

560

V



### **Cool MOS™ Power Transistor**

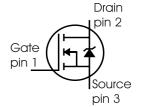
### **Feature**

- New revolutionary high voltage technology
- Ultra low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- Ultra low effective capacitances
- Improved transconductance








V<sub>DS</sub> @ T<sub>jmax</sub>

PG-TO252



- Pb-free lead plating; RoHS compliant; available in Halogen free mold compounda)
- Qualified according to JEDEC<sup>0)</sup> for target applications

| Туре       | Package  | Ordering Code | Marking |
|------------|----------|---------------|---------|
| SPD03N50C3 | PG-TO252 | Q67040-S4571  | 03N50C3 |



### **Maximum Ratings**

| Parameter                                                                | Symbol                     | Value    | Unit |
|--------------------------------------------------------------------------|----------------------------|----------|------|
| Continuous drain current                                                 | $I_{D}$                    |          | Α    |
| $T_{\rm C}$ = 25 °C                                                      |                            | 3.2      |      |
| T <sub>C</sub> = 100 °C                                                  |                            | 2        |      |
| Pulsed drain current, $t_p$ limited by $T_{jmax}$                        | I <sub>D puls</sub>        | 9.6      |      |
| Avalanche energy, single pulse                                           | E <sub>AS</sub>            | 100      | mJ   |
| $I_{\rm D}$ = 2.4 A, $V_{\rm DD}$ = 50 V                                 |                            |          |      |
| Avalanche energy, repetitive $t_{AR}$ limited by $T_{jmax}$ <sup>1</sup> | E <sub>AR</sub>            | 0.2      |      |
| $I_{\rm D}$ = 3.2 A, $V_{\rm DD}$ = 50 V                                 |                            |          |      |
| Avalanche current, repetitive $t_{AR}$ limited by $T_{jmax}$             | I <sub>AR</sub>            | 3.2      | Α    |
| Gate source voltage                                                      | $V_{GS}$                   | ±20      | V    |
| Gate source voltage AC (f >1Hz)                                          | $V_{GS}$                   | ±30      |      |
| Power dissipation, $T_{\rm C}$ = 25°C                                    | P <sub>tot</sub>           | 38       | W    |
| Operating and storage temperature                                        | $T_{\rm j}$ , $T_{ m stg}$ | -55 +150 | °C   |
| Reverse diode dv/dt 5)                                                   | dv/dt                      | 15       | V/ns |

a) non-Halogen free (OPN: SPD03N50C3BT); Halogen free (OPN: SPD03N50C3AT)



**Maximum Ratings** 

| Parameter                                                       | Symbol                 | Value | Unit |
|-----------------------------------------------------------------|------------------------|-------|------|
| Drain Source voltage slope                                      | d <i>v</i> /d <i>t</i> | 50    | V/ns |
| $V_{\rm DS}$ = 400 V, $I_{\rm D}$ = 3.2 A, $T_{\rm j}$ = 125 °C |                        |       |      |

### **Thermal Characteristics**

| Parameter                                      | Symbol              | Values |      |      | Unit |
|------------------------------------------------|---------------------|--------|------|------|------|
|                                                |                     | min.   | typ. | max. |      |
| Thermal resistance, junction - case            | $R_{\mathrm{thJC}}$ | -      | -    | 3.3  | K/W  |
| Thermal resistance, junction - ambient, leaded | $R_{thJA}$          | -      | -    | 75   |      |
| SMD version, device on PCB:                    | $R_{thJA}$          |        |      |      |      |
| @ min. footprint                               |                     | -      | -    | 75   |      |
| @ 6 cm <sup>2</sup> cooling area <sup>2)</sup> |                     | -      | -    | 50   |      |
| Soldering temperature, reflow soldering, MSL3  | $T_{sold}$          | -      | -    | 260  | °C   |
| 1.6 mm (0.063 in.) from case for 10s           |                     |        |      |      |      |

# **Electrical Characteristics**, at *T*j=25°C unless otherwise specified

| Parameter                        | Symbol               | Conditions                                               |      | Values |      | Unit |
|----------------------------------|----------------------|----------------------------------------------------------|------|--------|------|------|
|                                  |                      |                                                          | min. | typ.   | max. |      |
| Drain-source breakdown voltage   | V <sub>(BR)DSS</sub> | V <sub>GS</sub> =0V, I <sub>D</sub> =0.25mA              | 500  | -      | -    | V    |
| Drain-Source avalanche           | V <sub>(BR)DS</sub>  | V <sub>GS</sub> =0V, I <sub>D</sub> =3.2A                | -    | 600    | -    |      |
| breakdown voltage                |                      |                                                          |      |        |      |      |
| Gate threshold voltage           | V <sub>GS(th)</sub>  | $I_{\rm D}$ =135 $\mu{\rm A}, V_{\rm GS}$ = $V_{\rm DS}$ | 2.1  | 3      | 3.9  |      |
| Zero gate voltage drain current  | I <sub>DSS</sub>     | V <sub>DS</sub> =500V, V <sub>GS</sub> =0V,              |      |        |      | μA   |
|                                  |                      | <i>T</i> <sub>j</sub> =25°C,                             | -    | 0.1    | 1    |      |
|                                  |                      | <i>T</i> <sub>j</sub> =150°C                             | -    | -      | 100  |      |
| Gate-source leakage current      | I <sub>GSS</sub>     | V <sub>GS</sub> =20V, V <sub>DS</sub> =0V                | -    | -      | 100  | nA   |
| Drain-source on-state resistance | R <sub>DS(on)</sub>  | V <sub>GS</sub> =10V, I <sub>D</sub> =2A,                |      |        |      | Ω    |
|                                  |                      | <i>T</i> <sub>j</sub> =25°C                              | -    | 1.25   | 1.4  |      |
|                                  |                      | <i>T</i> <sub>j</sub> =150°C                             | -    | 3.4    | _    |      |
| Gate input resistance            | $R_{G}$              | <i>f</i> =1MHz, open Drain                               | -    | 15     | -    |      |



**Electrical Characteristics**, at  $T_i = 25$  °C, unless otherwise specified

| Parameter                       | Symbol                | Conditions                                                  |      | Values |      | Unit |
|---------------------------------|-----------------------|-------------------------------------------------------------|------|--------|------|------|
|                                 |                       |                                                             | min. | typ.   | max. |      |
| Transconductance                | <i>g</i> fs           | V <sub>DS</sub> ≥2*I <sub>D</sub> *R <sub>DS(on)max</sub> , | -    | 3.5    | -    | S    |
|                                 |                       | I <sub>D</sub> =2A                                          |      |        |      |      |
| Input capacitance               | C <sub>iss</sub>      | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V,                  | -    | 350    | -    | pF   |
| Output capacitance              | Coss                  | <i>f</i> =1MHz                                              | -    | 150    | -    |      |
| Reverse transfer capacitance    | C <sub>rss</sub>      |                                                             | -    | 5      | -    |      |
| Effective output capacitance,3) | C <sub>o(er)</sub>    | V <sub>GS</sub> =0V,                                        | -    | 18     | -    | pF   |
| energy related                  | , ,                   | V <sub>DS</sub> =0V to 400V                                 |      |        |      |      |
| Effective output capacitance,4) | C <sub>o(tr)</sub>    |                                                             | -    | 31     | -    |      |
| time related                    | , ,                   |                                                             |      |        |      |      |
| Turn-on delay time              | t <sub>d(on)</sub>    | V <sub>DD</sub> =350V, V <sub>GS</sub> =0/10V,              | -    | 10     | -    | ns   |
| Rise time                       | $t_{\rm r}$           | $I_{\rm D}$ =3.2A, $R_{\rm G}$ =20 $\Omega$                 | -    | 5      | -    |      |
| Turn-off delay time             | t <sub>d(off)</sub>   |                                                             | -    | 70     | -    | Ī    |
| Fall time                       | <i>t</i> <sub>f</sub> |                                                             | -    | 15     | -    | 1    |

## **Gate Charge Characteristics**

| <del>_</del>          |                        |                                              |   |    |   |    |
|-----------------------|------------------------|----------------------------------------------|---|----|---|----|
| Gate to source charge | Q <sub>gs</sub>        | V <sub>DD</sub> =400V, I <sub>D</sub> =3.2A  | - | 2  | - | nC |
| Gate to drain charge  | Q <sub>gd</sub>        |                                              | - | 8  | - |    |
| Gate charge total     | $Q_{g}$                | V <sub>DD</sub> =400V, I <sub>D</sub> =3.2A, | - | 15 | - |    |
|                       |                        | V <sub>GS</sub> =0 to 10V                    |   |    |   |    |
| Gate plateau voltage  | V <sub>(plateau)</sub> | V <sub>DD</sub> =400V, I <sub>D</sub> =3.2A  | - | 5  | - | V  |

<sup>&</sup>lt;sup>0</sup>J-STD20 and JESD22

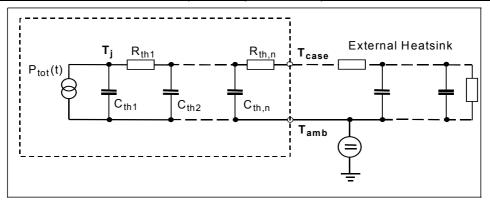
<sup>&</sup>lt;sup>1</sup>Repetitve avalanche causes additional power losses that can be calculated as  $P_{AV} = E_{AR} * f$ .

<sup>&</sup>lt;sup>2</sup>Device on 40mm\*40mm\*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical without blown air.

 $<sup>^3</sup>C_{\mathrm{o(er)}}$  is a fixed capacitance that gives the same stored energy as  $C_{\mathrm{oss}}$  while  $V_{\mathrm{DS}}$  is rising from 0 to 80%  $V_{\mathrm{DSS}}$ .

 $<sup>^4</sup>C_{
m o(tr)}$  is a fixed capacitance that gives the same charging time as  $C_{
m oss}$  while  $V_{
m DS}$  is rising from 0 to 80%  $V_{
m DSS}$ .

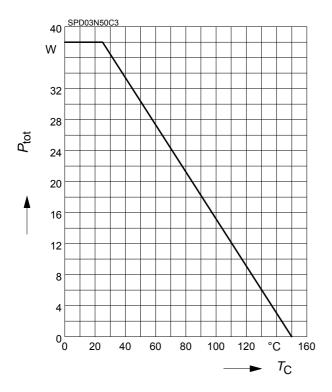
 $<sup>^{5}</sup>$ I<sub>SD</sub><=I<sub>D</sub>, di/dt<=400A/us, V<sub>DClink</sub>=400V, V<sub>peak</sub><V<sub>BR, DSS</sub>, T<sub>j</sub><T<sub>j,max</sub>. Identical low-side and high-side switch.




**Electrical Characteristics**, at  $T_j = 25$  °C, unless otherwise specified

| Parameter                     | Symbol               | Conditions                                             | Values |      |      | Unit |
|-------------------------------|----------------------|--------------------------------------------------------|--------|------|------|------|
|                               |                      |                                                        | min.   | typ. | max. |      |
| Inverse diode continuous      | IS                   | <i>T</i> <sub>C</sub> =25°C                            | -      | -    | 3.2  | Α    |
| forward current               |                      |                                                        |        |      |      |      |
| Inverse diode direct current, | / <sub>SM</sub>      |                                                        | -      | -    | 9.6  |      |
| pulsed                        |                      |                                                        |        |      |      |      |
| Inverse diode forward voltage | V <sub>SD</sub>      | V <sub>GS</sub> =0V, I <sub>F</sub> =I <sub>S</sub>    | -      | 1    | 1.2  | V    |
| Reverse recovery time         | t <sub>rr</sub>      | V <sub>R</sub> =400V, I <sub>F</sub> =I <sub>S</sub> , | -      | 240  | -    | ns   |
| Reverse recovery charge       | Q <sub>rr</sub>      | d <i>i<sub>F</sub></i> /d <i>t</i> =100A/μs            | -      | 1.6  | -    | μC   |
| Peak reverse recovery current | / <sub>rrm</sub>     |                                                        | -      | 12   | -    | Α    |
| Peak rate of fall of reverse  | di <sub>rr</sub> /dt |                                                        | -      | 550  | -    | A/µs |
| recovery current              |                      |                                                        |        |      |      |      |

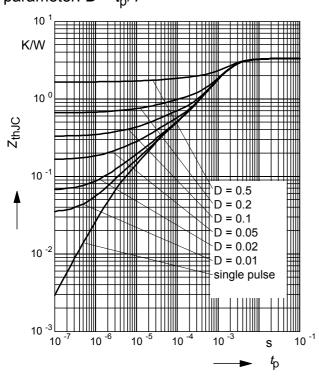
**Typical Transient Thermal Characteristics** 


| Symbol           | Value     | Unit | Symbol           | Value       | Unit |
|------------------|-----------|------|------------------|-------------|------|
|                  | typ.      |      |                  | typ.        |      |
| Thermal r        | esistance |      | Thermal of       | capacitance | ·    |
| R <sub>th1</sub> | 0.054     | K/W  | C <sub>th1</sub> | 0.00005232  | Ws/K |
| R <sub>th2</sub> | 0.103     |      | C <sub>th2</sub> | 0.0002034   |      |
| R <sub>th3</sub> | 0.178     |      | C <sub>th3</sub> | 0.0002963   |      |
| R <sub>th4</sub> | 0.757     |      | C <sub>th4</sub> | 0.0009103   |      |
| R <sub>th5</sub> | 0.682     |      | C <sub>th5</sub> | 0.002084    |      |
| R <sub>th6</sub> | 0.202     |      | C <sub>th6</sub> | 0.024       |      |





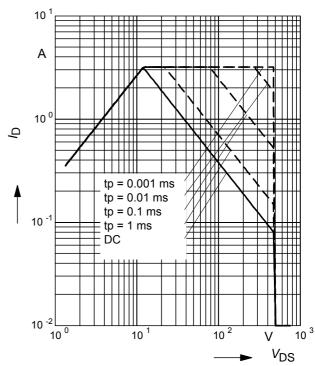
### 1 Power dissipation


$$P_{\text{tot}} = f(T_{\text{C}})$$



### 3 Transient thermal impedance

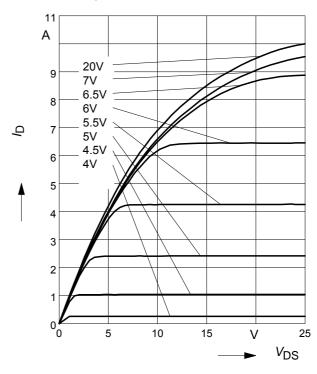
$$Z_{\text{thJC}} = f(t_{\text{p}})$$


parameter:  $D = t_D/T$ 



# 2 Safe operating area

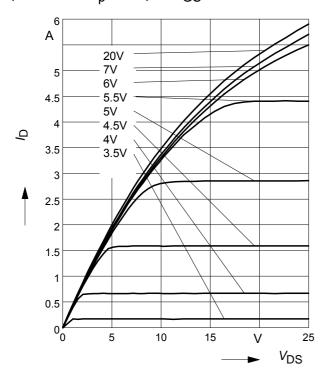
$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$


parameter : D = 0 ,  $T_C=25$ °C



# 4 Typ. output characteristic

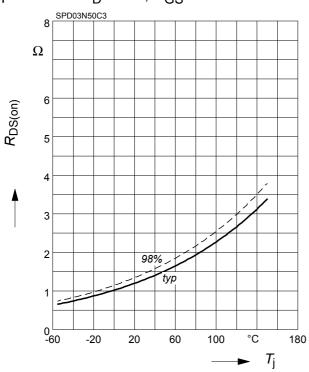
 $I_{D} = f(V_{DS}); T_{j}=25^{\circ}C$ 


parameter:  $t_p$  = 10  $\mu$ s,  $V_{GS}$ 





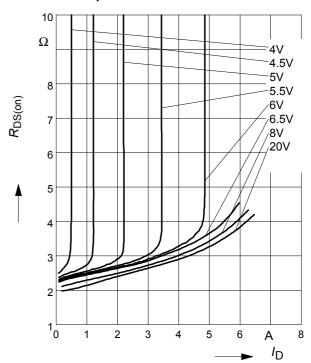
# 5 Typ. output characteristic


 $I_{\rm D}$  =  $f(V_{\rm DS})$ ;  $T_{\rm j}$ =150°C parameter:  $t_{\rm p}$  = 10  $\mu$ s,  $V_{\rm GS}$ 



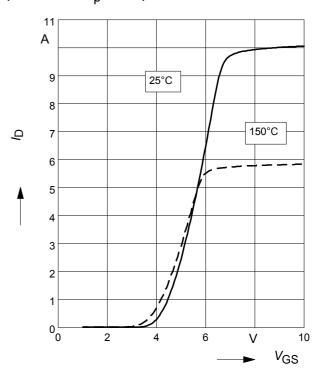
### 7 Drain-source on-state resistance

 $R_{\mathrm{DS(on)}} = f(T_{\mathrm{j}})$ 


parameter :  $I_D$  = 2 A,  $V_{GS}$  = 10 V



### 6 Typ. drain-source on resistance

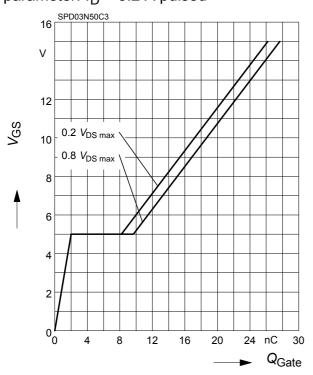

 $R_{DS(on)} = f(I_D)$ 

parameter:  $T_j$ =150°C,  $V_{GS}$ 



### 8 Typ. transfer characteristics

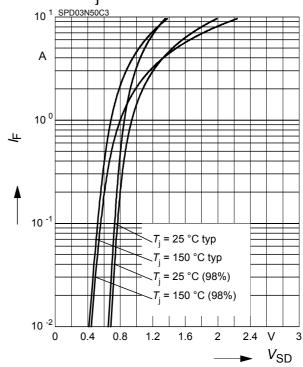
 $I_{\rm D}$ = f (  $V_{\rm GS}$  );  $V_{\rm DS}$  $\geq$  2 x  $I_{\rm D}$  x  $R_{\rm DS(on)max}$  parameter:  $t_{\rm p}$  = 10  $\mu$ s






## 9 Typ. gate charge

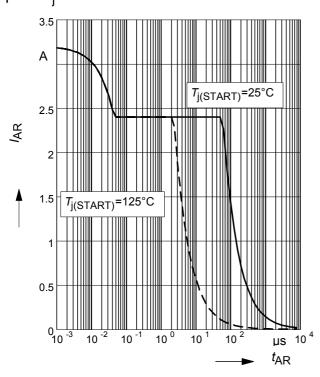
 $V_{GS} = f (Q_{Gate})$ 


parameter:  $I_D$  = 3.2 A pulsed



# 10 Forward characteristics of body diode

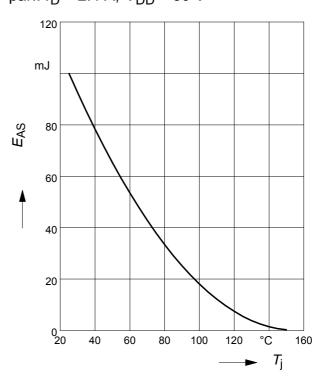
 $I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$ 


parameter:  $T_i$ ,  $t_p = 10 \mu s$ 



### 11 Avalanche SOA

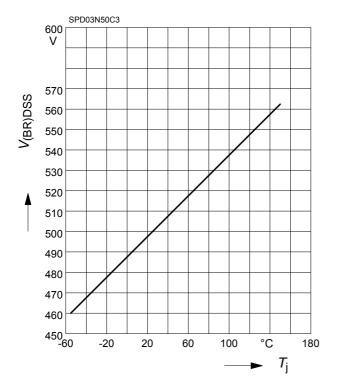
 $I_{AR} = f(t_{AR})$ 


par.:  $T_j \le 150 \,^{\circ}\text{C}$ 



### 12 Avalanche energy

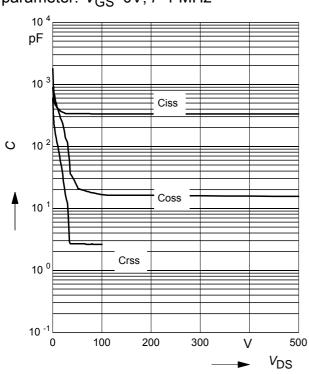
 $E_{AS} = f(T_i)$ 


par.:  $I_D = 2.4 \text{ A}, V_{DD} = 50 \text{ V}$ 





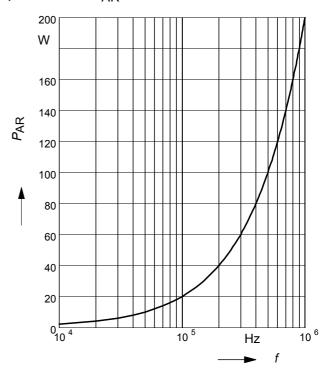
### 13 Drain-source breakdown voltage


$$V_{(BR)DSS} = f(T_j)$$



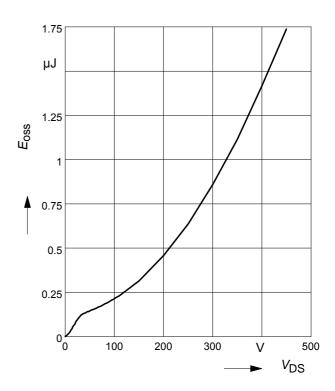
# 15 Typ. capacitances

$$C = f(V_{DS})$$


parameter:  $V_{GS}$ =0V, f=1 MHz

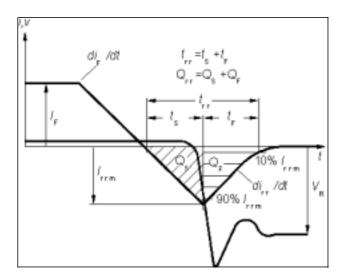


### 14 Avalanche power losses


$$P_{AR} = f(f)$$

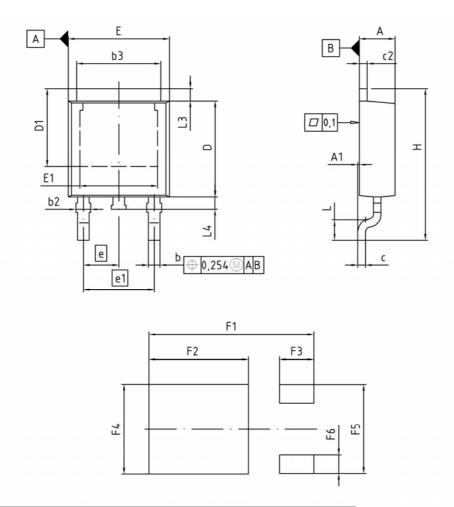
parameter: EAR=0.2mJ




# 16 Typ. $C_{\rm OSS}$ stored energy

$$E_{\text{oss}} = f(V_{\text{DS}})$$






# Definition of diodes switching characteristics





# PG-TO252-3-1, PG-TO252-3-11, PG-TO252-3-21 (D-PAK)



| DIM | MILLIM | ETERS      | INC   | HES   |
|-----|--------|------------|-------|-------|
| DIM | MIN    | MAX        | MIN   | MAX   |
| Α   | 2.16   | 2.41 0.085 |       | 0.095 |
| A1  | 0.00   | 0.15       | 0.000 | 0.006 |
| b   | 0.64   | 0.89       | 0.025 | 0.035 |
| b2  | 0.65   | 1.15       | 0.026 | 0.045 |
| ь3  | 5.00   | 5.50       | 0.197 | 0.217 |
| С   | 0.46   | 0.60       | 0.018 | 0.024 |
| c2  | 0.46   | 0.98       | 0.018 | 0.039 |
| D   | 5.97   | 6.22       | 0.235 | 0.245 |
| D1  | 5.02   | 5.84       | 0.198 | 0.230 |
| E   | 6.40   | 6.73       | 0.252 | 0.265 |
| E1  | 4.70   | 5.21       | 0.185 | 0.205 |
| е   | 2.     | 29         | 0.0   | 090   |
| e1  | 4.     | 57         | 0.1   | 180   |
| N   |        | 3          |       | 3     |
| Н   | 9.40   | 10.48      | 0.370 | 0.413 |
| L   | 1.18   | 1.70       | 0.046 | 0.067 |
| L3  | 0.90   | 1.25       | 0.035 | 0.049 |
| L4  | 0.51   | 1.00       | 0.020 | 0.039 |
| F1  | 10.50  | 10.70      | 0.413 | 0.421 |
| F2  | 6.30   | 6.50       | 0.248 | 0.256 |
| F3  | 2.10   | 2.30       | 0.083 | 0.091 |
| F4  | 5.70   | 5.90       | 0.224 | 0.232 |
| F5  | 5.66   | 5.86       | 0.223 | 0.231 |
| F6  | 1.10   | 1.30       | 0.043 | 0.051 |

| DOCUMENT NO.<br>Z8B00003328 |
|-----------------------------|
| SCALE 0                     |
| 0 2.0<br>4mm                |
| EUROPEAN PROJECTION         |
|                             |
| ISSUE DATE<br>19-10-2007    |
| REVISION<br>03              |



Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.

### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<a href="www.infineon.com">www.infineon.com</a>).

### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

SPD03N50C3ATMA1



Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

### Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».



**«JONHON»** (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).



Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А