# Adaptive Step-Up Converters with 1.5A Flash Driver 

## General Description

The MAX8834Y/MAX8834Z flash drivers integrate a 1.5A PWM DC-DC step-up converter and three programmable low-side, low-dropout LED current regulators. The step-up converter features an internal switching MOSFET and synchronous rectifier to improve efficiency and minimize external component count. An $I^{2} \mathrm{C}$ interface provides flexible control of stepup converter output voltage setting, movie/flash mode selection, flash timer duration settings, and current regulator settings. The MAX8834Y/MAX8834Z operate down to 2.5 V , making them future proof for new battery technologies.
The MAX8834Y/MAX8834Z consist of two current regulators for the flash/movie mode. Each current regulator can sink 750 mA in flash mode and 125 mA in movie mode. The MAX8834Y/MAX8834Z also integrate a 16 mA lowcurrent regulator that can be used to indicate camera status. The indicator current regulator includes programmable ramp and blink timer settings. A programmable input current limit, invoked using the GSMB control, reduces the total current drawn from the battery during PA transmit events. This ensures the flash current is set to the maximum possible for any given operating condition. Additionally, the MAX8834Y/MAX8834Z include a MAXFLASH function that adaptively reduces flash current during low battery conditions to help prevent system undervoltage lockup.
Other features include an optional NTC input for fingerburn protection and open/short LED detection. The MAX8834Y switches at 2 MHz , providing best overall efficiency. The MAX8834Z switches at 4 MHz , providing smallest overall solution size. The MAX8834Y/ MAX8834Z are available in a 20-bump, 0.5 mm pitch WLP package ( $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ ).

## Ordering Information

| PART | TEMP <br> RANGE | PIN-PACKAGE | SWITCHING <br> FREQUENCY <br> (MHz) |
| :---: | :---: | :---: | :---: |
| MAX8834YEWP +T$-40^{\circ} \mathrm{C}$ to <br> $+85^{\circ} \mathrm{C}$ | 20 WLP <br> $(2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm})$ | 2 |  |
| MAX8834ZEWP +T$-40^{\circ} \mathrm{C}$ to <br> $+85^{\circ} \mathrm{C}$20 WLP <br> $(2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm})$ | 4 |  |  |

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel.
Pin Configuration appears at end of data sheet.
Visit www.maximintegrated.com/products/patents_for product patent marking information.

Features

- 2.5V to 5.5V Operation Range
- Step-Up DC-DC Converter 1.5A Guaranteed Output Current Adaptive or $\mathrm{I}^{2} \mathrm{C}$ Programmable Output Voltage 2 MHz and 4 MHz Switching Frequency Options
- Two Flash/Movie LED Current Regulators ${ }^{2}{ }^{2}$ C Programmable Flash and Movie Current Low-Dropout Voltage (110mV max) at 500mA
- LED Indicator Current Regulator $I^{2}$ C Programmable Output Current Ramp and Blink Timers for Indicator Mode Low-Dropout Voltage (130mV max) at 16 mA
- $I^{2}$ C Programmable Safety and Watchdog Timers
- GSM Blank Logic Input
- MAXFLASH System Lockup Protection
- Remote Temperature Sensor Input
- Open/Short LED Detection
- Thermal Shutdown Protection
- <1 1 A Shutdown Current
- 20-Bump, 0.5 mm Pitch, $2.5 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ WLP

Applications
Cell Phones and Smart Phones
PDAs, Digital Cameras, and Camcorders

## Typical Operating Circuit



## MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver

## ABSOLUTE MAXIMUM RATINGS

|  |  |
| :---: | :---: |
| VDD to AGND........................................................-0.3V to +4.0 V <br> SCL, SDA, LED_EN, GSMB to AGND ........-0.3V to (VDD + 0.3V) <br> FLED1, FLED2, INDLED to FGND ............-0.3V to (VOUT + 0.3V) <br> COMP to AGND. <br> -0.3 V to (VIN +0.3 V ) <br> PGND, FGND to AGND <br> -0.3 V to +0.3 V <br> ILx Current (rms) |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ) (derate $17.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) $\qquad$ .1410 mW Operating Temperature Range ............................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ..................................................... $150^{\circ} \mathrm{C}$ Storage Temperature Range ............................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Bump Temperature* (soldering) ...................................... $+260^{\circ} \mathrm{C}$
*This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC O2OA, paragraph 7.6, Table 3 for IR/VPR and Convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGND}}=\mathrm{V}_{\text {PGND }}=\mathrm{V}_{\mathrm{FGND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)


# MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGND}}=\mathrm{V}_{\text {PGND }}=\mathrm{V}_{\mathrm{FGND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shutdown Leakage Current | IN and VDD in UVLO,$V_{\text {LED_EN }}=V_{G S M B}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.01 | +1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 0.1 |  |  |
| 12C INTERFACE |  |  |  |  |  |  |
| SDA Output Low Voltage | ISDA $=3 \mathrm{~mA}$ |  |  | 0.03 | 0.4 | V |
| ${ }^{2} \mathrm{C}$ Clock Frequency |  |  |  |  | 400 | kHz |
| Bus-Free Time Between STOP and START | tBUF |  | 1.3 |  |  | $\mu \mathrm{s}$ |
| Hold Time Repeated START Condition | tHD_STA |  | 0.6 | 0.1 |  | $\mu \mathrm{s}$ |
| SCL Low Period | tLOW |  | 1.3 | 0.2 |  | $\mu \mathrm{s}$ |
| SCL High Period | thigh |  | 0.6 | 0.2 |  | $\mu \mathrm{s}$ |
| Setup Time Repeated START Condition | tSU_STA |  | 0.6 | 0.1 |  | $\mu \mathrm{s}$ |
| SDA Hold Time | thD_DAT |  | 0 | -0.01 |  | $\mu \mathrm{s}$ |
| SDA Setup Time | tSU_DAT |  | 100 | 50 |  | ns |
| Setup Time for STOP Condition | tSU_STO |  | 0.6 | 0.1 |  | $\mu \mathrm{s}$ |
| STEP-UP DC-DC CONVERTER |  |  |  |  |  |  |
| OUT Voltage Range | 100mV steps |  | 3.7 |  | 5.2 | V |
| OUT Voltage Accuracy | No load, VOUT = 5V |  | -2.75 | $\pm 0.5$ | +2.75 | \% |
| OUT Overvoltage Protection | When running in adaptive mode |  | 5.2 | 5.35 | 5.5 | V |
| Adaptive Output Voltage Regulation Threshold | IFLED1 $=1$ IFLED2 $=492.24 \mathrm{~mA}$ setting, ${ }^{\text {I }}$ INDLED $=16 \mathrm{~mA}$ |  |  | 150 |  | mV |
| PGOOD Window Comparator | VOUT $=5 \mathrm{~V}$, in programmable mode |  | -15 | -12.5 | -10 | \% |
| Line Regulation | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 4.2 V |  |  | 0.1 |  | \%N |
| Load Regulation | I Out $=0 \mathrm{~mA}$ to 1500 mA |  |  | 0.5 |  | \%/A |
| nFET Current Limit |  |  |  | 3.6 |  | A |
| LX nFET On-Resistance | LX to PGND, ILX $=200 \mathrm{~mA}$ |  |  | 0.055 | 0.130 | $\Omega$ |
| LX pFET On-Resistance | LX to OUT, ILX $=200 \mathrm{~mA}$ |  |  | 0.12 | 0.200 | $\Omega$ |
| LX Leakage | V LX $=5.5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 0.1 | 1 | $\mu \mathrm{A}$ |
|  |  |  | 0.1 |  |  |  |
| Input Current Limit Range During GSMB Trigger |  |  | 50 |  | 800 | mA |
| Input Current Limit Step Size During GSMB Trigger |  |  |  | 50 |  | mA |
| Input Current Limit Accuracy | IILIM $=100 \mathrm{~m}$ |  | -15 |  | +15 | \% |
| Operating Frequency, No Load | MAX8834Y |  | 1.8 | 2 | 2.2 | MHz |
|  |  | ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 1.6 |  | 2.4 |  |
|  | MAX8834Z |  | 3.6 | 4 | 4.4 |  |
|  |  | ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.2 |  | 4.8 |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGND}}=\mathrm{V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{FGND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | CONDITIONS | MIN | TYP |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Maximum Duty Cycle | VOUT $=4.5 \mathrm{~V}$ | 69 | 75 |  |  |
| UNITS |  |  |  |  |  |
| Minimum Duty Cycle | VoUT $=4.5 \mathrm{~V}$ | 7.5 | $\%$ |  |  |
| COMP Transconductance | VCOMP $=1.5 \mathrm{~V}$ | 55 | $\%$ |  |  |
| COMP Discharge Resistance | During shutdown or UVLO, from COMP to AGND | 120 | $\mu \mathrm{~S}$ |  |  |
| OUT Discharge Resistance | During shutdown or UVLO, from OUT to LX |  |  |  |  |

## FLED1/FLED2 CURRENT REGULATOR

| IN Supply Current | Step-up off, FLED1/FLED2 on, supply current for each current source |  | 0.6 |  |  | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Current Setting | Flash |  | 750 |  |  | mA |
|  | Movie |  | 125 |  |  |  |
| Current Accuracy | 23.44 mA setting | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -5 |  | +20 | \% |
|  | 492.24 mA setting | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -2.5 | $\pm 0.5$ | +2.5 | \% |
|  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | -4 |  | +4 |  |
|  | 750mA setting | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | -10 |  | +5 | \% |
| Current Regulator Dropout (Note 2) | 492.24 mA setting |  |  |  | 110 | mV |
|  | 93.75 mA setting |  |  | 50 | 100 |  |
| FLED1/FLED2 Leakage in Shutdown | $\mathrm{V}_{\text {FLED1 }}=\mathrm{V}_{\text {FLED2 }}=5.5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.01 | +1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 0.1 |  |  |

## INDLED CURRENT REGULATOR

| IN Supply Current | Step-up converter off, INDLED on |  | 0.6 |  |  | mA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Current Setting |  |  |  | 16 |  | mA |
| Current Accuracy | 0.5 mA setting | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -10 |  | +10 | \% |
|  | 16 mA setting | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -3 | $\pm 0.5$ | +3 | \% |
|  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | -5 |  | +5 | \% |
| Current Regulator Dropout | 16mA setting (Note 2) |  |  | 55 | 130 | mV |
| INDLED Leakage in Shutdown | VINDLED $=5.5 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.01 | +1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 0.1 |  |  |

## PROTECTION CIRCUITS

| NTC BIAS Current |  | 19.4 | 20 | 20.6 | $\mu \mathrm{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NTC Overtemperature Detection Threshold | V ${ }_{\text {NTC }}$ falling, 100 mV hysteresis, NTC_CNTL[2:0] = 100 | 388 | 400 | 412 | mV |
| NTC Short Detection Threshold | $V_{\text {NTC }}$ falling |  | 100 |  | mV |
| Flash Duration Timer Range | In 50ms steps (Note 3) | 50 |  | 800 | ms |
| Flash Duration Timer Accuracy (400ms Setting) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 360 | 400 | 440 | ms |
|  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 320 |  | 480 |  |
| Minimum Flash Duration | FLASH_EN[2:0] = 1XX |  | 2 |  | ms |
| Flash Safety Timer Reset Inhibit Period | From falling edge of LED_EN until flash safety timer is reset |  | 30 |  | ms |
| Watchdog Timer Range | In 4s steps | 4 |  | 16 | S |

## MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {AGND }}=\mathrm{V}_{\mathrm{PGND}}=\mathrm{V}_{\mathrm{FGND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Watchdog Timer Accuracy (4s setting) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 3.6 | 4 | 4.4 | s |
|  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.2 |  | 4.8 |  |
| Open LED Detection Threshold | FLED1, FLED2, INDLED enabled |  |  | 100 | mV |
| Shorted LED Detection Threshold | FLED1, FLED2, INDLED enabled |  | $\begin{aligned} & \text { VOUT - } \\ & \text { 1V } \end{aligned}$ |  | V |
| Open and Short Debounce Timer | From LED open or short detected until LED current regulator is disabled |  | 30 |  | ms |
| Thermal-Shutdown Hysteresis |  |  | 20 |  | ${ }^{\circ} \mathrm{C}$ |
| Thermal Shutdown |  |  | +160 |  | ${ }^{\circ} \mathrm{C}$ |
| MAXFLASH |  |  |  |  |  |
| Low-Battery Detect Threshold Range | 33 mV steps | 2.5 |  | 3.4 | V |
| Low-Battery Voltage Threshold Accuracy |  |  | $\pm 2.5$ |  | \% |
| Low-Battery Voltage Hysteresis Programmable Range |  | 100 |  | 200 | mV |
| Low-Battery Voltage Hysteresis Step Size |  |  | 100 |  | mV |
| Low-Battery Reset Time | LB_TMR[1:0] = 00 | 200 | 250 | 300 | $\mu \mathrm{s}$ |
|  | LB_TMR[1:0] = 01 | 400 | 500 | 600 |  |

Note 1: All devices are $100 \%$ production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: LED current regulator dropout voltage is defined as the voltage when current drops $10 \%$ from the current level measured at 0.6 V .

Note 3: Flash duration is from rising edge of LED_EN until IFLED = OA (safety time in one-shot mode)
Note 4: The adaptive output voltage regulation threshold is individually set on each device to 75 mV above the dropout voltage of the LED current regulators. This ensures minimum power dissipation on the IC during a flash event. The dropout voltage chosen is the highest measured dropout voltage of FLED1, FLED2, and INDLED.

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters with 1.5A Flash Driver

## Typical Operating Characteristics

(Circuit of Figure 1, $\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


# MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver 

## Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## MAX8834Y/MAX8834Z Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


# MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver 

## Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


OUTPUT VOLTAGE LINE REGULATION
(MAX8834Y)



MAXFLASH FUNCTION


OUTPUT VOLTAGE LINE REGULATION (MAX8834Z)


## MAX8834Y/MAX8834Z Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{V}_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


INPUT CURRENT LIMIT vs. PROGRAMMED OUTPUT VOLTAGE


OUTPUT VOLTAGE LOAD REGULATION
(MAX8834Z)


INPUT CURRENT LIMIT vs. PROGRAMMED VALUE


# MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver 

Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| A1, B1 | OUT | Regulator Output. Connect OUT to the anodes of the external LEDs. Bypass OUT to PGND with a $10 \mu \mathrm{~F}$ ceramic capacitor. OUT is connected to LX through an internal $10 \mathrm{k} \Omega$ resistor during shutdown. |
| A2, B2 | LX | Inductor Connection. Connect LX to the switched side of the inductor. LX is internally connected to the drains of the internal MOSFETs. LX is connected to OUT through an internal $10 \mathrm{k} \Omega$ resistor during shutdown. |
| A3, B3 | PGND | Power Ground. Connect PGND to AGND and to the input capacitor ground. Connect PGND to the PCB ground plane. |
| A4 | IN | Analog Supply Voltage Input. The input voltage range is 2.5 V to 5.5 V . Bypass IN to AGND and PGND with a $10 \mu \mathrm{~F}$ ceramic capacitor as close as possible to the IC. IN is high impedance during shutdown. |
| A5 | $V_{D D}$ | Logic Input Supply Voltage. Connect VDD to the logic supply driving SCL, SDA, LED_EN, and GSMB. Bypass $V_{D D}$ to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. When VDD is below the UVLO, the I2C registers reset and the step-up converter turns off. |
| B4 | SCL | ${ }^{2} \mathrm{C}$ Clock Input. Data is read on the rising edge of SCL. |
| B5 | AGND | Analog Ground. Connect AGND to PGND and to the input capacitor ground. Connect AGND to the PCB ground plane. |
| C1 | COMP | Compensation Input. See the Compensation Network Selection section for details. COMP is internally pulled to AGND through a $180 \Omega$ resistor in shutdown. |
| C2, D2 | FGND | FLED1/FLED2 and INDLED Power Ground. Connect FGND to PGND. |
| C3 | LED_EN | LED Enable Logic Input. LED_EN controls FLED1, FLED2, and INDLED, depending on control bits written into the LED_CNTL register. See the LED_EN Control register description for an explanation of this input function. LED_EN has an internal $800 \mathrm{k} \Omega$ pulldown resistor to AGND. |
| C4 | GSMB | GSM Blank Signal. Assert GSMB to reduce the current regulator settings according to the values programmed into the GSMB_CUR register. The status of the flash safety timer and the flash/movie mode values in the current regulator registers are not affected by the GSMB state. Connect GSMB to the PA module enable signal or other suitable logic signal that indicates a GSM transmit is in process. Polarity of this signal is set by a bit in the GSMB_CUR register (default is active-high). GSMB has an internal $800 \mathrm{k} \Omega$ pulldown resistor to AGND. |
| C5 | SDA | ${ }^{12} \mathrm{C}$ Data Input. Data is read on the rising edge of SCL and data is clocked out on the falling edge of SCL. |
| D1 | FLED2 | FLED2 Current Regulator. Current flowing into FLED2 is based on the internal I2C registers FLASH2_CUR and MOVIE_CUR. Connect FLED2 to the cathode of an external flash LED or LED module. FLED2 is high impedance during shutdown. If unused, connect FLED2 to ground. |
| D3 | FLED1 | FLED1 Current Regulator. Current flowing into FLED1 is based on the internal I2C registers FLASH1_CUR and MOVIE_CUR. Connect FLED1 to the cathode of an external flash LED or LED module. FLED1 is high impedance during shutdown. If unused, connect FLED1 to ground. |
| D4 | INDLED | INDLED Current Regulator. Current flowing into INDLED is based on the internal I2C registers IND_CUR. Connect INDLED to the cathode of an external indicator LED. INDLED is high impedance during shutdown. If unused, connect INDLED to ground. |
| D5 | NTC | NTC Bias Output. NTC provides $20 \mu \mathrm{~A}$ to bias the NTC thermistor. The NTC voltage is compared to the trip threshold programmed by the NTC_CNTL register. NTC is high impedance during shutdown. Connect NTC to IN if not used. See the Finger-Burn Protection (NTC) section for details. |

# MAX8834 Y/MAX8834Z <br> Adaptive Step-Up Converters with 1.5A Flash Driver 

## Detailed Description

The MAX8834Y/MAX8834Z flash drivers integrate an adaptive 1.5A PWM step-up DC-DC converter, two 750mA white LED camera flash/movie current regulators, and a 16 mA indicator LED current regulator. An ${ }^{2} \mathrm{C}$ interface controls individual output on/off, the stepup output voltage setting, the movie/flash current, and the flash timer duration settings.

## Step-Up Converter (LX, OUT, COMP, PGND)

The MAX8834Y/MAX8834Z include a fixed-frequency, PWM step-up converter that supplies power to the flash LEDs. The output voltage is programmable from 3.7 V to 5.2 V (in 100 mV steps) through the $\mathrm{I}^{2} \mathrm{C}$ interface. The output voltage can also be set adaptively based on the LED forward voltage. The step-up converter switches an internal power MOSFET and synchronous rectifier at a constant 2 MHz or 4 MHz frequency, with varying duty cycle up to $75 \%$, to maintain constant output voltage as the input voltage and load vary. Internal circuitry prevents any unwanted subharmonic switching by forcing a minimum $7 \%$ (typ) duty cycle.
When the step-up converter is set to dropout mode, the internal synchronous rectifier is driven fully on, keeping the voltage at OUT equal to the LX input. This mode provides the lowest current consumption when driving LEDs with low forward voltage.
The output voltage is internally monitored for a fault condition. If the output voltage drops below $8 \%$ (typ) of the nominal programmed value, a POK fault is indicated in STATUS1 register bit 5 . This feature is disabled if the step-up converter is set to operate in adaptive mode.

## Overvoltage Protection

The MAX8834Y/MAX8834Z include a comparator to monitor the output voltage (VOUT) during adaptive mode operation of the step-up converter. If at anytime the output voltage exceeds a maximum threshold of 5.5 V , the COMP capacitor is discharged until the output voltage is reduced by the 200 mV (typ) hysteresis. Once the output voltage drops below this threshold, normal charging of the COMP capacitor is resumed.

## Flash Current Regulator (FLED1 and FLED2)

A low-dropout linear current regulator from FLED1/ FLED2 to FGND sinks current from the cathode terminal of the flash LED(s). The FLED1/FLED2 current is regulated to $I^{2} \mathrm{C}$ programmable levels for movie mode (up to 125 mA , see Table 5) and flash mode (up to 750 mA ,
see Tables 3 and 4). The movie mode provides continuous lighting when enabled through $\mathrm{I}^{2} \mathrm{C}$ or LED_EN. When the flash mode is enabled, a flash safety timer, programmable from 50 ms to 800 ms through $I^{2} \mathrm{C}$, limits the duration of the flash mode. Once the flash safety timer expires, the current regulators return to movie mode if movie mode was active when a flash event was triggered. The flash mode has priority over the movie mode.

Flash Safety Timer The flash safety timer is activated any time flash mode is selected, either with LED_EN or through the ${ }^{2} \mathrm{C}$ interface.
The flash safety timer, programmable from 50 ms to 800 ms through $1^{2} \mathrm{C}$, limits the duration of the flash mode in case LED_EN is stuck high or the $\mathrm{I}^{2} \mathrm{C}$ command to turn off has not been sent within the programmed flash safety timer duration. This timer can be configured to operate either in one-shot mode or maximum flash duration mode (see Table 9). In one-shot mode, the flash function is initiated on the rising edge of LED_EN (or $I^{2} \mathrm{C}$ bit) and terminated based on the programmed value of the safety timer (see Figure 1). In the maximum flash timer mode, flash function remains enabled as long as LED_EN (or ${ }^{2} \mathrm{C}$ bit) is high, unless the preprogrammed safety timer times out (see Figure 2).
Once the flash mode is disabled, by either LED_EN, ${ }^{2} \mathrm{C}$, or flash safety timer, the flash has to be off for a minimum time (flash safety timer reset inhibit period), before it can be reinitiated (see Figure 3). This prevents spurious events from re-enabling the flash mode.

## Indicator Current Regulator (INDLED)

A low-dropout linear current regulator from INDLED to FGND sinks current from the cathode terminal of the indicator LED. The INDLED current is regulated to $I^{2} \mathrm{C}$ programmable levels up to 16 mA . Programmable control is provided for ramp-up (OFF to ON) and rampdown (ON to OFF) times, as well as blink rate and duty cycle. The user can choose to enable or disable the ramp time and blink rate features. See Tables 6, 7, and 8 for more information.

## INDLED Blink Function

INDLED current regulator is able to generate a blink function. The OFF and ON time for INDLED are set using the $\mathrm{I}^{2} \mathrm{C}$ interface. See Figure 4.

## INDLED Ramp Function

The INDLED current regulator output provides ramp-up/ down for smooth transition between different brightness settings. The ramp-up/down times are controlled by the

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver



Figure 1. One-Shot Flash-Timer Mode


Figure 2. Maximum Flash-Timer Mode


Figure 3. Flash Safety Timer Reset Inhibit Period


Figure 4. Blink Function Timing

IND_RU and IND_RD control bits, and the ramp function is enabled/disabled by the IND_RP_EN bit. The current regulator increases/decreases the current onestep every tramp/32 until 0mA or IND[4:0] current is reached. See Figures 5 and 6.

Combining BLINK Timer and Ramp Function
When using the ramp function for INDLED together with the blink timer, keep the ramp-up timer shorter than the ON blink timer and the ramp-down timer shorter than the OFF timer. Failing to comply with this results in the

## MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver



Figure 5. Ramp-Up Behavior


Figure 6. Ramp-Down Behavior


Figure 7. Combining RAMP Function and Blink Timer
programmed current not being reached during the ON time, or the INDLED current not returning to OmA during the OFF time. See Figure 7.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{IND}} \mathrm{ON} \geq \frac{\mathrm{t}_{\mathrm{IND}} \mathrm{RU}}{32}(\mathrm{IND} \text { _LED }+1) \\
& \mathrm{t}_{\mathrm{IND}} \text { _OFF } \geq \frac{t_{\text {IND_RD }}}{32}\left(I N D_{-} \mathrm{LED}+1\right)
\end{aligned}
$$

where IND_LED is the code from 0 to 31 specified in the IND_LED[4:0].

## LED Enable Input (LED_EN)

The LED_EN logic input can enable/disable the FLED1, FLED2, and INDLED current regulators. It can be programmed to control movie mode, flash mode, and indicator mode by using the IND_EN, MOVIE_EN, and FLASH_EN bits, respectively. See Table 8 for more information.

If FLED1/FLED2 is enabled for both movie and flash modes at the same time, flash mode has priority. Once the safety timer expires, the current regulator then returns to the movie mode.

Watchdog Timer
The MAX8834Y/MAX8834Z include a watchdog timer function that can be programmed using the $1^{2} \mathrm{C}$ interface from 4 seconds to 16 seconds with a 4 -second step. If the watchdog timer expires, the MAX8834Y/ MAX8834Z interpret it as an indication that the system is no longer responding and enters safe mode. In safe mode, the MAX8834Y/MAX8834Z disable all current regulators and the step-up DC-DC converter to prevent potential damage to the system. The $I^{2} \mathrm{C}$ setting for the respective registers does not change, therefore, resetting the watchdog timer reverts the MAX8834Y/ MAX8834Z back to the state present before entering safe mode.

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters with 1.5A Flash Driver



Figure 8. Watchdog Timer Timing Diagram 1


Figure 9. Watchdog Timer Timing Diagram 2

Setting the WDT_EN bit to 1 in the TMR_DUR register (Table 9) enables the watchdog timer. Resetting the watchdog timer is achieved by the rising or falling edge
of LED_EN or by setting bit 0 in the WDT_RST register (Table 14). See Figures 8 and 9 for two examples of watchdog timer timing diagrams.

## MAX8834Y/MAX8834Z

Adaptive Step-Up Converters
with 1.5A Flash Driver


Figure 10. Input Current Limit During GSMB Event

GSM Blank Function (GSMB)
The GSMB input is provided to allow the flash current to be momentarily reduced during a GSM transmit to reduce the peak current drawn from the battery. The input current limit ensures that the maximum possible output current is always provided, regardless of the input voltage and the LED forward voltages.
When a GSMB event is triggered, the FLED1 and FLED2 current regulators go to the lowest setting to ensure the current drawn from the battery is quickly reduced to a safe level. The MAX8834Y/MAX8834Z
then start increasing the FLED1 and FLED2 current by one LSB steps, at a time interval set by HC_TMR[1:0] (see Table 11). The increasing continues until either the predefined FLED1/FLED2 current setting is reached or the input current exceeds the maximum predefined input current limit during a GSMB event. When the input current exceeds the predefined input current limit, the FLED1/FLED2 current is reduced by one LSB. The MAX8834Y/MAX8834Z continue to adjust the FLED1 and FLED2 up and down depending on the input current limit as long as the GSMB event is present. See Figure 10 for more detailed information.

# MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters with 1.5A Flash Driver 

To use this feature, connect the logic signal used to enable the PA, or equivalent, to the GSMB input. Assertion of this signal does not change the current status of the flash safety timer or the flash current values stored in the $I^{2} \mathrm{C}$ registers. Once the signal is deasserted, the current regulators change back to their previously programmed values. Polarity of this signal is controlled through bit 6 in the GSMB_CUR register (Table 11). The default is active-high.

Finger-Burn Protection (NTC)
An NTC input is provided for the (optional) finger-burn protection feature. To use this feature, connect a $100 \mathrm{k} \Omega$ NTC with B $=4550$ between NTC and AGND. NTC sources $20 \mu \mathrm{~A}$ current and the voltage established by this current and the NTC resistance is compared internally to a voltage threshold in the range of 200 mV to 550 mV , programmed through bits [2:0] of the NTC Control register (see Table 10).
If the voltage on the NTC pin falls below the programmed threshold during a flash event, the flash cycle is immediately terminated, and an indication is latched through bit 3 in the STATUS1 register (see Table 15).
To disable this function, clear bit 3 (enable bit) in the NTC Control register.

MAXFLASH Function
During high load currents, the battery voltage momentarily drops due to its internal ESR, together with the serial impedance from the battery to the load. For equipment requiring a minimum voltage for stable operation, the battery ESR needs to be calculated to estimate the maximum battery current that maintains the battery voltage above the critical threshold. Due to the complicated measurement of the battery ESR, the MAX8834Y/MAX8834Z feature the MAXFLASH function to prevent the battery voltage from dropping below the threshold voltage. See Figure 11 for details.
The MAX8834Y/MAX8834Z input voltage is monitored during a FLASH/MOVIE event. If the input voltage drops below a predefined threshold (VLB_TH), it indicates that the FLASH/MOVIE event is drawing more current than the battery can support. As a result, the FLED1/FLED2 current regulators start decreasing their output currents by one step. Therefore, the input current is reduced and the input voltage starts to rise due to the internal battery ESR. The input voltage is then sampled again after tLB_TMR and compared to VLB_TH
plus a predefined hysteresis (VLB_HYS). If it is still below VLB_TH + VLB_HYS, the FLED1/FLED2 current regulators reduce their output current again to ensure that minimum input voltage is available for the system. If the input voltage is above VLB_TH + VLB_HYS, the current regulator increases the output current by one step (if it is less than the user-defined output current). To disable the hysteresis, set LB_HYS[1:0] to 11. In this case, after the FLED1/FLED2 current is reduced, it stays at the current setting. Figures 12, 13, and 14 show examples of MAXFLASH function operation. See Tables 12 and 13 for control register details.
The MAXFLASH function continues for the entire duration of the FLASH/MOVIE event to ensure that the FLASH/MOVIE output current is always maximized for the specific operating conditions.

## Undervoltage Lockout

The MAX8834Y/MAX8834Z contain undervoltage lockout (UVLO) circuitry that disables the IC until VIN is greater than 2.3 V (typ). Once VIN rises above 2.3 V (typ), the UVLO circuitry does not disable the IC until VIN falls below the UVLO threshold minus the hysteresis voltage. The MAX8834Y/MAX8834Z also contain a VDD UVLO circuitry that monitors the VDD voltage. When the VDD voltage falls below 1.4 V (typ), the contents of all the logic registers are reset to their default states. The logic registers are only reset in a VDD UVLO condition and not an IN UVLO condition.


Figure 11. Block Diagram of MAXFLASH Function

MAX8834Y/MAX8834Z Adaptive Step-Up Converters
with 1.5A Flash Driver


Figure 12. Example 1 of MAXFLASH Function Operation


Figure 13. Example 2 of MAXFLASH Function Operation


Figure 14. Example 3 of MAXFLASH Function Operation with Hysteresis Disabled

# MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver 

## Soft-Start

The step-up converter implements a soft-start to control inrush current when it turns on. It soft-starts by charging Ccomp with a $100 \mu \mathrm{~A}$ current source. During this time, the internal MOSFET is switching at the minimum duty cycle. Once VCOMP rises above 1 V , the duty cycle increases until the output voltage reaches the desired regulation level. COMP is pulled to AGND with a $180 \Omega$ (typ) internal resistor during IN, UVLO, dropout mode, or shutdown. See the Typical Operating Characteristics for an example of soft-start operation. Soft-start is reinitiated after UVLO or if the step-up converter is reenabled after shutdown or dropout mode.

## Shutdown and Standby

The MAX8834Y/MAX8834Z are in shutdown when either VIN or VDD are in UVLO. In shutdown, supply current is reduced to $0.1 \mu \mathrm{~A}$ (typ). When VIN is above its UVLO threshold, but VDD is below its UVLO threshold, the IC disables its internal reference, keeps all registers reset, turns the step-up converter off, and turns the FLED1/FLED2 current regulators off (high impedance). Once a logic-level voltage is supplied to VDD, the IC enters standby condition and is ready to accept $I^{2} \mathrm{C}$ commands. The internal MOSFET, synchronous rectifier, and FLED1/FLED2 are also high impedance in standby.
Typical shutdown timing characteristics are shown in the Typical Operating Characteristics.

## Parallel Connection of Current Regulators

The FLED1/FLED2 current regulators can be connected in parallel as long as the system software properly sets the current levels for each regulator. Unused current regulators may be connected to ground. The FLED1/

FLED2 regulators must be disabled through $I^{2} \mathrm{C}$ to avoid a fault detection from an open or short.

Open/Short Detection The MAX8834Y/MAX8834Z monitor the FLED1, FLED2, and INDLED voltage to detect any open or short LEDs. A short fault is detected when the voltage rises above VOUT - 1V (typ), and an open fault is detected when the voltage falls below 100 mV . The fault detection circuitry is only activated when the corresponding current regulator is enabled and provides a continuous monitor of the current regulator condition. Once a fault is detected, the corresponding current regulator is disabled and the status is latched into the corresponding fault register bit (see Table 15). This allows the processor to determine the MAX8834Y/MAX8834Z operating condition.

Thermal Shutdown
Thermal shutdown limits total power dissipation in the MAX8834Y/MAX8834Z. When the junction temperature exceeds $+160^{\circ} \mathrm{C}$ (typ), the IC turns off, allowing itself to cool. The IC turns on and begins soft-start after the junction temperature cools by $20^{\circ} \mathrm{C}$. This results in a pulsed output during continuous thermal overload conditions.
$\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Serial Interface
An $I^{2}$ C-compatible, 2-wire serial interface controls the step-up converter output voltage, flash, movie, and indicator current settings, flash duration, and other parameters. The serial bus consists of a bidirectional serial-data line (SDA) and a serial-clock input (SCL). The MAX8834Y/MAX8834Z are slave-only devices, relying upon a master to generate a clock signal. The master initiates data transfer to and from the MAX8834Y/


Figure 15. 2-Wire Serial Interface Timing Detail


Figure 16. Bit Transfer

MAX8834Z and generates SCL to synchronize the data transfer (Figure 15).
$I^{2} \mathrm{C}$ is an open-drain bus. Both SDA and SCL are bidirectional lines, connected to a positive supply voltage through a pullup resistor. They both have Schmitt triggers and filter circuits to suppress noise spikes on the bus to assure proper device operation.
A bus master initiates communication with the MAX8834Y/MAX8834Z as a slave device by issuing a START (S) condition followed by the MAX8834Y/ MAX8834Z address. The MAX8834Y/MAX8834Z address byte consists of 7 address bits and a read/ write bit (R/W). After receiving the proper address, the MAX8834Y/MAX8834Z issue an acknowledge bit by pulling SDA low during the ninth clock cycle.

## Slave Address

The MAX8834Y/MAX8834Z act as a slave transmitter/ receiver. Its slave address is $0 x 94$ for write operations and $0 \times 95$ for read operations.

## Bit Transfer

Each data bit, from the most significant bit to the least significant bit, is transferred one by one during each clock cycle. During data transfer, the SDA signal is allowed to change only during the low period of the SCL clock and it must remain stable during the high period of the SCL clock (Figure 16).

START and STOP Conditions
Both SCL and SDA remain high when the bus is not busy. The master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the MAX8834Y/ MAX8834Z, it issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 17). Both START and STOP conditions are generated by the bus master.

## Acknowledge

The acknowledge bit is used by the recipient to handshake the receipt of each byte of data (Figure 18). After data transfer, the master generates the acknowledge clock pulse and the recipient pulls down the SDA line during this acknowledge clock pulse so the SDA line stays low during the high duration of the clock pulse. When the master transmits the data to the MAX8834Y/MAX8834Z, it releases the SDA line and the MAX8834Y/MAX8834Z take control of the SDA line and generate the acknowledge bit. When SDA remains high during this 9th clock pulse, this is defined as the not acknowledge signal. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.


Figure 17. START and STOP Conditions

Write Operations
The MAX8834Y/MAX8834Z recognize the write byte protocol as defined in the $\mathrm{SMBus}^{\mathrm{TM}}$ specification and shown in section A of Figure 19. The write byte protocol allows the $I^{2} \mathrm{C}$ master device to send 1 byte of data to the slave device. The write-byte protocol requires a register pointer address for the subsequent write. The MAX8834Y/MAX8834Z acknowledge any register pointer even though only a subset of those registers actually exists in the device. The write byte protocol is as follows:

1) The master sends a start command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave updates with the new data.
8) The slave acknowledges the data byte.
9) The master sends a STOP ( $P$ ) condition.

In addition to the write-byte protocol, the MAX8834Y/ MAX8834Z can write to multiple registers as shown in section B of Figure 19. This protocol allows the $I^{2} \mathrm{C}$ master device to address the slave only once and then send data to a sequential block of registers starting at the specified register pointer.


Figure 18. Acknowledge

Use the following procedure to write to a sequential block of registers:

1) The master sends a start command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends the 8-bit register pointer of the first register to write.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave updates with the new data.
8) The slave acknowledges the data byte.
9) Steps 6 to 8 are repeated for as many registers in the block, with the register pointer automatically incremented each time.
10) The master sends a STOP condition.

Read Operations
The method for reading a single register (byte) is shown in section A of Figure 20. To read a single register:

1) The master sends a start command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer.

## MAX8834Y/MAX8834Z Adaptive Step-Up Converters with 1.5A Flash Driver


A. WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL

B. WRITING TO MULTIPLE REGISTERS


Figure 19. Writing to the MAX8834Y/MAX8834Z
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START (Sr) condition.
7) The master sends the 7-bit slave address followed by a read bit.
8) The slave asserts an acknowledge by pulling SDA low.
9) The slave sends the 8-bit data (contents of the register).
10) The master asserts an acknowledge by pulling SDA low.
11) The master sends a STOP (P) condition.

In addition, the MAX8834Y/MAX8834Z can read a block of multiple sequential registers as shown in section B of Figure 20. Use the following procedure to read a sequential block of registers:

1) The master sends a start command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer of the first register in the block.
5) The slave acknowledges the register pointer.
6) The master sends a REPEATED START condition.
7) The master sends the 7-bit slave address followed by a read bit.
8) The slave asserts an acknowledge by pulling SDA low.
9) The slave sends the 8-bit data (contents of the register).
10) The master asserts an acknowledge by pulling SDA low.
11) Steps 9 and 10 are repeated for as many registers in the block, with the register pointer automatically incremented each time.
12) The master sends a STOP condition.

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

| $\square$ |
| :--- |
| MASTER TO |
| SLAVE |
| SLAVE TO |
| MASTER |

A. READING A SINGLE REGISTER

B. READING MULTIPLE REGISTERS


Figure 20. Reading from the MAX8834Y/MAX8834Z

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 1. Register Map

| NAME | TABLE | REGISTER <br> ADDRESS (hex) | TYPE | DESCRIPTION |
| :--- | :---: | :---: | :---: | :--- |
| BOOST_CNTL | Table 2 | 00 | $R / \bar{W}$ | Step-up converter control |
| FLASH1_CUR | Table 3 | 01 | $R / \bar{W}$ | FLED1 flash current control |
| FLASH2_CUR | Table 4 | 02 | $R / \bar{W}$ | FLED2 flash current control |
| MOVIE_CUR | Table 5 | 03 | $R / \bar{W}$ | FLED1 and FLED2 movie current control |
| Reserved for future use | - | 04 | $R / \bar{W}$ | Reserved for future use |
| IND_CUR | Table 6 | 05 | $R / \bar{W}$ | Indicator LED current control |
| Reserved for future use | - | 06 | $R / \bar{W}$ | Reserved for future use |
| IND_CNTL | Table 7 | 07 | $R / \bar{W}$ | Indicator LED ramp and blink control |
| Reserved for future use | - | 08 | $R / \bar{W}$ | Reserved for future use |
| LED_CNTL | Table 8 | 09 | $R / \bar{W}$ | FLED1, FLED2, and INDLED on/off and mode control, <br> and definition of LED_EN logic input function |
| TMR_DUR | Table 9 | 0A | $R / \bar{W}$ | Watchdog timer and flash safety timer control |
| NTC_CNTL | Table 10 | 0B | $R / \bar{W}$ | NTC function control |
| GSMB_CUR | Table 11 | $0 C$ | $R / \bar{W}$ | FLED1 and FLED2 current control during GSM transmit |
| MAXFLASH1 | Table 12 | $0 D$ | $R / \bar{W}$ | MAXFLASH function register 1 |
| MAXFLASH2 | Table 13 | $0 E$ | $R / \bar{W}$ | MAXFLASH function register 2 |
| WDT_RST | Table 14 | 16 | $R / \bar{W}$ | Watchdog timer reset |
| STATUS1 | Table 15 | 17 | $R$ | Status register |
| STATUS2 | Table 16 | 18 | $R$ | Status register |
| Reserved for future use | - | 19 | $R \bar{W}$ | Reserved for future use |
| CHIP_ID1 | Table 17 | 1 A | $R$ | Die type information |
| CHIP_ID2 | Table 18 | $1 B$ | $R$ | Die type and mask revision information |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 2. BOOST_CNTL

This register contains step-up converter control values.

| REGISTER NAME | BOOST_CNTL |
| :--- | :---: |
| Address | $0 \times 00$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | - | Reserved for future use | 0 |
| B6 | BOOST_EN | 0 = Step-up converter off 1 = Step-up converter on | 0 |
| B5 | BOOST_MODE | 00 = Step-up voltage set adaptively <br> 01 = Step-up voltage set programmatically according to BOOST_CNTL[3:0] <br> 10 = Step-up converter runs in dropout <br> 11 = Step-up converter automatically changes between adaptive regulation and dropout mode depending on operating conditions |  |
| B4 |  |  | 00 |
|  | BOOST_CNTL[3:0] | $\begin{aligned} & 0000=3.7 \mathrm{~V} \\ & 0001=3.8 \mathrm{~V} \\ & 0010=3.9 \mathrm{~V} \\ & 0011=4.0 \mathrm{~V} \\ & 0100=4.1 \mathrm{~V} \\ & 0101=4.2 \mathrm{~V} \\ & 0110=4.3 \mathrm{~V} \\ & 0111=4.4 \mathrm{~V} \\ & 1000=4.5 \mathrm{~V} \\ & 1001=4.6 \mathrm{~V} \\ & 1010=4.7 \mathrm{~V} \\ & 1011=4.8 \mathrm{~V} \\ & 1100=4.9 \mathrm{~V} \\ & 1101=5.0 \mathrm{~V} \\ & 1110=5.1 \mathrm{~V} \\ & 1111=5.2 \mathrm{~V} \end{aligned}$ |  |
| B3 |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| B2 |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | 0000 |
| B1 |  |  |  |
|  |  |  |  |
|  |  |  |  |
| B0 (LSB) |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 3. FLASH1_CUR

This register contains FLED1 flash current control values.

| REGISTER NAME | FLASH1_CUR |
| :--- | :---: |
| Address | $0 \times 01$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | FLASH1[4:0] | FLED1 Flash Mode Current Setting $\begin{aligned} & 00000=23.44 \mathrm{~mA} \\ & 00001=46.88 \mathrm{~mA} \\ & 00010=70.32 \mathrm{~mA} \\ & 00011=93.76 \mathrm{~mA} \\ & 00100=117.20 \mathrm{~mA} \\ & 00101=140.64 \mathrm{~mA} \\ & 00110=164.08 \mathrm{~mA} \\ & 00111=187.52 \mathrm{~mA} \\ & 01000=210.96 \mathrm{~mA} \\ & 01001=234.40 \mathrm{~mA} \\ & 01010=257.84 \mathrm{~mA} \\ & 01011=281.28 \mathrm{~mA} \\ & 01100=304.72 \mathrm{~mA} \\ & 01101=328.16 \mathrm{~mA} \\ & 01110=351.60 \mathrm{~mA} \\ & 01111=375.04 \mathrm{~mA} \\ & 10000=398.48 \mathrm{~mA} \\ & 10001=421.92 \mathrm{~mA} \\ & 10010=445.36 \mathrm{~mA} \\ & 10011=468.80 \mathrm{~mA} \\ & 10100=492.24 \mathrm{~mA} \\ & 10101=515.68 \mathrm{~mA} \\ & 10110=539.12 \mathrm{~mA} \\ & 10111=562.56 \mathrm{~mA} \\ & 11000=586.00 \mathrm{~mA} \\ & 11001=609.44 \mathrm{~mA} \\ & 11010=632.88 \mathrm{~mA} \\ & 11011=656.32 \mathrm{~mA} \\ & 11100=679.76 \mathrm{~mA} \\ & 11101=703.20 \mathrm{~mA} \\ & 11110=726.56 \mathrm{~mA} \\ & 11111=750.00 \mathrm{~mA} \end{aligned}$ | 00000 |
| B2 | - | Reserved for future use | - |
| B1 | - | Reserved for future use | - |
| B0 (LSB) | - | Reserved for future use | - |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 4. FLASH2_CUR

This register contains FLED2 flash current control values.

| REGISTER NAME | FLASH2_CUR |
| :--- | :---: |
| Address | $0 \times 02$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |



## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 5. MOVIE_CUR

This register contains FLED1 and FLED2 movie current control values.

| REGISTER NAME | MOVIE_CUR |
| :--- | :---: |
| Address | $0 \times 03$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT NAME |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | - | Reserved for future use | - |
| B6 B5 B4 | MOVIE1[2:0] | FLED1 Movie Mode Current Setting $\begin{aligned} & 000=15.625 \mathrm{~mA} \\ & 001=31.250 \mathrm{~mA} \\ & 010=46.875 \mathrm{~mA} \\ & 011=62.500 \mathrm{~mA} \\ & 100=78.125 \mathrm{~mA} \\ & 101=93.750 \mathrm{~mA} \\ & 110=109.375 \mathrm{~mA} \\ & 111=125.000 \mathrm{~mA} \end{aligned}$ | 000 |
| B3 | - | Reserved for future use | - |
| B2 <br> $B 1$ <br> $B 0$ (LSB) | MOVIE2[2:0] | FLED2 Movie Mode Current Setting $\begin{aligned} & 000=15.625 \mathrm{~mA} \\ & 001=31.250 \mathrm{~mA} \\ & 010=46.875 \mathrm{~mA} \\ & 011=62.500 \mathrm{~mA} \\ & 100=78.125 \mathrm{~mA} \\ & 101=93.750 \mathrm{~mA} \\ & 110=109.375 \mathrm{~mA} \\ & 111=125.000 \mathrm{~mA} \end{aligned}$ | 000 |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

Table 6. IND_CUR
This register contains indicator LED current control values.

| REGISTER NAME | IND_CUR |
| :--- | :---: |
| Address | $0 \times 05$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | - | Reserved for future use | 0 |
| B6 | IND_BL_EN | INDLED Indicator Blink Timer Enable <br> $0=$ Indicator blink is disabled <br> 1 = Indicator blink is enabled | 0 |
| B5 | IND_RP_EN | INDLED Indicator Ramp-Up/Down Enable <br> 0 = Indicator ramp-up/down is disabled <br> $1=$ Indicator ramp-up/down is enabled | 0 |
| B4 <br> B3 <br> B2 <br> B1 <br> B0 (LSB) | IND[4:0] | INDLED Indicator Mode Current Setting $00000=0.5 \mathrm{~mA}$ <br> $00001=1.0 \mathrm{~mA}$ <br> $00010=1.5 \mathrm{~mA}$ <br> $00011=2.0 \mathrm{~mA}$ <br> $00100=2.5 \mathrm{~mA}$ <br> $00101=3.0 \mathrm{~mA}$ <br> $00110=3.5 \mathrm{~mA}$ <br> $00111=4.0 \mathrm{~mA}$ <br> $01000=4.5 \mathrm{~mA}$ <br> $01001=5.0 \mathrm{~mA}$ <br> $01010=5.5 \mathrm{~mA}$ <br> $01011=6.0 \mathrm{~mA}$ <br> $01100=6.5 \mathrm{~mA}$ <br> $01101=7.0 \mathrm{~mA}$ <br> $01110=7.5 \mathrm{~mA}$ <br> $01111=8.0 \mathrm{~mA}$ <br> $10000=8.5 \mathrm{~mA}$ <br> $10001=9.0 \mathrm{~mA}$ <br> $10010=9.5 \mathrm{~mA}$ <br> $10011=10.0 \mathrm{~mA}$ <br> $10100=10.5 \mathrm{~mA}$ <br> $10101=11.0 \mathrm{~mA}$ <br> $10110=11.5 \mathrm{~mA}$ <br> $10111=12.0 \mathrm{~mA}$ <br> $11000=12.5 \mathrm{~mA}$ <br> $11001=13.0 \mathrm{~mA}$ <br> $11010=13.5 \mathrm{~mA}$ <br> $11011=14.0 \mathrm{~mA}$ <br> $11100=14.5 \mathrm{~mA}$ <br> $11101=15.0 \mathrm{~mA}$ <br> $11110=15.5 \mathrm{~mA}$ <br> $11111=16.0 \mathrm{~mA}$ | 00000 |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 7. IND_CNTL

This register contains indicator LED ramp and blink timer control.

| REGISTER NAME | IND_CNTL |
| :--- | :---: |
| Address | $0 \times 07$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| $\frac{B 7(M S B)}{\text { B6 }}$ | IND_OFF | INDLED Indicator Off Blink Timer Control $\begin{aligned} & 00=512 \mathrm{~ms} \\ & 01=1024 \mathrm{~ms} \\ & 10=2048 \mathrm{~ms} \\ & 11=4096 \mathrm{~ms} \end{aligned}$ | 00 |
| B5 B4 | IND_ON | INDLED Indicator On Blink Timer Control $\begin{aligned} & 00=128 \mathrm{~ms} \\ & 01=256 \mathrm{~ms} \\ & 10=512 \mathrm{~ms} \\ & 11=1024 \mathrm{~ms} \end{aligned}$ | 00 |
| B3 B2 | IND_RU[1:0] | INDLED Indicator Ramp-Up Timer Control $\begin{aligned} & 00=128 \mathrm{~ms} \\ & 01=256 \mathrm{~ms} \\ & 10=512 \mathrm{~ms} \\ & 11=1024 \mathrm{~ms} \end{aligned}$ | 00 |
| B1 ${ }_{\text {B0 (LSB) }}$ | IND_RD[1:0] | INDLED Indicator Ramp-Down Timer Control $\begin{aligned} & 00=128 \mathrm{~ms} \\ & 01=256 \mathrm{~ms} \\ & 10=512 \mathrm{~ms} \\ & 11=1024 \mathrm{~ms} \end{aligned}$ | 00 |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 8. LED_CNTL

This register contains FLED1, FLED2 and INDLED on/off and mode control.

| REGISTER NAME | LED_CNTL |
| :--- | :---: |
| Address | $0 \times 09$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) |  | INDLED Indicator Current Regulator Enable |  |
| B6 | IND_EN[1:0] | $01=$ INDLED indicator LED is disabled <br> $10=$ INDLED indicator LED is enabled <br> 11 = INDLED indicator LED is controlled by LED_EN input | 00 |
| B5 | MOVIE_EN[2:0] | FLED1/FLED2 MOVIE Mode Current Regulator Enable <br> $000=$ FLED1 and FLED2 movie mode disabled <br> 001 = FLED1 movie mode is enabled, FLED2 movie mode is disabled <br> $010=$ FLED2 movie mode is enabled, FLED1 movie mode is disabled <br> 011 = FLED1 and FLED2 movie mode is enabled <br> 101 = FLED1 movie mode is controlled by LED_EN, FLED2 movie mode is disabled <br> $110=$ FLED2 movie mode is controlled by LED_EN, FLED1 movie mode is disabled <br> 111 = FLED1 and FLED2 movie mode is controlled by LED_EN | 000 |
| B4 |  |  |  |
| B3 |  |  |  |
| B2 | FLASH_EN[2:0] | FLED1/FLED2 Flash Mode Current Regulator Enable <br> $000=$ FLED1 and FLED2 flash mode disabled <br> 001 = FLED1 flash mode is enabled, FLED2 flash mode is disabled <br> $010=$ FLED2 flash mode is enabled, FLED1 flash mode is disabled <br> 011 = FLED1 and FLED2 flash mode is enabled <br> 101 = FLED1 flash mode is controlled by LED_EN, FLED2 flash mode is disabled <br> $110=$ FLED2 flash mode is controlled by LED_EN, FLED1 flash mode is disabled <br> 111 = FLED1 and FLED2 flash mode is controlled by LED_EN | 000 |
| B1 |  |  |  |
| B0 (LSB) |  |  |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 9. TMR_DUR

This register contains watchdog timer and flash safety time-control values.

| REGISTER NAME | TMR_DUR |
| :--- | :---: |
| Address | $0 \times 0 \mathrm{~A}$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | WDT_EN | Enable/Disable Of Watchdog Timer Function <br> $0=$ WDT is disabled <br> $1=$ WDT is enabled | 0 |
| B6 |  | Watchdog Timer Duration |  |
| B5 | WDT_DUR[1:0] | $\begin{aligned} & 00=4 \mathrm{~s} \\ & 01=8 \mathrm{~s} \\ & 10=12 \mathrm{~s} \\ & 11=16 \mathrm{~s} \end{aligned}$ | 00 |
| B4 | TMR_MODE | Safety Timer Control <br> 0 = One-shot mode-generates a flash with a duration of TMR_DUR regardless of LED:EN and I ${ }^{2} \mathrm{C}$ setting; pulling $\mathrm{V}_{\mathrm{DD}}$ low in this condition terminates flash operating and puts the IC into power-down mode <br> 1 = Maximum timer mode-ensures that flash duration does not exceed the timer defined in TMR:DUR | 0 |
| B3 | TMR_DUR [3:0] | Safety Timer Duration Control$\begin{aligned} & 0000=50 \mathrm{~ms} \\ & 0001=100 \mathrm{~ms} \\ & 0010=150 \mathrm{~ms} \\ & 0011=200 \mathrm{~ms} \\ & 0100=250 \mathrm{~ms} \\ & 0101=300 \mathrm{~ms} \\ & 0110=350 \mathrm{~ms} \\ & 0111=400 \mathrm{~ms} \\ & 1000=450 \mathrm{~ms} \\ & 1001=500 \mathrm{~ms} \\ & 1010=550 \mathrm{~ms} \\ & 1011=600 \mathrm{~ms} \\ & 1100=650 \mathrm{~ms} \\ & 1101=700 \mathrm{~ms} \\ & 1110=750 \mathrm{~ms} \\ & 1111=800 \mathrm{~ms} \end{aligned}$ | 0000 |
| B2 |  |  |  |
| B1 |  |  |  |
| B0 (LSB) |  |  |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 10. NTC_CNTL

This register contains NTC function control values.

| REGISTER NAME | NTC_CNTL |
| :--- | :---: |
| Address | $0 \times 0 \mathrm{~B}$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | FLASH_TMR_CNTL | Flash Safety Timer Reset Control <br> 0 = Enable FLASH reset timer, only valid when FLASH mode is enabled using the LED_EN; LED_EN needs to be pulled low for minimum 30 ms (typ) to reset the flash safety <br> 1 = Disable FLASH reset timer; flash safety timer is reset as soon as LED_EN is pulled low | 0 |
| B6 | - | Reserved for future use | 0 |
| B5 | - | Reserved for future use | 0 |
| B4 | - | Reserved for future use | 0 |
| B3 | NTC_EN | Finger-Burn Feature Enable 0 = Disable NTC function <br> 1 = Enable NTC function | 0 |
| B2 |  | Finger-Burn Threshold Control $\begin{aligned} & 000=200 \mathrm{mV} \\ & 001=250 \mathrm{mV} \end{aligned}$ |  |
| B1 | NTC[2:0] | $\begin{aligned} & 010=300 \mathrm{mV} \\ & 011=350 \mathrm{mV} \\ & 100=400 \mathrm{mV} \end{aligned}$ | 000 |
| B0 (LSB) |  | $\begin{aligned} & 101=450 \mathrm{mV} \\ & 110=500 \mathrm{mV} \\ & 111=550 \mathrm{mV} \end{aligned}$ |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 11. GSMB_CUR

This register contains FLED1 and FLED2 current control values for the GSMB function.

| REGISTER NAME | GSMB_CUR |
| :--- | :---: |
| Address | 0x0C |
| Reset Value | $0 \times C 0$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | GSMB_EN | $\begin{aligned} & \text { GSM Blank Enable } \\ & 0=\text { GSMB input is disabled } \\ & 1=\text { GSMB input is enabled } \end{aligned}$ | 1 |
| B6 | GSMB_POL | GSM Blank Polarity Control <br> $0=$ GSMB is active-low <br> $1=$ GSMB is active-high | 1 |
| B5 <br> B4 <br>  <br> B3 | ILIM[3:0] | Input Current Limit During GSMB $\begin{aligned} & 0000=50 \mathrm{~mA} \\ & 0001=100 \mathrm{~mA} \\ & 0010=150 \mathrm{~mA} \\ & 0011=200 \mathrm{~mA} \\ & 0100=250 \mathrm{~mA} \\ & 0101=300 \mathrm{~mA} \\ & 0110=350 \mathrm{~mA} \\ & 0111=400 \mathrm{~mA} \\ & 1000=450 \mathrm{~mA} \\ & 1001=500 \mathrm{~mA} \\ & 1010=550 \mathrm{~mA} \\ & 1011=600 \mathrm{~mA} \\ & 1100=650 \mathrm{~mA} \\ & 1101=700 \mathrm{~mA} \\ & 1110=750 \mathrm{~mA} \\ & 1111=800 \mathrm{~mA} \end{aligned}$ | 0000 |
| B 1 $\mathrm{B0}(\mathrm{LSB})$ | HC_TMR[1:0] | GSMB Reset Timer $\begin{aligned} & 00=10 \mu \mathrm{~s} \\ & 01=20 \mu \mathrm{~s} \\ & 10=40 \mu \mathrm{~s} \\ & 11=80 \mu \mathrm{~s} \end{aligned}$ | 00 |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 12. MAXFLASH1

This register contains MAXFLASH control function.

| REGISTER NAME | MAXFLASH1 |
| :--- | :---: |
| Address | 0x0D |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | LB_EN | MAXFLASH Function Enable <br> 0 = Disabled <br> 1 = Low-battery function is enabled | 0 |
| B6 | LB_TH[4:0] | Low-Battery Detection Threshold $00000=2.400 \mathrm{~V}$ [Do not use] $00001=2.433 \mathrm{~V}$ [Do not use] $00010=2.466 \mathrm{~V}$ [Do not use] $00011=2.500 \mathrm{~V}$ $00100=2.533 \mathrm{~V}$ |  |
| B5 |  | $\begin{aligned} & 00110=2.600 \mathrm{~V} \\ & 00111=2.633 \mathrm{~V} \\ & 01000=2.666 \mathrm{~V} \\ & 01001=2.700 \mathrm{~V} \\ & 01010=2.733 \mathrm{~V} \\ & 01011=2.766 \mathrm{~V} \end{aligned}$ |  |
| B4 |  | $\begin{aligned} & 01101=2.833 \mathrm{~V} \\ & 01110=2.866 \mathrm{~V} \\ & 01111=2.900 \mathrm{~V} \\ & 10000=2.933 \mathrm{~V} \\ & 10001=2.966 \mathrm{~V} \\ & 10010=3.000 \mathrm{~V} \end{aligned}$ | 00000 |
| B3 |  | $\begin{aligned} & 10011=3.033 \mathrm{~V} \\ & 10100=3.066 \mathrm{~V} \\ & 10101=3.100 \mathrm{~V} \\ & 10110=3.133 \mathrm{~V} \\ & 10111=3.166 \mathrm{~V} \\ & 11000=3.200 \mathrm{~V} \\ & 11001=3.233 \mathrm{~V} \\ & 11010=3.266 \mathrm{~V} \\ & 11011=3.300 \mathrm{~V} \\ & 11100=3.333 \mathrm{~V} \\ & 11101=3.366 \mathrm{~V} \\ & 11110=3.400 \mathrm{~V} \\ & 11111=3.400 \mathrm{~V} \end{aligned}$ |  |
| B1 | LB_HYS[1:0] | Low-Battery Detection Hysteresis $00=100 \mathrm{mV}$ | 00 |
| B0 (LSB) |  | $\begin{aligned} & 01=200 \mathrm{mV} \\ & 10=\text { Reserved for future use } \\ & 11=\text { Hysteresis is disabled-flash current is only reduced } \end{aligned}$ |  |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 13. MAXFLASH2

This register contains MAXFLASH control function.

| REGISTER NAME | MAXFLASH2 |
| :--- | :---: |
| Address | $0 \times 0 E$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :--- | :---: |
| B7 (MSB) | - | Reserved for future use | 0 |
| B6 | - | Reserved for future use | 0 |
| B4 | - | Reserved for future use | 0 |
| B3 | - | Reserved for future use | 0 |
| B3 | - | Reserved for future use | 0 |
| B2 | - | Reserved for future use | 0 |
| B1 | LB_TMR[1:0] | Low-Battery Reset Timer <br> $00=0.250 \mathrm{~ms}$ <br> $01=0.500 \mathrm{~ms}$ <br> $10=$ Reserved for future use <br> $11=$ Reserved for future use | 00 |
| B0 (LSB) |  |  |  |

Table 14. WDT_RST
This register contains watchdog reset function.

| REGISTER NAME | WDT_RST |
| :--- | :---: |
| Address | $0 \times 16$ |
| Reset Value | $0 \times 00$ |
| Type | Read/write |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :--- | :---: |
| B7 (MSB) | - | Reserved for future use | 0 |
| B6 | - | Reserved for future use | 0 |
| B4 | - | Reserved for future use | 0 |
| B3 | - | Reserved for future use | 0 |
| B3 | - | Reserved for future use | 0 |
| B2 | - | Reserved for future use | 0 |
| B1 | - | Reserved for future use | 0 |
| B0 (LSB) | - | Watchdog Reset <br> $0=$ Default <br> $1=$ Writing a 1 resets the watchdog timer; after writing a 1, this bit is cleared <br> upon watchdog timer reset | - |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 15. STATUS1

This register contains status information.

| REGISTER NAME | STATUS1 |
| :--- | :---: |
| Address | $0 \times 17$ |
| Reset Value | N/A |
| Type | Read |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :--- | :--- | :---: |
| B7 (MSB) | NTC_FLT | NTC Status Readback <br> $0=$ NTC status OK <br> $1=$ Fault (short) occurred on NTC | 0 |
| B6 | GSMB | GSMB Status Readback <br> $0=$ No GSMB event has occurred <br> $1=$ GSMB event has occurred | 0 |
| B5 | POK_FLT | POK Window Cooperator Status Readback <br> $0=$ Output voltage is within POK window <br> $1=$ POK fault has occurred | 0 |
| B4 | OVER_TEMP | Die Temperature Overload Condition Status Readback <br> $0=$ Die temp is within spec <br> $1=$ Die overtemp event has occurred | 0 |
| B3 | NTC_OVT | NTC Status Readback <br> $0=$ NTC temperature is within spec <br> $1=$ NTC temperature threshold has tripped | 0 |
| B2 | INDLED_FLT | INDLED Status Readback <br> $0=$ INDLED status is OK <br> $1=$ Fault (open/short) has occurred on INDLED | 0 |
| B1 (LSB) | FLED2_FLT | FLED2 Status Readback <br> $0=$ FLED2 status is OK <br> $1=$ Fault (open/short) has occurred on FLED2 | 0 |
| BLET | FLED1 Status Readback <br> $0=$ FLED1 status is OK <br> $1=$ Fault (open/short) has occurred on FLED1 | 0 |  |

Note: All faults are latched. Bit(s) are cleared after reading register contents. If the fault is still present, the bit is set again.

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

## Table 16. STATUS2

This register contains status information.

| REGISTER NAME | STATUS2 |
| :--- | :---: |
| Address | $0 \times 18$ |
| Reset Value | N/A |
| Type | Read |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :--- | :---: |
| B7 (MSB) | MAXFLASH_STAT | Indication of if MAXFLASH Function Has Been Triggered Since Last <br> Read Operation of This Register <br> $0=$ MAXFLASH event has not occurred <br> $1=$ MAXFLASH event has occurred | 0 |
| B6 | GSMB_ILIM | Indication of if Input Current Limit Has Been Reached During GSMB <br> Since Last Read Operation of This Register <br> $0=$ Input current limit not reached <br> $1=$ Input current limit reached | 0 |
| B5 | - | Reserved for future use | 0 |
| B4 | - | Reserved for future use | 0 |
| B3 | - | Reserved for future use | 0 |
| B2 | - | Reserved for future use | 0 |
| B1 | - | Reserved for future use | 0 |
| B0 (LSB) | - | Reserved for future use | 0 |

Note: All faults are latched. Bit(s) are cleared after reading register contents. If the fault is still present, the bit is set again.
Table 17. CHIP_ID1
This register contains the MAX8834Y/MAX8834Z die type number.

| REGISTER NAME | CHIP_ID1 |
| :--- | :---: |
| Address | $0 \times 1 \mathrm{~A}$ |
| Reset Value | N/A |
| Type | Read |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | DIE_TYPE[7:4] | BCD Character 1 | [0001] |
| B6 |  |  |  |
| B5 |  |  |  |
| B4 |  |  |  |
| B3 | DIE_TYPE[3:0] | BCD Character 1 | [0001] |
| B2 |  |  |  |
| B1 |  |  |  |
| B0 (LSB) |  |  |  |

Note: This register value is fixed in metal.

# MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver 

## Table 18. CHIP_ID2

This register contains the die type dash number $(0=$ plain $)$ and mask revision level.

| REGISTER NAME | CHIP_ID2 |
| :--- | :---: |
| Address | $0 \times 1 \mathrm{~B}$ |
| Reset Value | N/A |
| Type | Read |
| Special Features | - |


| BIT | NAME | DESCRIPTION | DEFAULT VALUE |
| :---: | :---: | :---: | :---: |
| B7 (MSB) | DASH | BCD Character representing dash number | - |
| B6 |  |  |  |
| B5 |  |  |  |
| B4 |  |  |  |
| B3 | MASK_REV | BCD Character representing die revision | - |
| B2 |  |  |  |
| B1 |  |  |  |
| B0 (LSB) |  |  |  |

Note: This register value is fixed in metal.

## Applications Information

## Inductor Selection

See Table 19 for a list of recommended inductors. To prevent core saturation, ensure that the inductor saturation current rating exceeds the peak inductor current for the application. Calculate the worst-case peak inductor current as follows:

$$
I_{\text {PEAK }}=\frac{V_{\text {OUT }} \times \mathrm{I}_{\text {OUT }(M A X)}}{0.9 \times \mathrm{V}_{\text {IN(MIN })}}+\frac{\mathrm{V}_{\text {IN(MIN })}}{2 \times \mathrm{f}_{\text {SW }} \times \mathrm{L}}
$$

where fSW is the switching frequency.

## Capacitor Selection

Bypass IN to AGND and PGND with a ceramic capacitor. Ceramic capacitors with X5R and X7R dielectrics are recommended for their low ESR and tighter tolerances over wide temperature ranges. Place the capacitor as close as possible to the IC. The recommended minimum value for the input capacitor is $10 \mu \mathrm{~F}$; however, larger value capacitors can be used to reduce input ripple at the expense of size and higher cost.
The output capacitance required depends on the output current. A $10 \mu \mathrm{~F}$ ceramic capacitor works well in
most situations, but a $4.7 \mu \mathrm{~F}$ ceramic capacitor is acceptable for lower load currents.

## Compensation Network Selection

The step-up converter is compensated for stability through an external compensation network from COMP to AGND. See Table 20 for recommended compensation networks.

PCB Layout Due to fast-switching waveforms and high-current paths, careful PCB layout is required. Connect AGND, FGND, and PGND directly to the ground plane. The IN bypass capacitor should be placed as close as possible to the IC. RCOMP and CCOMP should be connected between COMP and AGND as close as possible to the $I C$. Minimize trace lengths between the IC and the inductor, the input capacitor, and the output capacitor; keep these traces short, direct, and wide. The ground connections of CIN and COUT should be as close together as possible and connected to PGND. The traces from the input to the inductor and from the output capacitor to the LEDs may be longer. Figure 21 illustrates an example PCB layout and routing scheme. Refer to the MAX8834Y/MAX8834Z Evaluation Kit for a PCB layout example.

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

Table 19. Suggested Inductors

| MANUFACTURER | PART/SERIES | INDUCTANCE ( $\mu \mathrm{H}$ ) | DCR (m) | ISAT (A) | $\begin{gathered} \text { DIMENSIONS } \\ \text { (ITYP } \left.\times \text { W }_{\text {TYP }} \times \mathrm{H}_{\text {MAX }}\right) \\ (\mathrm{mm}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coilcraft | LPS 4012-222ML | 2.2 | 100 | 2.3 | $4 \times 4 \times 1.1$ |
|  | LPS 4018-222ML | 2.2 | 70 | 2.7 | $4 \times 4 \times 1.7$ |
|  | LPS5030-220ML | 2.2 | 57 | 3.1 | $5 \times 5 \times 2.9$ |
|  | LPS6225-222ML | 2.2 | 45 | 3.9 | $6.2 \times 6.2 \times 2.5$ |
|  | LPO3310-102ML | 1 | 76 | 1.6 | $3 \times 3 \times 1$ |
|  | LPS3015-102ML | 1 | 75 | 1.6 | $3 \times 3 \times 1$ |
|  | LPO3010-102NLC | 1 | 140 | 1.7 | $3 \times 3 \times 1$ |
|  | DO3314-102ML | 1 | 110 | 2.1 | $3 \times 3 \times 1.4$ |
|  | LPS3314-102ML | 1 | 45 | 2.3 | $3 \times 3 \times 1.4$ |
|  | DP1605T-102ML | 1 | 40 | 2.5 | $4 \times 4 \times 1.8$ |
|  | LPS 4012-102ML | 1 | 60 | 2.8 | $4 \times 4 \times 1.1$ |
|  | LPS 4018-102ML | 1 | 40 | 2.8 | $4 \times 4 \times 1.7$ |
|  | LPS5015-102ML | 1 | 50 | 3.8 | $5 \times 5 \times 1.5$ |
| Taiyo Yuden | NR4018T2R2M | 2.2 | 72 | 2.7 | $4 \times 4 \times 1.8$ |
|  | NR3012T1R0N | 1 | 60 | 1.5 | $3 \times 3 \times 1.2$ |
|  | NR4010T1R0N | 1 | 120 | 1.8 | $4 \times 4 \times 1$ |
|  | NR3015T1R0N | 1 | 36 | 2.1 | $3 \times 3 \times 1.5$ |
|  | NR4012T1R0N | 1 | 72 | 2.5 | $4 \times 4 \times 1.2$ |
|  | NP03SB1R0M | 1 | 27 | 2.6 | $4 \times 4 \times 1.8$ |
|  | NP04SZB1R0N | 1 | 30 | 4 | $5 \times 5 \times 2$ |
|  | NR4018T1R0N | 1 | 36 | 4 | $4 \times 4 \times 1.8$ |
| TOKO | 1117AS-1R2N | 1.2 | 65 | 1.2 | $3 \times 3 \times 1$ |
|  | 1098AS-1R2N | 1.2 | 56 | 1.8 | $3 \times 3 \times 1.2$ |
|  | A997AS-1R0N | 1 | 40 | 1.8 | $4 \times 4 \times 1.8$ |
|  | 1072AS-1R0N | 1 | 30 | 1.95 | $3 \times 3 \times 1.8$ |
|  | 1071AS-1RON | 1 | 40 | 2.1 | $3 \times 3 \times 1.5$ |

Table 20. Suggested Compensation
Networks

| INDUCTANCE | RCOMP <br> $\mathbf{( k \Omega )}$ | CcoMP <br> $\mathbf{( p F )}$ |
| :---: | :---: | :---: |
| $1.0 \mu \mathrm{H}$ Inductor (dynamic loads) | 5.5 | 2200 |
| $2.2 \mu \mathrm{H}$ Inductor (dynamic loads) | 4.3 | 2200 |
| $4.7 \mu \mathrm{H}$ Inductor (dynamic loads) | 3 | 4700 |
| $10 \mu \mathrm{H}$ Inductor (dynamic loads) | 3 | 6800 |
| Other (non-LED) Loads (1 $\mu \mathrm{H}$ to $10 \mu \mathrm{H})$ | 0 (short) | 22000 |

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver



Figure 21. Recommended PCB Layout

## MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

Block Diagram and Typical Application Circuit


# MAX8834Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver 

Pin Configuration
Chip Information
PROCESS: BICMOS


Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 20 WLP | W202A2+2 | $\underline{21-0059}$ |

## MAX8834 Y/MAX8834Z <br> Adaptive Step-Up Converters <br> with 1.5A Flash Driver

Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :--- | :---: |
| 0 | $4 / 09$ | Initial release | - |
| 1 | $5 / 09$ | Added notes to Tables 16 and 18, and updated Figure 21 | $38,39,41$ |
| 2 | $2 / 10$ | Corrected register value in Table 5 | 28 |

# OCEAN CHIPS <br> Океан Электроники <br> Поставка электронных компонентов 

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». JONHON
«JONHON» (основан в 1970 г.)
Разъемы специального, военного и аэрокосмического назначения:
(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)
«FORSTAR» (основан в 1998 г.)
ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:
(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).


Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

