I PIPE Interface Lane 3 Rx Data signals, carries
the parallel received data.

Only in x4

rxdatak3_ext[1:0] I PIPE Interface Lane 3 Rx Data K-character flags. Only in x4

rxelecidle3_ext I PIPE Interface Lane 3 Rx Electrical Idle
Indication.

Only in x4

rxpolarity3_ext O PIPE Interface Lane 3 Rx Polarity Inversion
Control

Only in x4

rxstatus3_ext[1:0] I PIPE Interface Lane 3 Rx Status flags. Only in x4

rxvalid3_ext I PIPE Interface Lane 3 Rx Valid indication Only in x4

txcompl3_ext O PIPE Interface Lane 3 Tx Compliance control Only in x4

txdata3_ext[15:0] O PIPE Interface Lane 3 Tx Data signals, carries
the parallel transmit data.

Only in x4

txdatak3_ext[1:0] O PIPE Interface Lane 3 Tx Data K-character flags. Only in x4

txelecidle3_ext O PIPE Interface Lane 3 Tx Electrical Idle Control Only in x4

Table 4–2. 16-bit PHY Interface Signals (Part 2 of 2)

Signal Name Direction Description Availability

Altera Corporation PCI Express Compiler Version 6.1 4–13
December 2006 PCI Express Compiler User Guide

External PHYs

8-bit PHY Interface Signals

The external I/O signals for the 8-bit PIPE Interface Modes are
summarized in Table 4–3. Depending on the number of lanes selected and
whether the PHY mode has a TxClk, some of the signals may not be
available as noted.

Table 4–3. 8-bit PHY Interface Signals (Part 1 of 2)

Signal Name Direction Description Availability

pcie_rstn I PCI Express Reset signal, active low. Always

phystatus_ext I PIPE Interface phystatus signal. PHY is signaling
completion of the requested operation

Always

powerdown_ext[1:0] O PIPE Interface powerdown signal, requests the
PHY to enter the specified power state.

Always

refclk I Input clock connected to the PIPE Interface pclk
signal from the PHY. Used to clock all of the status
and data signals. Depending on whether this is an
SDR or DDR interface this clock will be either 250
MHz or 125 MHz.

Always

pipe_txclk O Source synchronous transmit cock signal for
clocking Tx Data and Control signals going to the
PHY.

Only in modes that
have the TxClk

rxdata0_ext[7:0] I PIPE Interface Lane 0 Rx Data signals, carries the
parallel received data.

Always

rxdatak0_ext I PIPE Interface Lane 0 Rx Data K-character flag. Always

rxelecidle0_ext I PIPE Interface Lane 0 Rx Electrical Idle Indication. Always

rxpolarity0_ext O PIPE Interface Lane 0 Rx Polarity Inversion Control Always

rxstatus0_ext[1:0] I PIPE Interface Lane 0 Rx Status flags. Always

rxvalid0_ext I PIPE Interface Lane 0 Rx Valid indication Always

txcompl0_ext O PIPE Interface Lane 0 Tx Compliance control Always

txdata0_ext[7:0] O PIPE Interface Lane 0 Tx Data signals, carries the
parallel transmit data.

Always

txdatak0_ext O PIPE Interface Lane 0 Tx Data K-character flag. Always

txelecidle0_ext O PIPE Interface Lane 0 Tx Electrical Idle Control Always

rxdata1_ext[7:0] I PIPE Interface Lane 1 Rx Data signals, carries the
parallel received data.

Only in x4

rxdatak1_ext I PIPE Interface Lane 1 Rx Data K-character flag. Only in x4

rxelecidle1_ext I PIPE Interface Lane 1 Rx Electrical Idle Indication. Only in x4

rxpolarity1_ext O PIPE Interface Lane 1 Rx Polarity Inversion Control Only in x4

rxstatus1_ext[1:0] I PIPE Interface Lane 1 Rx Status flags. Only in x4

rxvalid1_ext I PIPE Interface Lane 1 Rx Valid indication Only in x4

4–14 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Support

txcompl1_ext O PIPE Interface Lane 1 Tx Compliance control Only in x4

txdata1_ext[7:0] O PIPE Interface Lane 1 Tx Data signals, carries the
parallel transmit data.

Only in x4

txdatak1_ext O PIPE Interface Lane 1 Tx Data K-character flag. Only in x4

txelecidle1_ext O PIPE Interface Lane 1 Tx Electrical Idle Control Only in x4

rxdata2_ext[7:0] I PIPE Interface Lane 2 Rx Data signals, carries the
parallel received data.

Only in x4

rxdatak2_ext I PIPE Interface Lane 2 Rx Data K-character flag. Only in x4

rxelecidle2_ext I PIPE Interface Lane 2 Rx Electrical Idle Indication. Only in x4

rxpolarity2_ext O PIPE Interface Lane 2 Rx Polarity Inversion Control Only in x4

rxstatus2_ext[1:0] I PIPE Interface Lane 2 Rx Status flags. Only in x4

rxvalid2_ext I PIPE Interface Lane 2 Rx Valid indication Only in x4

txcompl2_ext O PIPE Interface Lane 2 Tx Compliance control Only in x4

txdata2_ext[7:0] O PIPE Interface Lane 2 Tx Data signals, carries the
parallel transmit data.

Only in x4

txdatak2_ext O PIPE Interface Lane 2 Tx Data K-character flag. Only in x4

txelecidle2_ext O PIPE Interface Lane 2 Tx Electrical Idle Control Only in x4

rxdata3_ext[7:0] I PIPE Interface Lane 3 Rx Data signals, carries the
parallel received data.

Only in x4

rxdatak3_ext I PIPE Interface Lane 3 Rx Data K-character flag. Only in x4

rxelecidle3_ext I PIPE Interface Lane 3 Rx Electrical Idle Indication. Only in x4

rxpolarity3_ext O PIPE Interface Lane 3 Rx Polarity Inversion Control Only in x4

rxstatus3_ext[1:0] I PIPE Interface Lane 3 Rx Status flags. Only in x4

rxvalid3_ext I PIPE Interface Lane 3 Rx Valid indication Only in x4

txcompl3_ext O PIPE Interface Lane 3 Tx Compliance control Only in x4

txdata3_ext[7:0] O PIPE Interface Lane 3 Tx Data signals, carries the
parallel transmit data.

Only in x4

txdatak3_ext O PIPE Interface Lane 3 Tx Data K-character flag. Only in x4

txelecidle3_ext O PIPE Interface Lane 3 Tx Electrical Idle Control Only in x4

Table 4–3. 8-bit PHY Interface Signals (Part 2 of 2)

Signal Name Direction Description Availability

Altera Corporation PCI Express Compiler Version 6.1 4–15
December 2006 PCI Express Compiler User Guide

External PHYs

Selecting an
External PHY

From the Systems Setting page which displays during the
parameterization process, you select an external PHY. You have two
choices:

■ Select the exact PHY
■ Select the type of interface to the PHY. Several PHYs have multiple

interface modes.

By selecting the Custom option, you can select any of the supported
interfaces. Figure 4–4 shows Systems Setting Page from which you select
the external PHY.

Figure 4–7. Selecting an External PHY During Parameterization

4–16 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Constraint Support

Table 4–4 summarizes the PHY support matrix. For every supported PHY
Type and Interface, the table lists the allowed lane widths.

The TI XIO1100 device has some additional control signals that need to be
driven by your design. These can be statically pulled high or low in the
board design, unless additional flexibility is needed by your design and
you want to drive them from the Altera device. These signals are:

■ P1_SLEEP must be pulled low. The PCI Express MegaCore function
requires the refclk (RX_CLK from the XIO1100) to remain active
while in the P1 powerdown state.

■ DDR_EN must be pulled high if your variation of the PCI Express
MegaCore function uses the 8-bit DDR (w/TxClk) mode. It must be
pulled low if the 16-bit SDR (w/TxClk) mode is used.

■ CLK_SEL must be set correctly based on the reference clock provided
to the XIO1100. Consult the XIO1100 data sheet for specific
recommendations.

External PHY
Constraint
Support

PCI Express Compiler supports constraints. When you parameterize and
generate your MegaCore, Quartus II software creates a Tcl file that you
run when run compile your design. The Tcl files incorporates the
following constraints that you specify when you parameterize and
generate your MegaCore function:

■ pclk frequency constraint (125 MHz or 250 Mhz)
■ Setup and Hold constraints for the input signals
■ Clock to out constraints for the output signals
■ I/O Interface Standard

1 For more information on using the adding the constraint file
when you compile your design, refer to “Compile the Design”
on page 2–15.

Table 4–4. External PHY Support Matrix

PHY Type Allowed Interfaces and Lanes

16-bit SDR
(pclk only)

16-bit SDR
(w/TxClk)

8-bit DDR
(pclk only)

8-bit DDR
(w/TxClk)

8-bit SDR
(pclk only)

8-bit SDR
(w/TxClk)

Serial
Interface

Stratix GX - - - - - - x1, x4

Stratix II GX - - - - - - x1, x4, x8

TI XIO1100 - x1 - x1 - - -

Philips PX1011A - - - - - x1 -

Custom x1, x4 x1, x4 x1, x4 x1, x4 x1, x4 x1, x4 -

Altera Corporation PCI Express Compiler Version 6.1 4–17
December 2006 PCI Express Compiler User Guide

External PHYs

Using External PHYs With the Stratix GX Device Family

If you will be using an external PHY with a design that will be
implemented in the Stratix GX device family, you must modify the PLL
instance required by some external PHYs to work in the Stratix GX family.
If you are using the Stratix GX internal PHY this is not necessary.

To modify the PLL instance, follow these steps:

1. Copy the PLL source file referenced in your variation file from the
<path>/ip/PCI Express Compiler/lib directory to your project
directory.

2. Use the MegaWizard Plug In Manger in the Quartus II software to
edit the PLL to use the Stratix GX device family.

3. Add the modified PLL source file to your Quartus II project.

4–18 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

External PHY Constraint Support

Altera Corporation PCI Express Compiler Version 6.1 5–1
December 2006

5. Testbench &
Example Designs

This chapter introduces the PCI Express MegaCore function testbench,
the BFM test driver module, and two example designs:

■ A simple DMA example design

■ A chaining DMA example design

After reviewing the components and the concepts in this chapter, you will
have the information that you need to modify the BFM test driver module
to exercise and test your own application layer design.

When you create a MegaCore function variation as described in
“Generate Files” on page 2–11, an example design and testbench,
customized to your variation also is generated.

The testbench instantiates an example design and a root port BFM, which
provides the following configuration routine and interface:

■ A configuration routine that sets up all the basic configuration
registers in the endpoint. This allows the endpoint application to be
the target of and initiate PCI Express transactions.

■ A VHDL/Verilog HDL procedure interface to initiate PCI Express
transactions to the endpoint.

The testbench uses test driver modules (altpcietb_bfm_driver for the
simple DMA design and altpcietb_bfm_driver_chaining for the
chaining DMA design) to exercise the example design’s target memory
and DMA channel. This test driver module also displays information
from the endpoint’s configuration space registers which lets you verify
the parameters you specified in the MegaWizard interface.

Using one of the provided example designs as a sample, you can easily
modify the testbench test driver module to use your own application
layer design instead of the provided example design’s application layer
logic. The testbench and root port BFM design simplifies the process of
exercising the application layer logic that interfaces to the MegaCore
function endpoint variation. PCI Express link monitoring and error
injection capabilities are limited to those provided by the MegaCore
function’s test_in and test_out signals. The following sections
describe the testbench, two example designs, and root BFM in detail.

5–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

The Altera testbench and root port BFM provide a simple method to do
basic testing of the application layer logic that interfaces to the MegaCore
function endpoint variation. However, the testbench and root port BFM
are not intended to be a substitute for a full verification environment. To
thoroughly test your application, Altera suggests that you obtain
commercially available PCI Express verification IP and tools, and/or do
your own extensive hardware testing.

Your application layer design may need to handle at least the following
scenarios that are not possible to create with the Altera testbench and the
root port BFM. The Altera root port BFM has the following limitations:

■ It is unable to generate or receive vendor defined messages. Some
systems generate vendor defined messages and the application layer
must be designed to process them. The MegaCore function passes
these messages on to the application layer which in most cases
should ignore them, but in all cases must issue an rx_ack to clear the
message from the Rx buffer.

■ It can only handle received read requests that are less than or equal
to the currently set max payload size. Many systems are capable of
handling larger read requests that are then returned in multiple
completions.

■ It always returns a single completion for every read request. Some
systems split completions on every 64-byte address boundary.

■ It always returns completions in the same order the read requests
were issued. Some systems will generate the completions out of
order.

■ It is unable to generate zero-length read requests that some systems
generate as flush requests following some write transactions. The
application layer must be capable of generating the completions to
the zero length read requests.

The simple and chaining DMA example designs provided with the core
are designed to handle all of the above behaviors, even though the
provided testbench cannot test them.

Additionally PCI Express link monitoring and error injection capabilities
are limited to those provided by the MegaCore function’s test_in and
test_out signals. The testbench and root port BFM will not NAK any
transactions.

Altera Corporation PCI Express Compiler Version 6.1 5–3
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Testbench The MegaWizard interface provides the Testbench in the subdirectory
<variation name>_examples/simple_dma/testbench for the simple DMA
design example and <variation name>_examples/
chaining_dma/testbench for the chaining DMA design example in your
project directory. The testbench top level is named <variation
name>_testbench for the simple DMA example design, and <variation
name>_chaining_testbench for the chaining DMA example design.

This testbench allows the simulation of up to an eight-lane PCI Express
link using either the PIPE interfaces of the root port and endpoints or the
serial PCI Express interface. See Figure 5–1 for a high level view of the
testbench.

Figure 5–1. Testbench Top-Level Module: <variation name>_testbench

The top-level of the testbench instantiates four main modules:

■ <variation name>_example_pipen1b —This is the example
endpoint design that includes your variation of the MegaCore
function. For more information about this module, see “Simple DMA
Example Design” on page 5–5.

■ altpcietb_bfm_rp_top_x8_pipen1b —This is the root port PCI
Express bus functional model (BFM). For detailed information about
this module, see “Root Port BFM” on page 5–27.

■ altpcietb_pipe_phy —There are eight instances of this module, one
per lane. These modules interconnect the PIPE MAC layer interfaces
of the root port and the endpoint. The module mimics the behavior
of the PIPE PHY layer to both MAC interfaces.

Testbench Top Level (<variation name>_testbench)

Endpoint Example Design
<variation name>_example_pipen1b

PIPE Interconnection
Module (x8)

(altpcierd_pipe_phy)

Root Port BFM
(altpcierd_bfm_rp_top_x8_pipen1b)

Test Driver Module
(altpcietb_bfm_driver)

Test Driver Module
(altpcietb_bfm_driver_chaining)

Simple DMAChaining DMA

5–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Testbench

■ altpcietb_bfm_driver—This module drives transactions to the root
port BFM. This is the module that you modify to vary the
transactions sent to the example endpoint design or your own
design. For more information about this module, see “BFM Test
Driver Module For Simple DMA Example Design” on page 5–20.

In addition, the testbench has routines that perform the following tasks:

● Generate the reference clock for the endpoint at the required
frequency

● Provide a PCI Express reset at start up.

The testbench has several VHDL generics/Verilog HDL parameters that
control the overall operation of the testbench. These generics are
described in Table 5–1.

Table 5–1. Testbench VHDL Generics /Verilog HDL Parameters

Generic/Parameter Allowed
Values

Default
Value

Description

PIPE_MODE 0 or 1 1 Controls whether the PIPE interface (PIPE_MODE = 1)
or serial interface (PIPE_MODE = 0) is used for the
simulation. The PIPE interface typically simulates much
faster than the serial interface. If the variation name file
only implements the PIPE interface, then setting
PIPE_MODE to 0 has no effect and the PIPE interface
always is used.

NUM_CONNECTED_LANES 1,2,4,8 8 This controls how many lanes are interconnected by the
testbench. Setting this generic value to a lower number
simulates the endpoint operating on a narrower PCI
Express interface than the maximum.

If your variation only implements the x1 MegaCore
function, then this setting has no effect and only one lane
is used.

FAST_COUNTERS 0 or 1 1 Setting this parameter to a 1 speeds up simulation by
making many of the timing counters in the PCI Express
MegaCore function operate faster than specified in the
PCI Express specification.This should usually be set to 1,
but can be set to 0 if there is a need to simulate the true
time-out values.

Altera Corporation PCI Express Compiler Version 6.1 5–5
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Simple DMA
Example Design

This example design shows how to create an endpoint application layer
design that interfaces to the PCI Express MegaCore function. The design
includes the following:

■ Memory that can be a target for PCI Express memory read and write
transactions.

■ A DMA channel that can initiate memory read and write transactions
on the PCI Express link.

The example endpoint design is completely contained within a supported
Altera device and relies on no other hardware interface than the PCI
Express link. This allows you to use the example design for the initial
hardware validation of your system.

The Quartus II software generates the example design in the same
language that you used for the variation (generated by the variation name
file); the example design is either Verilog HDL or VHDL.

When the MegaWizard interface generates the MegaCore variant, the
example endpoint design is created with the MegaCore function
variation. The example design includes two main components, the
MegaCore function variation and an application layer example design as
shown in “Top-Level Simple DMA Example Design for Simulation” on
page 5–6.

The example endpoint design application layer provides these features:

■ Shows you how to interface to the PCI Express MegaCore function
■ Target memory that can be written to and read from PCI Express

memory write and read transactions
■ DMA channel that can be used to initiate memory read and write

transactions on the PCI Express link
■ Master memory block that can be used to source and sink data for

DMA initiated memory transactions
■ Data pattern generator that can be used to source data for DMA

initiated memory write transactions
■ Support for two virtual channels (VCs)

The example endpoint design can be used in the testbench simulation and
to compile a complete design for an Altera device. All of the modules
necessary to implement the example design with the variation file are
contained in separate files, based on the language you use:

<variation name>_example_top.vhd
<variation name>_example_top.v
altpcierd_dprambe.v or altpcierd_dprambe.vhd

5–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Simple DMA Example Design

altpcierd_example_app.v or altpcierd_example_app.vhd
altpcierd_master.v or altpcierd_master.vhd
altpcierd_slave.v or altpcierd_slave.vhd
<variation name>_example_pipen1b.v or
<variation name>_example_pipen1b. vhd
<variation name>_example_top.v or <variation name>_example_top.vhd

This file is created in the project directory of the generated the MegaCore
function. See “Generate Files” on page 2–11 for more information.

Figure 5–2 shows the high level block diagram of the simple DMA
example endpoint design.

Figure 5–2. Top-Level Simple DMA Example Design for Simulation

The following modules are included in the example design:

■ <variation name>_example_pipen1b. This module is the top level of
the example endpoint design that you use for simulation.

This module provides both PIPE and serial interfaces for the
simulation environment. This module has two debug ports named
test_out and test_in (see Appendix C) which allows you to
monitor and control internal states of the MegaCore function.

For synthesis the top level module is <variation name>_example_top.
This module instantiates the module <variation
name>_example_pipen1b and propagates only a small sub-set of the
test ports to the external I/Os. These test ports can be used in your
design.

Master Module
(altpcierd_master)

Includes DMA, Memory
& Data Generator

Traffic Class to
Virtual Channel

Mapping

Simple DMA Example Design Simulation Top Level (<variation name>_example_pipenb)

Slave Module
(altpcierd_slave)

Includes Memory &
Control Registers

Simple DMA Example Application Layer (altpcierd_example_app)

PCI Express MegaCore
Function Variation

PHY Support Module
(<variation name>)

VC0 Tx

VC0 Rx

VC1 Tx

VC1 Rx

Altera Corporation PCI Express Compiler Version 6.1 5–7
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

■ <variation name>.vhd or
<variation name>.v— This file instantiates the <variation name>_core
entity (or module) that is described elsewhere in this section and
includes additional logic required to support the specific PHY you
have chosen for your variation. You should include this file when
you compile your design in the Quartus II software.

■ <variation name>_core.v or <variation name>_core.vhd —This
variation name module is created by MegaWizard interface during
the generate phase, based on the parameters that you set when you
parameterize the MegaCore function (see “Parameterize” on
page 2–5). For simulation purposes, the IP functional simulation
model produced by Quartus II software is used. The IP functional
simulation model is either the <variation name>_core.vho or
<variation name>_core.vo file. The associated <variation
name>_core.vhd or <variation name>_core.v file is used by the
Quartus II software during compilation. For information on
producing a functional simulation model, see “Set Up Simulation”
on page 2–9.

■ altpcierd_example_app —This example application layer design
contains the master and slave modules. It also includes Traffic Class
(TC) to Virtual Channel (VC) mapping logic that maps requests as
specified by the mapping tables in the MegaCore functions
configuration space. For more information, see Table 3–35 on
page 3–87

■ altpcierd_slave —The slave module handles all memory read and
write transactions received from the PCI Express link. Depending on
which Base Address Register (BAR) the transaction matched, the
transaction is directed either to the target memory or the control
register space. For more information on the BAR and address
mapping, see “Example Design BAR/Address Map”. For any read
transactions received, the slave module generates the required
completion and passes it to the MegaCore function for transmission.

■ altpcierd_master —This is the master module that includes the
following functions:

● DMA channel that generates memory read and write
transactions on the PCI Express link.

● Master memory block that can be the source of data for memory
write transactions initiated by the DMA channel and the sink of
data for memory read transactions.

5–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Simple DMA Example Design

● Data generator function that can alternatively be the source of
data for memory write transactions initiated by the DMA
channel.

For more information on setting up the DMA channel and registers,
including the base address registers (BARs) for controlling the DMA
channel, see the following section, “Example Design BAR/Address
Map”.

Example Design BAR/Address Map

The example design maps received memory transactions to either the
target memory block or the control register block based on which BAR the
transaction matched. There are multiple BARs that map to each of these
blocks to maximize interoperability with different variation files.
Table 5–2 shows the mapping.

The example design control register block is used primarily to set up
DMA channel operations. The control register block sets the addresses,
size, and attributes of the DMA channel operation. Executing a DMA
channel operation includes the following steps:

1. Writing the PCI Express address to the registers at offset 0x00 and
0x04.

2. Writing the master memory block address to the register at offset
0x14.

3. Writing the length of the requested operation to the register at offset
0x08.

Table 5–2. Example Design BAR Map

Memory BAR Mapping

32-bit BAR0
32-bit BAR1
64-bit BAR1:0

Maps to 32-KByte target memory block. Lower address bits select the RAM locations to
be read and written. Address bits 15 and above are ignored.

32-bit BAR2
32-bit BAR3
64-bit BAR3:2

Maps to control register block. For details, see Table 5–3 Example Design Control
Registers.

32-bit BAR4
32-bit BAR5
64-bit BAR5:4

Maps to 32-KByte target memory block. Lower address bits select the RAM locations to
be read and written. Address bits 15 and above are ignored.

Expansion ROM BAR Not implemented by Example Design; behavior is unpredictable.

I/O Space BAR (any) Not implemented by Example Design; behavior is unpredictable.

Altera Corporation PCI Express Compiler Version 6.1 5–9
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

4. Writing the attributes (including PCI Express memory write or read
direction) of the requested operation to the register at offset 0x0C.
Writing to this register starts the execution of the DMA channel
operation.

5. Reading the DMA channel operation in progress bit at offset 0x0C to
determine when the DMA channel operation has completed.

Table 5–3. Example Design Control Registers (Part 1 of 2)

Register Byte
Address

(offset from BAR2,3)

Bit
Field Description

0x00 31:0 DMA channel PCI Express address[31:0] —These are the lower 32 bits of the
starting address used for memory transactions created by the DMA channel.

0x04 31:0 DMA channel PCI Express Address[63:32] —These are the upper 32 bits of the
starting address used for memory transactions created by the DMA channel.

0x08 31:0 DMA channel operation size — This register specifies the length in bytes of the
DMA operation to perform.

0x0C All DMA channel control register. Writing to any byte in this register starts a DMA
operation.

31 DMA channel operation in progress —This is the read-only bit. When this bit is
set to 1 a DMA operation is in progress.

30:23 Reserved.

22 DMA channel uses an incrementing DWORD pattern for memory write
transactions.

21 DMA channel uses an incrementing byte pattern for memory write transactions.

20 DMA channel uses all zeros as the data for memory write transactions.

19 Reserved.

0x0C 18:16 Specifies the maximum payload size for DMA channel transactions — This can
be used to restrict the DMA channel to using smaller transactions than allowed
by the configuration space Max Payload Size and Max Read Request Size. The
transaction size is the smallest allowed. This uses the same encoding as those
fields:

000—128 Bytes
001—256 Bytes
010—512 Bytes
011—1 KBytes
100—2 KBytes

15 Sets value of the TD bit in all PCI Express request headers generated by this
DMA channel operation. The TD bit is the TLP digest field present bit.

14 Sets value of the EP bit in all PCI Express request headers generated by this
DMA channel operation. The EP bit is the poisoned data bit.

5–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Simple DMA Example Design

0x0C 13 Sets the value of the Relaxed Ordering Attribute bit in all PCI Express request
headers generated by this DMA channel operation.

12 Sets the value of the No Snoop Attribute bit in all PCI Express request headers
generated by this DMA channel operation.

11 Reserved.

10:8 Sets the value of the Traffic Class field in all PCI Express request headers
generated by this DMA channel operation.

7 Reserved.

6:5 Sets the value of the Packet Format Field in all PCI Express request headers
generated by this DMA channel operation. The encoding is as follows:

00b—Memory read (3DW w/o data)
01b—Memory read (4DW w/o data)
10b—Memory write (3DW w/data)
11b—Memory write (4DW w/data)

4:0 Sets the value of the Type field in all PCI Express request headers generated by
this DMA channel operation. The supported encoding is:
00000b—Memory read or write

0x10 31:15 Reserved

14:12 MSI Traffic Class, when requesting an MSI. Write to this field to specify which
PCI-Express Traffic Class to send the MSI memory write packet.

11:9 Reserved

8:4 MSI Number, when requesting and MSI. Write to this field to specify which MSI
should be sent.

3:1 Reserved

0 Interrupt Request. If MSI is enabled in the endpoint (EP) design, then writing to
this bit sends a Message Signaled Interrupt (MSI). Otherwise, MSI is disabled
in the EP, and so a Legacy Interrupt message is sent.

0x14 31:15 Reserved.

14:3 Starting master memory block address for the DMA channel operation.

2:0 Bits 2:0 of the starting master memory block address are copied from the
starting PCI Express address.

Table 5–3. Example Design Control Registers (Part 2 of 2)

Register Byte
Address

(offset from BAR2,3)

Bit
Field Description

Altera Corporation PCI Express Compiler Version 6.1 5–11
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Chaining DMA
Example Design

This example design shows how to create a chaining DMA endpoint in
which two DMA modules support simultaneous DMA read and write
transactions. One DMA module implements write operations on the
upstream flow from Endpoint (EP) memory to Root Complex (RC)
memory, and the other DMA implements read operations on the
downstream flow from RC memory to EP memory.

The chaining DMA example design endpoint design is completely
contained within a supported Altera device and relies on no other
hardware interface than the PCI Express link. This allows you to use the
example design for the initial hardware validation of your system.

The MegaWizard interface generates the example design in the same
language that you used for the variation (generated by the variation name
file); the example design is either Verilog HDL or VHDL. The chaining
DMA design example requires that BAR 2 or BAR 3 is set to a minimum
of 256 bytes.

During the generate step, the example endpoint design is created with the
MegaCore function variation. The example design includes two main
components:

■ The MegaCore function variation

■ An application layer example design

In the simple DMA example design, the software application (on the root
port side) needs to program the end point DMA registers for every
transfer of a given block of memories. This can introduce a performance
limitation when transferring a large amount of noncontiguous memory
between the BFM shared memory and the Endpoint buffer memory. The
chaining DMA example design shows an architecture which is capable of
transferring a large amount of fragmented memory without
reprogramming the DMA registers for every memory block.

The chaining DMA example design uses descriptor tables for each block
of memory to be transferred. Each descriptor table contains the following
information

■ Length of the transfer
■ Address of the source
■ Address of the destination
■ Control bits to set the handshaking behavior between the software

application and the chaining DMA module.

5–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Chaining DMA Example Design

The software application writes these descriptor tables in the BFM shared
memory. The chaining DMA design engine continuously collects these
descriptor tables for DMA read and/or DMA write. At the beginning of
the transfer, the software application programs the DMA engine registers
with the descriptor table header. The descriptor table header contains
information such as total number of descriptor and BFM shared memory
address of the first descriptor table. When the descriptor header is set, the
chaining DMA engine continuously fetches descriptors from the BFM
shared memory for both DMA reads and DMA writes, and then performs
the data transfer for each descriptor.

Figure 5–3 shows a block diagram of the example design on the left and
an external RC CPU on the left. The block diagram contains the following
elements:

■ EP DMA write and read requester modules, mentioned just above.

■ An EP read/write MUX to arbitrate access to the EP memory over an
Avalon®-MM bus.

■ An EP Transaction Layer Packet (TLP) translator module used to
perform TLP formatting as well as traffic management to and from
the appropriate submodule (DMA read or write configuration).

■ Two Root Complex (RC) memory descriptor tables, one for each
DMA module. These are described in the following section.

■ An RC CPU and associated PCI Express PHY link to the EP example
design, using a Root Port and a North/South Bridge.

Altera Corporation PCI Express Compiler Version 6.1 5–13
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Figure 5–3. Top-Level Chaining DMA Example for Simulation

The example endpoint design application layer has these features:

■ Shows you how to interface to the PCI Express MegaCore function

■ Provides a chaining DMA channel that can be used to initiate
memory read and write transactions on the PCI Express link

You can use the example endpoint design in the testbench simulation and
compile a complete design for an Altera device. All of the modules
necessary to implement the example design with the variation file are
contained in one of the following files, based on the language you use:

<variation name>_examples/chaining_dma/
<variation name>_example_chaining.vhd
or
<variation name>_examples/chaining_dma/
<variation name>_example_chaining.v

This file is created in the project directory when files are generated.

The following modules are included in the example design and located in
the subdirectory <variation name>_example/chaining_dma:

 CPU

RC Slave

Root Complex Chaining DMA Example

Endpoint Memory

Avalon-MM
buses

Root Port

SS

 Memory
Read
Descriptor
Table

Write
Descriptor
Table

Data

PCI Express
MegaCore Function

Variation (DUT)

MM

DMA Write
Requester

Descriptor

Header Register

DMA Read
Requester

Descriptor

Header Register

5–14 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Chaining DMA Example Design

■ <variation name>_example_pipen1b—This module is the top level of
the example endpoint design that you use for simulation. This
module is contained in the following files produced by the
MegaWizard interface:

<variation name>_example_chaining_top.vhd

<variation name>_example_chaining_top.v

This module provides both PIPE and serial interfaces for the
simulation environment. This module has two debug ports named
test_out and test_in (see Appendix C,) which allows you to
monitor and control internal states of the MegaCore function.

For synthesis the top level module is <variation
name>_example_chaining_top. This module instantiates the module
<variation name>_example_pipen1b and propagates only a small
sub-set of the test ports to the external I/Os. These test ports can be
used in your design.

■ <variation name>v or <variation name>vhd —This variation name
module is created by the MegaWizard interface when files are
generated based on the parameters that you set. For simulation
purposes, the IP functional simulation model produced by the
MegaWizard interface is used. The IP functional simulation model is
either the <variation name>.vho or <variation name>.vo file. The
associated <variation name>.vhd or <variation name>.v file is used by
the Quartus II software during compilation. For information on
producing a functional simulation model, see the Getting Started
chapter.

The chaining DMA example design hierarchy consists of these
components:

● A DMA read and a DMA Write module

● On chip EP memory (Avalon slave) which uses two Avalon-MM
buses for each engine

● RC Slave module for performance monitoring and single
DWORD Mrd/Mwr

Each DMA modules consists of these components:

● Header Register module: RC programs the descriptor header (4
DWORDS) at the beginning of the DMA

Altera Corporation PCI Express Compiler Version 6.1 5–15
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

● Descriptor module: DMA engine collects chaining descriptors
from EP memory

● Requester module: For a given descriptor, the DMA engine
performs the memory transfer between EP memory and BFM
shared memory

The following modules reflect each hierarchical level:

● altpcierd_example_app_chaining —This module is the top
level which arbitrates PCI Express packets for the modules
altpcie_dma_dt (read or write) and altpcie_rc_slave.
altpcierd_example_app_chaining instantiates the Endpoint
memory used for the DMA read and write transfer

altpcie_rc_slave — is used by the software application (Root Port) to
retrieve the DMA Performance counter values and performs single
DWORD read and write to the Endpoint memory by bypassing the DMA
engine. By default, this module is disabled.

● altpcie_dma_dt — arbitrates PCI Express packets issued by the
submodules the modules altpcie_dma_prg_reg,
altpcie_read_dma_requester, altpcie_write_dma_requester
and altpcie_dma_descriptor

● altpcie_dma_prg_reg — contains the descriptor header table
registers which get programmed by the software application.
This module collects PCI Express TL packets from the software
application with the tlp type MWr on BAR 2 or 3

● altpcie_dma_descriptor— retrieves DMA read or write
descriptor from the root port memory, and store it in a descriptor
FIFO. This module issues PCI Express TL packets to the BFM
shared memory with the tlp type MRd

● altpcie_read_dma_requester—For each descriptor located in
the altpcie_descriptor FIFO, this module transfer data from the
BFM shared memory to the Endpoint memory by issuing MRd
PCI Express TL packets

● altpcie_write_dma_requester—For each descriptor located in
the altpcie_descriptor FIFO, this module transfer data from the
Endpoint memory to the BFM shared memory to the by issuing
MWr PCI Express TL packets

5–16 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Chaining DMA Example Design

Example Design BAR/Address Map

The example design maps received memory transactions to either the
target memory block or the control register block based on which BAR the
transaction matched. There are multiple BARs that map to each of these
blocks to maximize interoperability with different variation files.
Table 5–4 shows the mapping.

The example design control register block is used primarily to set up
DMA channel operations. The control register block sets the addresses,
size, and attributes of the DMA channel operation. Executing a DMA
channel operation includes the following steps:

1. Writing the PCI Express address to the registers at offset 0x00 and
0x04.

2. Writing the master memory block address to the register at offset
0x14.

3. Writing the length of the requested operation to the register at offset
0x08.

4. Writing the attributes (including PCI Express memory write or read
direction) of the requested operation to the register at offset 0x0C.
Writing to this register starts the execution of the DMA channel
operation.

5. Reading the DMA channel operation in progress bit at offset 0x0C to
determine when the DMA channel operation has completed.

Table 5–4. Example Design BAR Map

Memory BAR Mapping

32-bit BAR0
32-bit BAR1
64-bit BAR1:0

Maps to 32-KByte target memory block. Use the rc_slave module
to bypass the chaining DMA

32-bit BAR2
32-bit BAR3
64-bit BAR3:2

Maps to control DMA Read and DMA write register header,
requires a minimum of 256 bytes.

32-bit BAR4
32-bit BAR5
64-bit BAR5:4

Maps to 32-KByte target memory block. Use the rc_slave module
to bypass the chaining DMA

Expansion ROM BAR Not implemented by Example Design; behavior is unpredictable.

I/O Space BAR (any) Not implemented by Example Design; behavior is unpredictable.

Altera Corporation PCI Express Compiler Version 6.1 5–17
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Chaining DMA Descriptor Tables

Each descriptor table consists of a descriptor header at a base address,
followed by a contiguous list of descriptors. Each subsequent descriptor
consists of a minimum of four DWORDs (PCI-Express 32 bit double
word) of data, and corresponds to one DMA transfer. The software
application writes the descriptor header in the EP point Header
Descriptor register. Tables 5–5, 5–6, and , describe each of the fields of this
header.

Table 5–5. Chaining DMA Descriptor Header Format Address Map

Table 5–6. Chaining DMA Descriptor Header Format (Control Fields)

31 16 15 0

Control Fields (see Table 5–6) Size

BDT Upper DWORD

BDT Lower DWORD

Reserved RCLAST

31 30 28 27 25 24 20 19 18 17 16

Reserved MSI Traffic
Class

Reserved MSI Number Reserved EPLAST_ENA MSI Direction

Table 5–7. Chaining DMA Descriptor Header Fields (Part 1 of 2)

Descriptor
Header Field

EP
Access

RC
Access EP Address Description

Size R R/W 0x00 (DMA write)
0x10 (DMA read)

Specifies the number n of the descriptor in the
descriptor table.

Direction R R/W 0x00 (DMA write)
0x10 (DMA read)

Specifies the DMA module to the descriptor table
mapping rules. When this bit is set the descriptor
table refers to the DMA write logic. When this bit is
cleared the descriptor table refers to the DMA read
logic.

Message
Signaled
Interrupt
(MSI)

R R/W 0x00 (DMA write)
0x10 (DMA read)

Enables interrupts across all descriptors. When this
bit is set the EP DMA module issues an interrupt
using MSI to the RC. Your software application can
use this interrupt to monitor the DMA transfer status.

5–18 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Chaining DMA Example Design

MSI Number R R/W 0x00 (DMA write)
0x10 (DMA read)

When your RC reads the MSI capabilities of the EP,
these register bits map to the PCI Express back-end
MSI signals app_msi_num [4:0].
If there is more than one MSI, the default mapping if
all the MSIs are available, is:
MSI 0 = Read
MSI 1 = Write

MSI Traffic
Class

R R/W 0x00 (DMA write)
0x10 (DMA read)

When the RC application software reads the MSI
capabilities of the EP, this value is assigned by
default to MSI traffic class 0. These register bits
map to the PCI Express back-end signal
app_msi_tc [2:0}

BDT
Upper DWORD

R R/W 0x04 (DMA write)
0x14 (DMA read)

Base Address Descriptor table address

BDT
Lower DWORD

R R/W 0x08 (DMA write)
0x18 (DMA read)

Base Address Descriptor table address

EPLAST_ENA R R/W 0x00 (DMA write)
0x10 (DMA read)

Enables EPLAST logic across all descriptors
Enables memory polling across all descriptors.
When this bit is set, the EP DMA module issues a
memory write to the BFM shared memory to report
the number of DMA descriptors completed. Your
software application can poll this memory location to
monitor the DMA transfer status.

RCLAST R R/W 0x0C (DMA write)
0x1C (DMA read)

RCLAST reflects the number of descriptors ready to
be transferred. Your software application can
periodically update this register based on system
level memory scheduling constraints.

Table 5–7. Chaining DMA Descriptor Header Fields (Part 2 of 2)

Descriptor
Header Field

EP
Access

RC
Access EP Address Description

Altera Corporation PCI Express Compiler Version 6.1 5–19
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

See Table 5–8 for the format of the descriptor fields following the
descriptor header. Each descriptor provides the hardware information on
one DMA transfer. Table describes each descriptor field.

Tables 5–8, 5–9, are related to the list of descriptor tables which resides
on the BFM shared memory.

Table 5–8. Chaining DMA Descriptor Format Map

Table 5–9. Chaining DMA Descriptor Format Map (Control Fields)

31 22 21 16 15 0

Reserved Control Fields (see Table 5–9) DMA Length

EP Address

RC Address Upper DWORD

RC Address Lower DWORD

21 20 19 18 17 16

Reserved Reserved Reserved MSI EPLAST_ENA

Table 5–10. Chaining DMA Descriptor Fields

Descriptor Field EP Access RC Access Description

EP Address R R/W A 32-bit field that specifies the base address of the memory
transfer on the EP site.

RC Address
Upper DWORD

R R/W Specifies the upper base address of the memory transfer on
the RC site.

RC Address
Lower DWORD

R R/W Specifies the lower base address of the memory transfer on
the RC site.

DMA Length R R/W Specifies the number of DMA bytes to transfer.

EPLAST_ENA R R/W This bit is OR’d with the EPLAST_ENA bit of the descriptor
header. When EPLAST_ENA is set the EP DMA module
updates the EPLast RC memory register with the value of the
last completed descriptor, in the form 0 – n.

MSI R R/W This bit is OR’d with the MSI bit of the descriptor header. When
this bit is set the EP module sends an interrupt completion
message at the end of the DMA transfer of each channel.

5–20 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test Driver Modules

Test Driver
Modules

This section describes the test driver modules used to test the example
designs:

■ “BFM Test Driver Module For Simple DMA Example Design”
■ “BFM Test Driver Module for Chaining DMA Example Design”

BFM Test Driver Module For Simple DMA Example Design

The BFM driver module generated by the MegaWizard interface during
the generate step is configured to test the simple DMA example endpoint
design. The BFM driver module configures the endpoint configuration
space registers and then tests the example endpoint design target
memory and DMA channel.

For a VHDL version of this file, see:
<variation name>_example_simple_dma/altpcietb_bfm_driver.vhd

or

For a Verilog HDL file, see: <variation name>_example_simple_dma/
altpcietb_bfm_driver.v

The BFM test driver module performs the following steps in sequence:

1. Configures the root port and endpoint configuration spaces, which
the BFM test driver module does by calling the procedure
ebfm_cfg_rp_ep, which is part of altpcierd_bfm_configure.

2. Finds a suitable BAR to use for accessing the example endpoint
design target memory space. One of the BARs 0, 1, 4, or 5 must be at
least a 4KB memory BAR to perform the target memory test.
Procedure find_mem_bar contained in the altpcietb_bfm_driver
does this.

3. If a suitable BAR is found in the previous step, the
target_mem_test procedure in the altpcietb_bfm_driver tests
the example endpoint design target memory space. This procedure
executes the following sub-steps:

a. Sets up a 4,096 byte data pattern in the BFM shared memory,
which is done by a call to the shemem_fill procedure in
altpcietb_bfm_shmem.

b. Writes those 4,096 bytes to the example endpoint design target
memory, which is done by a call to the ebfm_barwr procedure
in altpcietb_bfm_rdwr.

Altera Corporation PCI Express Compiler Version 6.1 5–21
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

c. Reads the same 4,096 bytes from the target memory to a
separate location in the BFM shared memory, which is done by
a call to the ebfm_barrd_wait procedure in
altpcietb_bfm_rdwr. This procedure blocks (waits) until the
completion has been received for the read.

d. The data read back from the target memory is checked to
ensure the data is the same as what was initially written, which
is done by a call to the shmem_chk_ok procedure in the
altpcietb_bfm_shmem.

4. Finds a suitable BAR to access the example endpoint design control
register space. One of the BARs 2 or 3 must be at least a 128 byte
memory BAR to perform the DMA channel test. The
find_mem_bar procedure in the altpcietb_bfm_driver does this.

5. If a suitable BAR is found in the previous step, the example
endpoint design DMA channel is tested by the procedure
target_dma_test in the altpcietb_bfm_driver. This procedure
executes the following substeps:

a. Sets up a 4,096 byte data pattern in the BFM shared memory,
which is done by a call to the shemem_fill procedure in
altpcietb_bfm_shmem.

b. Sets up the DMA channel control registers and starts the DMA
channel to transfer data from BFM shared memory to the
master memory in the example design. This is done by a series
of calls to the ebfm_barwr_imm procedure in
altpcietb_bfm_rdwr. The last of these ebfm_barwr_imm calls
starts the DMA channel.

c. Waits for the DMA channel to finish by checking the DMA
channel in-progress bit in the control register space until it is
clear. This is done by a loop around the call to the
ebfm_barrd_wait procedure in altpcietb_bfm_rdwr.

d. Sets up the DMA channel control registers and starts the DMA
channel to transfer data back from the example design master
memory to the BFM shared memory. This is done by a series of
calls to the ebfm_barwr_imm procedure in
altpcietb_bfm_rdwr. The last of these ebfm_barwr_imm calls
starts the DMA channel.

5–22 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test Driver Modules

e. Waits for the DMA channel to finish by checking the DMA
channel in-progress bit in the control register space until it is
clear. This is done by a loop around the call to the
ebfm_barrd_wait procedure in altpcietb_bfm_rdwr.

f. Checks the data transferred back from the master memory by
the DMA channel to ensure the data is the same as the data that
was initially written. This is done by a call to the
shmem_chk_ok procedure in altpcietb_bfm_shmem.

6. If a suitable BAR was found for the DMA channel test, the BFM
attempts the legacy interrupt test:

a. Checks to see if the endpoint supports legacy interrupts. If so
the test proceeds, otherwise the test finishes.

b. Checks the MSI message control register to see if the MSI is
disabled. If MSI is enable, then the test disables MSI.

c. Sets a watchdog timer and writes to the endpoint register to
trigger a legacy interrupt.

d. Waits to receive a legacy interrupt or until the watchdog timer
expires.

e. Reports the results of the test, restores the value of the MSI
message control register, and clears the interrupt bit in the EP.

7. If a suitable BAR was found for the legacy interrupt test, the BFM
attempts the MSI interrupt test:

a. Checks the MSI capabilities register to see how many MSI
registers are supported.

b. Initializes the MSI capabilities structure with the target MSI
address, data, and number of messages granted to the EP.

c. Checks each MSI number by triggering the MSI in the endpoint,
then polling the BFM shared memory for an interrupt from the
EP. The test then loops through all MSIs that the EP supports.
The test next checks that each MSI is received before the
watchdog timer expires, and that the MSI data received is
correct.

d. Restores the MSI control register to the pre-test state, and
reports the results of the test.

Altera Corporation PCI Express Compiler Version 6.1 5–23
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

e. The simulation is stopped by calling the procedure
ebfm_log_stop_sim in altpcieb_bfm_log.

BFM Test Driver Module for Chaining DMA Example Design

The BFM driver module generated by the MegaWizard interface during
the generate step is configured to test the chain DMA example endpoint
design. The BFM driver module configures the endpoint configuration
space registers and then tests the example endpoint chaining DMA
channel.

For a VHDL version of this file, see:
<variation name>_example_chaining_dma/testbench/
<variation name>_altpcietb_bfm_driver_chaining.vhd

For a Verilog HDL file, see:
<variation name>_example_chaining_dma/testbench/
<variation name>_altpcietb_bfm_driver_chaining.v

The BFM test driver module performs the following steps in sequence:

1. Configures the root port and endpoint configuration spaces, which
the BFM test driver module does by calling the procedure
ebfm_cfg_rp_ep, which is part of altpcierd_bfm_configure.

2. Finds a suitable BAR to access the example endpoint design control
register space. One of BARs, 2 or 3, must be at least a 128 byte
memory BAR to perform the DMA channel test. The
find_mem_bar procedure in the altpcietb_bfm_driver_chaining
does this.

3. If a suitable BAR is found in the previous step, the example
endpoint design chaining DMA is tested by the procedure
chained_dma_test in the altpcietb_bfm_driver. This procedure
is a wrapper which calls the procedures dma_wr_test and
dma_rd_test for respectively DMA write and DMA read, based
on the value of the direction argument.

DMA Write Cycles

The procedure dma_wr_test used for DMA writes uses the following
steps:

1. Configure the BFM shared memory. This is done with three
descriptors tables with the content shown below:

5–24 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test Driver Modules

Table 5–11. Write Descriptor 0

Write Descriptor 0

Offset in BFM shared memory. Value Description

DW0 0x810 64 Transfer length in DWORDS and control bits
(as described in table 5.7)

DW1 0x814 0 End Point Address value

DW2 0x818 0 BFM shared memory upper address value

DW3 0x81c 0x1800 BFM shared memory lower address value

Data 0x1800 Increment from
0xAAA0_FFFF

Data content in the BFM shared memory
from address: 0x01800 0x1840

Table 5–12. Write Descriptor 1

Write Descriptor 1

Offset in BFM Shared Memory Value Description

DW0 0x820 32 Transfer length in DWORDS and control bits
(as described in Table on page 5–19)

DW1 0x824 0 End Point Address value

DW2 0x828 0 BFM shared memory upper address value

DW3 0x82c 0x2800 BFM shared memory lower address value

Data 0x02800 Increment from
0xBBB0_FFFF

Data content in the BFM shared memory from
address: 0x02800 0x2820

Table 5–13. Write Descriptor 2

Write Descriptor 2

Offset in BFM Shared Memory Value Description

DW0 0x830 96 Transfer length in DWORDS and control bits
(as described in table 5.7)

DW1 0x834 0 End Point Address value

DW2 0x838 0 BFM shared memory upper address value

DW3 0x83c 0x04800 BFM shared memory lower address value

Data 0x04800 Increment from
0xCCC0_FFFF

Data content in the BFM shared memory from
address: 0x04800 0x4860

Altera Corporation PCI Express Compiler Version 6.1 5–25
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

2. Set up the chaining DMA descriptor header and starts the transfer
data from the EP memory to the BFM shared memory. This is done
by a call to the procedure dma_set_header which writes the
following four DWORDS into the DMA write register module:

After writing the last DWORD of the Descriptor header (DW3), the DMA
write starts the three subsequent data transfers

3. Wait for the DMA write completion by polling the BFM share
memory location 0x80c, where the DMA write engine is updating
the value of the number of completed DMA. This is done by a call to
the procedure rcmem_poll.

DMA Read Cycles

The procedure dma_rd_test used for DMA reads uses the following
three steps:

1. Configure the BFM shared memory. This is done by a call to the
procedure dma_set_rd_desc_data which sets three descriptors
tables with the content shown below:

2. Set up the chaining DMA descriptor header and start the transfer
data from the EP memory to the BFM shared memory. This is done
by a call to the procedure dma_set_header which writes the
following four DWORDS into the DMA write register module:

After writing the last DWORD of the Descriptor header (DW3), the
DMA write starts the three subsequent data transfers.

3. Wait for the DMA write completion by polling the BFM share
memory location 0x90c, where the DMA write engine is updating
the value of the number of completed DMA. This is done by a call to
the procedure rcmem_poll.

Table 5–14. Descriptor Header for DMA Write

Descriptor Header for DMA Write

Offset in EP Memory Value Description

DW0 0x0 3 Number of descriptors and control bits (as described in
Table 5–5 on page 5–17)

DW1 0x4 0 BFM shared memory upper address value

DW2 0x8 0x800 BFM shared memory lower address value

DW3 0xc 2 Last descriptor written

5–26 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test Driver Modules

Table 5–15. Read Descriptor 0 a.

Read Descriptor 0

Offset in BFM Shared Memory Value Description

DW0 0x910 64 Transfer length in DWORDS and control bits (as
described in Table on page 5–19)

DW1 0x914 0 End Point Address value

DW2 0x918 0 BFM shared memory upper address value

DW3 0x91c 0x8900 BFM shared memory lower address value

Data 0x8900 Increment from
0xAAA0_FFFF

Data content in the BFM shared memory from
address: 0x8900 0x8940

Table 5–16. Read Descriptor 1

Read Descriptor 1

Offset in BFM Shared Memory Value Description

DW0 0x920 32 Transfer length in DWORDS and control bits (as
described in Table on page 5–19)

DW1 0x924 0 End Point Address value

DW2 0x928 10 BFM shared memory upper address value

DW3 0x92c 0x10900 BFM shared memory lower address value

Data 0x10900 Increment from
0xBBB0_FFFF

Data content in the BFM shared memory from
address: 0x10900 0x10920

Table 5–17. Read Descriptor 2

Read Descriptor 2

Offset in BFM Shared Memory
(BRC , the base BFM shared

memory address)
Value Description

DW0 0x930 96 Transfer length in DWORDS and control bits (as
described in Table on page 5–19)

DW1 0x934 0 End Point Address value

DW2 0x938 0 BFM shared memory upper address value

DW3 0x93c 0x20900 BFM shared memory lower address value

Data 0x20900 Increment from
0xCCC0_FFFF

Data content in the BFM shared memory from
address: 0x20900 0x20960

Altera Corporation PCI Express Compiler Version 6.1 5–27
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Root Port BFM The basic root port BFM provides a VHDL procedure-based or Verilog
HDL task-based interface for requesting transactions that are issued to
the PCI Express link. The root port BFM also handles requests received
from the PCI Express link. See Figure 5–4 for a high level view of the root
port BFM.

Figure 5–4. Root Port BFM High Level View

The root port BFM consists of these main components:

■ BFM shared memory (altpcietb_bfm_shmem VHDL package or
Verilog HDL include file) — The root port BFM is based on the BFM
memory that is used for the following purposes:

● Storing data received with all completions from the PCI Express
link

● Storing data received with all write transactions received from
the PCI Express link

● Sourcing data for all completions in response to read
transactions received from the PCI Express link

BFM Shared Memory
(altpcietb_bfm_shmem)

BFM Read/Write Shared
Request Procedures
(altpcietb_bfm_rdwr)

BFM Configuration
Procedures

(altpcietb_bfm_configure)

BFM Log Interface
(altpcietb_bfm_log)

BFM Request Interface
(altpcietb_bfm_req_intf)

Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b)

IP Functional Simulation
Model of the Root

Port Interface
(altpcietb_bfm_rpvar_64b_x8_pipen1b)

VC0 Interface
(altpcietb_bfm_vcintf)

VC1 Interface
(altpcietb_bfm_vcintf)

VC2 Interface
(altpcietb_bfm_vcintf)

VC3 Interface
(altpcietb_bfm_vcintf)

Root Port BFM

5–28 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Root Port BFM

● Sourcing data for most write transactions issued to the PCI
Express link. The only exception is certain BFM write
procedures that have a four-byte field of write data passed in the
call.

● Storing a data structure that contains the sizes of and the values
programmed in the BARs of the endpoint

A set of procedures is provided to read, write, fill, and check the
shared memory from the BFM driver. For details on these
procedures, see “BFM Shared Memory Access Procedures” on
page 5–46.

■ BFM Read/Write Request Procedures/Functions
(altpcietb_bfm_rdwr VHDL package or Verilog HDL include file) —
This package provides the basic BFM procedure calls to request PCI
Express read and write requests. For details on these procedures, see
“BFM Read/Write Request Procedures” on page 5–42.

■ BFM Configuration Procedures/Functions
(altpcietb_bfm_configure VHDL package or Verilog HDL include
file) — These procedures and functions provide the BFM calls to
request configuration of the PCI Express link and the endpoint
configuration space registers. For details on these procedures and
functions, see “BFM Configuration Procedures” on page 5–44.

■ BFM Log Interface (altpcietb_bfm_log VHDL package or Verilog
HDL include file) — The BFM log interface provides routines for
writing commonly formatted messages to the simulator standard
output and optionally to a log file. It also provides controls that stop
simulation on errors. For details on these procedures, see “BFM Log
& Message Procedures” on page 5–50.

■ BFM Request Interface (altpcietb_bfm_req_intf VHDL package or
Verilog HDL include file) — This interface provides the low level
interface between the altpcietb_bfm_rdwr and
altpcietb_bfm_configure procedures or functions and the root
port RTL Model. This interface stores a write-protected data
structure containing the sizes and the values programmed in the
BAR registers of the endpoint, as well as, other critical data used for
internal BFM management. You do not need to access these files
directly to adapt the testbench to test your endpoint application.

■ Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b VHDL
entity or Verilog HDL Module) — This is the Register Transfer Level
(RTL) portion of the model. This takes the requests from the above

Altera Corporation PCI Express Compiler Version 6.1 5–29
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

modules and handles them at an RTL level to interface to the PCI
Express link. You do not need to access this module directly to adapt
the testbench to test your endpoint application.

■ VC0:3 Interfaces (altpcietb_bfm_vc_intf) — These interface
modules handle the VC-specific interfaces on the root port interface
model. They take requests from the BFM request interface and
generate the required PCI Express transactions. They handle
completions received from the PCI Express link and notify the BFM
request interface when requests are complete. Additionally, they
handle any requests received from the PCI Express link, and store or
fetch data from the shared memory before generating the required
completions.

■ Root port interface model (altpcietb_bfm_rpvar_64b_x8_pipen1b)
— This is an IP functional simulation model of a version of the
MegaCore function specially modified to support root port
operation. It’s application layer interface is very similar to the
application layer interface of the MegaCore function used for
endpoint mode.

All of the files for the BFM are generated by the MegaWizard interface in
the testbench/<variation name> directory.

BFM Memory Map

The BFM shared memory is configured to be 2MB in size. The BFM shared
memory is mapped into the first 2MB of I/O space and also the first 2MB
of memory space. When the endpoint application generates an I/O or
memory transaction in this range, the BFM reads or writes the shared
memory.

Configuration Space Bus and Device Numbering

The root port interface is assigned to be device number 0 on internal bus
number 0.

The endpoint can be assigned to be any device number on any bus
number (greater than 0) through the call to procedure ebfm_cfg_rp_ep.
The specified bus number is assigned to be the secondary bus in the root
port configuration space.

5–30 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Root Port BFM

Configuration of Root Port and Endpoint

Before you issue transactions to the endpoint, you must configure the root
port and endpoint configuration space registers. To configure these
registers, call the procedure ebfm_cfg_rp_ep, which is part of
altpcierd_bfm_configure.

1 Configuration procedures and functions are in the VHDL
package file altpcierd_bfm_configure.vhd or in the Verilog
HDL include file altpcierd_bfm_configure.v that uses the
altpcierd_bfm_configure_common.v.

The ebfm_cfg_rp_ep executes the following steps to initialize the
configuration space:

1. Sets root port configuration space to ready the root port to send
transactions on the PCI Express link.

2. Sets the root port and endpoint PCI Express capability device
control registers as follows:

a. Disables Error Reporting in both the root port and
endpoint. BFM does not have error handling capability.

b. Enables Relaxed Ordering in both root port and endpoint.

c. Enables Extended Tags for the endpoint, if the endpoint has
that capability.

d. Disables Phantom Functions, Aux Power PM, and No Snoop
in both the root port and endpoint.

e. Sets the Max Payload Size to what the endpoint supports
since the root port supports the maximum payload size.

f. Sets the root port Max Read Request Size to 4KB since the
example endpoint design supports breaking the read into as
many completions as necessary.

g. Sets the endpoint Max Read Request Size equal to the Max
Payload Size since the root port does not support breaking
the read request into multiple completions.

Altera Corporation PCI Express Compiler Version 6.1 5–31
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

3. Assigns values to all the endpoint BAR registers. The BAR
addresses are assigned by the algorithm outlined below.

a. I/O BARs are assigned smallest to largest starting just above
the ending address of BFM shared memory in I/O space and
continuing as needed throughout a full 32-bit I/O space.

b. The 32-bit non-prefetchable memory BARs are assigned
smallest to largest, starting just above the ending address of
BFM shared memory in memory space and continuing as
needed throughout a full 32-bit memory space.

c. Assignment of the 32-bit prefetchable and 64-bit prefetchable
memory BARS are based on the value of the
addr_map_4GB_limit input to the ebfm_cfg_rp_ep. The
default value of the addr_map_4GB_limit is 0.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is
set to 0, then the 32-bit prefetchable memory BARs are assigned
largest to smallest, starting at the top of 32-bit memory space
and continuing as needed down to the ending address of the last
32-bit non-prefetchable BAR.

However, if the addr_map_4GB_limit input is set to 1, the
address map is limited to 4GB, the 32-bit and 64-bit prefetchable
memory BARs are assigned largest to smallest, starting at the
top of the 32-bit memory space and continuing as needed down
to the ending address of the last 32-bit non-prefetchable BAR.

d. If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep
is set to 0, then the 64-bit prefetchable memory BARs are
assigned smallest to largest starting at the 4GB address
assigning memory ascending above the 4GB limit throughout
the full 64-bit memory space.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is
set to 1, then the 32-bit and the 64-bit prefetchable memory BARs
are assigned largest to smallest starting at the 4GB address and
assigning memory by descending below the 4GB address to
addresses memory as needed down to the ending address of the
last 32-bit non-prefetchable BAR.

The above algorithm cannot always assign values to all BARs when
there are a few very large (1GB or greater) 32-bit BARs. Although
assigning addresses to all BARs may be possible, a more complex
algorithm would be required to effectively assign these addresses.

5–32 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Root Port BFM

However, such a configuration is unlikely to be useful in real
systems. If the procedure is unable to assign the BARs, it displays an
error message and stops the simulation.

4. Based on the above BAR assignments, the root port configuration
space address windows are assigned to encompass the valid BAR
address ranges.

5. The endpoint PCI Control Register is set to enable master
transactions, memory address decoding, and I/O address decoding.

The ebfm_cfg_rp_ep procedure also sets up a bar_table data
structure in BFM shared memory that lists the sizes and assigned
addresses of all endpoint BARs. This area of BFM shared memory is
write-protected, which means any user write accesses to this area cause a
fatal simulation error. This data structure is then used by subsequent BFM
procedure calls to generate read and write requests to particular offsets
from a BAR.

The configuration routine does not configure any advanced PCI Express
capabilities such as Virtual Channel Capability or Advanced Error
Reporting capability.

Besides the ebfm_cfg_rp_ep procedure in altpcietb_bfm_configure,
routines to read and write endpoint configuration space registers directly
are available in the altpcietb_bfm_rdwr VHDL package or Verilog HDL
include file.

Issuing Read & Write Transactions to the Application Layer

Read and write transactions are issued to the endpoint application layer
by calling one of the ebfm_bar procedures in altpcietb_bfm_rdwr. The
procedures and functions listed below are available in the VHDL package
file altpcietb_bfm_rdwr.vhd or in the Verilog HDL include file
altpcietb_bfm_rdwr.v. The complete list of available procedures and
functions is:

■ ebfm_barwr —writes data from BFM shared memory to an offset
from a specific endpoint BAR. This procedure returns as soon as the
request has been passed to the VC interface module for transmission.

■ ebfm_barwr_imm —writes a maximum of four bytes of immediate
data (passed in a procedure call) to an offset from a specific endpoint
BAR. This procedure returns as soon as the request has been passed
to the VC interface module for transmission.

Altera Corporation PCI Express Compiler Version 6.1 5–33
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

■ ebfm_barrd_wait — reads data from an offset of a specific
endpoint BAR and stores it in BFM shared memory. This procedure
blocks waiting for the completion data to be returned before
returning control to the caller.

■ ebfm_barrd_nowt — reads data from an offset of a specific
endpoint BAR and stores it in the BFM shared memory. This
procedure returns as soon as the request has been passed to the VC
interface module for transmission. This allows subsequent reads to
be issued in the interim.

These routines take as parameters a BAR number to access the memory
space and the BFM shared memory address of the bar_table data
structure that was set up by the ebfm_cfg_rp_ep procedure (see
“Configuration of Root Port and Endpoint” on page 5–30). Using these
parameters simplifies the BFM test driver routines that access an offset
from a specific BAR and eliminates calculating the addresses assigned to
the specified BAR.

The root port BFM does not support accesses to endpoint I/O space
BARs.

For further details on these procedure calls, see the section “BFM
Read/Write Request Procedures” on page 5–42.

BFM Procedures
and Functions

This section documents the interface to all of the BFM procedures,
functions, and tasks that the BFM driver uses to drive endpoint
application testing.

1 The last subsection describes procedures that are specific to the
chaining DMA example design

This section describes both VHDL procedures and functions and Verilog
HDL functions and tasks where applicable. Although most VHDL
procedure are implemented as Verilog HDL tasks, some VHDL
procedures are implemented as Verilog functions rather than Verilog
HDL tasks to allow these functions to be called by other Verilog HDL
functions. Unless explicitly specified otherwise, all procedures in the
following sections also are implemented as Verilog HDL tasks.

1 The Verilog HDL user can see some underlying procedures and
functions that are called by other procedures that normally are
hidden in the VHDL package. These undocumented procedures
are not intended to be called by the user.

5–34 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

The following procedures and functions are available in the VHDL
package altpcietb_bfm_rdwr.vhd or in the Verilog HDL include file
altpcietb_bfm_rdwr.v. These procedures and functions support issuing
memory and configuration transactions on the PCI Express link.

All VHDL arguments are subtype NATURAL and are input-only unless
specified otherwise. All Verilog HDL arguments are type INTEGER and
are input-only unless specified otherwise.

BFM Read and Write Procedures

This section describes the procedures used to read and write data among
BFM shared memory, endpoint BARs, and specified configuration
registers

ebfm_barwr Procedure

The ebfm_barwr procedure writes a block of data from BFM shared
memory to an offset from the specified endpoint BAR. The length can be
longer than the configured Maximum Payload Size; the procedure
breaks the request up into multiple transactions as needed. This routine
returns as soon as the last transaction has been accepted by the VC
interface module.

Table 5–18. ebfm_barwr Procedure

Syntax ebfm_barwr(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num Number of the BAR used with pcie_offset to determine PCI Express address

pcie_offset Address offset from the BAR base

lcladdr BFM shared memory address of the data to be written

byte_len Length, in bytes, of the data written. Can be 1 to the minimum of the bytes
remaining in the BAR space or BFM shared memory

tclass Traffic class used for the PCI Express transaction

Altera Corporation PCI Express Compiler Version 6.1 5–35
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_barwr_imm Procedure

The ebfm_barwr_imm procedure writes up to four bytes of data to an
offset from the specified endpoint BAR.

Table 5–19. ebfm_barwr_imm Procedure

Syntax ebfm_barwr_imm(bar_table, bar_num, pcie_offset, imm_data,
byte_len, tclass)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared
memory

bar_num Number of the BAR used with pcie_offset to determine PCI
Express address

pcie_offset Address offset from the BAR base

imm_data Data to be written.
In VHDL, this argument is a std_logic_vector(31 downto 0).
In Verilog HDL, this argument is reg [31:0].

In both languages, the bits written depend on the length as follows:

Length Bits Written
4 31 downto 0
3 23 downto 0
2 15 downto 0
1 7 downto 0

byte_len Length of the data to be written in bytes. Maximum length is 4 bytes.

tclass Traffic Class to be used for the PCI Express transaction.

5–36 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

ebfm_barrd_wait Procedure

The ebfm_barrd_wait procedure reads a block of data from the offset
of the specified endpoint BAR and stores it in BFM shared memory. The
length can be longer than the configured maximum read request size; the
procedure breaks the request up into multiple transactions as needed.
This procedure waits until all of the completion data is returned and
places it in shared memory.

Table 5–20. ebfm_barrd_wait Procedure

Syntax ebfm_barrd_wait(bar_table, bar_num, pcie_offset, lcladdr,
byte_len, tclass)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num Number of the BAR used with pcie_offset to determine PCI
Express address

pcie_offset Address offset from the BAR base

lcladdr BFM shared memory address where the read data is stored

byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of
the bytes remaining in the BAR space or BFM shared memory

tclass Traffic class used for the PCI Express transaction

Altera Corporation PCI Express Compiler Version 6.1 5–37
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_barrd_nowt Procedure

The ebfm_barrd_nowt procedure reads a block of data from the offset
of the specified endpoint BAR and stores the data in BFM shared memory.
The length can be longer than the configured maximum read request size;
the procedure breaks the request up into multiple transactions as needed.
This routine returns as soon as the last read transaction has been accepted
by the VC interface module. This allows subsequent reads to be issued
immediately.

Table 5–21. ebfm_barrd_nowt Procedure

Syntax ebfm_barrd_nowt(bar_table, bar_num, pcie_offset, lcladdr, byte_len,
tclass)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address

pcie_offset Address offset from the BAR base

lcladdr BFM shared memory address where the read data is stored

byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of the
bytes remaining in the BAR space or BFM shared memory

tclass Traffic Class to be used for the PCI Express transaction

5–38 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

ebfm_cfgwr_imm_wait Procedure

The ebfm_cfgwr_imm_wait procedure writes up to four bytes of data
to the specified configuration register. This procedure waits until the
write completion has been returned.

Table 5–22. ebfm_cfgwr_imm_wait Procedure

Syntax ebfm_cfgwr_imm_wait(bus_num, dev_num, fnc_num, imm_regb_ad, regb_ln,
imm_data, compl_status

Arguments bus_num PCI Express bus number of the target device

dev_num PCI Express device number of the target device

fnc_num Function number in the target device to be accessed

regb_ad Byte-specific address of the register to be written

regb_ln Length, in bytes, of the data written. Maximum length is four bytes. The
regb_ln and the regb_ad arguments cannot cross a DWORD boundary.

imm_data Data to be written.
In VHDL, this argument is a std_logic_vector(31 downto 0).
In Verilog HDL, this argument is reg [31:0].
In both languages, the bits written depend on the length:

Length Bits Written
4 31 downto 0
3 23 downto 0
2 5 downto 0
1 7 downto 0

compl_status In VHDL. this argument is a std_logic_vector(2 downto 0) and is set by
the procedure on return.
In Verilog HDL, this argument is re [2:0].
In both languages, this argument is the completion status as specified in the
PCI Express specification:

compl_status Definition
000 SC —Successful completion
001 UR —Unsupported Request
010 CRS —Configuration Request Retry Status
100 CA —Completer Abort

Altera Corporation PCI Express Compiler Version 6.1 5–39
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_cfgwr_imm_nowt Procedure

The ebfm_cfgwr_imm_nowt procedure writes up to four bytes of data
to the specified configuration register. This procedure returns as soon as
the VC interface module accepts the transaction, allowing other writes to
be issued in the interim. Use this procedure only when successful
completion status is expected.

Table 5–23. ebfm_cfgwr_imm_nowt Procedure

Syntax ebfm_cfgwr_imm_nowt(bus_num, dev_num, fnc_num, imm_regb_adr,
regb_len, imm_data)

Arguments bus_num PCI Express bus number of the target device

dev_num PCI Express device number of the target device

fnc_num Function number in the target device to be accessed

regb_ad Byte-specific address of the register to be written

regb_ln Length, in bytes, of the data written. Maximum length is four bytes, The regb_ln
the regb_ad arguments cannot cross a DWORD boundary.

imm_data Data to be written
In VHDL. this argument is a std_logic_vector(31 downto 0).
In Verilog HDL, this argument is reg [31:0].
In both languages, the bits written depend on the length:

Length Bits Written
4 31 downto 0
3 23 downto 0
2 5 downto 0
1 7 downto 0

5–40 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

ebfm_cfgrd_wait Procedure

The ebfm_cfgrd_wait procedure reads up to four bytes of data from
the specified configuration register and stores the data in BFM shared
memory. This procedure waits until the read completion has been
returned.

Table 5–24. ebfm_cfgrd_wait Procedure

Syntax ebfm_cfgrd_wait(bus_num, dev_num, fnc_num, regb_ad, regb_ln,
lcladdr, compl_status)

Arguments bus_num PCI Express bus number of the target device

dev_num PCI Express device number of the target device

fnc_num Function number in the target device to be accessed

regb_ad Byte-specific address of the register to be written.

regb_ln Length, in bytes, of the data read. Maximum length is four bytes. The
regb_ln and the regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address of where the read data should be placed

compl_status Completion status for the configuration transaction.
In VHDL, this argument is a std_logic_vector(2 downto 0) and is set
by the procedure on return.
In Verilog HDL, this argument is reg [2:0].
In both languages, this is the completion status as specified in the PCI
Express specification:

compl_status Definition
000 SC —Successful completion
001 UR —Unsupported Request
010 CRS —Configuration Request Retry Status
100 CA —Completer Abort

Altera Corporation PCI Express Compiler Version 6.1 5–41
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_cfgrd_nowt Procedure

The ebfm_cfgrd_nowt procedure reads up to four bytes of data from
the specified configuration register and stores the data in the BFM shared
memory. This procedure returns as soon as the VC interface module has
accepted the transaction, allowing other reads to be issued in the interim.
Use this procedure only when successful completion status is expected
and a subsequent read or write with a wait can be used to guarantee the
completion of this operation.

BFM Performance Counting

This section describes BFM routines that allow you to access performance
data. The Root Port BFM maintains a set of performance counters for the
packets being transmitted and received by the Root Port. Counters exist
for each of the following packets:

■ Transmitted Packets
■ Transmitted QWORDs of Payload Data (A full QWORD is counted

even if not all bytes are enabled)
■ Received Packets
■ Received QWORDs of Payload Data (A full QWORD is counted even

if not all bytes are enabled)

The above counters are continuously counting from the start of
simulation. The procedure ebfm_start_perf_sample resets all of the
counters to 0.

Table 5–25. ebfm_cfgrd_nowt Procedure

Syntax ebfm_cfgrd_nowt(bus_num, dev_num, fnc_num, regb_ad, regb_ln,
lcladdr)

Arguments bus_num PCI Express bus number of the target device

bus_num PCI Express bus number of the target device

dev_num PCI Express device number of the target device

fnc_num Function number in the target device to be accessed

regb_ad Byte-specific address of the register to be written

regb_ln Length, in bytes, of the data written. Maximum length is four bytes. The
regb_ln and regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address where the read data should be placed

5–42 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

The ebfm_disp_perf_sample procedure displays scaled versions of
these counters to the standard output. These values are displayed as a
sum across all of the Virtual Channels. The ebfm_disp_perf_sample
also resets the counters to 0, which effectively starts the next performance
sample.

Typically a performance measurement routine calls
ebfm_start_perf_sample at the time when performance analysis
should begin. Then ebfm_disp_perf_sample can be called at the end
of the performance analysis time given the aggregate numbers for the
entire performance analysis time. Alternatively,
ebfm_disp_perf_sample could be called multiple times during the
performance analysis window to give a more precise view of the
performance. The aggregate performance numbers would need to be
calculated by post-processing of the simulator standard output.

BFM Read/Write Request Procedures

ebfm_start_perf_sample Procedure

This procedure simply resets the performance counters. The procedure
waits until the next Root Port BFM clock edge to ensure the counters are
synchronously reset. Calling this routine effectively starts a performance
sampling window.

Altera Corporation PCI Express Compiler Version 6.1 5–43
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_disp_perf_sample Procedure

This procedure displays performance information to the standard output.
The procedure will also reset the performance counters on the next Root
Port BFM clock edge. Calling this routine effectively starts a new
performance sampling window. No performance count information is
lost from one sample window to the next.

An example of the output from this routine is shown in the following
figure:

Figure 5–5. Output from ebfm_disp_perf_sample Procedure

The above example is from a VHDL version of the testbench. The Verilog
version may have slightly different formatting.

INFO: 92850 ns PERF: Sample Duration: 5008
ns
INFO: 92850 ns PERF: Tx Packets: 33
INFO: 92850 ns PERF: Tx Bytes: 8848
INFO: 92850 ns PERF: Tx MByte/sec: 1767
INFO: 92850 ns PERF: Tx Mbit/sec: 14134
INFO: 92850 ns PERF: Rx Packets: 34
INFO: 92850 ns PERF: Rx Bytes: 8832
INFO: 92850 ns PERF: Rx MByte/sec: 1764
INFO: 92850 ns PERF: Rx Mbit/sec: 14109

5–44 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

Table 5–26 describes the information in Figure 5–5:

BFM Configuration Procedures

The following procedures are available in altpcietb_bfm_configure.
These procedures support configuration of the root port and endpoint
configuration space registers.

All VHDL arguments are subtype NATURAL and are input-only unless
specified otherwise. All Verilog HDL arguments are type INTEGER and
are input-only unless specified otherwise.

Table 5–26. Sample Duration & Tx Packets Description

Label Description

Sample Duration The time elapsed since the start of the sampling window, the time when
ebfm_start_perf_sample or ebfm_disp_perf_sample was last called.

Tx Packets Total number of packet headers transmitted by the Root Port BFM during the sample
window.

Tx Bytes Total number of payload data bytes transmitted by the Root Port BFM during the sample
window. This is the number of QWORDs transferred multiplied by 8. No adjustment is made
for partial QWORDs due to packets that don't start or end on QWORD boundary.

Tx MByte/sec Transmitted megabytes per second during the sample window. This is Tx Bytes divided by
the Sample Duration.

Tx Mbit/sec Transmitted megabits per second during the sample window. This is the Tx MByte/sec
multiplied by 8.

Rx Packets Total number of packet headers received by the Root Port BFM during the sample window.

Rx Bytes Total number of payload data bytes received by the Root Port BFM during the sample
window. This is the number of QWORDs transferred multiplied by 8. No adjustment is made
for partial QWORDs due to packets that don't start or end on QWORD boundary.

Rx MByte/sec Received megabytes per second during the sample window. This is Rx Bytes divided by the
Sample Duration.

Rx Mbit/sec Received megabits per second during the sample window. This is the Rx MByte/sec
multiplied by 8.

Altera Corporation PCI Express Compiler Version 6.1 5–45
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_cfg_rp_ep Procedure

The ebfm_cfg_rp_ep procedure configures the root port and endpoint
configuration space registers for operation. See Table 5–27 for a
description the arguments for this procedure.

Table 5–27. ebfm_cfg_rp_ep Procedure

Syntax ebfm_cfg_rp_ep(bar_table, ep_bus_num, ep_dev_num,
rp_max_rd_req_size, display_ep_config, addr_map_4GB_limit)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared
memory. The bar_table structure is populated by this routine.

ep_bus_num PCI Express bus number of the target device. This can be any value
greater than 0. The root port is configured to use this as it’s secondary
bus number.

ep_dev_num PCI Express device number of the target device. This can be any
value. The endpoint is automatically assigned this value when it
receives it’s first configuration transaction.

rp_max_rd_req_size Maximum read request size in bytes for reads issued by the root port.
This must be set to the maximum value supported by the endpoint
application layer. If the application layer only supports reads of the
Maximum Payload Size, then this can be set to 0 and the read
request size will be set to the maximum payload size. Valid values for
this argument are 0, 128, 256, 512, 1024, 2048 and 4096.

display_ep_config When set to 1 many of the endpoint configuration space registers are
displayed after they have been initialized. This causes some
additional reads of registers that are not normally accessed during the
configuration process (such as the Device ID and Vendor ID).

addr_map_4GB_limit When set to 1 the address map of the simulation system will be limited
to 4GB. Any 64-bit BARs will be assigned below the 4GB limit.

5–46 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

eebfm_cfg_decode_bar Procedure

The ebfm_cfg_decode_bar procedure analyzes the information in the
BAR table for the specified BAR and returns details about the BAR
attributes.

BFM Shared Memory Access Procedures

The following procedures and functions are available in the VHDL file
altpcietb_bfm_shmem.vhd or in the Verilog HDL include file
altpcietb_bfm_shmem.v that uses the module
altpcietb_bfm_shmem_common.v, instantiated at the top level of the
testbench. These procedures and functions support accessing the BFM
shared memory.

All VHDL arguments are subtype NATURAL and are input-only unless
specified otherwise. All Verilog HDL arguments are type INTEGER and
are input-only unless specified otherwise.

Table 5–28. ebfm_cfg_decode_bar Procedure

Syntax ebfm_cfg_decode_bar(bar_table, bar_num, log2_size, is_mem,
is_pref, is_64b)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

log2_size This argument is set by the procedure to the Log Base 2 of the size of the BAR.
If the BAR is not enabled, this will be set to 0

is_mem This std_logic argument is set by the procedure to indicate if the BAR is a
memory space BAR (1) or I/O Space BAR (0)

is_pref This std_logic argument is set by the procedure to indicate if the BAR is a
prefetchable BAR (1) or non-prefetchable BAR (0)

is_64b This std_logic argument is set by the procedure to indicate if the BAR is a
64-bit BAR (1) or 32-bit BAR (0). This is set to 1 only for the lower numbered
BAR of the pair

Altera Corporation PCI Express Compiler Version 6.1 5–47
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Shared Memory Constants

The following constants are defined in the BFM shared memory package.
They select a data pattern in the shmem_fill and shmem_chk_ok
routines. These shared memory constants are all VHDL subtype
NATURAL or Verilog HDL type INTEGER.

shmem_write

The shmem_write procedure writes data to the BFM shared memory.

Table 5–29. Constants: VHDL Subtype NATURAL or Verilog HDL Type INTEGER

Constant Description

SHMEM_FILL_ZEROS Specifies a data pattern of all zeros

SHMEM_FILL_BYTE_INC Specifies a data pattern of incrementing 8-bit bytes (0x00, 0x01, 0x02, etc.)

SHMEM_FILL_WORD_INC Specifies a data pattern of incrementing 16-bit words (0x0000, 0x0001,
0x0002, etc.)

SHMEM_FILL_DWORD_INC Specifies a data pattern of incrementing 32-bit double words (0x00000000,
0x00000001, 0x00000002, etc.)

SHMEM_FILL_QWORD_INC Specifies a data pattern of incrementing 64-bit quad words
(0x0000000000000000, 0x0000000000000001, 0x0000000000000002, etc.)

SHMEM_FILL_ONE Specifies a data pattern of all ones

Table 5–30. shmem_write VHDL Procedure or Verilog HDL Task

Syntax shmem_write(addr, data, leng)

Arguments addr BFM shared memory starting address for writing data

data Data to write to BFM shared memory.
In VHDL, this argument is an unconstrained std_logic_vector. This
vector must be 8 times the leng long.
In Verilog, this parameter is implemented as a 64-bit vector.
leng is 1- 8 bytes.

In both languages, bits 7 downto 0 are written to the location specified by
addr; bits 15 downto 8 are written to the addr+1 location, etc.

leng Length, in bytes, of data written

5–48 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

shmem_read Function

The shmem_read function reads data to the BFM shared memory.

shmem_display VHDL Procedure or Verilog HDL Function

The shmem_display VHDL procedure or Verilog HDL function
displays a block of data from the BFM shared memory.

Table 5–31. shmem_read Function

Syntax data:= shmem_read(addr, leng)

Arguments addr BFM shared memory starting address for reading data

leng Length, in bytes, of data read

Return data Data read from BFM shared memory.
In VHDL, this is an unconstrained std_logic_vector, in which the vector is 8 times
the leng long.
In Verilog, this parameter is implemented as a 64-bit vector.
leng is 1- 8 bytes. If the leng is less than 8 bytes, only the corresponding least
significant bits of the returned data are valid.

In both languages, bits 7 downto 0 are read from the location specified by addr; bits 15
downto 8 are read from the addr+1 location, etc.

Table 5–32. shmem_display VHDL Procedure/ or Verilog Function

Syntax VHDL: shmem_display(addr, leng, word_size, flag_addr, msg_type)
Verilog HDL: dummy_return:=shmem_display(addr, leng, word_size,
flag_addr, msg_type);

Arguments addr BFM shared memory starting address for displaying data

leng Length, in bytes, of data to display

word_size Size of the words to display. Groups individual bytes into words. Valid values are 1,
2, 4, and 8

flag_addr Adds a <== flag to the end of the display line containing this address. Useful for
marking specific data. Set to a value greater than 2**21 (size of BFM shared
memory) to suppress the flag.

msg_type Specifies the message type to be displayed at the beginning of each line. See
“BFM Log & Message Procedures” on page 5–50 for more information on
message types. Should be on the constants defined in Table 5–35 on page 5–52.

Altera Corporation PCI Express Compiler Version 6.1 5–49
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

shmem_fill Procedure

The shmem_fill procedure fills a block of BFM shared memory with a
specified data pattern.

Table 5–33. shmem_fill Procedure

Syntax shmem_fill(addr, mode, leng, init)

Arguments addr BFM shared memory starting address for filling data

mode Data pattern used for filling the data. Should be one of the constants
defined in section “Shared Memory Constants” on page 5–47.

leng Length, in bytes, of data to fill. If the length is not a multiple of the
incrementing data pattern width, then the last data pattern is truncated
to fit.

init Initial data value used for incrementing data pattern modes

In VHDL. this argument is type std_logic_vector(63 downto
0).
In Verilog HDL, this argument is reg [63:0].

In both languages, the necessary least significant bits are used for the
data patterns that are smaller than 64-bits.

5–50 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

shmem_chk_ok Function

The shmem_chk_ok function checks a block of BFM shared memory
against a specified data pattern.

BFM Log & Message Procedures

The following procedures and functions are available in the VHDL
package file altpcietb_bfm_log.vhd or in the Verilog HDL include file
altpcietb_bfm_log.v that uses the altpcietb_bfm_log_common.v
module, instantiated at the top level of the testbench.

These procedures provide support for displaying messages in a common
format, suppressing informational messages, and stopping simulation on
specific message types.

Table 5–34. shmem_chk_ok Function

Syntax result:= shmem_chk_ok(addr, mode, leng, init, display_error)

Arguments addr BFM shared memory starting address for checking data.

mode Data pattern used for checking the data. Should be one of the
constants defined in section “Shared Memory Constants” on
page 5–47.

leng Length, in bytes, of data to check.

init In VHDL. this argument is type std_logic_vector(63 downto
0).
In Verilog HDL, this argument is reg [63:0].

In both languages, the necessary least significant bits are used for
the data patterns that are smaller than 64-bits.

display_error When set to 1, this argument displays the mis-comparing data on the
simulator standard output.

Return Result Result is VHDL type Boolean.
TRUE—Data pattern compared successfully
FALSE—Data pattern did not compare successfully

Result in Verilog HDL is 1-bit.
1’b1 — Data patterns compared successfully
1’b0 — Data patterns did not compare successfully

Altera Corporation PCI Express Compiler Version 6.1 5–51
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Log Constants

The following constants are defined in the BFM Log package. They define
the type of message and their values determine whether a message is
displayed or simulation is stopped after a specific message. Each
displayed message has a specific prefix, based on the message type in
Table 5–35.

You can suppress the display of certain message types. For the default
value determining whether a message type is displayed, see Table 5–35.
To change the default message display, modify the display default value
with a procedure call to ebfm_log_set_suppressed_msg_mask.

Certain message types also stop simulation after the message is
displayed. Table 5–35 shows the default value determining whether a
message type stops simulation. You can specify whether simulation stops
for particular messages with the procedure
ebfm_log_set_stop_on_msg_mask.

All of these log message constants are VHDL subtype NATURAL or type
INTEGER for Verilog HDL.

ebfm_display VHDL Procedure or Verilog HDL Function

The ebfm_display procedure or function displays a message of the
specified type to the simulation standard output and also the log file if
ebfm_log_open() is called.

A message can be suppressed and/or simulation stopped based on the
default settings of the message type and the value of the bit mask for each
of the procedures below when each is called. You can call one or both of
these procedures based on what messages you want displayed and
whether or not you want simulation to stop for specific messages.

■ When ebfm_log_set_suppressed_msg_mask() is called, the
display of the message might be suppressed based on the value of the
bit mask.

■ When ebfm_log_set_stop_on_msg_mask() is called, the
simulation can be stopped after the message is displayed, based on
the value of the bit mask.

5–52 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

Table 5–35. Log Messages Using VHDL Constants - Subtype NATURAL (Part 1 of 2)

Constant (Message Type) Description
Mask

Bit
Number

Display
by

Default

Simulation
Stops by
Default

Message
Prefix

EBFM_MSG_DEBUG Specifies Debug
Messages.

0 N N DEBUG:

EBFM_MSG_INFO Specifies informational
messages, such as
configuration register
values, starting and
ending of tests, etc.

1 Y N INFO:

EBFM_MSG_WARNING Specifies warning
messages, such as
tests being skipped due
to the specific
configuration, etc.

2 Y N WARNIN
G:

EBFM_MSG_ERROR_INFO Specifies additional
information for an error.
Use this message to
display preliminary
information before an
error message that
stops simulation.

3 Y N ERROR:

EBFM_MSG_ERROR_CONTINUE Specifies a recoverable
error that allows
simulation to continue.
The error can be
something like a data
mis-compare.

4 Y N ERROR:

EBFM_MSG_ERROR_FATAL Specifies an error that
stops simulation
because the error left
the testbench in a state
where further
simulation is not
possible.

N/A Y
Cannot
suppress

Y
Cannot
suppress

FATAL:

Altera Corporation PCI Express Compiler Version 6.1 5–53
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

EBFM_MSG_ERROR_FATAL_TB_ERR Used for BFM test
driver or root port BFM
fatal errors. Specifies
an error that stops
simulation because the
error left the testbench
in a state where further
simulation is not
possible. Use this error
message for errors that
occur due to a problem
in the BFM test driver
module or the root port
BFM, and is not caused
by the endpoint
application layer being
tested.

N/A Y
Cannot
suppress

Y
Cannot
suppress

FATAL:

Table 5–35. Log Messages Using VHDL Constants - Subtype NATURAL (Part 2 of 2)

Constant (Message Type) Description
Mask

Bit
Number

Display
by

Default

Simulation
Stops by
Default

Message
Prefix

Table 5–36. ebfm_display Procedure

Syntax VHDL: ebfm_display(msg_type, message)
Verilog HDL: dummy_return:=ebfm_display(msg_type, message);

Argument msg_type Message type for the message. Should be one of the constants
defined in Table 5–35 on page 5–52.

message In VHDL, this argument is VHDL type string and contains the
message text to be displayed.

In Verilog HDL, the message string is limited to a maximum of 100
characters. Also, because Verilog HDL does not allow variable
length string This routine strips off leading characters of 8’h00
before displaying the message.

Return always 0 This applies only to the Verilog HDL routine.

5–54 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

ebfm_log_stop_sim VHDL Procedure or Verilog HDL Function

The ebfm_log_stop_sim procedure stops the simulation.

ebfm_log_set_suppressed_msg_mask Procedure

The ebfm_log_set_suppressed_msg_mask procedure controls
which message types are suppressed. This alters the Displayed by
Default settings described in Table 5–35 on page 5–52.

Table 5–37. ebfm_log_stop_sim Procedure

Syntax VHDL: ebfm_log_stop_sim(success)
Verilog VHDL: return:=ebfm_log_stop_sim(success);

Argument success When set to a 1, this process stops the simulation with a message indicating
successful completion. The message is prefixed with SUCCESS:.

Otherwise, this process stops the simulation with a message indicating
unsuccessful completion. The message is prefixed with FAILURE:.

Return Always 0 This value applies only to the Verilog HDL function.

Table 5–38. ebfm_log_set_suppressed_msg_mask Procedure

Syntax bfm_log_set_suppressed_msg_mask (msg_mask)

Argument msg_mask In VHDL, this argument is a subtype of std_logic_vector,
EBFM_MSG_MASK. This vector has a range from
EBFM_MSG_ERROR_CONTINUE downto EBFM_MSG_DEBUG.
In Verilog HDL, this argument is
reg [EBFM_MSG_ERROR_CONTINUE: EBFM_MSG_DEBUG].
In both languages, a 1 in a specific bit position of the msg_mask
causes messages of the type corresponding to the bit position to be
suppressed.

Altera Corporation PCI Express Compiler Version 6.1 5–55
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

ebfm_log_set_stop_on_msg_mask Procedure

The ebfm_log_set_stop_on_msg_mask procedure controls which
message types stop simulation. This alters the Stop Sim by Default
settings described in Table 5–35 on page 5–52.

ebfm_log_open Procedure

The ebfm_log_open procedure opens a log file of the specified name.
All displayed messages are called by ebfm_display and are written to
this log file as simulator standard output.

ebfm_log_close Procedure

The ebfm_log_close procedure closes the log file opened by a previous
call to ebfm_log_open.

Table 5–39. ebfm_log_set_stop_on_msg_mask Procedure

Syntax ebfm_log_set_stop_on_msg_mask (msg_mask)

Argument msg_mask In VHDL, this argument is a subtype of std_logic_vector,
EBFM_MSG_MASK. This vector has a range from
EBFM_MSG_ERROR_CONTINUE downto EBFM_MSG_DEBUG.
In Verilog HDL, this argument is
reg [EBFM_MSG_ERROR_CONTINUE:EBFM_MSG_DEBUG].
In both languages, a 1 in a specific bit position of the msg_mask causes
messages of the type corresponding to the bit position to stop the
simulation after the message is displayed.

Table 5–40. ebfm_log_open Procedure

Syntax ebfm_log_open (fn)

Argument fn This argument is type string.
File name of log file to be opened

Table 5–41. ebfm_log_close Procedure

Syntax ebfm_log_close

Argument NONE

5–56 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

himage (std_logic_vector) Function

The himage function is a utility routine that returns a hexadecimal string
representation of the std_logic_vector argument. The string is the
length of the std_logic_vector divided by four (rounded up). You
can control the length of the string by padding or truncating the argument
as needed.

himage (integer) Function

The himage function is a utility routine that returns a hexadecimal string
representation of the integer argument. The string is the length specified
by the hlen argument.

Verilog HDL Formatting Functions

This section outlines formatting functions that are only used by Verilog
HDL. All these functions take one argument of a specified length and
return a vector of a specified length.

Table 5–42. himage (std_logic_vector) Function

Syntax string:= himage(vec)

Argument vec This argument is a std_logic_vector that is converted to a
hexadecimal string.

Return String Hexadecimal formatted string representation of the argument

Table 5–43. himage (integer) Function

Syntax string:= himage(num, hlen)

Arguments num Argument of type integer that is converted to a hexadecimal string

hlen Length of the returned string. The string is truncated or padded with
0’s on the right as needed.

Return string Hexadecimal formatted string representation of the argument

Altera Corporation PCI Express Compiler Version 6.1 5–57
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

himage1

This function creates a 1-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

himage2

This function creates a 2-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

himage4

This function creates a 4-digit hexadecimal string representation of the
input argument can be concatenated into a larger message string and
passed to ebfm_display.

Table 5–44. himage1

syntax string:= himage(vec)

Argument vec Input data type reg with a range of 3:0.

Return range string Returns a 1-digit hexadecimal representation of the input argument. Return
data is type reg with a range of 8:1

Table 5–45. himage2

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 7:0.

Return range string Returns a 2-digit hexadecimal presentation of the input argument, padded
with leading 0’s, if they are needed. Return data is type reg with a range of
16:1

Table 5–46. himage4

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 15:0.

Return range string Returns a 4-digit hexadecimal representation of the input argument, padded
with leading 0’s, if they are needed. Return data is type reg with a range of 32:1

5–58 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

himage8

This function creates an 8-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

himage16

This function creates a 16-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

dimage1

This function creates a 1-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

Table 5–47. himage8

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns an 8-digit hexadecimal representation of the input argument, padded with
leading s 0’s, if they are needed. Return data is type reg with a range of 64:1

Table 5–48. himage16

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 63:0.

Return range string Returns a 16-digit hexadecimal representation of the input argument, padded with
leading 0’s, if they are needed. Return data is type reg with a range of 128:1

Table 5–49. dimage1

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 1-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 8:1.

Returns the letter U if the value cannot be represented.

Altera Corporation PCI Express Compiler Version 6.1 5–59
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

dimage2

This function creates a 2-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

dimage3

This function creates a 3-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

dimage4

This function creates a 4-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

Table 5–50. dimage2

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 2-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 16:1.

Returns the letter U if the value cannot be represented.

Table 5–51. dimage3

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 3-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 24:1.

Returns the letter U if the value cannot be represented.

Table 5–52. dimage4

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 4-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 32:1.

Returns the letter U if the value cannot be represented.

5–60 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

dimage5

This function creates a 5-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

dimage6

This function creates a 6-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

dimage7

This function creates a 7-digit hexadecimal string representation of the
input argument that can be concatenated into a larger message string and
passed to ebfm_display.

Table 5–53. dimage5

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 5-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 40:1.

Returns the letter U if the value cannot be represented.

Table 5–54. dimage6

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 6-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 48:1.

Returns the letter U if the value cannot be represented.

Table 5–55. dimage7

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 7-digit decimal representation of the input argument that is padded with
leading 0’s if necessary. Return data is type reg with a range of 56:1.

Returns the letter U if the value cannot be represented.

Altera Corporation PCI Express Compiler Version 6.1 5–61
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Procedures and Functions Specific to the chaining DMA Design

This section describes procedures that are specific to the chaining DMA
example design.

chained_dma_test Procedure

The chained_dma_test procedure is the top level procedure that runs
the chaining DMA read and the chaining DMA write

dma_rd_test Procedure

The dma_rd_test procedure is used for DMA read, from the Endpoint
memory to the BFM shared memory.

Table 5–56. chained_dma_test Procedure

Syntax chained_dma_test (bar_table, bar_num, direction, use_msi,
use_eplast)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

direction When 0 read,
When 1 write,
When 2 Read then Write
When 3 Write then Read

Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA
completion

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Table 5–57. dma_rd_test Procedure

Syntax dma_rd_test (bar_table, bar_num, use_msi, use_eplast)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA
completion

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

5–62 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

dma_wr_test Procedure

The dma_wr_test procedure is used for DMA write, from the BFM
shared memory to the Endpoint memory.

dma_set_rd_desc_data Procedure

The dma_set_rd_desc_data procedure is used for to configure the
BFM shared memory for the DMA read.

dma_set_wr_desc_data Procedure

The dma_set_wr_desc_data procedure is used for to configure the
BFM shared memory for the DMA write.

dma_set_header Procedure

The dma_set_header procedure is used for to configure the DMA
descriptor table for DMA read or DMA write.

Table 5–58. dma_wr_test Procedure

Syntax dma_wr_test (bar_table, bar_num, use_msi, use_eplast)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA
completion

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Table 5–59. dma_set_rd_desc_data Procedure

Syntax dma_set_rd_desc_data (bar_table, bar_num)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

Table 5–60. dma_set_wr_desc_data Procedure

Syntax dma_set_wr_desc_data (bar_table, bar_num)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory

bar_num BAR number to analyze

Altera Corporation PCI Express Compiler Version 6.1 5–63
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

Table 5–61. dma_set_wr_desc_data Procedure

Syntax dma_set_wr_desc_data (bar_table, bar_num)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared
memory

bar_num BAR number to analyze

Descriptor_size Number of descriptor

direction When 0 read,
When 1 write,

Use_msi When set, the Root Port uses native PCI express MSI to detect
the DMA completion

Use_eplast When set, the Root Port uses BFM shared memory polling to
detect the DMA completion.

Bdt_msb BFM shared memory upper address value

Bdt_lsb BFM shared memory lower address value

Msi number When use_msi is set, this specifies the number of msi which is set
by the procedure dma_set_msi

Msi_traffic_class When use_msi is set, this specifies the MSI traffic class which is
set by the procedure dma_set_msi

msi_expected_dmawr When use_msi is set, this specifies expected MSI data value
which is set by the procedure dma_set_msi

Multi_message_enable When use_msi is set, this specifies the MSI traffic class which is
set by the procedure dma_set_msi

5–64 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

rc_poll Procedure

The rc_poll procedure is used to polled a given DWORD in a given
BFM shared memory location

.

msi_poll Procedure

The msi_poll procedure tracks MSI completion from the endpoint.

Table 5–62. rc_poll Procedure

Syntax rc_poll (rc_addr, rc_data)

Arguments rc_addr Address of the BFM shared memory which is being polled

rc_data Expected data value of the which is being polled

Table 5–63. msi_poll Procedure

Syntax dma_set_wr_desc_data (bar_table, bar_num)

Arguments Dma_read When set, poll MSI from the DMA read module

Dma_write When set, poll MSI from the DMA write module

Msi number When use_msi is set, this specifies the number of msi which is
set by the procedure dma_set_msi

Msi_traffic_class When use_msi is set, this specifies the MSI traffic class which
is set by the procedure dma_set_msi

msi_expected_dmawr When use_msi is set, this specifies expected MSI data value
which is set by the procedure dma_set_msi

Multi_message_enable When use_msi is set, this specifies the MSI traffic class which
is set by the procedure dma_set_msi

Altera Corporation PCI Express Compiler Version 6.1 5–65
December 2006 PCI Express Compiler User Guide

Testbench & Example Designs

dma_set_msi Procedure

The dma_set_msi procedure sets PCI Express native MSI for the DMA
read or the DMA write..

Table 5–64. dma_set_msi Procedure

Syntax et_msi (bar_table, bar_num)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared
memory

bar_num BAR number to analyze

Bus_num Set configuration bus number

dev_num Set configuration device number

Fun_num Set configuration function number

Direction When 0 read
When 1 write

Msi number Returns the number of msi

Msi_traffic_class Returns the MSI traffic class value

msi_expected_dmawr Returns the expected MSI data value

Multi_message_enable Returns the MSI multi message enable status

5–66 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

BFM Procedures and Functions

Altera Corporation PCI Express Compiler Version 6.1 A–1
December 2006

Appendix A.
Configuration Signals

Configuration
Signals for x1
and x4
MegaCore
Functions

Table A–1 shows all of the MegaCore function’s available configuration
signals for x1 and x4 MegaCore functions. These signals are set internal to
the variation file created by the Quartus II software. They should not be
modified except by MegaWizard interface. They are provided here for
reference.

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 1 of 6)

Signal Value or Wizard
Page/Label Description

k_gbl[0] Fixed to 0 PCI Express specification compliance setting. When
the value is set to 1, the MegaCore function is set to be
compliant with the PCI Express 1.1 specification.
When the value is set to 0, the MegaCore function is set
to be compliant with PCI Express 1.0a specification.

k_gbl[9:1] Fixed to 0 Reserved.

k_gbl[10] Capabilities: Link
Common Clock

Clock configuration, 0 = system reference clock not
used, 1 = system reference clock used for PHY.

k_gbl[11] Fixed to 0 Reserved.

k_gbl[15:12] System: Interface Type Port type: 0 = native EP, 1 = legacy EP.

k_gbl[25:16] Fixed to 0 Reserved.

k_gbl[26] Fixed to 1 Implement reordering on receive path.

k_gbl[31:27] Fixed to 0 Reserved.

k_conf[15:0] Capabilities: Vendor ID Vendor ID register.

k_conf[31:16] Capabilities: Device ID Device ID register.

k_conf[39:32] Capabilities: Revision ID Revision ID register.

k_conf[63:40] Capabilities: Class Code Class code register.

k_conf[79:64] Capabilities: Subsystem
Vendor ID

Subsystem vendor ID register.

k_conf[95:80] Capabilities: Subsystem
Device ID

Subsystem device ID register.

k_conf[98:96] Fixed to 0b010 Power management capabilities register version field
(set to 010).

A–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Configuration Signals for x1 and x4 MegaCore Functions

k_conf[99] Fixed to 0 Power management capabilities register PME clock
field.

k_conf[100] Fixed to 0 Reserved.

k_conf[101] Fixed to 0 Power management capabilities register device-
specific initialization (DSI) field.

k_conf[104:102] Fixed to 0 Power management capabilities register maximum
auxiliary current required while in d3cold to support
PME.

k_conf[105] Fixed to 0 Power management capabilities register D1 support
bit.

k_conf[106] Fixed to 0 Power management capabilities register D2 support
bit.

k_conf[107] Fixed to 0 Power management capabilities register PME
message can be sent in D0 state bit.

k_conf[108] Fixed to 0 Power management capabilities register PME
message can be sent in D1 state bit.

k_conf[109] Fixed to 0 Power management capabilities register PME
message can be sent in D2 state bit.

k_conf[110] Fixed to 0 Power management capabilities register PME
message can be sent in D3 hot state bit.

k_conf[111] Fixed to 0 Power management capabilities register PME
message can be sent in D3 cold state bit.

k_conf[112] Capabilities: Implement
AER

Advanced error reporting capability supported.

k_conf[115:113] Buffer Setup: Low Priority
Virtual Channels

Port VC capability register 1 low priority VC field.

k_conf[119:116] Fixed to 0b0001 Port VC capability register 2 VC arbitration capability
field.

k_conf[127:120] Fixed to 0 Reserved.

k_conf[130:128] Fixed to 0 Reserved.

k_conf[132:131] Fixed to 0 Reserved.

k_conf[133] Calculated Device capabilities register: extended tag field
supported. Set to 1 when number of tags > 32.

k_conf[136:134] Power Management:
Endpoint L0s Acceptable
Latency

Device capabilities register: endpoint L0s acceptable
latency. 0 = < 64 ns, 1 = 64 - 128 ns, 2 = 128 - 256 ns,
3 = 256 - 512 ns, 4 = 512 ns - 1 μs, 5 = 1 - 2 μs, 6 = 2 -
4 μs, 7 => 4 μs.

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 2 of 6)

Signal Value or Wizard
Page/Label Description

Altera Corporation PCI Express Compiler Version 6.1 A–3
December 2006 PCI Express Compiler User Guide

k_conf[139:137] Power Management:
Endpoint L1 Acceptable
Latency

Device capabilities register: endpoint L1 acceptable
latency. 0 =< 1 μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs,
4 = 8 - 16 μs, 5 = 16 - 32 μs, 6 = 32 - 64 μs, 7 => 64 μs.

k_conf[143:140] Fixed to 0 Reserved.

k_conf[145:144] Fixed to 0 Reserved.

k_conf[151:146] Calculated from the
number of lanes

Link capabilities register: maximum link width. 1 = x1,
4 = x4, others = reserved.

k_conf[153:152] Power Management:
Enable L1 ASPM

Link capabilities register: active state power
management support. 01 = L0s, 11 = L1 and L0s.

k_conf[156:154] Power Management: L1
Exit Latency Common
Clock

Link capabilities register: L1 exit latency - separate
clock. 0 =< 1 μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs,
4 = 8 - 16 μs, 5 = 16 - 32 μs, 6 = 32 - 64 μs, 7 =>64 μs.

k_conf[159:157] Power Management: L1
Exit Latency Separate
Clock

Link capabilities register: L1 exit latency - common
clock. 0 =< 1 μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs,
4 = 8 - 16 μs, 5 = 16 - 32 μs, 6 = 32 - 64 μs, 7 => 64 μs.

k_conf[166:160] Fixed to 0 Reserved.

k_conf[169:167] Capabilities: Tags
Supported

Number of tags supported for non-posted requests
transmitted.

k_conf[191:170] Fixed to 0 Reserved.

k_conf[199:192] Power Management:
N_FTS Separate

Number of fast training sequences needed in separate
clock mode (N_FTS).

k_conf[207:200] Power Management:
N_FTS Common

Number of fast training sequences needed in common
clock mode (N_FTS).

k_conf[215:208] Capabilities: Link Port
Number

Link capabilities register: port number.

k_conf[216] Capabilities: Implement
ECRC Check

Advanced error capabilities register: ECRC check
enable.

k_conf[217] Capabilities: Implement
ECRC Generation

Advanced error capabilities register: ECRC generation
enable.

k_conf[218] Fixed to 0 Reserved.

k_conf[221:219] Capabilities: MSI
Messages Requested

MSI capability message control register: multiple
message capable request field. 0 = 1 message, 1 = 2
messages, 2 = 4 messages, 3 = 8 messages, 4 = 16
messages, 5 = 32 messages.

k_conf[222] Capabilities: MSI Message
64 bit Capable

MSI capability message control register: 64-bit
capable. 0 = 32b, 1 = 64b or 32b.

k_conf[223] Capabilities: MSI Per
Vector Masking

Per-bit vector masking (RO field).

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 3 of 6)

Signal Value or Wizard
Page/Label Description

A–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Configuration Signals for x1 and x4 MegaCore Functions

k_bar[31:0] System: BAR Table
(BAR0)

BAR0 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = prefetchable, bit 2 = 64 bit, bit 1 = 0, bit 0 = I/O.

k_bar[63:32] System: BAR Table
(BAR1)

BAR1 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = prefetchable, bit 2 = 64 bit, bit 1 = 0, bit 0 = I/O (or
bit 31 - 0 = size mask if previous 64 bit).

k_bar[95:64] System: BAR Table
(BAR2)

BAR2 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = prefetchable, bit 2 = 64 bit, bit 1 = 0, bit 0 = I/O.

k_bar[127:96] System: BAR Table
(BAR3)

BAR3 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = Prefetchable, bit 2 = 64 bit, bit 1 = 0, bit 0 = I/O (or
bit 31 - 0 = size mask if previous 64 bit).

k_bar[159:128] System: BAR Table
(BAR4)

BAR4 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = prefetchable, bit 2 = 64 bit, bit 1 = 0, bit 0 = I/O.

k_bar[191:160] System: BAR Table
(BAR5)

BAR5 size mask and read only fields (I/O space,
memory space, prefetchable). bit 31 - 4 = size mask, bit
3 = prefetchable, bit 2 = 64 bit, bit1 = 0, bit 0 = I/O (or
bit 31 - 0 = size mask if previous 64 bit).

k_bar[223:192] System: BAR Table (Exp
ROM)

Expansion ROM BAR size mask. bit 31 - 11 = size
mask, bit 10 - 1 = 0, bit 0 = enable.

k_cnt[95:0] Fixed to 0 Reserved.

k_cnt[106:96] Fixed to 17 Flow control initialization timer (number in μs). Number
in cycles.

k_cnt[111:107] Power Management: Idle
Threshold for L0s Entry

Idle threshold for L0s entry (in 256 ns steps).

k_cnt[116:112] Fixed to 30 Update flow control credit timer (number in μs).

k_cnt[119:117] Fixed to 0 Reserved.

k_cnt[127:120] Fixed to 200 Flow control Time-Out check (number in μs).

k_vc0[7:0] Calculated: VC Table
Posted Header Credit

Receive flow control credit for VC0 posted headers.

k_vc0[19:8] Calculated: VC Table
Posted Data Credit

Receive flow control credit for VC0 posted data.

k_vc0[27:20] Calculated: VC Table Non-
Posted Header Credit

Receive flow control credit for VC0 non-posted
headers.

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 4 of 6)

Signal Value or Wizard
Page/Label Description

Altera Corporation PCI Express Compiler Version 6.1 A–5
December 2006 PCI Express Compiler User Guide

k_vc0[35:28] Fixed to 0 Receive flow control credit for VC0 non-posted data.
The Rx buffer always has space for the maximum 1
DWORD of data that can be sent for non-posted writes
(configuration or I/O writes).

k_vc0[43:36] Fixed to 0 Receive flow control credit for VC0 completion headers.
Infinite completion credits must be advertised by
endpoints.

k_vc0[55:44] Fixed to 0 Receive flow control credit for VC0 completion data.
Infinite completion credits must be advertised by
endpoints.

k_vc1[7:0] Calculated: VC Table
Posted Header Credit

Receive flow control credit for VC1 posted headers.

k_vc1[19:8] Calculated: VC Table
Posted Data Credit

Receive flow control credit for VC1 posted data.

k_vc1[27:20] Calculated: VC Table Non-
Posted Header Credit

Receive flow control credit for VC1 non-posted
headers.

k_vc1[35:28] Fixed to 0 Receive flow control credit for VC1 non-posted data.
Non-posted writes (configuration and I/O writes) only
use VC0.

k_vc1[43:36] Fixed to 0 Receive flow control credit for VC1 completion headers.
Infinite completion credits must be advertised by
endpoints.

k_vc1[55:44] Fix to 0 Receive flow control credit for VC1 completion data.
Infinite completion credits must be advertised by
endpoints.

k_vc2[7:0] Calculated: VC Table
Posted Header Credit

Receive flow control credit for VC2 posted headers.

k_vc2[19:8] Calculated: VC Table
Posted Data Credit

Receive flow control credit for VC2 posted data.

k_vc2[27:20] Calculated: VC Table Non-
Posted Header Credit

Receive flow control credit for VC2 non-posted
headers.

k_vc2[35:28] Fixed to 0 Receive flow control credit for VC2 non-posted data.
Non-posted writes (configuration and I/O writes) only
use VC0.

k_vc2[43:36] Fixed to 0 Receive flow control credit for VC2 completion headers.
Infinite completion credits must be advertised by
endpoints.

k_vc2[55:44] Fixed to 0 Receive flow control credit for VC2 completion data.
Infinite completion credits must be advertised by
endpoints.

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 5 of 6)

Signal Value or Wizard
Page/Label Description

A–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Configuration Signals for x8 MegaCore Functions

Configuration
Signals for x8
MegaCore
Functions

Table A–2 lists and briefly describes the configuration signals for x8
MegaCore functions. These signals are set internal to the variation file
created by MegaWizard interface. They should not be modified except by
the MegaWizard interface. They are provided here for reference.

k_vc3[7:0] Calculated: VC Table
Posted Header Credit

Receive flow control credit for VC3 posted headers.

k_vc3[19:8] Calculated: VC Table
Posted Data Credit

Receive flow control credit for VC3 posted data.

k_vc3[27:20] Calculated: VC Table Non-
Posted Header Credit

Receive flow control credit for VC3 non-posted
headers.

k_vc3[35:28] Fixed to 0 Receive flow control credit for VC3 non-posted data.
Non-posted writes (configuration and I/O writes) only
use VC0.

k_vc3[43:36] Fixed to 0 Receive flow control credit for VC3 completion headers.
Infinite completion credits must be advertised by
endpoints.

k_vc3[55:44] Fixed to 0 Receive flow control credit for VC3 completion data.
Infinite completion credits must be advertised by
endpoints

Table A–1. Configuration Signals for x1 and x4 MegaCore Functions (Part 6 of 6)

Signal Value or Wizard
Page/Label Description

Table A–2. Configuration Signals for x8 MegaCore Functions

Signal Value or Wizard
Page/Label Description

k_gbl[0] Fixed to 0 PCI Express specification compliance setting. When the value is
set to 1, the MegaCore function is set to be compliant with the PCI
Express 1.1 specification.
When the value is set to 0, the MegaCore function is set to be
compliant with PCI Express 1.0a specification.

k_gbl[9:1] Fixed to 0 Reserved.

k_epleg System:
Interface Type

Endpoint Type: This signal configures the Core as a Legacy or
Native Endpoint.

0: Native Endpoint
1: Legacy Endpoint

Altera Corporation PCI Express Compiler Version 6.1 A–7
December 2006 PCI Express Compiler User Guide

k_rxro Fixed to 1 Receive Reordering: This signal implements reordering
capabilities on the Receive Path.

0: no Receive reordering
1: Receive reordering

k_conf[15:0] Capabilities:
Vendor ID

Vendor ID register.

k_conf[31:16] Capabilities:
Device ID

Device ID register.

k_conf[39:32] Capabilities:
Revision ID

Revision ID register.

k_conf[63:40] Capabilities:
Class Code

Class code register.

k_conf[79:64] Capabilities:
Subsystem
Vendor ID

Subsystem vendor ID register.

k_conf[95:80] Capabilities:
Subsystem
Device ID

Subsystem device ID register.

k_conf[98:96] Fixed to 0b010 Power management capabilities register version field (set to 010).

k_conf[99] Fixed to 0 Power management capabilities register PME clock field.

k_conf[100] Fixed to 0 Reserved.

k_conf[101] Fixed to 0 Power management capabilities register device-specific
initialization (DSI) field.

k_conf[104:102] Fixed to 0 Power management capabilities register maximum auxiliary
current required while in d3cold to support PME.

k_conf[105] Fixed to 0 Power management capabilities register D1 support bit.

k_conf[106] Fixed to 0 Power management capabilities register D2 support bit.

k_conf[107] Fixed to 0 Power management capabilities register PME message can be
sent in D0 state bit.

k_conf[108] Fixed to 0 Power management capabilities register PME message can be
sent in D1 state bit.

k_conf[109] Fixed to 0 Power management capabilities register PME message can be
sent in D2 state bit.

k_conf[110] Fixed to 0 Power management capabilities register PME message can be
sent in D3 hot state bit.

k_conf[111] Fixed to 0 Power management capabilities register PME message can be
sent in D3 cold state bit.

k_conf[112] Fixed to 0 Reserved.

Table A–2. Configuration Signals for x8 MegaCore Functions

Signal Value or Wizard
Page/Label Description

A–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Configuration Signals for x8 MegaCore Functions

k_conf[115:113] Buffer Setup:
Low Priority
Virtual Channels

Port VC capability register 1 low priority VC field.

k_conf[119:116] Fixed to 0b0001 Port VC capability register 2 VC arbitration capability field.

k_conf[127:120] Fixed to 0 Reserved.

k_conf[130:128] Fixed to 0 Reserved.

k_conf[132:131] Fixed to 0 Reserved.

k_conf[133] Fixed to 0 Reserved.

k_conf[136:134] Power
Management:
Endpoint L0s
Acceptable
Latency

Device capabilities register: endpoint L0s acceptable latency. 0 =
< 64 ns, 1 = 64 - 128 ns, 2 = 128 - 256 ns, 3 = 256 - 512 ns, 4 =
512 ns - 1 μs, 5 = 1 - 2 μs, 6 = 2 - 4 μs, 7 => 4 μs.

k_conf[139:137] Power
Management:
Endpoint L1
Acceptable
Latency

Device capabilities register: endpoint L1 acceptable latency. 0 =<
1 μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs, 4 = 8 - 16 μs, 5 = 16
- 32 μs, 6 = 32 - 64 μs, 7 => 64 μs.

k_conf[143:140] Fixed to 0 Reserved.

k_conf[145:144] Fixed to 0 Reserved.

k_conf[151:146] Calculated from
the number of
lanes

Link capabilities register: maximum link width. 1 = x1, 4 = x4,
others = reserved.

k_conf[153:152] Power
Management:
Enable L1
ASPM

Link capabilities register: active state power management
support. 01 = L0s, 11 = L1 and L0s.

k_conf[156:154] Power
Management:
L1 Exit Latency
Common Clock

Link capabilities register: L1 exit latency - separate clock. 0 =< 1
μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs, 4 = 8 - 16 μs, 5 = 16 -
32 μs, 6 = 32 - 64 μs, 7 =>64 μs.

k_conf[159:157] Power
Management:
L1 Exit Latency
Separate Clock

Link capabilities register: L1 exit latency - common clock. 0 =< 1
μs, 1 = 1 - 2 μs, 2 = 2 - 4 μs, 3 = 4 - 8 μs, 4 = 8 - 16 μs, 5 = 16 -
32 μs, 6 = 32 - 64 μs, 7 => 64 μs.

k_conf[166:160] Fixed to 0 Reserved.

k_conf[169:167] Capabilities:
Tags Supported

Number of tags supported for non-posted requests transmitted.

k_conf[191:170] Fixed to 0 Reserved.

Table A–2. Configuration Signals for x8 MegaCore Functions

Signal Value or Wizard
Page/Label Description

Altera Corporation PCI Express Compiler Version 6.1 A–9
December 2006 PCI Express Compiler User Guide

k_conf[199:192] Power
Management:
N_FTS
Separate

Number of fast training sequences needed in separate clock
mode (N_FTS).

k_conf[207:200] Power
Management:
N_FTS
Common

Number of fast training sequences needed in common clock
mode (N_FTS).

k_conf[215:208] Capabilities:
Link Port
Number

Link capabilities register: port number.

k_conf[216] Fixed to 0 Reserved.

k_conf[217] Fixed to 0 Reserved.

k_conf[218] Fixed to 0 Reserved.

k_conf[221:219] Capabilities:
MSI Messages
Requested

MSI capability message control register: multiple message
capable request field. 0 = 1 message, 1 = 2 messages, 2 = 4
messages, 3 = 8 messages, 4 = 16 messages, 5 = 32 messages.

k_conf[222] Capabilities:
MSI Message
64 bit Capable

MSI capability message control register: 64-bit capable. 0 = 32b,
1 = 64b or 32b.

k_conf[223] Capabilities:
MSI Per Vector
Masking

Per-bit vector masking (RO field).

k_bar[31:0] System: BAR
Table (BAR0)

BAR0 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = prefetchable, bit 2 =
64 bit, bit 1 = 0, bit 0 = I/O.

k_bar[63:32] System: BAR
Table (BAR1)

BAR1 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = prefetchable, bit 2 =
64 bit, bit 1 = 0, bit 0 = I/O (or bit 31 - 0 = size mask if previous 64
bit).

k_bar[95:64] System: BAR
Table (BAR2)

BAR2 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = prefetchable, bit 2 =
64 bit, bit 1 = 0, bit 0 = I/O.

k_bar[127:96] System: BAR
Table (BAR3)

BAR3 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = Prefetchable, bit 2 =
64 bit, bit 1 = 0, bit 0 = I/O (or bit 31 - 0 = size mask if previous 64
bit).

k_bar[159:128] System: BAR
Table (BAR4)

BAR4 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = prefetchable, bit 2 =
64 bit, bit 1 = 0, bit 0 = I/O.

Table A–2. Configuration Signals for x8 MegaCore Functions

Signal Value or Wizard
Page/Label Description

A–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Configuration Signals for x8 MegaCore Functions

k_bar[191:160] System: BAR
Table (BAR5)

BAR5 size mask and read only fields (I/O space, memory space,
prefetchable). bit 31 - 4 = size mask, bit 3 = prefetchable, bit 2 =
64 bit, bit1 = 0, bit 0 = I/O (or bit 31 - 0 = size mask if previous 64
bit).

k_bar[223:192] System: BAR
Table (Exp
ROM)

Expansion ROM BAR size mask. bit 31 - 11 = size mask, bit 10 -
1 = 0, bit 0 = enable.

k_cnt[10:0] Fixed to 17 Flow control initialization timer (number in μs). Number in cycles.

k_cnt[15:11] Power
Management:
Idle Threshold
for L0s Entry

Idle threshold for L0s entry (in 256 ns steps).

k_cnt[20:12] Fixed to 30 Update flow control credit timer (number in μs).

k_cnt[23:21] Fixed to 0 Reserved.

k_cnt[35:24] Fixed to 200 Flow control Time-Out check (number in μs).

k_cred0[7:0] Calculated: VC
Table Posted
Header Credit

Receive flow control credit for VC0 posted headers.

k_cred0[19:8] Calculated: VC
Table Posted
Data Credit

Receive flow control credit for VC0 posted data.

k_cred0 [27:20] Calculated: VC
Table Non-
Posted Header
Credit

Receive flow control credit for VC0 non-posted headers.

k_cred0[35:28] Fixed to 0 Receive flow control credit for VC0 non-posted data. The Rx
buffer always has space for the maximum 1 DWORD of data that
can be sent for non-posted writes (configuration or I/O writes).

Table A–2. Configuration Signals for x8 MegaCore Functions

Signal Value or Wizard
Page/Label Description

Altera Corporation PCI Express Compiler Version 6.1 B–1
December 2006

Appendix B.
Transaction Layer Packet

Header Formats

Content Without
Data Payload

Tables B–2 through B–9 show the header format for transaction layer
packets without a data payload. When these headers are transferred to
and from the MegaCore function as tx_desc and rx_desc, the
mapping shown in Table B–1 is used.

Table B–1. Header Mapping

Header Byte tx_desc/rx_desc Bits

Byte 0 127:120

Byte 1 119:112

Byte 2 111:104

Byte 3 103:96

Byte 4 95:88

Byte 5 87:80

Byte 6 79:72

Byte 7 71:64

Byte 8 63:56

Byte 9 55:48

Byte 10 47:40

Byte 11 39:32

Byte 12 31:24

Byte 13 23:16

Byte 14 15:8

Byte 15 7:0

B–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Content with Data Payload

Content with
Data Payload

Tables B–2 through B–9 show the register content for transaction layer
packets with a data payload.

Table B–2. Memory Write Request, 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 R

Table B–3. Memory Write Request, 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table B–4. I/O Write Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 R

Table B–5. Type 0 Configuration Write Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte 12 R

Altera Corporation PCI Express Compiler Version 6.1 B–3
December 2006 PCI Express Compiler User Guide

Table B–6. Type 1 Configuration Write Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte 12 R

Table B–7. Completion with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12 R

Table B–8. Completion Locked with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte 12

Table B–9. Message with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 1 0 r
2

r
1

r
0

0 TC 0 0 0 0 TD EP 0 0 0 0 Length

Byte 4 Requester ID Tag Message Code

Byte 8 Vendor defined or all zeros for Slot Power Limit

Byte 12 Vendor defined or all zeros for Slots Power Limit

B–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Content with Data Payload

Altera Corporation PCI Express Compiler Version 6.1 C–1
December 2006

Appendix C.
Test Port Interface Signals

The test port includes test-out and test-in signals, which add additional
observability and controllability to the PCI Express MegaCore function.

■ The output port offers a view of the internal node of the MegaCore
function, providing information such as state machine status and
error counters for each type of error.

■ The input port can be used to configure the MegaCore function in a
noncompliant fashion. For example, it can be used to inject errors for
automated tests or to add capabilities such as remote boot and force
or disable compliance mode.

C–2 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

Test-Out
Interface
Signals for
x1 and x4
MegaCore
Functions

Table C–1 describes the test-out signals for the x1 and x4 MegaCore
functions.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 1 of 17)

Signal Subblock Bit Description

rx_fval_tlp
rx_hval_tlp
rx_dval_tlp

TRN rxtl 2:0 Receive transaction layer packet reception state. These signals
report the transaction layer packet reception sequencing.

● bit 0: DW0 and DW1 of the header are valid
● bit 1: DW2 and DW3 of the header are valid
● bit 2: The data payload is valid

rx_check_tlp
rx_discard_tlp
rx_mlf_tlp
tlp_err
rxfc_ovf
rx_ecrcerr_tlp
rx_uns_tlp
rx_sup_tlp

TRN rxtl 10:3 Receive transaction layer packet check state. These signals
report the transaction layer packet reception sequencing:

● bit 0: Check LCRC
● bit 1: Indicates an LCRC error or sequence number error
● bit 2: Indicates a malformed transaction layer packet due to

a mismatch END/length field
● bit 3: Indicates a malformed transaction layer packet that

doesn’t conform with formation rules
● bit 4: Indicates violation of flow control rules
● bit 5: Indicates a ECRC error (flow control credits are

updated)
● bit 6: Indicates reception of an unsupported transaction

layer packet (flow control credits are updated)
● bit 7: Indicates a transaction layer packet routed to the

Configuration space (flow control credits are updated)

If bits 1, 2, 3, or 4 are set, the transaction layer packet is
removed from the receive buffer and no flow control credits are
consumed. If bit 5, 6 or 7 is set, the transaction layer packet is
routed to the configuration space after being written to the
receive buffer and flow control credits are updated.

rx_vc_tlp TRN rxtl 13:11 Receive transaction layer packet virtual channel mapping. This
signal reports the virtual channel resource on which the
transaction layer packet is mapped (according to its traffic
class).

Altera Corporation PCI Express Compiler Version 6.1 C–3
December 2006 PCI Express Compiler User Guide

rx_reqid_tlp TRN rxtl 37:14 Receive ReqID. This 24-bit signal reports the requester ID
of the completion transaction layer packet when
rx_hval_tlp and rx_ok_tlp are asserted.

The 8 MSBs of this signal also report the type and format of the
transaction when rx_fval_tlp and rx_ok_tlp are valid.

rx_ok_tlp TRN rxtl 38 Receive sequencing valid. This is a sequencing signal pulse. All
previously-described signals (test_out[37:0]) are valid
only when this signal is asserted.

tx_req_tlp TRN txtl 39 Transmit request to data link layer. This signal is a global virtual
channel request for transmitting transaction layer packet to the
data link layer.

tx_ack_tlp TRN txtl 40 Transmit request acknowledge from data link layer. This signal
serves as the acknowledge signal for the global request from
the transaction layer when accepting a transaction layer packet
from the data link layer.

tx_dreq_tlp TRN txtl 41 Transmit data requested from data link layer. This is a
sequencing signal that makes a request for next data from the
transaction layer.

tx_err_tlp TRN txtl 42 Transmit nullify transaction layer packet request. This signal is
asserted by the transaction layer in order to nullify a transmitted
transaction layer packet.

gnt_vc TRN txtl 50:43 Transmit virtual channel arbitration result. This signal reports
arbitration results of the transaction layer packet that is currently
being transmitted.

tx_ok_tlp TRN txtl 51 Transmit sequencing valid. This signal, which depends on the
number of initialized lanes on the link, is a sequencing signal
pulse that enables data transfer from the transaction layer to the
data link layer.

lpm_sm CFG pmgt 55:52 Power management state machine. This signal indicates the
power management state machine encoding responsible for
scheduling the transition to legacy low power:

● 0000b: l0_rst
● 0001b: l0
● 0010b: l1_in0
● 0011b: l1_in1
● 0100b: l0_in
● 0101b: l0_in_wt
● 0110b: l2l3_in0
● 0111b: l2l3_in1
● 1000b: l2l3_rdy
● others: reserved

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 2 of 17)

Signal Subblock Bit Description

C–4 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

pme_sent CFG pmgt 56 PME sent flag. This signal reports that a PM_PME message
has been sent by the MegaCore function (endpoint mode only).

pme_resent CFG pmgt 57 PME resent flag. This signal reports that the MegaCore function
has requested to resend a PM_PME message that has timed
out due to the latency timer (endpoint mode only).

inh_dllp CFG pmgt 58 PM request stop DLLP/transaction layer packet transmission.
This is a power management function that inhibits DLLP
transmission in order to move to low power state.

req_phypm CFG pmgt 62:59 PM directs LTSSM to low-power. This is a power management
function that requests LTSSM to move to low-power state:

● bit 0: exit any low-power state to L0
● bit 1: requests transition to L0s
● bit 2: requests transition to L1
● bit 3: requests transition to L2

ack_phypm CFG pmgt 64:63 LTSSM report PM transition event. This is a power
management function that reports that LTSSM has moved to
low-power state:

● bit 0: receiver detects low-power exit
● bit 1: indicates that the transition to

low-power state is complete

pme_status3
rx_pm_pme

CFG pcie 65 Received PM_PME message discarded. This signal reports
that a received PM_PME message has been discarded by the
root port because of insufficient storage space.

link_up CFG pcie 66 Link up. This signal reports that the link is up from the LTSSM
perspective.

dl_up CFG pcie 67 DL Up. This signal reports that the data link is up from the
DLCMSM perspective.

vc_en CFG
vcreg

74:68 Virtual channel enable. This signal reports which virtual
channels are enabled by the software (note that VC0 is always
enabled, thus the VC0 bit is not reported).

vc_status CFG
vcreg

82:75 Virtual channel status. This signal report which virtual channel
has successfully completed its initialization.

err_phy CFG
errmgt

84:83 PHY error. Physical layer error:

● bit 0: Receiver port error
● bit 1: Training error

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 3 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–5
December 2006 PCI Express Compiler User Guide

err_dll CFG
errmgt

89:85 Data link layer error. Data link layer error:

● bit 0: Transaction layer packet error
● bit 1: Data link layerP error
● bit 2: Replay timer error
● bit 3: Replay counter rollover
● bit 4: Data link layer protocol error

err_trn CFG
errmgt

98:90 TRN error. Transaction layer error:

● bit 0: Poisoned transaction layer packet
received

● bit 1: ECRC check failed
● bit 2: Unsupported request
● bit 3: Completion timeout
● bit 4: Completer abort
● bit 5: Unexpected Completion
● bit 6: Receiver overflow
● bit 7: Flow control protocol error
● bit 8: Malformed transaction layer packet

r2c_ack
c2r_ack
rxbuf_busy
rxfc_updated

TRN
rxvc0

102:99 Receive VC0 status. Reports different events related to VC0.

● bit 0: Transaction layer packet sent to
the configuration space

● bit 1: Transaction layer packet received
from configuration space

● bit 2: Receive buffer not empty
● bit 3: Receive flow control credits

updated

r2c_ack
c2r_ack
rxbuf_busy
rxfc_updated

TRN
rxvc1

106:013 Receive VC1 status. Reports different events related to VC1:

● bit 0: transaction layer packet sent to
the configuration space

● bit 1: transaction layer packet received
from configuration space

● bit 2: Receive buffer not empty
● bit 3: Receive flow control credits

updated

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 4 of 17)

Signal Subblock Bit Description

C–6 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

r2c_ack
c2r_ack
rxbuf_busy
rxfc_updated

TRN
rxvc2

110:107 Receive VC2 status. Reports different events related to VC2:

● bit 0: transaction layer packet sent to
the configuration space

● bit 1: transaction layer packet received
from configuration space

● bit 2: Receive buffer not empty
● bit 3: Receive flow control credits

updated

r2c_ack
c2r_ack
rxbuf_busy
rxfc_updated

TRN
rxvc3

114:111 Receive VC3 status. Reports different events
related to VC3:

● bit 0: Transaction layer packet sent to
the configuration space

● bit 1: Transaction layer packet received
from configuration space

● bit 2: Receive buffer not empty
● bit 3: Receive flow control credits

updated

Reserved All consecutive signals between bits 131 and 255 depend on
the virtual channel selected by the test_in[31:29] input.

desc_sm TRN rxvc 133:131 Receive descriptor state machine. Receive descriptor state
machine encoding:

● 000: idle
● 001: desc0
● 010: desc1
● 011: desc2
● 100: desc_wt
● others: reserved

desc_val TRN rxvc 134 Receive bypass mode valid. This signal reports that bypass
mode is valid for the current received transaction layer packet.

data_sm TRN rxvc 136:135 Receive data state machine. Receive data state machine
encoding:

● 00: idle
● 01: data_first
● 10: data_next
● 11: data_last

req_ro TRN rxvc 137 Receive reordering queue busy. This signal reports that
transaction layer packets are currently reordered in the
reordering queue (information extracted from the transaction
layer packet FIFO).

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 5 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–7
December 2006 PCI Express Compiler User Guide

tlp_emp TRN rxvc 138 Receive transaction layer packet FIFO empty flag. This signal
reports that the transaction layer packet FIFO is empty.

tlp_val TRN rxvc 139 Receive transaction layer packet pending in normal queue. This
signal reports that a transaction layer packet has been
extracted from the transaction layer packet FIFO, but is still
pending for transmission to the application layer.

txbk_sm TRN txvc 143:140 Transmit state machine. Transmit state machine encoding:

● 0000: idle
● 0001: desc4dw
● 0010: desc3dw_norm
● 0011: desc3dw_shft
● 0100: data_norm
● 0101: data_shft
● 0110: data_last
● 0111: config0
● 1000: config1
● others: reserved

rx_sub TRN rxfc 199:144 Receive flow control credits. Receive buffer current credits
available:

● bit [7:0]: Posted Header (PH)
● bit [19:8]: Posted Data (PD)
● bit [27:20]: Non-Posted Header (NPH)
● bit [35:28]: Non-Posted Data (NPD)
● bit [43:36]: Completion Header (CPLH)
● bit [55:44]: Completion Data (CPLD)

Flow control credits for NPD is limited to 8 bits due to the fact
that more NPD credits than NPH credits is meaningless.

tx_sub TRN txfc 255:200 Transmit flow control credits. Transmit buffer current credits
available:

● bit [7:0]: Posted Header (PH)
● bit [19:8]: Posted Data (PD)
● bit [27:20]: Non-Posted Header (NPH)
● bit [35:28]: Non-Posted Data (NPD)
● bit [43:36]: Completion Header (CPLH)
● bit [55:44]: Completion Data (CPLD)

Flow control credits for NPD is limited to 8 bits due to the fact
that more NPD credits than NPH credits is meaningless.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 6 of 17)

Signal Subblock Bit Description

C–8 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

dlcm_sm DLL
dlcmsm

257:256 DLCM state machine. DLCM state machine encoding:

● 00: dl_inactive
● 01: dl_init
● 10: dl_active
● 11: reserved

fcip_sm DLL
dlcmsm

260:258 Transmit InitFC state machine. Transmit Init flow
control state encoding:

● 000: idle
● 001: prep0
● 010: prep1
● 011: initfc_p
● 100: initfc_np
● 101: initfc_cpl
● 110: initfc_wt
● 111: reserved

rxfc_sm DLL
dlcmsm

263:261 Receive InitFC state machine. Receive Init flow
control state encoding:

● 000: idle
● 001: ifc1_p
● 010: ifc1_np
● 011: ifc1_cpl
● 100: ifc2
● 111: reserved

flag_fi1 DLL
dlcmsm

264 Flag_fi1. FI1 flag as detailed in the PCI Express™ Base
Specification Revision 1.0a

flag_fi2 DLL
dlcmsm

265 Flag_fi2. FI2 flag as detailed in the PCI Express™ Base
Specification Revision 1.0a

rxfc_sm DLL rtry 268:266 Retry state machine. Retry State Machine encoding:

● 000: idle
● 001: rtry_ini
● 010: rtry_wt0
● 011: rtry_wt1
● 100: rtry_req
● 101: rtry_tlp
● 110: rtry_end
● 111: reserved

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 7 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–9
December 2006 PCI Express Compiler User Guide

storebuf_sm DLL rtry 270:269 Retry buffer storage state machine. Retry buffer storage state
machine encoding:

● 00: idle
● 01: rtry
● 10: str_tlp
● 11: reserved

mem_replay DLL rtry 271 Retry buffer running. This signal keeps track of transaction layer
packets that have been sent but not yet acknowledged. The
replay timer is also running when this bit is set except if a replay
is currently performed.

mem_rtry DLL rtry 272 Memorize replay request. This signal indicates that a replay
time-out event has occurred or that a NAK DLLP has been
received.

replay_num DLL rtry 274:273 Replay number counter. This signal counts the number of
replays performed by the MegaCore function for a particular
transaction layer packet (as described in the PCI Express™
Base Specification Revision 1.0a).

val_nak_r DLL rtry 275 ACK/NAK DLLP received. This signal reports that an ACK or a
NAK DLLP has been received. The res_nak_r, tlp_ack,
err_dl, and no_rtry signals detail the type of ACK/NAK
DLLP received.

res_nak_r DLL rtry 276 NAK DLLP parameter. This signal reports that the received
ACK/NAK DLLP is NAK.

tlp_ack DLL rtry 277 Real ACK DLLP parameter. This signal reports that the
received ACK DLLP acknowledges one or several transaction
layer packets in the retry buffer.

err_dl DLL rtry 278 Error ACK/NAK DLLP parameter. This signal reports that the
received ACK/NAK DLLP has a sequence number higher than
the sequence number of the last transmitted transaction layer
packet.

no_rtry DLL rtry 279 No retry on NAK DLLP parameter. This signal reports that the
received NAK DLLP sequence number corresponds to the last
acknowledged transaction layer packet.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 8 of 17)

Signal Subblock Bit Description

C–10 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

txdl_sm DLL txdl 282:280 Transmit transaction layer packet State Machine. Transmit
transaction layer packet state machine encoding:

● 000: idle
● 001: tlp1
● 010: tlp2
● 011: tlp3a
● 100: tlp5a (ECRC only)
● 101: tlp6a (ECRC only)
● 111: reserved

This signal can be used to inject an LCRC or ECRC error.

tx3b
tx4
tx5b

DLL txdl 283 Transaction layer packet transmitted. This signal is set on the
last DWORD of the packet where the LCRC is added to the
packet.This signal can be used to inject an LCRC or ECRC
error.

tx0 DLL txdl 284 DLLP transmitted. This signal is set when a DLLP is sent to the
physical layer. This signal can be used to inject a CRC on a
DLLP.

gnt DLL txdl 292:285 Data link layer transmit arbitration result. This signal reports the
arbitration result between a DLLP and a transaction layer
packet:

● bit 0: InitFC DLLP
● bit 1: ACK DLLP (high priority)
● bit 2: UFC DLLP (high priority)
● bit 3: PM DLLP
● bit 4: TXN transaction layer packet
● bit 5: RPL transaction layer packet
● bit 6: UFC DLLP (low priority)
● bit 7: ACK DLLP (low priority)

sop DLL txdl 293 Data link layer to PHY start of packet. This signal reports that
an SDP/STP symbol is in transition to the physical layer.

eop DLL txdl 294 Data link layer to PHY end of packet. This signal reports that an
EDB/END symbol is in transition to the physical layer.

When sop and eop are transmitted together, it indicates that the
packet is a DLLP. Otherwise the packet is a transaction layer
packet.

eot DLL txdl 295 Data link layer to PHY end of transmit. This signal reports that
the data link layer has finished its previous transmission and
enables the physical layer to go to low-power state or to
recovery.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 9 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–11
December 2006 PCI Express Compiler User Guide

init_lat_timer DLL rxdl 296 Enable ACK latency timer. This signal reports that the ACK
latency timer is running.

req_lat DLL rxdl 297 ACK latency timeout. This signal reports that an ACK/NAK
DLLP retransmission has been scheduled due to the ACK
latency timer expiring.

tx_req_nak or
tx_snd_nak

DLL rxdl 298 ACK/NAK DLLP requested for transmission. This signal reports
that an ACK/NAK DLLP is currently requested for transmission.

tx_res_nak DLL rxdl 299 ACK/NAK DLLP type requested for transmission. This signal
reports that type of ACK/NAK DLLP scheduled for transmission:

● 0: ACK
● 1: NAK

rx_val_pm DLL rxdl 300 Received PM DLLP. This signal reports that a PM DLLP has
been received (the specific type is indicated by
rx_vcid_fc):

● 000: PM_Enter_L1
● 001: PM_Enter_L23
● 011: PM_AS_Request_L1
● 100: PM_Request_ACK

rx_val_fc DLL rxdl 301 Received flow control DLLP. This signal reports that a PM DLLP
has been received. The type of flow control DLLP is indicated
by rx_typ_fc and rx_vcid_fc.

rx_typ_fc DLL rxdl 305:302 Received flow control DLLP type parameter. This signal reports
the type of received flow control DLLP:

● 0100: InitFC1_P
● 0101: InitFC1_NP
● 0110: InitFC1_CPL
● 1100: InitFC2_P
● 1101: InitFC2_NP
● 1110: InitFC2_CPL
● 1000: UpdateFC_P
● 1001: UpdateFC_NP
● 1010: UpdateFC_CPL

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 10 of 17)

Signal Subblock Bit Description

C–12 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

rx_vcid_fc DLL rxdl 308:306 Received flow control DLLP virtual channel ID parameter. This
signal reports the virtual channel ID of the received flow control
DLLP:

● 000: VCID 0
● 001: VCID 1
● …
● 111: VCID 7

This signal also indicates the type of PM DLLP received.

crcinv DLL rxdl 309 Received nullified transaction layer packet. This signal indicates
that a nullified transaction layer packet has been received.

crcerr DLL rxdl 310 Received transaction layer packet with LCRC error. This signal
reports that a transaction layer packet has been received that
contains an LCRC error.

crcval
eqseq_r

DLL rxdl 311 Received valid transaction layer packet. This signal reports that
a valid transaction layer packet has been received that contains
the correct sequence number. Such a transaction layer packet
is transmitted to the application layer.

crcval
!eqseq_r
infseq_r

DLL rxdl 312 Received duplicated transaction layer packet. This signal
indicates that a transaction layer packet has been received that
has already been correctly received. Such a transaction layer
packet is silently discarded.

crcval
!eqseq_r
!infseq_r

DLL rxdl 313 Received erroneous transaction layer packet. This signal
indicates that a transaction layer packet has been received that
contains a valid LCRC but a non-sequential sequence number
(higher than the current sequence number).

rx_err_frame DLL dlink 314 Data link layer framing error detected. This signal indicates that
received data cannot be considered as a DLLP or transaction
layer packet, in which case a Receive Port error is generated
and link retraining is initiated.

tlp_count DLL rtry 319:315 transaction layer packet count in retry buffer. This signal
indicates the number of transaction layer packets stored in the
retry buffer (saturation limit is 31).

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 11 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–13
December 2006 PCI Express Compiler User Guide

ltssm_r MAC
ltssm

324:320 LTSSM state. LTSSM state encoding:

● 00000: detect.quiet
● 00001: detect.active
● 00010: polling.active
● 00011: polling.compliance
● 00100: polling.configuration
● 00101: reserved (polling.speed)
● 00110: config.linkwidthstart
● 00111: config.linkaccept
● 01000: config:disable
● 01001: config.loopback.entry
● 01010: config.loopback.active
● 01011: config.loopback.exit
● 01100: recovery.rcvlock
● 01101: recovery.rcvconfig
● 01110: recovery.idle
● 01111: L0
● 10000: disable
● 10001: loopback.entry
● 10010: loopback.active
● 10011: loopback.exit
● 10100: hot.reset
● 10101: L0s (transmit only)
● 10110: L1.entry
● 10111: L1.idle
● 11000: L2.idle
● 11001: L2.transmit.wake

rxl0s_sm MAC
ltssm

326:325 Receive L0s state. Receive L0s state machine:

● 00: inact
● 01: idle
● 10: fts
● 11: out.recovery

txl0s_sm MAC
ltssm

329:327 TX L0s state. Transmit L0s state machine:

● 000b: inact
● 001b: entry
● 010b: idle
● 011b: fts
● 100b: out.l0

timeout MAC
ltssm

330 LTSSM timeout. This signal serves as a flag that indicates that
the LTSSM time-out condition has been reached for the current
LTSSM state.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 12 of 17)

Signal Subblock Bit Description

C–14 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

txos_end MAC
ltssm

331 Transmit LTSSM exit condition. This signal serves as a flag that
indicates that the LTSSM exit condition for the next state (to go
to L0) has been completed. If the next state is not reached in a
timely manner, it is due to a problem on the receiver.

tx_ack MAC
ltssm

332 Transmit PLP acknowledge. This signal is active for 1 clock
cycle when the requested PLP (physical layer packet) has been
sent to the link. The type of packet is defined by the tx_ctrl
signal.

tx_ctrl MAC
ltssm

335:333 Transmit PLP type. This signal indicates the type of transmitted
PLP:

● 000: Electrical Idle
● 001: Receiver detect during Electrical

Idle
● 010: TS1 OS
● 011: TS2 OS
● 100: D0.0 idle data
● 101: FTS OS
● 110: IDL OS
● 111: Compliance pattern

txrx_det MAC
ltssm

343:336 Receiver detect result. This signal serves as a per lane flag that
reports the receiver detection result. The 4 MSB are always
zero.

tx_pad MAC
ltssm

351:344 Force PAD on transmitted TS pattern. This is a per lane internal
signal that force PAD transmission on the link and lane field of
the transmitted TS1/TS2 OS. The MegaCore function considers
that lanes indicated by this signal should not be initialized
during the initialization process.

The 4 MSB are always zero.

rx_ts1 MAC
ltssm

359:352 Received TS1: This signal indicates that a TS1 has been
received on the specified lane. This signal is cleared when a
new state is reached by the LTSSM state machine.

The 4 MSB are always zero.

rx_ts2 MAC
ltssm

367:360 Received TS2. This signal indicates that a TS1 has been
received on the specified lane. This signal is cleared when a
new state is reached by the LTSSM state machine.

The 4 MSB are always zero.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 13 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–15
December 2006 PCI Express Compiler User Guide

rx_8d00 MAC
ltssm

375:368 Received 8 D0.0 symbol. This signal indicates that eight
consecutive idle data symbols have been received. This signal
is meaningful for config.idle and recovery.idle states.

The 4 MSB are always zero.

rx_idl MAC
ltssm

383:376 Received IDL OS. This signal indicates that an IDL OS has
been received on a per lane basis.

The 4 MSB are always zero.

rx_linkpad MAC
ltssm

391:384 Received link pad TS. This signal indicates that the link field of
the received TS1/TS2 is set to PAD for the specified lane.

The 4 MSB are always zero.

rx_lanepad MAC
ltssm

399:392 Received lane pad TS. This signal indicates that the lane field
of the received TS1/TS2 is set to PAD for the specified lane.

The 4 MSB are always zero.

rx_tsnum MAC
ltssm

407:400 Received consecutive identical TSNumber. This signal reports
the number of consecutive identical TS1/TS2 which have been
received with exactly the same parameters since entering this
state. When the maximum number is reached, this signal
restarts from zero.

This signal corresponds to the lane configured as logical lane 0
(may vary depending on lane reversal).

lane_act MAC
ltssm

411:408 Lane active mode. This signal indicates the number of Lanes
that have been configured during training:

● 0001: 1 lane
● 0010: 2 lanes
● 0100: 4 lanes

lane_rev MAC
ltssm

415:412 Reserved.

count0 MAC
deskew

418:416 Deskew FIFO count lane 0. This signal indicates the number of
Words in the deskew FIFO for physical lane 0.

count1 MAC
deskew

421:419 Deskew FIFO count lane 1. This signal indicates the number of
Words in the deskew FIFO for physical lane 1.

count2 MAC
deskew

424:422 Deskew FIFO count lane 2. This signal indicates the number of
Words in the deskew FIFO for physical lane 2.

count3 MAC
deskew

427:425 Deskew FIFO count lane 3. This signal indicates the number of
Words in the deskew FIFO for physical lane 3.

Reserved N/A 439:428 Reserved.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 14 of 17)

Signal Subblock Bit Description

C–16 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

err_deskew MAC
deskew

447:440 Deskew FIFO error. This signal indicates whether a deskew
error (deskew FIFO overflow) has been detected on a particular
physical lane. In such a case, the error is considered a receive
port error and retraining of the link is initiated.

The 4 MSBs are hard-wired to zero.

rdusedw0 PCS0 451:448 Elastic buffer counter 0. This signal indicates the number of
symbols in the elastic buffer.

Monitoring the elastic buffer counter of each lane can highlight
the PPM between the receive clock and transmit clock as well
as the skew between lanes. Not meaningful when using the
generic PIPE PHY interface.

rxstatus0 PCS0 454:452 PIPE rxstatus 0. This signal is used to monitor errors
detected and reported on a per lane basis. For example:

● 000: Receive data OK
● 001: 1 SKP added
● 010: 1 SKP removed
● 011: Receiver detected
● 100: 8B/10B decode error
● 101: Elastic buffer overflow
● 110: Elastic buffer underflow
● 111: Running disparity error

Not meaningful when using the generic PIPE PHY interface.

rxpolarity0 PCS0 455 PIPE polarity inversion 0. When asserted, the
LTSSM requires the PCS subblock to invert the polarity of the
received 10-bit data during training.

rdusedw1 PCS1 459:456 Elastic buffer counter 1. This signal indicates the number of
symbols in the elastic buffer.

Monitoring the elastic buffer counter of each lane can highlight
the PPM between the receive clock and transmit clock as well
as the skew between lanes. Not meaningful when using the
generic PIPE PHY interface.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 15 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–17
December 2006 PCI Express Compiler User Guide

rxstatus1 PCS1 462:460 PIPE rxstatus 1. This signal is used to monitor errors
detected and reported on a per lane basis. For example:

● 000: Receive data OK
● 001: 1 SKP added
● 010: 1 SKP removed
● 011: Receiver detected
● 100: 8B/10B decode error
● 101: Elastic buffer overflow
● 110: Elastic buffer underflow
● 111: Running disparity error

Not meaningful when using the generic PIPE PHY interface.

rxpolarity1 PCS1 463 PIPE polarity inversion 1. When asserted, the
LTSSM requires the PCS subblock to invert the polarity of the
received 10-bit data during training. Not meaningful when using
the generic PIPE PHY interface.

rdusedw2 PCS2 467:464 Elastic buffer counter 2. This signal reports the number of
symbols in the elastic buffer.

Monitoring the elastic buffer counter of each lane can highlight
the PPM between the receive clock and transmit clock as well
as the skew between lanes. Not meaningful when using the
generic PIPE PHY interface.

rxstatus2 PCS2 470:468 PIPE rxstatus 2. This signal is used to monitor errors
detected and reported on a per lane basis. For example:

● 000: receive data OK
● 001: 1 SKP added
● 010: 1 SKP removed
● 011: Receiver detected
● 100: 8B/10B decode error
● 101: Elastic buffer overflow
● 110: Elastic buffer underflow
● 111: Running disparity error

Not meaningful when using the generic PIPE PHY interface.

rxpolarity2 PCS2 471 PIPE polarity inversion 2. When asserted, the
LTSSM requires the PCS subblock to invert the polarity of the
received 10-bit data during training. Not meaningful when using
the generic PIPE PHY interface.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 16 of 17)

Signal Subblock Bit Description

C–18 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x1 and x4 MegaCore Functions

rdusedw3 PCS3 475:472 Elastic buffer counter 3. This signal reports the number of
symbols in the elastic Buffer.

Monitoring the elastic buffer counter of each lane can highlight
the PPM between the receive clock and transmit clock as well
as the skew between lanes. Not meaningful when using the
generic PIPE PHY interface.

rxstatus3 PCS3 478:476 PIPE rxstatus 3. This signal is used to monitor errors
detected and reported on a per lane basis. For example:

● 000: receive data OK
● 001: 1 SKP added
● 010: 1 SKP removed
● 011: Receiver detected
● 100: 8B/10B decode error
● 101: Elastic buffer overflow
● 110: Elastic buffer underflow
● 111: Running disparity error

Not meaningful when using the generic PIPE PHY interface.

rxpolarity3 PCS3 479 PIPE polarity inversion 3. When asserted, the
LTSSM requires the PCS subblock to invert the polarity of the
received 10-bit data during training. Not meaningful when using
the generic PIPE PHY interface.

Reserved PCS4 511:480 Reserved.

Table C–1. test_out Signals for the x1 and x4 MegaCore Functions (Part 17 of 17)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–19
December 2006 PCI Express Compiler User Guide

Test-Out
Interface
Signals for x8
MegaCore
Functions

Table C–2 describes the test-out signals for the x8 MegaCore
functions.

Table C–2. test_out Signals for the x8 MegaCore Functions (Part 1 of 4)

Signal Subblock Bit Description

ltssm_r MAC
ltssm

4:0 LTSSM state: LTSSM state encoding:
00000: detect.quiet
00001: detect.active
00010: polling.active
00011: polling.compliance
00100: polling.configuration
00110: config.linkwidthstart
00111: config.linkaccept
01000: config.lanenumaccept
01001: config.lanenumwait
01010: config.complete
01011: config.idle
01100: recovery.rcvlock
01101: recovery.rcvconfig
01110: recovery.idle
01111: L0
10000: disable
10001: loopback.entry
10010: loopback.active
10011: loopback.exit
10100: Hot reset
10101: L0s
10110: L1.entry
10111: L1.idle
11000: L2.idle
11001: L2 transmit.wake

rxl0s_sm MAC
ltssm

6:5 Receive L0s state: Receive L0s state machine
00: inact
01: idle
10: fts
11: out.recovery

C–20 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-Out Interface Signals for x8 MegaCore Functions

txl0s_sm MAC
ltssm

9:7 TX L0s state: Transmit L0s state machine
000b: inact
001b: entry
010b: idle
011b: fts
100b: out.l0

timeout MAC
ltssm

10 LTSSM Timeout: This signal serves as a flag that
indicates that the LTSSM timeout condition has been
reached for the current LTSSM state.

txos_end MAC
ltssm

11 Transmit LTSSM exit condition: This signal serves as a
flag that indicates that the LTSSM exit condition for the
next state (in order to go to L0) has been completed. If the
next state is not reached in a timely manner, it is due to a
problem on the receiver.

tx_ack MAC
ltssm

12 Transmit PLP acknowledge: This signal is active for 1
clock cycle when the requested PLP (Physical Layer
Packet) has been sent to the Link. The type of packet is
defined by TX_CTRL.

tx_ctrl MAC
ltssm

15:13 Transmit PLP type: This signal
000: Electrical Idle
001: Receiver detect during
010: TS1 OS
011: TS2 OS
100: D0.0 idle data
101: FTS OS
110: IDL OS
111: Compliance pattern

txrx_det MAC
ltssm

23:16 Receiver detect result: This signal serves as a per-lane
flag that reports the receiver detection result.

tx_pad MAC
ltssm

31:24 Force PAD on transmitted TS pattern: This is a per-lane
internal signal that force PAD transmission on the Link and
lane field of the transmitted TS1/TS2 OS. The Core
considers that Lanes indicated by this signal should not be
initialized during the initialization process.

rx_ts1 MAC
ltssm

39:32 Received TS1: This signal indicates that a TS1 has been
received on the specified Lane. This signal is cleared
when a new state is reached by the LTSSM state machine.

rx_ts2 MAC
ltssm

47:40 Received TS2: This signal indicates that a TS1 has been
received on the specified Lane. This signal is cleared
when a new state is reached by the LTSSM state machine.

Table C–2. test_out Signals for the x8 MegaCore Functions (Part 2 of 4)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–21
December 2006 PCI Express Compiler User Guide

rx_8d00 MAC
ltssm

55:48 Received 8 D0.0 symbol: This signal indicates that eight
consecutive Idle data symbols have been received. This
signal is meaningful for config.idle and recovery.idle
states.

rx_idl MAC
ltssm

63:56 Received 8 D0.0 symbol: This signal indicates that eight
consecutive Idle data symbols have been received. This
signal is meaningful for config.idle and recovery.idle
states.

rx_linkpad MAC
ltssm

71:64 Received Link Pad TS: This signal indicates that the Link
field of the received TS1/
TS2 is set to PAD for the specified lane.

rx_lanepad MAC
ltssm

79:72 Received Lane Pad TS: This signal indicates that the Lane
field of the received TS1/
TS2 is set to PAD for the specified lane.

rx_tsnum MAC
ltssm

87:80 Received Consecutive Identical TSNumber: This signal
reports the number of consecutive identical TS1/TS2
which have been received with exactly the same
parameters since entering this state. When the maximum
number is reached, this signal restarts from zero. Note
that this signal corresponds to the lane configured as
logical lane 0.

lane_act MAC
ltssm

91:88 Lane Active Mode: This signal indicates the number of
Lanes that have been configured during training:

0001: 1 lane
0010: 2 lanes
0100: 4 lanes
1000: 8 lanes

lane_rev MAC
ltssm

95:92 Reserved

count0 MAC
deskew

98:96 Deskew fifo count lane 0: This signal indicates the number
of Words in the deskew fifo for physical lane 0.

count1 MAC
deskew

101:99 Deskew fifo count lane 1: This signal indicates the number
of Words in the deskew fifo for physical lane 1.

count2 MAC
deskew

104:102 Deskew fifo count lane 2: This signal indicates the number
of Words in the deskew fifo for physical lane 2.

count3 MAC
deskew

107:105 Deskew fifo count lane 3: This signal indicates the number
of Words in the deskew fifo for physical lane 3.

count4 MAC
deskew

110:108 Deskew fifo count lane 4: This signal indicates the number
of Words in the deskew fifo for physical lane 4.

count5 MAC
deskew

113:111 Deskew fifo count lane 5:This signal indicates the number
of Words in the deskew fifo for physical lane 5.

Table C–2. test_out Signals for the x8 MegaCore Functions (Part 3 of 4)

Signal Subblock Bit Description

C–22 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-In Interface

Test-In Interface You must implement specific logic in order to use the error-injection
capabilities of the test_in port. For example, to force an LCRC error on
the next transmitted transaction layer packet, test_in[21] must be
asserted for 1 clock cycle when transmit txdl_sm,
(test_out[282:280]) is in a non-idle state.

Table C–3 describes test_in signals.

count6 MAC
deskew

116:114 Deskew fifo count lane 6: This signal indicates the number
of Words in the deskew fifo for physical lane 6.

count7 MAC
deskew

119:117 Deskew fifo count lane 7: This signal indicates the number
of Words in the deskew fifo for physical lane 7.

err_deskew MAC
deskew

127:120 Deskew fifo error: This signal indicates whether a deskew
error (deskew fifo overflow) has been detected on a
particular physical Lane. In such a case, the error is
considered a Receive Port error and retraining of the Link
is initiated.

Table C–2. test_out Signals for the x8 MegaCore Functions (Part 4 of 4)

Signal Subblock Bit Description

Table C–3. test_in Signals (Part 1 of 5)

Signal Subblock Bit Description

test_sim MAC ltssm 0 Simulation mode. This signal must be set to 1 to accelerate
MegaCore function initialization.

test_lpbk MAC ltssm 1 Loopback master. This signal must be set to 1 to direct the link to
loopback (in master mode). This bit is reserved on the x8
MegaCore function.

test_discr MAC ltssm 2 Descramble mode. This signal must be set to 1 during initialization
to disable data scrambling.

test_nonc_phy MAC ltssm 3 Force_rxdet mode. This signal can be set to 1 in cases where the
PHY implementation does not support the Rx Detect feature. The
MegaCore function always detects the maximum number of
receivers during the detect state, and only goes to compliance
state if at least one lane has the correct pattern. This signal is
forced internal to the MegaCore function for Stratix GX PHY
implementations.

test_boot CFGcfgchk 4 Remote boot mode. When asserted, this signal disables the BAR
check if the link is not initialized and the boot is located behind the
component.

Altera Corporation PCI Express Compiler Version 6.1 C–23
December 2006 PCI Express Compiler User Guide

test_compliance MAC ltssm 6:5 Compliance test mode. Disable/force compliance mode:

● bit 0 completely disables compliance mode.
● bit 1 forces compliance mode.

test_pwr CFG
PMGT

7 Disable low power state negotiation. When asserted, this signal
disables all low power state negotiation and entry. This mode can
be used when the attached PHY does not support the electrical
idle feature used in low-power link states. The MegaCore function
will not attempt to place the link in Tx L0s state or L1 state when
this bit is asserted. For Stratix GX PHY implementations, this bit is
forced to a 1 internal to the MegaCore function.

test_pcserror PCS 13:8 Lane error injection. Disable/force compliance mode. The first
three bits indicate the following modes:

● test_pcserror[2:0]: 000: normal mode
● test_pcserror[2:0]: 001: inject data error
● test_pcserror[2:0]: 010: inject disparity

error
● test_pcserror[2:0]: 011: inject different

data
● test_pcserror[2:0]: 100: inject SDP instead

of END
● test_pcserror[2:0]: 101: inject STP instead

of END
● test_pcserror[2:0]: 110: inject END instead

of data
● test_pcserror[2:0]: 111: inject EDB instead

of END

The last three bits indicate the lane:

● test_pcserror[5:3]: 000: on lane 0
● test_pcserror[5:3]: 001: on lane 1
● test_pcserror[5:3]: 010: on lane 2
● test_pcserror[5:3]: 011: on lane 3

test_rxerrtlp DLL 14 Force transaction layer packet LCRC error detection. When
asserted, this signal forces the MegaCore function to treat the next
received transaction layer packet as if it had an LCRC error. These
bits are reserved on the x8 MegaCore function.

Table C–3. test_in Signals (Part 2 of 5)

Signal Subblock Bit Description

C–24 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-In Interface

test_rxerrdllp DLL 16:15 Force DLLP CRC error detection. This signal forces the MegaCore
function to check the next DLLP for a CRC error:

● 00: normal mode
● 01: ACK/NAK
● 10: PM
● 11: flow control These bits are reserved on

the x8 MegaCore function.

test_replay DLL 17 Force retry buffer. When asserted, this signal forces the retry
buffer to initiate a retry. These bits are reserved on the x8
MegaCore function.

test_acknak DLL 19:18 Replace ACK by NAK. This signal replaces an ACK by a NAK with
following sequence number:

● 00: normal mode
● 01: Same sequence number as the ACK
● 10: Sequence number incremented
● 11: Sequence number decremented

If unused, these bits should be hard-wired to 0 to remove unused
logic. These bits are reserved on the x8 MegaCore function.

test_ecrcerr DLL 20 Inject ECRC error on transmission. When asserted, this signal
generates an ECRC error for transmission.

test_lcrcerr DLL 21 Inject LCRC error on transmission. When asserted, this signal
generates an LCRC error for transmission. These bits are
reserved on the x8 MegaCore function.

test_crcerr DLL 23:22 Inject DLLP CRC error on transmission. Generates a CRC error
when transmitting a DLLP:

● 00: normal
● 01: PM error
● 10: flow control error
● 11: ACK error

If unused, these bits should be hard-wired to 0 to remove unused
logic. These bits are reserved on the x8 MegaCore function.

Table C–3. test_in Signals (Part 3 of 5)

Signal Subblock Bit Description

Altera Corporation PCI Express Compiler Version 6.1 C–25
December 2006 PCI Express Compiler User Guide

test_ufcvalue TRN 28:24 Generate wrong value for update flow control. This signal forces
an incorrect value when updating flow control credits. It does so by
adding or removing one credit in the credits allocated field when a
transaction layer packet is extracted from the receive buffer and
sent to the application layer:

● 00000: normal mode
● 00001: UFC_P error on header (+1/0)
● 00010: UFC_P error on data (0/+1)
● 00011: UFC_P error on header/data (+1/+1)
● 00100: UFC_NP error on header (+1/0)
● 00101: UFC_NP error on data (0/+1)
● 00110: UFC_NP error on header/data (+1/+1)
● 00111: UFC_CPL error on header (+1/0)
● 01000: UFC_CPL error on data (0/+1)
● 01001: UFC_CPL error header/data (+1/+1)
● 01010: UFC_P error on header (-1/0)
● 01011: UFC_P error on data (0/-1)
● 01100: UFC_P error on header/data (-1/-1)
● 01101: UFC_NP error on header (-1/0)
● 01110: UFC_NP error on data (0/-1)
● 01111: UFC_NP error on header/data (-1/-1)
● 10000: UFC_CPL error on header (-1/0)
● 10001: UFC_CPL error on data (0/-1)
● 10010: UFC_CPL error header/data (-1/-1)
● 10011: UFC_P error on header/data (+1/-1)
● 10100: UFC_P error on header/data (-1/+1)
● 10101: UFC_NP error on header/data (+1/-1)
● 10110: UFC_NP error on header/data (-1/+1)
● 10111: UFC_CPL error header/data (+1/-1)
● 11000: UFC_CPL error header/data (-1/+1)

If unused, these bits should be hard-wired to 0 to remove unused
logic. These bits are reserved on the x8 MegaCore function.

Table C–3. test_in Signals (Part 4 of 5)

Signal Subblock Bit Description

C–26 PCI Express Compiler Version 6.1 Altera Corporation
PCI Express Compiler User Guide December 2006

Test-In Interface

test_vcselect TRN 31:29 Virtual channel test selection. This signal indicates which virtual
channel is currently considered by the test-out interface
(test_out[255:131]). This virtual channel test selection is
the select input to a mux that switches a portion of the test_out
bus to output debug signals from different virtual channels (VC).
For example:

● test_vcselect[31:29]:000:test_out[255:131]
describes activity for VC0

● test_vcselect[31:29]:001:test_out[255:131]
describes activity for VC1

● test_vcselect[31:29]:010:test_out[255:131]
describes activity for VC2

● ...

Certain bits of this signal should be set to 0 to remove unused
logic:

● 1 virtual channel (or signal completely unused): set all three
bits to 000

● 2 virtual channels: set the 2 MSBs to 00
● 3 or 4 virtual channels: set the MSB to 0. These bits are

reserved on the x8 MegaCore function.

Table C–3. test_in Signals (Part 5 of 5)

Signal Subblock Bit Description

Океан Электроники
Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при

поставках импортных электронных компонентов на взаимовыгодных условиях!

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным
представителем в России одного из крупнейших производителей разъемов военного и
аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и
эксклюзивным представителем в России производителя высокотехнологичных и надежных
решений для передачи СВЧ сигналов «FORSTAR».

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки,
Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более
30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит
испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества
(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics и др.);

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического
назначения:
(Применяются в военной, авиационной, аэрокосмической,
морской, железнодорожной, горно- и нефтедобывающей
отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели,
кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и
специального назначения, в средствах связи, РЛС, а так же
военной, авиационной и аэрокосмической отраслях
промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

