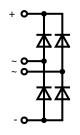
47


Single Phase Rectifier Bridge

Standard and Avalanche Types

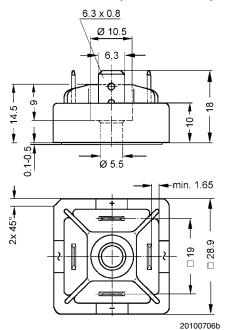
dAV	=	38	A
V_{RRM}	=	800-1600	V

V _{RSM}	V _{BRmin} ①	V _{RRM}	Standard	Avalanche
V	V	V	Types	Types
900		800	VBO 25-08NO2	
1300	1230	1200	VBO 25-12NO2	VBO 25-12AO2
1700	1630	1600	VBO 25-16NO2	VBO 25-16AO2

① For Avalanche Type only

- Avalanche rated parts available
- Package with DCB ceramic base plate
- Isolation voltage 3600 V~
- Planar passivated chips
- · Low forward voltage drop
- 1/4" fast-on terminals
- UL registered E 72873

Applications


Features

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Easy to mount with one screw
- Space and weight savings
- Improved temperature & power cycling

Dimensions in mm (1 mm = 0.0394")

Symbol	Conditions			Maximum Rat	ings
I _{dAV} ② I _{dAVM} P _{RSM}	$T_{C} = 85^{\circ}C, m$ module $T_{VJ} = T_{VJM}$	nodule		38 40 3.4	A A kW
I _{FSM}	$T_{VJ} = 45^{\circ}C;$ $V_R = 0$	t = 10 ms t = 8.3 ms	(50 Hz) (60 Hz)	370 390	A A
		t = 10 ms t = 8.3 ms	(50 Hz) (60 Hz)	320 340	A A
l²t	$T_{VJ} = 45^{\circ}C;$ $V_R = 0$		(50 Hz) (60 Hz)	680 640	A ² s A ² s
	$T_{VJ} = T_{VJM};$ $V_{R} = 0$	t = 10 ms t = 8.3 ms	(50 Hz) (60 Hz)	510 470	A ² s A ² s
T _{VJ} T _{VJM} T _{stg}				-40+150 150 -40+125	℃ ℃ ℃
V _{ISOL}	50/60 Hz, RN I _{ISOL} ≤ 1 mA	MS t = 1 mi t = 1 s	n	3000 3600	V~ V~
M _d	Mounting tor	que (M5) (10-32 l	JNF)	1.5-2 13-18	Nm lb.in.
Weight	Тур.			15	g

Symbol	Conditions	Characteristic Values
I _R	$V_{R} = V_{RRM}$ $T_{VJ} = 25^{\circ}C$	0.3 mA
	$T_{VJ} = T_{VJM}$	5.0 mA
V _F	$I_F = 55 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$	1.36 V
V_{T0}	For power-loss calculations only	0.85 V
r _t		8 m Ω
R _{thJC}	per diode; 120° el.	2.80 K/W
	per module	0.70 K/W
R_{thJH}	per diode; 120° el.	3.20 K/W
	per module	0.80 K/W
d _s	Creeping distance on surface	13 mm
d _A	Creepage distance in air 3	9.5 mm
a	Max. allowable acceleration	50 m/s ²

Data according to IEC 60747 and refer to a single diode unless otherwise stated.

IXYS reserves the right to change limits, test conditions and dimensions.

② for resistive load at bridge output

³ with isolated fast-on tabs.

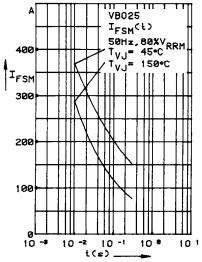


Fig. 1 Surge overload current per diode I_{FSM} : Crest value, t: duration

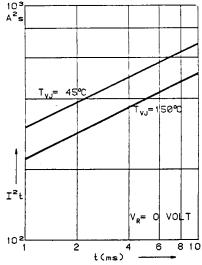


Fig. 2 I²t versus time (1-10 ms) per diode

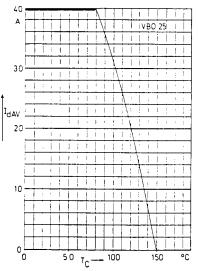


Fig. 3 Max. forward current at case temperature

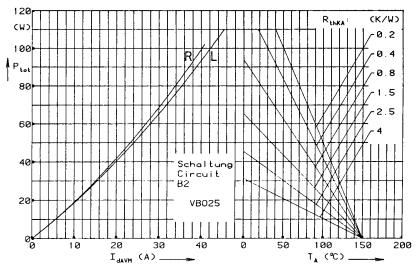


Fig. 4 Power dissipation versus direct output current and ambient temperature

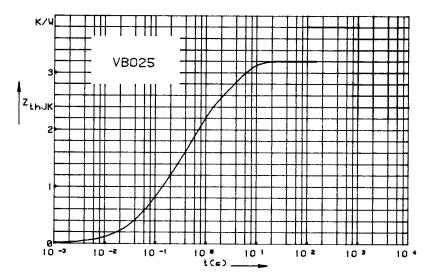


Fig. 5 Transient thermal impedance junction to heatsink per diode

Constants for Z_{thJK} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.775	0.0788
2	1.390	0.504
3	1.055	3.701

IXYS reserves the right to change limits, test conditions and dimensions.

20100706b

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А