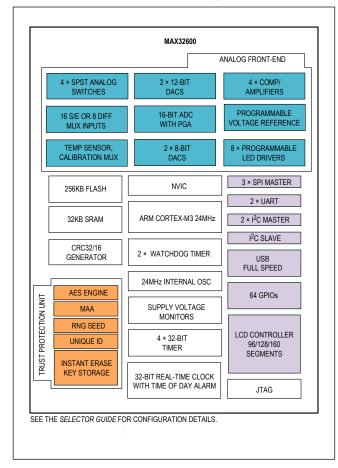
### Wellness Measurement Microcontroller


#### **General Description**

The MAX32600 microcontroller is based on the industry-standard ARM<sup>®</sup> Cortex<sup>®</sup>-M3 32-bit RISC CPU operating at up to 24MHz. It includes 256KB of flash memory, 32KB of SRAM, a 2KB instruction cache, and integrated high-performance analog peripherals. The MAX32600 is available in the following package options: 192-ball, 12mm x 12mm CTBGA; 120-ball, 7mm x 7mm CTBGA; and 108-ball, 5.4mm x 4.3mm WLP.

#### **Applications**

- Wearable Medical Devices
- Pulse Oximetry Measurement
- Galvanic Skin Response Measurement
- Blood Glucose Metering

#### Simplified Functional Diagram



#### **Benefits and Features**

- Integrated AFE Enables Precision Wellness
  Measurements with Minimal Discretes
  - 16-Bit ADC with Input Mux and PGA
    - Up to 500ksps Conversion Rate
    - PGA with Gain of 1, 2, 4, and 8 and Bypass Mode
    - Differential 8:1 or Single-Ended 16:1 Input Mux
    - Internal Mux Inputs for Measuring V<sub>DDA3</sub>
  - Internal or External Voltage Reference
  - Programmable Buffers for ADC and DACs
  - Two 12-Bit DACs and Two 8-Bit DACs
  - Four Operational Amplifiers
  - Four Low-Power Comparators
  - · Four Uncommitted SPST Analog Switches
  - Four Ground Switches
  - Up to Eight 100mA LED Driver Pairs (Sink)
  - Internal Temperature Sensor
- Secure Valuable IP and Data with Robust On-Board Trust Protection Unit
  - Trust Protection Unit for End-to-End Security
  - AES Hardware Engine
  - µMAA for ECDSA and RSA
  - Hardware PRNG
  - Fast-Erase SRAM for Secure Key Storage
- Industry's Lowest Overall System Power Increases Battery Life
  - 175µA/MHz Active Power Executing Code from Cache
  - 1.25µA Current Consumption with Real-Time Clock Enable in LP0
  - 1.8µA Current Consumption with Data Retention and Fast 15µs Wakeup in LP1
  - Peripheral Clock Control
  - 6-Channel DMA Engine Enables Intelligent Peripheral Operation While Micro is in Sleep Mode
- Flexible Package Options
  - 120-Ball CTBGA, 0.5mm Pitch, 7mm x 7mm
  - 192-Ball CTBGA, 0.65mm Pitch, 12mm x 12mm
  - 108-Bump WLP, 0.4mm Pitch, 5.4mm x 4.3mm

Additional Benefits and Features and Ordering Information appear at end of data sheet.

ARM and Cortex are registered trademarks of ARM Ltd.



## Wellness Measurement Microcontroller

#### **Absolute Maximum Ratings**

| Voltage Range on V <sub>DD</sub> and V <sub>DDA3</sub> with      |                                   |
|------------------------------------------------------------------|-----------------------------------|
| Respect to GND                                                   | 0.3V to +3.6V                     |
| Voltage Range on V <sub>BUS</sub>                                | 0.3V to 5.5V                      |
| Voltage Range on Any Lead with                                   |                                   |
| Respect to GND (excluding V <sub>BUS</sub> )                     | -0.3V to (V <sub>DD</sub> + 0.5V) |
| Voltage Range on Analog Pins with                                |                                   |
| Respect to GND                                                   | 0.3V to V <sub>DDA3</sub>         |
| Total Current into V <sub>DD</sub> /V <sub>DDA3</sub> Power Line |                                   |
| Total Current Source V <sub>DD</sub> Power Lines (S              | Sink)100mA                        |

| Output Current (Sink) by Any I/O Pin          | 25mA            |
|-----------------------------------------------|-----------------|
| Output Current (Source) by Any I/O Pin        | 25mA            |
| Output Current (Source) by V <sub>DDIO</sub>  | 100mA           |
| Output Current (Sink) by LED Pins             | 135mA           |
| Output Current (Source) by V <sub>REG18</sub> | 50mA            |
| Operating Temperature Range                   | 40°C to +85°C   |
| Storage Temperature Range                     | -65°C to +150°C |
| Soldering Temperature (reflow)                | +260°C          |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

192 CTBGA

### Package Thermal Characteristics (Note 1)

| 108 WLP                                                          |    |
|------------------------------------------------------------------|----|
| Junction-to-Ambient Thermal Resistance (0 <sub>JA</sub> )32.99°C | /W |
| 120 CTBGA                                                        |    |

 Junction-to-Ambient Thermal Resistance  $(\theta_{JA})$  .....29.50°C/W Junction-to-Case Thermal Resistance  $(\theta_{JC})$  ......9.40°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

#### **Recommended DC Operating Conditions**

 $(V_{DD} = V_{RST} \text{ to } 3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$  (Note 2)

| PARAMETER                             | SYMBOL             | CONDITIONS                                                                  | MIN | TYP   | MAX | UNITS |  |
|---------------------------------------|--------------------|-----------------------------------------------------------------------------|-----|-------|-----|-------|--|
| Digital Domain Voltage                | V <sub>DD</sub>    | (Note 3)                                                                    | 1.8 |       | 3.6 | V     |  |
| Analog Domain Voltage                 | V <sub>DDA3</sub>  |                                                                             | 2.3 |       | 3.6 | V     |  |
| 1.8V Internal Regulator               | V <sub>REG18</sub> |                                                                             |     | 1.8   |     | V     |  |
| Power-Fail Warning Voltage for Supply | V <sub>PFW</sub>   | Monitors V <sub>DD</sub> , PFWVSBIT = 0x0016                                |     | 2.525 |     | V     |  |
| Power-Fail Reset Voltage              | V <sub>RST</sub>   | Monitors V <sub>DD</sub>                                                    |     | 1.765 |     | V     |  |
| Power-On-Reset Release<br>Voltage     | V <sub>SPOR</sub>  | Monitors V <sub>DD</sub> or V <sub>DDB</sub>                                |     |       | 1.8 | V     |  |
| RAM Data Retention Voltage            | V <sub>DRV</sub>   |                                                                             |     | 1.0   |     | V     |  |
| LP3 Active Current                    | IDDLP3             | Cache disabled, f <sub>CK</sub> = 24MHz                                     |     | 5     |     |       |  |
| (Note 4)                              |                    | Cache enabled, execution from cache, 100% hit rate, f <sub>CK</sub> = 24MHz |     | 6.10  |     | mA    |  |
| LP2 Current                           |                    | One PMU channel enabled                                                     |     | 1.25  |     | mA    |  |
| LP2 Current                           | IDDLP2             | Each additional PMU channel                                                 |     | 200   |     | μA    |  |
| L D4 Oursest                          |                    | RTC enabled, V <sub>DD</sub> supply current                                 |     | 1.8   |     |       |  |
| LP1 Current                           | IDDLP1             | RTC disabled, V <sub>DD</sub> supply current                                |     | 1.4   |     | - μΑ  |  |
| LDO Current                           |                    | RTC enabled, V <sub>DD</sub> supply current                                 |     | 1250  |     | ~^    |  |
| LP0 Current                           | IDDLP0             | RTC disabled, V <sub>DD</sub> supply current                                |     | 850   |     | – nA  |  |
| LP2 Mode Resume Time                  | t <sub>ONLP2</sub> | One PMU channel active                                                      |     | 0     |     | μs    |  |

# Wellness Measurement Microcontroller

## **Recommended DC Operating Conditions (continued)**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                                              | SYMBOL               | CONDITIONS                                                                                          | MIN                        | ТҮР                       | MAX                        | UNITS    |
|--------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------|----------|
| LP1 Mode Resume Time                                   | t <sub>ONLP1</sub>   |                                                                                                     |                            | 15                        |                            | μs       |
| LP0 Mode Resume Time                                   | t <sub>ONLP0</sub>   |                                                                                                     |                            | 26                        |                            | μs       |
| Input Low Voltage for SRSTN and All Port Pins          | V <sub>IL</sub>      |                                                                                                     |                            |                           | 0.3 ×<br>V <sub>DDIO</sub> | V        |
| Input High Voltage for SRSTN and All Port Pins         | V <sub>IH</sub>      |                                                                                                     | 0.7×<br>V <sub>DDIO</sub>  |                           |                            | V        |
| Input Hysteresis (Schmitt)                             | VIHYS                |                                                                                                     |                            | 300                       |                            | mV       |
| Output Low Voltage for All Port<br>Pins                | V <sub>OL</sub>      | $V_{DD}$ = 3.6V, I <sub>OL</sub> = 11mA<br>$V_{DD}$ = 2.3V, I <sub>OL</sub> = 8mA                   |                            | 0.4                       | 0.5<br>0.5                 | - V      |
| Output High Voltage for All<br>Port Pins               | V <sub>OH</sub>      | I <sub>OH</sub> = -2mA                                                                              | V <sub>DDIO</sub><br>- 0.5 |                           |                            | V        |
| Input/Output Pin Capacitance<br>for All GPIO Port Pins | C <sub>IO</sub>      |                                                                                                     |                            | 5                         |                            | pF       |
| Pullup Resistance for All GPIO                         | R <sub>PU25K</sub>   | Normal drive mode                                                                                   |                            | 25                        |                            | kΩ       |
| Port Pins                                              | R <sub>PU1M</sub>    | Weak pullup enabled                                                                                 |                            | 1                         |                            | MΩ       |
| Input Leakage Current Low                              | ١ <sub>IL</sub>      | V <sub>IN</sub> = 0V, internal pullup disabled                                                      | -100                       |                           | +100                       | nA       |
| Input Leakage Current High                             | Ін                   | V <sub>IN</sub> < V <sub>DD</sub> + 0.6V or 3.6V or whichever<br>is lower, internal pullup disabled | -100                       |                           | +100                       | nA       |
| FLASH MEMORY                                           |                      |                                                                                                     |                            |                           |                            |          |
| Flash Erase Time                                       | t <sub>ME</sub>      | Mass erase                                                                                          |                            | 30                        |                            | me       |
|                                                        | t <sub>ERASE</sub>   | Page erase                                                                                          |                            | 30                        |                            | - ms     |
| Flash Programming Time per Word                        | t <sub>PROG</sub>    |                                                                                                     |                            | 60                        |                            | μs       |
| Flash Endurance                                        |                      | (Note 5)                                                                                            | 20                         |                           |                            | K cycles |
| Data Retention                                         | t <sub>RET</sub>     | T <sub>A</sub> = +25°C (Note 5)                                                                     | 100                        |                           |                            | Years    |
| LCD                                                    |                      |                                                                                                     |                            |                           |                            |          |
| LCD Reference Voltage                                  | V <sub>LCD</sub>     | V <sub>LCD</sub> output boost voltage;<br>V <sub>DD</sub> = 2.0V to 3.6V                            |                            | 3.3                       |                            | V        |
|                                                        |                      | 2/3 level                                                                                           | V <sub>ADJ</sub> +         | 2/3 (V <sub>LCD</sub>     | - V <sub>ADJ</sub> )       |          |
| LCD Segment/Common Bias<br>Voltage                     | V <sub>LCDBIAS</sub> | 1/2 level                                                                                           | V <sub>ADJ</sub> +         | 1/2 (V <sub>LCD</sub>     | - V <sub>ADJ</sub> )       | V        |
| vollage                                                |                      | 1/3 level                                                                                           | V <sub>ADJ</sub> +         | 1/3 (V <sub>LCD</sub>     | - V <sub>ADJ</sub> )       |          |
|                                                        |                      | LCD_LCRA[3:0] = 0                                                                                   |                            | 0                         |                            |          |
| LCD Adjustment Voltage                                 | V <sub>ADJ</sub>     | LCD_LCRA[3:0] = 15                                                                                  |                            | 0.4 ×<br>V <sub>LCD</sub> |                            | V        |
| LCD Dies Desister                                      |                      | Static and 1/3 bias                                                                                 |                            | 108                       |                            | 1:0      |
| LCD Bias Resistor                                      | R <sub>LCD</sub>     | 1/2 bias                                                                                            |                            | 72                        |                            | - kΩ     |
| LCD Adjustment Resistor                                | R <sub>LADJ</sub>    | LCD_LCRA[3:0] = 15                                                                                  |                            | 72                        |                            | kΩ       |

# Wellness Measurement Microcontroller

### **Recommended DC Operating Conditions (continued)**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                                                 | SYMBOL             | CONDITIONS                                                                    | MIN | ТҮР    | MAX | UNITS |
|-----------------------------------------------------------|--------------------|-------------------------------------------------------------------------------|-----|--------|-----|-------|
| REAL-TIME CLOCK (RTC)                                     |                    |                                                                               |     |        |     |       |
| RTC Input Frequency                                       | f <sub>32KIN</sub> | 32kHz watch crystal                                                           | 3   | 32.768 |     | kHz   |
|                                                           | IRTC               | Micro in LP2 or LP3                                                           |     | 0.7    |     | μA    |
| RTC Operating Current                                     | IRTC_LP0           | Micro in LP0 or LP1                                                           |     | 0.4    |     | μA    |
| RTC Initial Power-Up Time                                 | tRTC_PUP           | (Note 6)                                                                      |     | 250    |     | ms    |
| RTC Power Mode Transition<br>Time from LP0/LP1 to LP2/LP3 |                    | RTC transition from low to high power drive, not required in all applications |     | 256    |     | ms    |

#### **USB Electrical Characteristics**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 5)

| PARAMETER                                              | SYMBOL           | CONDITIONS                                                                                                     | MIN | TYP                      | MAX | UNITS |
|--------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|-----|--------------------------|-----|-------|
| USB Supply Voltage                                     | V <sub>BUS</sub> |                                                                                                                | 4.5 |                          | 5.5 | V     |
| USB PHY Supply Voltage                                 | V <sub>DDB</sub> | V <sub>BUS</sub> ≥4.0V                                                                                         |     | 3.3                      |     | V     |
| V <sub>BUS</sub> Supply Current in LP2/3               |                  | Transmitting on D+ and D- at 12Mbps,<br>C <sub>L</sub> = 50 pF on D+ and D- to V <sub>SS</sub> ,<br>FRCVDD = 0 |     | 3 + I <sub>DD</sub>      |     | mA    |
| While Transmitting USB Data<br>(Note 3)                | IVBUS_TX         | Transmitting on D+ and D- at 12Mbps,<br>C <sub>L</sub> = 50 pF on D+ and D- to GND,<br>FRCVDD = 1              |     | 3                        |     | mA    |
| V <sub>BUS</sub> Supply Current in LP2/3 with USB Idle | IVBUS_IDLE       | D+ = hi, D- = lo, FRCVDD = 18                                                                                  |     | 0.4 +<br>I <sub>DD</sub> |     | mA    |
| Single-Ended Input High Voltage D+, D-                 | V <sub>IHD</sub> |                                                                                                                | 2.0 |                          |     | V     |
| Single-Ended Input Low Voltage D+, D-                  | V <sub>ILD</sub> |                                                                                                                |     |                          | 0.8 | V     |
| Output Low Voltage D+, D-                              | V <sub>OLD</sub> | $R_L = 1.5k\Omega$ from D+ to 3.6V                                                                             |     |                          | 0.3 | V     |
| Output High Voltage D+, D-                             | V <sub>OHD</sub> | $R_L$ = 15k $\Omega$ from D+ and D- to V <sub>SS</sub>                                                         | 2.8 |                          |     | V     |
| Differential Input Sensitivity D+, D-                  | V <sub>DI</sub>  | D+ to D-                                                                                                       | 0.2 |                          |     | V     |
| Common-Mode Voltage Range                              | V <sub>CM</sub>  | Includes V <sub>DI</sub> range                                                                                 | 0.8 |                          | 2.5 | V     |
| Single-Ended Receiver<br>Threshold                     | V <sub>SE</sub>  |                                                                                                                | 0.8 |                          | 2.0 | V     |
| Single-Ended Receiver<br>Hysteresis                    | V <sub>SEH</sub> |                                                                                                                |     | 200                      |     | mV    |
| Differential Output Signal<br>Cross-Point Voltage      | V <sub>CRS</sub> | C <sub>L</sub> = 50pF                                                                                          |     | 1.65                     |     | V     |
| D+, D- Off-State Input<br>Impedance                    | R <sub>LZ</sub>  |                                                                                                                | 300 |                          |     | kΩ    |

# Wellness Measurement Microcontroller

### **USB Electrical Characteristics**

| PARAMETER                             | SYMBOL                          | CONDITIONS            | MIN   | ТҮР | MAX   | UNITS |
|---------------------------------------|---------------------------------|-----------------------|-------|-----|-------|-------|
| Driver Output Impedance               | R <sub>DRV</sub>                | Steady-state drive    | 28    |     | 44    | Ω     |
| D+ Pullup Resistor                    | <b>D</b>                        | Idle                  | 0.9   |     | 1.575 | kO    |
|                                       | R <sub>PU</sub>                 | Receiving             | 1.425 |     | 3.090 | kΩ    |
| USB TIMING                            |                                 |                       |       |     |       |       |
| D+, D- Rise Time (Transmit)           | t <sub>R</sub>                  | C <sub>L</sub> = 50pF |       | 12  |       | ns    |
| D+, D- Fall Time (Transmit)           | t <sub>F</sub>                  | C <sub>L</sub> = 50pF |       | 12  |       | ns    |
| Rise/Fall Time Matching<br>(Transmit) | t <sub>R</sub> , t <sub>F</sub> | C <sub>L</sub> = 50pF |       | 100 |       | %     |

### **Clock Electrical Characteristics**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                                     | SYMBOL                 | CONDITIONS | MIN | TYP               | MAX  | UNITS |
|-----------------------------------------------|------------------------|------------|-----|-------------------|------|-------|
| External Crystal/Clock Input<br>Frequency     | fHFXIN                 |            | 1   |                   | 24   | MHz   |
| External Crystal Duty Cycle                   | tHFX_DUTY              |            |     | 50                |      | %     |
| External Clock Input Duty<br>Cycle            | <sup>t</sup> XCLK_DUTY |            |     | 50                |      | %     |
| System Clock Frequency                        | f <sub>CK</sub>        |            |     |                   | 24.2 | MHz   |
| System Clock Period                           | t <sub>CK</sub>        |            |     | 1/f <sub>CK</sub> |      | ns    |
| Internal Relaxation Oscillator<br>Frequency   | fosc                   |            |     | 24                |      | MHz   |
| Internal Relaxation Oscillator<br>Variability | <sup>f</sup> osc_var   |            |     |                   | ±1%  | MHz   |

## **Phase-Locked Loop (PLL) Electrical Characteristics**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER        | SYMBOL           | CONDITIONS                                             | MIN | TYP | MAX | UNITS |
|------------------|------------------|--------------------------------------------------------|-----|-----|-----|-------|
| Frequency        | f <sub>PLL</sub> | 8MHz, 12MHz, 24MHz with corresponding clock multiplier |     | 48  |     | MHz   |
| Frequency Jitter |                  | Peak-to-peak                                           |     | 1   |     | ns    |

# Wellness Measurement Microcontroller

#### **ADC/PGA Electrical Characteristics**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V, V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                 | SYMBOL              | CONDITIONS                                                                                                                                          | MIN                                  | TYP               | MAX                                  | UNITS |
|---------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|--------------------------------------|-------|
| ADC ANALOG INPUT          |                     | ·                                                                                                                                                   | ·                                    |                   |                                      |       |
|                           |                     | Unipolar, AIN+ – AIN-<br>PGA gain = 1, 2, 4, 8                                                                                                      | 0                                    |                   | +V <sub>REFADC</sub> /<br>Gain       | V     |
|                           |                     | Bipolar, AIN+ – AIN- PGA gain = 1,<br>2, 4, 8 range = 0                                                                                             | -V <sub>REFADC</sub> /<br>(2 × Gain) |                   | +V <sub>REFADC</sub> /<br>(2 × Gain) | V     |
| Input Voltage Range       | V <sub>IN</sub>     | Bipolar, AIN+ – AIN- PGA gain = 1,<br>2, 4, 8 range = 1                                                                                             | -V <sub>REFADC/</sub><br>Gain        |                   | +V <sub>REFADC</sub> /<br>Gain       | V     |
| (Note 5)                  |                     | Unipolar, AIN+ – AIN-, PGA bypass                                                                                                                   | 0                                    |                   | +V <sub>REFADC</sub>                 | V     |
|                           |                     | Bipolar, AIN+ - AIN-, PGA bypass,<br>range = 0                                                                                                      | -V <sub>REFADC</sub><br>/2           |                   | +V <sub>REFADC</sub> /<br>2          | v     |
|                           |                     | Bipolar, AIN+ – AIN-, PGA bypass,<br>range = 1                                                                                                      | -V <sub>REFADC</sub>                 |                   | +V <sub>REFADC</sub>                 | V     |
| Common-Mode Input Voltage | V <sub>CM_MIN</sub> | AIN+, AIN-                                                                                                                                          |                                      | 0                 |                                      | v     |
| Range                     | V <sub>CM_MAX</sub> | AIN+, AIN-                                                                                                                                          |                                      | V <sub>DDA3</sub> |                                      |       |
|                           |                     | $T_A = +25^{\circ}C,$<br>AIN0±, AIN[2:7] ± V <sub>IN</sub> = 0V < 2.0V                                                                              |                                      | 1                 |                                      |       |
|                           |                     | $T_A = +50^{\circ}C,$<br>AIN0±, AIN[2:7] ± V <sub>IN</sub> = 0V < 2.0V                                                                              |                                      | 4                 |                                      |       |
|                           |                     | T <sub>A</sub> = +25°C,<br>AIN0±, AIN[2:7] ± V <sub>IN</sub> = 2.0V to 3.6V                                                                         |                                      | 3                 |                                      |       |
|                           |                     | $T_A = +50^{\circ}C$ ,<br>AIN0±, AIN[2:7] ± V <sub>IN</sub> = 2.0V to 3.6V                                                                          |                                      | 8                 |                                      |       |
|                           |                     | $T_A = +25^{\circ}C,$<br>AIN1+, AIN1- ± V <sub>IN</sub> = 0V < 2.0V                                                                                 |                                      | 2                 |                                      |       |
| ADC/PGA Input Leakage     |                     | T <sub>A</sub> = +50°C<br>AIN1+, AIN1- ± V <sub>IN</sub> = 0V < 2.0V                                                                                |                                      | 6                 |                                      |       |
| Current (Note 5)          | Ι <sub>ΙL</sub>     | $T_A = +25^{\circ}C$ ,<br>AIN1+, AIN1- ± V <sub>IN</sub> = 2.0V to 3.6V                                                                             |                                      | 4                 |                                      | pA    |
|                           |                     | $T_A = +50^{\circ}C$ ,<br>AIN1+, AIN1- ± V <sub>IN</sub> = 2.0V to 3.6V                                                                             |                                      | 13                |                                      |       |
|                           |                     | $\label{eq:TA} \begin{array}{l} T_A = -40^\circ \mathrm{C} \text{ to } +85^\circ \mathrm{C},\\ AIN0\pm,  AIN[2:7] \pm V_IN = 0V < 2.0V \end{array}$ |                                      | 1                 | ±200                                 |       |
|                           |                     | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C,$<br>AIN0±, AIN[2:7] ± V <sub>IN</sub> = 2.0V to 3.6V                                                  |                                      | 3                 | ±350                                 |       |
|                           |                     | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C,$<br>AIN1+, AIN1- ± V <sub>IN</sub> = 0V < 2.0V                                                        |                                      | 2                 | ±300                                 |       |
|                           |                     | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C,$<br>AIN1+, AIN1- ± V <sub>IN</sub> = 2.0V to 3.6V                                                     |                                      | 5                 | ±525                                 |       |

# Wellness Measurement Microcontroller

### **ADC/PGA Electrical Characteristics (continued)**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                               | SYMBOL            | CONDITIONS                                                              | MIN    | TYP  | MAX                | UNITS      |
|-----------------------------------------|-------------------|-------------------------------------------------------------------------|--------|------|--------------------|------------|
|                                         |                   | PGA bypass, range = 0                                                   |        | 7    |                    |            |
|                                         |                   | PGA bypass, range = 1                                                   |        | 4    |                    |            |
|                                         | 0                 | PGA gain = 1                                                            |        | 7    |                    | ]<br>      |
| Input Capacitance                       | Cl                | PGA gain = 2                                                            |        | 13   |                    | - pF       |
|                                         |                   | PGA gain = 4                                                            |        | 25   |                    |            |
|                                         |                   | PGA gain = 8                                                            |        | 49   |                    | ]          |
| DC CHARACTERISTICS                      |                   |                                                                         |        |      |                    |            |
| Resolution                              | N                 |                                                                         | 16     |      |                    | Bits       |
| No Missing Codes (Note 5)               |                   |                                                                         | -1     |      |                    | LSB        |
| Differential Nonlinearity               | DNL               | 16-bit resolution                                                       |        | ±0.5 |                    | LSB        |
| Integral Nonlinearity (Note 5)          | INL               | V <sub>REFADC</sub> ≥ 1.5V                                              |        | ±1.5 | ±4                 | LSB        |
| Transition Noise                        |                   | PGA bypass                                                              |        | 3.7  |                    | 1.05       |
| Transition Noise                        |                   | PGA gain = 8                                                            |        | 8.1  |                    | - LSB      |
| Gain Error without Firmware             |                   | PGA bypass                                                              |        |      | ±200               |            |
| Compensation                            |                   | PGA active                                                              |        |      | ±225               | - LSB      |
| Gain Error Temperature<br>Coefficient   |                   | $V_{REF} \ge 1.5V$ , does not include reference drift                   |        |      | ±0.4               | LSB/<br>°C |
| Offset Error without Firmware           | 05                | PGA bypass                                                              |        | 0    | ±55                | 1.05       |
| Compensation                            | OE                | PGA active                                                              |        | 0    | 80                 | - LSB      |
| Offset Error Temperature<br>Coefficient |                   | $V_{REF} \ge 1.5V$ , does not include reference drift                   |        | 0.1  |                    | LSB/<br>°C |
| Channel-to-Channel Offset<br>Matching   |                   |                                                                         |        | ±0.1 |                    | LSB        |
| Channel-to-Channel Gain<br>Matching     |                   |                                                                         |        | ±0.1 |                    | LSB        |
| Input Common-Mode<br>Rejection          | CMR               | $V_{CM} = 0V$ to $V_{DDA3}$                                             |        | ±1   |                    | LSB        |
| CONVERSION RATE                         |                   |                                                                         | ·      |      |                    | •          |
|                                         |                   | PGA bypass                                                              |        |      | 500/N <sub>d</sub> |            |
|                                         |                   | PGA gain = 1                                                            |        |      | 470/N <sub>d</sub> | 1          |
| Throughput Rate                         | F <sub>S</sub>    | PGA gain = 2                                                            |        |      | 470/N <sub>d</sub> | ksps       |
|                                         |                   | PGA gain = 4                                                            |        |      | 444/N <sub>d</sub> | ]          |
|                                         |                   | PGA gain = 8                                                            |        |      | 421/N <sub>d</sub> |            |
| Decimation Rate                         | Nd                | Powers of 2 (Note 5)                                                    | 1      |      | 128                | Sp         |
| ADC Conversion Time                     | t <sub>CONV</sub> | 15.5 ADC <sub>FCLK</sub> cycles;<br>ADC <sub>FCLK</sub> = 8MHz (Note 7) | 1.9375 |      |                    | μs         |

# Wellness Measurement Microcontroller

### **ADC/PGA Electrical Characteristics (continued)**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted.) (Note 2)

|                                                                                 | SYMBOL               | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN                                                                   | TYP                                                              | MAX | UNITS        |
|---------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----|--------------|
|                                                                                 |                      | PGA bypass                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 187.5                                                                 |                                                                  |     |              |
|                                                                                 |                      | PGA gain = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250                                                                   |                                                                  |     |              |
| ADC Acquisition Time                                                            | t <sub>ACQ_ADC</sub> | PGA gain = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250                                                                   |                                                                  |     | ns           |
|                                                                                 |                      | PGA gain = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 375                                                                   |                                                                  |     |              |
|                                                                                 |                      | PGA gain = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 375                                                                   |                                                                  |     |              |
|                                                                                 |                      | Single sample or initial sample                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                  |                                                                  |     |              |
|                                                                                 |                      | PGA gain = 1, continuous sample                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                   |                                                                  |     |              |
| PGA Acquisition Time                                                            | t <sub>ACQ_PGA</sub> | PGA gain = 2, continuous sample                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                   |                                                                  |     | μs           |
|                                                                                 |                      | PGA gain = 4, continuous sample                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                   |                                                                  |     |              |
|                                                                                 |                      | PGA gain = 8, continuous sample                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                   |                                                                  |     |              |
| Anorturo littor                                                                 |                      | External crystal or clock source                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | 500                                                              |     |              |
| Aperture Jitter                                                                 | t <sub>AJ</sub>      | Internal relaxation oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | 500                                                              |     | ps           |
| ADC Clock Frequency                                                             |                      | (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                  | 8   | MHz          |
| Transient Response                                                              |                      | Full-scale step                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                                                                  | 1   | CLK<br>cycle |
|                                                                                 | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                     |                                                                  |     |              |
|                                                                                 |                      | Rypass mode                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                  |     |              |
| Signal-to-Noise Ratio                                                           |                      | Bypass mode,<br>decimation filter $N_d = 1$<br>Decimation filter $N_d = 1$ ,                                                                                                                                                                                                                                                                                                                                                                                          | 72.4                                                                  | 74.8                                                             |     | _            |
| Signal-to-Noise Ratio<br>(Note 9)                                               | SNR                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.4                                                                  | 74.8<br>73.6                                                     |     |              |
| -                                                                               | SNR                  | decimation filter $N_d = 1$<br>Decimation filter $N_d = 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | -                                                                |     |              |
| -                                                                               | SNR                  | decimation filter $N_d = 1$<br>Decimation filter $N_d = 1$ ,<br>PGA enabled                                                                                                                                                                                                                                                                                                                                                                                           | 70.8                                                                  | 73.6                                                             |     | dB           |
| -                                                                               | SNR                  | decimation filter $N_d = 1$<br>Decimation filter $N_d = 1$ ,<br>PGA enabled<br>Decimation filter $N_d = 16$                                                                                                                                                                                                                                                                                                                                                           | 70.8                                                                  | 73.6<br>85.4                                                     |     |              |
| -                                                                               | SNR                  | decimation filter $N_d = 1$ Decimation filter $N_d = 1$ ,<br>PGA enabledDecimation filter $N_d = 16$ Decimation filter $N_d = 64$ Bypass mode,                                                                                                                                                                                                                                                                                                                        | 70.8<br>80.3<br>84.6                                                  | 73.6<br>85.4<br>89.9                                             |     | dB           |
| (Note 9)<br>Signal-to-Noise and                                                 |                      | $\begin{array}{l} \mbox{decimation filter } N_{d} = 1 \\ \mbox{Decimation filter } N_{d} = 1, \\ \mbox{PGA enabled} \\ \mbox{Decimation filter } N_{d} = 16 \\ \mbox{Decimation filter } N_{d} = 64 \\ \mbox{Bypass mode,} \\ \mbox{decimation filter } N_{d} = 1 \\ \mbox{Decimation filter } N_{d} = 1, \end{array}$                                                                                                                                                | 70.8<br>80.3<br>84.6<br>72.2                                          | 73.6<br>85.4<br>89.9<br>74.7                                     |     | dB           |
| (Note 9)<br>Signal-to-Noise and                                                 |                      | $\begin{array}{l} \mbox{decimation filter } N_d = 1 \\ \mbox{Decimation filter } N_d = 1, \\ \mbox{PGA enabled} \\ \mbox{Decimation filter } N_d = 16 \\ \mbox{Decimation filter } N_d = 64 \\ \mbox{Bypass mode,} \\ \mbox{decimation filter } N_d = 1 \\ \mbox{Decimation filter } N_d = 1, \\ \mbox{PGA enabled} \end{array}$                                                                                                                                      | 70.8       80.3       84.6       72.2       70.7                      | 73.6<br>85.4<br>89.9<br>74.7<br>73.5                             |     | dB           |
| (Note 9)<br>Signal-to-Noise and<br>Distortion                                   | SINAD                | decimation filter $N_d = 1$ Decimation filter $N_d = 1$ ,<br>PGA enabledDecimation filter $N_d = 16$ Decimation filter $N_d = 64$ Bypass mode,<br>decimation filter $N_d = 1$ Decimation filter $N_d = 1$ ,<br>PGA enabledDecimation filter $N_d = 1$ ,<br>PGA enabledDecimation filter $N_d = 16$                                                                                                                                                                    | 70.8         80.3         84.6         72.2         70.7         78.6 | 73.6<br>85.4<br>89.9<br>74.7<br>73.5<br>84.5                     |     | _            |
| (Note 9)<br>Signal-to-Noise and<br>Distortion<br>Spurious-Free Dynamic          |                      | $decimation filter N_d = 1$ $Decimation filter N_d = 1,$ $PGA enabled$ $Decimation filter N_d = 16$ $Decimation filter N_d = 64$ $Bypass mode,$ $decimation filter N_d = 1$ $Decimation filter N_d = 1,$ $PGA enabled$ $Decimation filter N_d = 16$ $Decimation filter N_d = 64$                                                                                                                                                                                      | 70.8         80.3         84.6         72.2         70.7         78.6 | 73.6<br>85.4<br>89.9<br>74.7<br>73.5<br>84.5<br>87.9             |     | dB           |
| (Note 9)<br>Signal-to-Noise and<br>Distortion<br>Spurious-Free Dynamic<br>Range | SINAD                | $\label{eq:second} \begin{array}{l} \mbox{decimation filter } N_d = 1 \\ \mbox{Decimation filter } N_d = 1, \\ \mbox{PGA enabled} \\ \mbox{Decimation filter } N_d = 16 \\ \mbox{Decimation filter } N_d = 64 \\ \mbox{Bypass mode,} \\ \mbox{decimation filter } N_d = 1, \\ \mbox{PGA enabled} \\ \mbox{Decimation filter } N_d = 16 \\ \mbox{Decimation filter } N_d = 64 \\ \mbox{PGA bypass} \end{array}$                                                        | 70.8         80.3         84.6         72.2         70.7         78.6 | 73.6<br>85.4<br>89.9<br>74.7<br>73.5<br>84.5<br>87.9<br>91       |     |              |
| (Note 9)<br>Signal-to-Noise and                                                 | SINAD                | $\label{eq:second} \begin{array}{l} \mbox{decimation filter $N_d$ = 1$} \\ \mbox{Decimation filter $N_d$ = 1$,} \\ \mbox{PGA enabled} \\ \mbox{Decimation filter $N_d$ = 16$} \\ \mbox{Decimation filter $N_d$ = 1$} \\ \mbox{Decimation filter $N_d$ = 1$,} \\ \mbox{PGA enabled} \\ \mbox{Decimation filter $N_d$ = 16$} \\ \mbox{Decimation filter $N_d$ = 16$} \\ \mbox{Decimation filter $N_d$ = 64$} \\ \mbox{PGA bypass} \\ \mbox{PGA enabled} \\ \end{array}$ | 70.8         80.3         84.6         72.2         70.7         78.6 | 73.6<br>85.4<br>89.9<br>74.7<br>73.5<br>84.5<br>87.9<br>91<br>85 |     | _            |

# Wellness Measurement Microcontroller

#### **ADC/PGA Electrical Characteristics (continued)**

(V<sub>DD</sub> = V<sub>RST</sub> to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER          | SYMBOL | CONDITIONS                                              | MIN  | ТҮР  | MAX      | UNITS |  |  |  |
|--------------------|--------|---------------------------------------------------------|------|------|----------|-------|--|--|--|
| POWER SUPPLIES     |        |                                                         |      |      |          |       |  |  |  |
| ADC Supply Current |        | F <sub>S</sub> > 333.3ksps, PGA bypass, post trimmed    |      | 9.6  |          |       |  |  |  |
|                    |        | F <sub>S</sub> > 333.3ksps, PGA enabled, post trimmed   |      | 11.6 |          | - mA  |  |  |  |
|                    |        | F <sub>S</sub> ≤ 333.3ksps, PGA bypass,<br>post trimmed |      | 32.9 |          |       |  |  |  |
|                    |        | $F_S \le 333.3$ ksps, PGA enabled, 40.9 post trimmed    | 40.9 |      | — nA/sps |       |  |  |  |
| Line Rejection     | LR     | V <sub>DDA3</sub> = 2.3 to 3.6V (Note 5)                |      |      | ±10      | LSB   |  |  |  |

**DAC0/DAC1 Electrical Characteristics** ( $V_{DDA3}$  = 2.3V to 3.6V,  $V_{DD}$  =  $V_{RST}$  to 3.6V,  $R_L$  = 10k $\Omega$  and  $C_L$  = 100pF,  $T_A$  = -40°C to +85°C,  $V_{REFDAC}$  = 1.5V, unless otherwise noted.) (Note 2)

| PARAMETER                              | SYMBOL           | CONDITIONS                                                                                                                                                         | MIN                                    | TYP  | MAX                                         | UNITS |  |
|----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|---------------------------------------------|-------|--|
| Resolution                             | DACR             | Guaranteed monotonic                                                                                                                                               | 12                                     |      |                                             | Bits  |  |
| Differential Nonlinearity              | DNL              | Power mode = 2 or 3, noise filter<br>enabled, $T_A = -0^{\circ}C$ to +85°C, code<br>000h to FFFh (Note 5)                                                          | -2                                     |      | +2                                          | LSB   |  |
| Integral Nonlinearity                  | INL              | Power mode = 2 or 3, noise filter<br>enabled, code 073h to F8Dh<br>(Note 5)                                                                                        | -4                                     |      | +4                                          | LSB   |  |
| Offset Error                           | EO               | Using uncommitted op amp (Note 5)                                                                                                                                  |                                        | ±0.5 | ±4                                          | mV    |  |
| Gain Error                             | E <sub>G</sub>   | $V_{REFDAC}$ = 1.5V, power mode = 2<br>to 3, $V_{DDA3}$ = 3.0V, trimmed, using<br>firmware compensation                                                            | -8                                     | ±1   | +8                                          | LSB   |  |
|                                        |                  | $V_{\text{REFDAC}}$ = 1.5V, $V_{\text{DDA3}}$ = 3.0V,<br>without firmware compensation                                                                             | -90                                    |      | +90                                         |       |  |
| Gain Error Temperature<br>Compensation |                  | Temperature coefficient<br>compensation disabled, using<br>internal uncommitted op amp,<br>V <sub>REFDAC</sub> = 1.5V, power mode = 3,<br>V <sub>DDA3</sub> = 3.0V |                                        | -60  |                                             | ppm/° |  |
|                                        | E <sub>GTC</sub> | Temperature coefficient<br>compensation enabled, using<br>internal uncommitted op amp,<br>$V_{REFDAC} = 1.5V$ , power mode = 3,<br>$V_{DDA3} = 3.0V$               |                                        | -20  |                                             | C C   |  |
| Output Voltage Range                   | Vo               | Min code to max code (Note 5)                                                                                                                                      | V <sub>SSDAC</sub> +<br>E <sub>O</sub> |      | V <sub>DDA3</sub> -<br>0.5 + E <sub>G</sub> | V     |  |

# Wellness Measurement Microcontroller

#### **DAC0/DAC1 Electrical Characteristics (continued)**

 $(V_{DDA3} = 2.3V \text{ to } 3.6V, V_{DD} = V_{RST} \text{ to } 3.6V, R_L = 10k\Omega \text{ and } C_L = 100pF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{REFDAC} = 1.5V, \text{ unless otherwise noted.})$  (Note 2)

| PARAMETER                    | SYMBOL             | CONDITIONS                                                                    | MIN | TYP   | MAX  | UNITS  |  |
|------------------------------|--------------------|-------------------------------------------------------------------------------|-----|-------|------|--------|--|
|                              |                    | Power mode = 3                                                                |     | 6.1   |      | kΩ     |  |
| Output Impodence             |                    | Power mode = 2                                                                |     | 8.9   |      | kΩ     |  |
| Output Impedance             |                    | Power mode = 1                                                                |     | 16.3  |      | kΩ     |  |
|                              |                    | Power mode = 0                                                                |     | 97.7  |      | kΩ     |  |
| Voltage Output Settling Time | +                  | Noise filter enabled, code 400h to C00h, rising or falling, to $\pm 0.5$ LSB  |     |       | 4    |        |  |
| Voltage Output Setting Time  | tsfs               | Noise filter disabled, code 400h to C00h, rising or falling, to $\pm 0.5$ LSB |     |       | 0.03 | — ms   |  |
|                              |                    | Power mode = 0, 1, or 2                                                       |     | 12    |      |        |  |
| Glitch Energy                |                    | Power mode = 3,                                                               |     | 12    |      | V x ns |  |
| Bias Supply Current Shared   |                    | code 000h to A5Hh<br>Static<br>V <sub>REF</sub> = 2.5V                        |     | 110   |      |        |  |
|                              | IDACx_ON           | Static<br>V <sub>REF</sub> = 1.5V                                             |     | 82    |      | — μΑ   |  |
|                              | I <sub>DAC12</sub> | Static<br>V <sub>REF</sub> = 2.5V<br>Power mode = 3                           |     | 438.7 |      | μΑ     |  |
| Active Current               |                    | Static<br>V <sub>REF</sub> = 2.5V<br>Power mode = 2                           |     | 301.6 |      |        |  |
| Active Current               |                    | Static<br>V <sub>REF</sub> = 2.5V<br>Power mode = 1                           |     | 164.5 |      |        |  |
|                              |                    | Static<br>V <sub>REF</sub> = 2.5V<br>Power mode = 0                           |     | 27.4  |      |        |  |
|                              |                    | Static<br>V <sub>REF</sub> = 1.5V<br>Power mode = 3                           |     | 263.2 |      |        |  |
| Active Current               |                    | Static<br>V <sub>REF</sub> = 1.5V<br>Power mode = 2                           |     | 181   |      | μA     |  |
| Active Current               | IDAC12             | Static<br>V <sub>REF</sub> = 1.5V<br>Power mode = 1                           |     | 98.7  |      |        |  |
|                              |                    | Static<br>V <sub>REF</sub> = 1.5V<br>Power mode = 0                           |     | 16.5  |      |        |  |

# Wellness Measurement Microcontroller

#### **DAC0/DAC1 Electrical Characteristics (continued)**

 $(V_{DDA3} = 2.3V \text{ to } 3.6V, V_{DD} = V_{RST} \text{ to } 3.6V, R_L = 10k\Omega \text{ and } C_L = 100pF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{REFDAC} = 1.5V, \text{ unless otherwise noted.})$  (Note 2)

| PARAMETER      | SYMBOL | CONDITIONS                                            | MIN TYP | MAX | UNITS |  |
|----------------|--------|-------------------------------------------------------|---------|-----|-------|--|
| Active Current |        | Static<br>V <sub>REF</sub> = 2.048V<br>Power mode = 3 | 359.3   |     |       |  |
|                |        | Static<br>V <sub>REF</sub> = 2.048V<br>Power mode = 2 | 247.1   |     |       |  |
|                | IDAC12 | Static<br>V <sub>REF</sub> = 2.048V<br>Power mode = 1 | 124.8   |     | — μΑ  |  |
|                |        | Static<br>V <sub>REF</sub> = 2.048V<br>Power mode = 0 | 22.5    |     |       |  |
|                |        | Static<br>V <sub>REF</sub> = 1.024V<br>Power mode = 3 | 179.7   |     |       |  |
| Astive Current |        | Static<br>V <sub>REF</sub> = 1.024V<br>Power mode = 2 | 123.5   |     |       |  |
| Active Current | IDAC12 | Static<br>V <sub>REF</sub> = 1.024V<br>Power mode = 1 | 67.3    |     | Αμ —  |  |
|                |        | Static<br>V <sub>REF</sub> = 1.024V<br>Power mode = 0 | 11.2    |     |       |  |
| Power-On Time  |        | Excluding reference                                   | 10      |     | μs    |  |

# Wellness Measurement Microcontroller

#### **DAC2/DAC3 Electrical Characteristics**

 $(V_{DDA3} = 2.3V \text{ to } 3.6V, V_{DD} = V_{RST} \text{ to } 3.6V, R_{L} = 10k\Omega \text{ and } C_{L} = 100pF, T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C, V_{REFDAC} = 1.5V$ , unless otherwise noted.) (Note 2)

| PARAMETER                             | SYMBOL | CONDITIONS                                                             | MIN                | ТҮР   | MAX                        | UNITS            |
|---------------------------------------|--------|------------------------------------------------------------------------|--------------------|-------|----------------------------|------------------|
| Resolution                            | DACR   | Guaranteed monotonic                                                   | 8                  |       |                            | Bits             |
| Differential Nonlinearity             | DNL    | Code 07h to F9h                                                        |                    | ±0.25 | ±1                         | LSB              |
| Integral Nonlinearity                 | INL    | Code 07h to F9h                                                        |                    | ±0.25 | ±1                         | LSB              |
| Offset Error                          | EO     | Internal uncommitted op amp<br>(Note 5)                                |                    | ±0.5  | ±4                         | mV               |
| Gain Error                            | EG     | Internal reference                                                     |                    | ±2    |                            | LSB              |
| Gain-Error Temperature<br>Coefficient |        | Excludes offset and reference drift, using internal uncommitted op amp |                    | ±5    |                            | ppm of<br>FSR/°C |
| Output Voltage Range                  | Vo     | Min code to max code (Note 5)                                          | V <sub>SSDAC</sub> |       | V <sub>DDA3</sub> -<br>0.5 | V                |
| Output Impedance                      |        |                                                                        |                    | 49    |                            | kΩ               |
| Voltage Output Settling Time          | tSFS   | 40h to C0h code swing rising or falling to $\pm 0.5$ LSB               |                    | 3     |                            | μs               |
| DAC Glitch Impulse                    |        | Major carry transitions                                                |                    | 12    |                            | nV-s             |
| Supply Current per DAC                | IDAC   | Static                                                                 |                    | 62.4  |                            | μA               |
| Power-On Time                         |        | Excluding Reference                                                    |                    | 10    |                            | μs               |

#### **Operational Amplifier Electrical Characteristics**

(V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                      | SYMBOL                              | CONDITIONS                                                   | MIN                         | TYP  | MAX                         | UNITS |
|--------------------------------|-------------------------------------|--------------------------------------------------------------|-----------------------------|------|-----------------------------|-------|
| DC CHARACTERISTICS             |                                     |                                                              |                             |      |                             |       |
| Common-Mode Rejection<br>Ratio | CMRR                                | 16-bit resolution                                            |                             | 75   |                             | dB    |
| Input Offset Voltage           | V <sub>OS</sub>                     |                                                              |                             | ±0.5 | ±8                          | mV    |
| Input Offset Voltage Drift     | VOSDRIFT                            |                                                              |                             | 5    |                             | µV/°C |
| Input Bias Current (Note 5)    |                                     | T <sub>A</sub> = +25°C, V <sub>IN</sub> = 0V                 |                             | 15   | 200                         |       |
|                                | I <sub>BIAS</sub>                   | $T_{A} = 0^{\circ}C \text{ to } +50^{\circ}C, V_{IN} = 0V$   |                             |      | 300                         | рА    |
|                                |                                     | $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C, V_{IN} = 0V$ |                             |      | 650                         |       |
|                                | I <sub>OS</sub>                     | T <sub>A</sub> = +25°C                                       |                             | 15   | 200                         | рА    |
| Input Offset Current (Note 5)  |                                     | $T_A = 0^{\circ}C$ to +50°C                                  |                             |      | 300                         |       |
|                                |                                     | T <sub>A</sub> = -40°C to +85°C                              |                             |      | 650                         |       |
| Large Signal Voltage Gain      | A <sub>OL</sub>                     |                                                              |                             | 140  |                             | dB    |
|                                |                                     | en_nch_opampx = 1,<br>en_pch_opampx = 1                      | V <sub>AGND</sub> -<br>50mV |      | V <sub>DDA3</sub> +<br>50mV |       |
| Input Voltage Range            | V <sub>IN+</sub> , V <sub>IN-</sub> | en_nch_opampx = 0,<br>en_pch_opampx = 1                      | V <sub>AGND</sub> -<br>50mV |      | V <sub>DDA3</sub> +<br>1.05 | V     |
|                                |                                     | en_nch_opampx = 1,<br>en_pch_opampx = 0                      | 0.95                        |      | V <sub>DDA3</sub> +<br>50mV |       |

# Wellness Measurement Microcontroller

## **Operational Amplifier Electrical Characteristics (continued)**

(V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                     | SYMBOL              | CONDITIONS                                                                                                                                                                     | MIN                    | TYP | MAX               | UNITS             |
|-------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-------------------|-------------------|
| Output Voltage Swing High     | V <sub>OH</sub>     | $V_{DDA3}$ - $V_{OUT}$ , 100k $\Omega$ load                                                                                                                                    | V <sub>DDA3</sub> - 10 |     | V <sub>DDA3</sub> | mV                |
| Output Voltage Swing Low      | V <sub>OL</sub>     | V <sub>OUT</sub> - V <sub>AGND</sub> , 100kΩ load                                                                                                                              |                        |     | 5                 | mV                |
| Output Short Circuit Current  | I <sub>SC</sub>     |                                                                                                                                                                                |                        | 25  | 50                | mA                |
| OP AMP GND SWITCHES (IN       | IA+, INB+, ING      | C+,IND+)                                                                                                                                                                       |                        |     |                   |                   |
| INx+ Capacitance              | C <sub>INx+</sub>   | $V_{INx+} = V_{AGND}$ , f = 1MHz (Note 5)                                                                                                                                      |                        | 2   |                   | pF                |
| On Desistance (Nate 5)        | <b>D</b>            | V <sub>INx+</sub> = 3.0V, I <sub>INx+</sub> = 10mA                                                                                                                             |                        | 20  | 30                | 0                 |
| On-Resistance (Note 5)        | R <sub>ON</sub>     | V <sub>INx+</sub> = 3.0V, I <sub>INx+</sub> = 50mA                                                                                                                             |                        | 20  |                   | Ω                 |
| INx+ DC Current               | I <sub>INx+</sub>   | (Note 5)                                                                                                                                                                       |                        |     | 50                | mA                |
| AC CHARACTERISTICS            |                     |                                                                                                                                                                                | -                      |     |                   | •                 |
| Gain-Bandwidth                | GBW                 | C <sub>L</sub> = 100pF                                                                                                                                                         |                        | 3   |                   | MHz               |
| Slew Rate                     | SR                  | C <sub>L</sub> = 100pF                                                                                                                                                         | 0.85                   | 1.6 |                   | V/µs              |
| Input Voltage Noise Density   | V <sub>n</sub>      | f = 10kHz                                                                                                                                                                      |                        | 20  |                   | nV/√Hz            |
| Input Voltage Noise           |                     | 0.1Hz ≤ f ≤ 10Hz                                                                                                                                                               |                        | 20  |                   | μV <sub>P-P</sub> |
| Input Current Noise Density   | l <sub>n</sub>      | f = 10kHz                                                                                                                                                                      |                        | 10  |                   | fA/√Hz            |
| Capacitive Loading            | C <sub>LOAD</sub>   | No sustained oscillations, $R_{SERIES} = 0\Omega$                                                                                                                              |                        | 100 |                   | pF                |
| Total Harmonic Distortion     | THD                 | f = 10kHz, V <sub>OUT</sub> = 1V <sub>P-P</sub> , source<br>follower configuration, (en_nch_<br>opampx = 0, en_pch_opampx =1)<br>or (en_nch_opampx = 1, en_pch_<br>opampx = 0) |                        | -90 |                   | dB                |
| POWER-SUPPLY CHARACT          | ERISTICS            |                                                                                                                                                                                | -                      |     |                   | -1                |
|                               |                     | en_nch_opampx = 1, en_pch_<br>opampx = 1                                                                                                                                       |                        | 183 |                   |                   |
| Supply Current                | I <sub>VDDA3</sub>  | en_nch_opampx = 0, en_pch_<br>opampx = 1                                                                                                                                       |                        | 155 |                   | μA                |
|                               |                     | en_nch_opampx = 1, en_pch_<br>opampx = 0                                                                                                                                       |                        | 155 |                   |                   |
| Line Rejection                | LR                  |                                                                                                                                                                                |                        | 90  |                   | dB                |
| Turn-On Time                  | t <sub>ON</sub>     |                                                                                                                                                                                |                        | 1.5 | 2.1               | μs                |
| Power-Down Output Impedance   |                     | V <sub>OUTx</sub> = 1V                                                                                                                                                         |                        | 1   |                   | GΩ                |
| Power-Down Output Leakage     |                     |                                                                                                                                                                                |                        | ±1  |                   | nA                |
| OP AMP FEEDBACK SWITC         | H                   |                                                                                                                                                                                |                        |     |                   |                   |
| Internal Switch On-Resistance | R <sub>INTSW</sub>  |                                                                                                                                                                                |                        | 30  |                   | Ω                 |
| Ground Switch Resistance      | R <sub>OPAGND</sub> |                                                                                                                                                                                |                        | 20  |                   | Ω                 |

# Wellness Measurement Microcontroller

#### **Internal Voltage Reference Electrical Characteristics**

(V<sub>DDA3</sub> = 2.3V to 3.6V, T<sub>A</sub> = -40°C to +85°C, Internal Reference Mode, 4.7 $\mu$ F capacitor at REFADC, 4.7 $\mu$ F cap at REFDAC, unless otherwise noted.) (Note 2)

| PARAMETER                                              | SYMBOL                | CONDITIONS                                                          | MIN | TYP                                 | MAX | UNITS  |  |
|--------------------------------------------------------|-----------------------|---------------------------------------------------------------------|-----|-------------------------------------|-----|--------|--|
| INTERNAL REFERENCE                                     |                       |                                                                     |     |                                     |     |        |  |
|                                                        |                       | V <sub>DDA3</sub> = 2.3V to 3.6V, T <sub>A</sub> = +25°C            | -2% | 1.024                               | +2% |        |  |
| Output Voltage at REFADC                               | V <sub>REFADC</sub> , |                                                                     | -1% | 1.50                                | +1% | V      |  |
| and REFDAC (Note 5)                                    | V <sub>REFDAC</sub>   | V <sub>DDA3</sub> = 2.3V to 3.6V, T <sub>A</sub> = +25°C            | -2% | 2.048                               | +2% |        |  |
|                                                        |                       | V <sub>DDA3</sub> = 2.7V to 3.6V, T <sub>A</sub> = +25°C            | -2% | 2.50                                | +2% |        |  |
| Output Voltage at REFADJ                               | V <sub>REFADJ</sub>   |                                                                     |     | 1.24                                |     | V      |  |
| Internal Reference Temperature<br>Coefficient (Note 5) | -                     | $T_A = 0^{\circ}C$ to +70°C                                         |     | 30                                  |     | nnm/°C |  |
|                                                        | T <sub>CREF</sub>     | $T_A = -40^{\circ}C$ to $+85^{\circ}C$                              |     |                                     | 50  | ppm/°C |  |
| Temperature Coefficient                                | - <b>-</b>            | $T_A = 0^{\circ}C$ to +70°C                                         |     | 5                                   |     | ppm/°C |  |
| Adder of Buffer with External<br>Reference             | TC                    | $T_A = -40^{\circ}C$ to $+85^{\circ}C$                              |     | 10                                  |     |        |  |
| Turn-On Time                                           | t <sub>ON</sub>       | (Note 5)                                                            |     | 0.1+<br>(V <sub>REF</sub> ×<br>1.8) | 10  | ms     |  |
| Leakage Current with Internal                          | IREFADC               | refadc_outen = 0                                                    |     | 15                                  | 50  |        |  |
| Reference Output Disabled (Note 5)                     | IREFDAC               | refdac_outen = 0                                                    |     | 15                                  | 50  | – nA   |  |
| REFADC and REFDAC Line<br>Regulation                   |                       |                                                                     |     | ±100                                |     | μV/V   |  |
| Load Regulation                                        |                       | $I_{SOURCE} = 0\mu A \text{ to } 500\mu A,$<br>$T_A = +25^{\circ}C$ |     | 10                                  |     | μV/μA  |  |
|                                                        |                       | Internal reference only (Note 10)                                   |     | 33                                  |     | μΑ     |  |
| Reference Supply Current                               |                       | REFADC buffer                                                       |     | 270                                 |     |        |  |
|                                                        |                       | REFDAC buffer                                                       |     | 270                                 |     |        |  |

# Wellness Measurement Microcontroller

#### **External Voltage Reference Electrical Characteristics**

(V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, External reference mode.) (Note 2)

| PARAMETER             | SYMBOL              | CONDITIONS                             | MIN | ТҮР                               | MAX | UNITS |  |
|-----------------------|---------------------|----------------------------------------|-----|-----------------------------------|-----|-------|--|
| EXTERNAL REFERENCE A  | T REFADJ            |                                        | I   |                                   |     |       |  |
| Input Voltage Range   | V <sub>REFADJ</sub> |                                        |     | 1.24<br>±3%                       |     | V     |  |
| Input Resistance      |                     |                                        |     | 250                               |     | kΩ    |  |
| EXTERNAL REFERENCE A  | TREFADC             |                                        |     |                                   |     |       |  |
| Input Voltage Range   | V <sub>REFADC</sub> | V <sub>DDA3</sub> = 2.3V to 3.0V       |     | 1.0 to<br>V <sub>DDA3</sub> - 0.9 | 5   | v     |  |
|                       |                     | V <sub>DDA3</sub> > 3.0V               |     | 1.0 to 2.5                        |     |       |  |
| Input Capacitance     |                     |                                        |     | 7                                 |     | pF    |  |
| Dynamic Input Current |                     | 500ksps, V <sub>REFADC</sub> = 2.048V  |     | 50                                |     | μA    |  |
| EXTERNAL REFERENCE A  | TREFDAC             |                                        |     |                                   |     |       |  |
| Input Voltage Range   | VREFDAC             | V <sub>DDA3</sub> = 2.3V to 3.0V (typ) |     | 1.0 to<br>V <sub>DDA3</sub> - 0.8 | 5   | V     |  |
|                       |                     | V <sub>DDA3</sub> > 3.0V (typ)         |     | 1.0 to<br>2.5                     |     |       |  |

### SPST Switches (SNO\_, SCM\_)

(V<sub>DDA3</sub> = 2.3V to 3.6V, T<sub>A</sub> = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                | SYMBOL                                   | CONDITIONS                                                                                                           | MIN | ТҮР                       | MAX  | UNITS |
|--------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|---------------------------|------|-------|
| Analog Signal Range      | V <sub>SNOX</sub> ,<br>V <sub>SCMX</sub> |                                                                                                                      |     | 0 to<br>V <sub>DDA3</sub> |      | V     |
| On-Resistance            | R <sub>ON</sub>                          | V <sub>DDA3</sub> = 3.0V, I <sub>SCM</sub> = 50mA,<br>V <sub>SNO</sub> = 0V to V <sub>DDA3</sub>                     |     | 30                        | 50   | Ω     |
| SNO_ Off-Leakage Current |                                          | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>V <sub>SNO</sub> = 2V, 0V<br>T <sub>A</sub> = +25° C (Note 5) |     | ±30                       | ±100 | 54    |
|                          | I <sub>SNO_(OFF)</sub>                   | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>V <sub>SNO</sub> = 2V, 0V<br>T <sub>A</sub> = +70°C           |     | ±60                       |      | - pA  |
|                          |                                          | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>V <sub>SNO</sub> = 2V, 0V<br>T <sub>A</sub> = -40°C to +85°C  |     |                           | ±1   | nA    |

# Wellness Measurement Microcontroller

### SPST Switches (SNO\_, SCM\_) (continued)

(V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER                | SYMBOL                            | CONDITIONS                                                                                                          | MIN | TYP  | MAX  | UNITS |
|--------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|-----|------|------|-------|
| SCM_ Off-Leakage Current |                                   | $V_{DDA3} = 3.0V, V_{SCM} = 0V, 2V$<br>$V_{SNO} = 2V, 0V$<br>$T_A = +25^{\circ} C \text{ (Note 5)}$                 |     | ±30  | ±100 | - 1   |
|                          | ISCM_(OFF)                        | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>V <sub>SNO</sub> = 2V, 0V<br>T <sub>A</sub> = +70°C          |     | ±50  |      | рА    |
|                          |                                   | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>V <sub>SNO</sub> = 2V, 0V<br>T <sub>A</sub> = -40°C to +85°C |     |      | ±1   | nA    |
|                          | I <sub>SCM_(ON)</sub>             | V <sub>DDA3</sub> = 3.0V, V <sub>SCM</sub> = 0V, 2V<br>T <sub>A</sub> = +25° C                                      |     | ±0.8 |      |       |
| SCM_ On-Leakage Current  |                                   | $V_{DDA3} = 3.0V, V_{SCM} = 0V, 2V$<br>T <sub>A</sub> = 0°C to +70°C                                                |     | ±1.2 |      | nA    |
|                          |                                   | $V_{DDA3} = 3.0V, V_{SCM} = 0V, 2V$<br>T <sub>A</sub> = -40°C to +85°C                                              |     | ±2.0 |      |       |
| Turn-On/Off Time         | t <sub>ON</sub> /t <sub>OFF</sub> | $V_{SCM}$ = 2V, R <sub>L</sub> = 300 $\Omega$ , C <sub>L</sub> = 35pF                                               |     | 1    |      | ns    |
| Charge Injection         | Q                                 | V <sub>GEN</sub> = 0V, R <sub>GEN</sub> = 0, C <sub>L</sub> = 1.0nF<br>(Note 5)                                     |     |      | 2    | рС    |
| SNO_Off-Capacitance      | C <sub>SNOx</sub>                 | V <sub>SNO</sub> = AGND, f = 1MHz (Note 5)                                                                          |     |      | 2.5  | pF    |
| Switch On-Capacitance    | C <sub>ON</sub>                   | V <sub>SCM</sub> = V <sub>SNO</sub> , f = 1MHz (Note 5)                                                             |     |      | 5.0  | pF    |

### CS Switches (CSA\_, CSB\_)

(V<sub>DDA3</sub> = 2.3V to 3.6V,  $T_A$  = -40°C to +85°C, unless otherwise noted.) (Note 2)

| PARAMETER             | SYMBOL           | CONDITIONS                                                               | MIN | ТҮР | MAX | UNITS |
|-----------------------|------------------|--------------------------------------------------------------------------|-----|-----|-----|-------|
| Output Low Voltage    | Max              | $V_{CSBx}$ = 500mV, I <sub>CSx</sub> = 35mA,<br>V <sub>DDA3</sub> > 2.3V |     | 0.7 |     | V     |
| Output Low Voltage    | V <sub>OL</sub>  | $V_{CSBx}$ = 350mV, I <sub>CSx</sub> = 50mA,<br>V <sub>DDA3</sub> > 2.5V |     | V   |     |       |
| CSA_, CSB_ DC Current | I <sub>CSx</sub> | Maximum combined current for up to 4 CSA/CSB pairs (Note 5)              |     |     | 100 | mA    |

### Wellness Measurement Microcontroller

#### **Temperature Sensor**

 $(V_{DDA3} = 2.3V \text{ to } 3.6V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$  (Note 2)

| PARAMETER                            | SYMBOL              | CONDITIONS                                                                                 | MIN | TYP  | MAX | UNITS  |
|--------------------------------------|---------------------|--------------------------------------------------------------------------------------------|-----|------|-----|--------|
| INTERNAL TEMPERATURE S               | ENSOR               | ·                                                                                          | ·   |      |     |        |
| Temperature Resolution               |                     |                                                                                            |     | 0.11 |     | °C/LSB |
| Internal Sensor Measurement<br>Error |                     | External voltage reference                                                                 |     | ±3   |     | °C     |
| EXTERNAL TEMPERATURE                 | SENSOR              |                                                                                            | ·   |      |     |        |
|                                      | I <sub>AIN1P0</sub> | AinCurrentEn = 1<br>AinCurrentSel = 00<br>$V_{AIN1P} < (V_{DDA3} - 0.5V)$                  |     | 4    |     |        |
| Current Sourced onto AIN1P           | IAIN1P1             | AinCurrentEn = 1<br>AinCurrentSel = 01<br>V <sub>AIN1P1</sub> < (V <sub>DDA3</sub> - 0.5V) |     | 60   |     |        |
| (Note 5)                             | IAIN1P2             | AinCurrentEn = 1<br>AinCurrentSel = 10<br>V <sub>AIN1P2</sub> < (V <sub>DDA3</sub> - 0.5V) |     | 64   |     | - μΑ   |
|                                      | I <sub>AIN1P3</sub> | AinCurrentEn = 1<br>AinCurrentSel = 11<br>V <sub>AIN1P3</sub> < (V <sub>DDA3</sub> - 0.5V) |     | 120  |     |        |

**Note 2:** Specifications to -40°C are guaranteed by design and are not production tested. Typical = 25°C, V<sub>DD</sub> = 3V, unless otherwise specified.

**Note 3:** FRCVDD is 1 when firmware forces all power to be sourced from main battery V<sub>DD</sub> rather than V<sub>BUS</sub>.

Note 4: Measured on the V<sub>DD</sub> pin and the part not in reset. All inputs are tied to GND or V<sub>DD</sub>. Outputs do not source/sink any current. Execution from internal 24MHz relaxation oscillator, cache disabled, internal LDO disabled.

Note 5: Guaranteed by design.

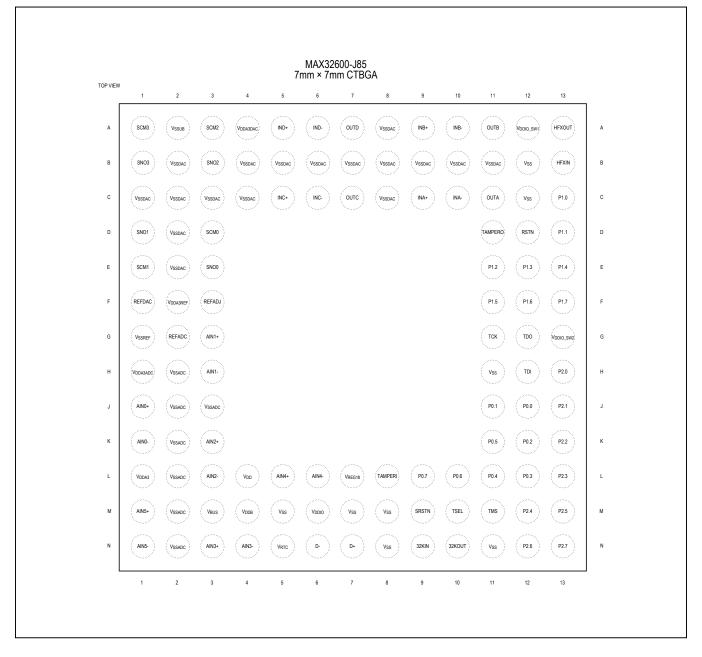
Note 6: Initial startup of RTC from power up of MAX32600. This does not apply if RTC is running and changing power modes.

Note 7: During consecutive samples, conversion time overlaps acquisition time.

Note 8: AC electrical specifications are guaranteed by design and are not production tested.

Note 9: 10kHz sine-wave input signal.

Note 10: In order to perform ADC measurements, the internal reference must be turned on even when using external voltage reference.


# Wellness Measurement Microcontroller

# **Ball Configurations**

|   |        |        |          |        |        |          |        | MA<br>12mm × | X32600-<br>× 12mm | P85<br>CTBGA |        |        |         |                         |        |        |        |        |   |
|---|--------|--------|----------|--------|--------|----------|--------|--------------|-------------------|--------------|--------|--------|---------|-------------------------|--------|--------|--------|--------|---|
|   | 1      | 2      | 3        | 4      | 5      | 6        | 7      | 8            | 9                 | 10           | 11     | 12     | 13      | 14                      | 15     | 16     | 17     | 18     | - |
| A |        | Vssdac | SCM3     | Vssdac |        |          | OUTC   | Vssdac       | (NB+              |              | OUTB   | Vssdac | HFXOUT  | Vss                     | P0.2   | P0.5   | P0.7   |        | A |
| в | SCM2   | Vssdac | (SNO3)   | VSSDAC | Vssdac | Vssdac   | Vssdac | Vssdac       | Vssdac            | Vssdac       | VSSDAC | Vssdac | HFXIN   | $\left( v_{ss} \right)$ | (P0.1) | P0.4   | (P0.6) | P1.0   | в |
| с | SN02   | Vssdac | VSSDAC   | VSSDAC |        |          | OUTD   | VDDA3DAC     |                   |              | OUTA   | Vssdac | TAMPERO | (P0.0)                  | (P0.3) | Vss    | (P1.1) | P1.2   | c |
| D | SCMO   | Vssdac | SCM1     |        |        |          |        |              |                   |              |        |        |         |                         |        | (P1.3) | (P1.4) | P1.5   | D |
| E | SNOO   | Vssdac | (SN01)   |        |        |          |        |              |                   |              |        |        |         |                         |        | (P2.0) | (P1.6) | (P1.7  | E |
| F | Vssadc | Vssadc | VSSADC   |        |        |          |        |              |                   |              |        |        |         |                         |        | (P2.1) | P2.2   | P2.3   | F |
| G | AIN1+  | Vssadc | AIN0+    |        |        |          |        |              |                   |              |        |        |         |                         |        | (P2.4) | P2.5   | P2.6   | G |
| н | AIN1-  | Vssadc |          |        |        |          |        | VDDA3REF     | REFADJ            | Vssub        | VDDIO  |        |         |                         |        | RSTN   | P3.0   | P2.7   | н |
| L | Vssadc | Vssadc | VSSADC   |        |        |          |        | REFDAC       | vss               | vss          | VDDIO  |        |         |                         |        | Vss    | P3.2   | P3.1   | J |
| к | AIN3+  | VSSADC | AIN2+    |        |        |          |        | REFADC       | Vss               | Vss          | VREG18 |        |         |                         |        | P3.5   | P3.4   | P3.3   | к |
| L | AIN3-  | Vssadc | AIN2-    |        |        |          |        | VSSREF       | VDDA3             | VDD          | VREG18 |        |         |                         |        | P4.0   | P3.7   | P3.6   | L |
| м | Vssadc | Vssadc | VDDA3ADC |        |        |          |        |              |                   |              |        |        |         |                         |        | P4.3   | (P4.2) | P4.1   | м |
| N | AIN5+  | Vssadc | AIN4+    |        |        |          |        |              |                   |              |        |        |         |                         |        | P4.6   | P4.5   | P4.4   | N |
| Ρ | AIN5-  | VSSADC | AIN4-    |        |        |          |        |              |                   |              |        |        |         |                         |        | (P5.1) | (P5.0) | (P4.7) | Р |
| R | VSSADC | VSSADC | VSSADC   |        |        |          |        |              |                   |              |        |        |         |                         |        | P5.4   | (P5.3) | (P5.2) | R |
| т | AIN6+  | VSSADC | VSSADC   | Vssadc | VADJ   | <b>P</b> | VBUS   | VDDB         | Ск                |              |        | (P7.6) | Vss     | (P7.1)                  | (P6.6) | Vss    | (P5.6) | (P5.5) | т |
| U | AIN6-  | VSSADC | AIN7+    | VSSADC | VLCD2  | (D+)     | Vss    | 32KOUT       | SRSTN             | ТОО          | ы      | (P7.5) | (P7.3)  | P7.0                    | P6.5   | P6.3   | (P6.1) | P5.7   | U |
| v |        | Vssadc | AIN7-    | Vssadc | VLCD1  | VLCD     | Vss    | 32KIN        | VRTC              | TMS          | (P7.7  | (P7.4) | (P7.2)  | (P6.7)                  | (P6.4) | P6.2   | P6.0   |        | v |
| L | 1      | 2      | 3        | 4      | 5      | 6        | 7      | 8            | 9                 | 10           | 11     | 12     | 13      | 14                      | 15     | 16     | 17     | 18     | - |

# Wellness Measurement Microcontroller

### **Ball Configurations (continued)**



# Wellness Measurement Microcontroller

# **Bump Configuration**

|   | TOP VIEW<br>(BUMP SIDE DOWN) |            |            |              |         | w        | 600-W85<br>LP<br>x 4.3mm) |         |               |          |        |        |   |
|---|------------------------------|------------|------------|--------------|---------|----------|---------------------------|---------|---------------|----------|--------|--------|---|
|   | 1                            | 2          | 3          | 4            | 5       | 6        | 7                         | 8       | 9             | 10       | 11     | 12     | _ |
| A | +<br>(N.C.)                  | (D+)       | D-         | VDD          | (32KIN) | (32KOUT) |                           | P0.7    | P0.5          | (P0.3)   | (P0.1) | (N.C.) | A |
| В | (VDDA3)                      | Vss        | (VBUS)     | VDDB         | VRTC    | (VREG18) | TMS                       | P0.6    | (P0.4)        | P0.2     | P0.0   | TDO    | в |
| с | (AIN2-)                      | (VDDA3ADC) | (AIN3-)    | (AIN3+)      | VSSUB   | CFG      | (VDDIO_<br>SW2            | SRSTN   | VDDIO         | Стск     | TDI    | (P2.7) | С |
| D | (AIN2+)                      | Vssadc     |            | VSSADC       | VSSADC  | (SNO0)   | Vss                       | (SNO1)  |               | (P2.6)   | (P2.4) | (P2.5) | D |
| E | VSSREF                       | Vssadc     | (AIN1+     | (AIN1-)      | VSSADC  | (SCMO)   | Vss                       | (SCM1)  | RSTN          | P2.0     | (P2.2) | (P2.3) | E |
| F | REF<br>ADC                   | Vssadc     | (VDDA3REF) | Vss          | Vss     | Vss      | Vss                       | Vss     | Vss           | HFXIN    | (P1.2) | (P2.1) | F |
| G | REF<br>DAC                   | REFADJ     | Vss        | (SNO3)       | SCM3    |          | (INA+)                    | (INA-)  | Vss           | (HFXOUT) | (P1.3) | (P1.7) | G |
| н | (N.C.)                       | Vss        | VSSDAC     | Vssdac       | Vssdac  | Vssdac   | Vssdac                    | OUTA    | TAMPERO       | (P1.0)   | (P1.5) | P1.6   | н |
| J | (N.C.)                       | (INC+/-)   | OUTC       | VDDA3<br>DAC | OUTB    | (INB+/-) | Vssdac                    | (VREG18 | VDDIO_<br>SW1 | (P1.1)   | (P1.4) | N.C.   | J |
|   | 1                            | 2          | 3          | 4            | 5       | 6        | 7                         | 8       | 9             | 10       | 11     | 12     |   |

# Wellness Measurement Microcontroller

## **Ball/Bump Descriptions**

| BALL                       |                            | BUMP                  |                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------------|----------------------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP) | NAME            | FUNCTION                                                                                                                                                                                                                                                           |  |  |  |  |
| CLOCK PINS                 |                            |                       |                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| V8                         | N9                         | A5                    | 32KIN           | 32kHz Clock Input. Connect to 32kHz crystal.                                                                                                                                                                                                                       |  |  |  |  |
| U8                         | N10                        | A6                    | 32KOUT          | 32kHz Clock Output. Connect to 32kHz crystal.                                                                                                                                                                                                                      |  |  |  |  |
| B13                        | B13                        | F10                   | HFXIN           | High-Frequency Crystal Input. Connect an external crystal or resonator between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, HFXIN is the input for an external high-frequency clock source when HFXOUT is shorted to ground.                |  |  |  |  |
| A13                        | A13                        | G10                   | HFXOUT          | High-Frequency Crystal Output. Connect an external crystal or resonator between HFXIN and HFXOUT as the high-frequency system clock. To use an external high-frequency clock source as the system clock, connect HFXOUT to ground and apply clock source to HFXIN. |  |  |  |  |
| ANALOG PINS                |                            |                       |                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| G3, H3                     | J1, K1                     |                       | AIN0+,<br>AIN0- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN0+<br>acts as input AIN0 and AIN0- acts as input AIN8.                                                                     |  |  |  |  |
| G1, H1                     | G3, H3                     | E3, E4                | AIN1+,<br>AIN1- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN1+<br>acts as input AIN1 and AIN1- acts as input AIN9.                                                                     |  |  |  |  |
| K3, L3                     | K3, L3                     | D1, C1                | AIN2+,<br>AIN2- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN2+<br>acts as input AIN2 and AIN2- acts as input AIN10.                                                                    |  |  |  |  |
| K1, L1                     | N3, N4                     | C4, C3                | AIN3+,<br>AIN3- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN3+<br>acts as input AIN3 and AIN3- acts as input AIN11.                                                                    |  |  |  |  |
| N3, P3                     | L5, L6                     | _                     | AIN4+,<br>AIN4- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN4+<br>acts as input AIN4 and AIN4- acts as input AIN12.                                                                    |  |  |  |  |
| N1, P1                     | M1, N1                     | _                     | AIN5+,<br>AIN5- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN5+<br>acts as input AIN5 and AIN5- acts as input AIN13.                                                                    |  |  |  |  |
| T1, U1                     | _                          | _                     | AIN6+,<br>AIN6- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN6+<br>acts as input AIN6 and AIN6- acts as input AIN14.                                                                    |  |  |  |  |
| U3, V3                     | _                          | _                     | AIN7+,<br>AIN7- | Analog Input. This pair of analog inputs can function as two single-<br>ended inputs or one differential pair. In single-ended mode, AIN7+<br>acts as input AIN7 and AIN7- acts as input AIN15.                                                                    |  |  |  |  |

# Wellness Measurement Microcontroller

| BA                         | LL                         | BUMP                  |        |                                                                                                                                                                                                                        |
|----------------------------|----------------------------|-----------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP) | NAME   | FUNCTION                                                                                                                                                                                                               |
| REFERENCE P                | INS                        |                       |        |                                                                                                                                                                                                                        |
| К8                         | G2                         | F1                    | REFADC | Internal ADC Reference Pin. If using the internal reference, this pin must be connected to ground through at least a $4.7\mu$ F ceramic chip capacitor. In an external reference is used, it is input on this pin.     |
| H9                         | F3                         | G2                    | REFADJ | If an external bandgap input is used to provide the basis for the internal ADC and DAC reference generation, it is input on this pin.                                                                                  |
| 8L                         | F1                         | G1                    | REFDAC | Internal DAC Reference Pin. If using the internal reference, this pin must be connected to ground through at least a $4.7\mu$ F ceramic chip capacitor. In an external reference is used, it is input on this pin.     |
| OP AMP/COMP                | ARATOR PINS                |                       |        |                                                                                                                                                                                                                        |
| C9                         | C9                         | G7                    | INA+   | Op Amp A Positive Input                                                                                                                                                                                                |
| C10                        | C10                        | G8                    | INA-   | Op Amp A Negative Input                                                                                                                                                                                                |
| C11                        | C11                        | H8                    | OUTA   | Op Amp A Output                                                                                                                                                                                                        |
| A9                         | A9                         | —                     | INB+   | Op Amp B Positive Input                                                                                                                                                                                                |
| A10                        | A10                        | _                     | INB-   | Op Amp B Negative Input                                                                                                                                                                                                |
| _                          | _                          | J6                    | INB+/- | Op Amp B Positive/Negative Input. INB+ and INB- are both bonded out to bump J6.                                                                                                                                        |
| A11                        | A11                        | J5                    | OUTB   | Op Amp B Output                                                                                                                                                                                                        |
| A5                         | C5                         | _                     | INC+   | Op Amp C Positive Input                                                                                                                                                                                                |
| A6                         | C6                         | —                     | INC-   | Op Amp C Negative Input                                                                                                                                                                                                |
| _                          | _                          | J2                    | INC+/- | Op Amp C Positive/Negative Input. INC+ and INC- are both bonded out to bump J2.                                                                                                                                        |
| A7                         | C7                         | J3                    | OUTC   | Op Amp C Output                                                                                                                                                                                                        |
| C5                         | A5                         | _                     | IND+   | Op Amp D Positive Input                                                                                                                                                                                                |
| C6                         | A6                         | _                     | IND-   | Op Amp D Negative Input                                                                                                                                                                                                |
| C7                         | A7                         | _                     | OUTD   | Op Amp D Output                                                                                                                                                                                                        |
| USB FUNCTION               | N PINS                     |                       |        |                                                                                                                                                                                                                        |
| U6                         | N7                         | A2                    | D+     | USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled.        |
| Т6                         | N6                         | A3                    | D-     | USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. Connect this pin to a USB "B" connector. This pin is weakly pulled high internally when the USB is disabled.        |
| Τ7                         | М3                         | В3                    | VBUS   | USB V <sub>BUS</sub> Supply Voltage. Connect V <sub>BUS</sub> to a positive 5.0V power supply. Bypass V <sub>BUS</sub> to ground with a $1.0\mu$ F ceramic capacitor as close as possible to the V <sub>BUS</sub> pin. |
| Т8                         | M4                         | B4                    | VDDB   | $3.3V$ Regulated $V_{BUS}$ Output. This pin must be connected to ground with a $4.7\mu F$ ceramic capacitor as close as possible to the $V_{DDB}$ pin.                                                                 |

# Wellness Measurement Microcontroller

| BA                         |                            | BUMP                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------------|----------------------------|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP) | NAME            | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| RESET PINS                 |                            |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| H16                        | D12                        | E9                    | RSTN            | Hardware Reset (Active Low) Input. Entire chip is reset (POR) except for RTC circuitry.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| U9                         | M9                         | C8                    | SRSTN           | Software Reset (Active Low) Input. Resets ARM core and digital<br>peripherals/registers that are normally cleared by a system reset.<br>Does not affect the RTC or POR-reset-only settings; does not reset<br>the ARM debug engine or JTAG debugger state. After sampling<br>SRSTN as a logic 0, SRSTN is driven low for 6 clock cycles.<br>Additionally, SRSTN is driven low for at least 6 clock cycles due to a<br>watchdog reset, firmware reboot, ARM reset request, ARM lockup,<br>or power-fail event. |  |  |  |
| ANALOG SPST                | SWITCHES                   |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| D1                         | D3                         | E6                    | SCM0            | Analog Switch 0 Common Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| E1                         | E3                         | D6                    | SNO0            | Analog Switch 0 Normally Open Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D3                         | E1                         | E8                    | SCM1            | Analog Switch 1 Common Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| E3                         | D1                         | D8                    | SNO1            | Analog Switch 1 Normally Open Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| B1                         | A3                         | _                     | SCM2            | Analog Switch 2 Common Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| C1                         | B3                         |                       | SNO2            | Analog Switch 2 Normally Open Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| A3                         | A1                         | G5                    | SCM3            | Analog Switch 3 Common Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| B3                         | B1                         | G4                    | SNO3            | Analog Switch 3 Normally Open Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| TAMPER DETE                | CTION PINS                 |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| T11                        | L8                         | A7                    | TAMPERI         | Connect to TAMPERO through a PCB trace that is uninterrupted.<br>Used by trust protection unit (TPU) to prevent external tampering of<br>the system. If the TAMPERO signal is interrupted, TAMPERI causes<br>a tamper event to the device.                                                                                                                                                                                                                                                                    |  |  |  |
| C13                        | D11                        | H9                    | TAMPERO         | Connect to TAMPERI through a PCB trace that is uninterrupted. Used<br>by TPU to prevent external tampering of the system. If the TAMPERO<br>signal is interrupted, TAMPERI causes a tamper event to the device.                                                                                                                                                                                                                                                                                               |  |  |  |
| JTAG PINS                  |                            |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Т9                         | G11                        | C10                   | ТСК             | JTAG TCK Pin, Weak Pullup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| U11                        | H12                        | C11                   | TDI             | JTAG TDI Pin, Weak Pullup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| U10                        | G12                        | B12                   | TDO             | JTAG TDO Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| V10                        | M11                        | B7                    | TMS             | JTAG TMS Pin, Weak Pullup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| T10                        | M10                        | D9                    | TSEL            | JTAG TSEL Pin, Weak Pullup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| POWER PINS                 |                            | -                     |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| L10                        | L4                         | A4                    | V <sub>DD</sub> | Digital Supply Voltage. This pin must be connected to ground through at least a $4.7\mu$ F external ceramic chip capacitor.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

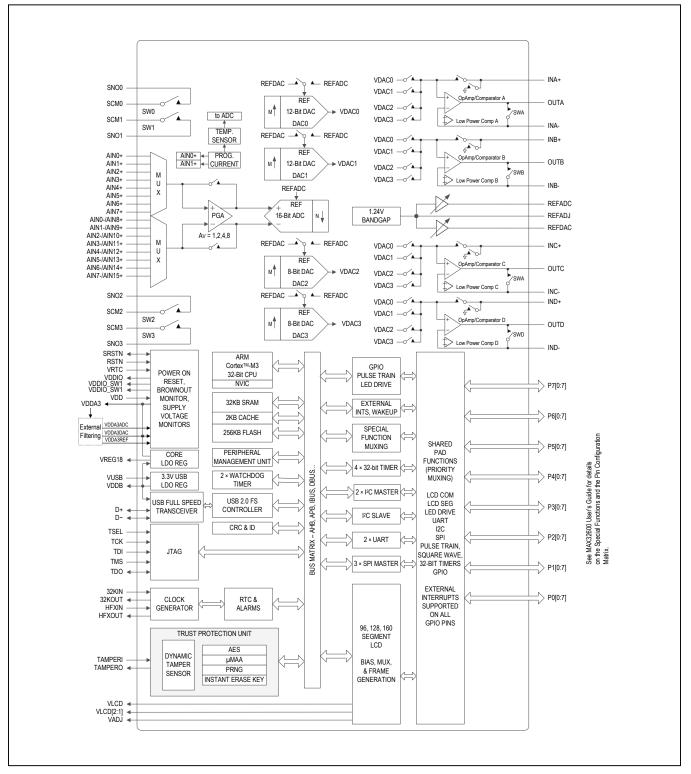
# Wellness Measurement Microcontroller

| BA                                                                                                               | LL                                       | BUMP                                |                            |                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX32600-P85<br>(192 BALL)                                                                                       | MAX32600-J85<br>(120 BALL)               | MAX32600-W85<br>(WLP)               | NAME                       | FUNCTION                                                                                                                                                                                                                                                                                                                                                                       |
| K11, L11                                                                                                         | L7                                       | B6, J8                              | VREG18                     | Regulator Capacitor. This pin must be connected to ground through<br>at least a $1.0\mu$ F external ceramic-chip capacitor. The capacitor must<br>be placed as close to this pin as possible. No external devices other<br>than the capacitor should be connected to this pin. Note: On the<br>WLP package, the capacitor should be placed as close as possible<br>to bump B6. |
| V9                                                                                                               | N5                                       | В5                                  | V <sub>RTC</sub>           | 3V Nominal Backup Supply Input Voltage. Connect to 3V nominal power supply. This pin must be connected to ground through a 1.0μF external ceramic chip capacitor.                                                                                                                                                                                                              |
| A14, B14, C16,<br>J9, J10, J16,<br>K9, K10, T13,<br>T16, U7, V7                                                  | B12, C12, H11,<br>M5, M7, M8,<br>N8, N11 | H2, G3, G9,<br>F4–F9, E7, D7,<br>B2 | V <sub>SS</sub>            | Digital Ground                                                                                                                                                                                                                                                                                                                                                                 |
| F1, F2, F3,<br>G2, H2, J1, J2,<br>J3, K2, L2, M1,<br>M2, N2, P2,<br>R1, R2, R3,<br>T2, T3, T4, U2,<br>U4, V2, V4 | H2, J2, J3, K2,<br>L2, M2, N2            | D2–D5,<br>E2, E5, F2                | VSSADC                     | ADC Ground                                                                                                                                                                                                                                                                                                                                                                     |
| A2, A4, A8, A12,<br>B2, B4–B12,<br>C2, C3, C4,<br>C12, D2, E2                                                    | A8, B2, B4–<br>B11, C1–C4,<br>C8, D2, E2 | G6, H3–H7, J7                       | VSSDAC                     | DAC Ground                                                                                                                                                                                                                                                                                                                                                                     |
| L8                                                                                                               | G1                                       | E1                                  | VSSREF                     | Reference Ground                                                                                                                                                                                                                                                                                                                                                               |
| H10                                                                                                              | A2                                       | C5                                  | VSSUB                      | Substrate Ground. Connect to VSS.                                                                                                                                                                                                                                                                                                                                              |
| L9                                                                                                               | L1                                       | B1                                  | V <sub>DDA3</sub>          | Analog Supply Voltage. This pin must be connected to ground through a $1.0\mu F$ external ceramic chip capacitor.                                                                                                                                                                                                                                                              |
| М3                                                                                                               | H1                                       | C2                                  | V <sub>DD</sub><br>A3ADC   | ADC Analog Supply Voltage. This pin must be connected to ground through a $10\mu$ F external ceramic chip capacitor.                                                                                                                                                                                                                                                           |
| C8                                                                                                               | A4                                       | J4                                  | V <sub>DD</sub><br>A3DAC   | DAC Analog Supply Voltage. This pin must be connected to ground through a $1.0\mu F$ external ceramic chip capacitor.                                                                                                                                                                                                                                                          |
| H8                                                                                                               | F2                                       | F3                                  | V <sub>DD</sub><br>A3REF   | Analog Reference Supply Voltage. This pin must be connected to ground through a $1.0\mu F$ external ceramic chip capacitor.                                                                                                                                                                                                                                                    |
| H11, J11                                                                                                         | M6                                       | С9                                  | VDDIO                      | I/O Supply Voltage. This pin must be connected to ground through at least a 1.0 $\mu F$ external ceramic chip capacitor.                                                                                                                                                                                                                                                       |
| _                                                                                                                | A12                                      | Jð                                  | V <sub>DDIO</sub> _<br>SW1 | Switchable I/O Supply Voltage 1. Connect to either the VREG18 (1.8V) or V <sub>DDIO</sub> (3V) supply to set the I/O supply rail for ports P0 and P1. This pin must be connected to ground through at least at $1.0\mu$ F external ceramic chip capacitor. Note: Port P6 and P7 are always powered from V <sub>DDIO</sub> .                                                    |

# Wellness Measurement Microcontroller

| BA                         | LL                         | BUMP                  |                            |                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------|----------------------------|-----------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP) | NAME                       | FUNCTION                                                                                                                                                                                                                                                                                                                                                      |  |
| _                          | G13                        | C7                    | V <sub>DDIO</sub> _<br>SW2 | Switchable I/O Supply Voltage 2. Connect to either the VREG18 (1.8V) or V <sub>DDIO</sub> (3V) supply to set the I/O supply rail for ports P2, P3, P4, and P5. This pin must be connected to ground through at least a $1.0\mu$ F external ceramic chip capacitor. Note: Port P6 and P are always powered from V <sub>DDIO</sub> .                            |  |
| LCD PINS                   |                            |                       |                            |                                                                                                                                                                                                                                                                                                                                                               |  |
| V6                         | _                          | _                     | VLCD                       | LCD Bias Control Voltage. Highest LCD drive voltage used with static bias. If using LCD functionality, this pin must be connected to ground through at least a $1.0\mu F$ external ceramic chip capacitor.                                                                                                                                                    |  |
| V5                         | _                          | _                     | V <sub>LCD1</sub>          | LCD Bias Voltage 1. LCD drive voltage used with 1/2 and 1/3 LCD bias. An internal resistor-divider sets the voltage. External resistors and capacitors can be used to change the LCD voltage or drive capability at this pin. If using LCD functionality, this pin must be connected to ground through at least a $1.0\mu$ F external ceramic chip capacitor. |  |
| U5                         | _                          | _                     | V <sub>LCD2</sub>          | LCD Bias Voltage 2. LCD drive voltage used with 1/3 LCD bias.<br>An internal resistor-divider sets the voltage. External resistors and<br>capacitors can be used to change LCD voltage or drive capability<br>at this pin. If using LCD functionality, this pin must be connected to<br>ground through at least a $1.0\mu$ F external ceramic chip capacitor. |  |
| Т5                         | _                          | _                     | V <sub>ADJ</sub>           | LCD Adjustment Voltage. Connect to an external resistor to provide external control of the LCD contrast. Leave disconnected for internal contrast adjustment. If using LCD functionality, this pin must be connected to ground through at least a 1.0µF external ceramic chip capacitor.                                                                      |  |
| GENERAL-PUR                | RPOSE I/O                  |                       |                            |                                                                                                                                                                                                                                                                                                                                                               |  |
| C14                        | J12                        | B11                   | P0.0                       |                                                                                                                                                                                                                                                                                                                                                               |  |
| B15                        | J11                        | A11                   | P0.1                       |                                                                                                                                                                                                                                                                                                                                                               |  |
| A15                        | K12                        | B10                   | P0.2                       | General-Purpose, Digital, I/O and Alternate Functions. These port                                                                                                                                                                                                                                                                                             |  |
| C15                        | L12                        | A10                   | P0.3                       | pins function as bidirectional I/O pins. All port pins default to high-                                                                                                                                                                                                                                                                                       |  |
| B16                        | L11                        | В9                    | P0.4                       | impedance mode with weak pullups after a reset. All alternate                                                                                                                                                                                                                                                                                                 |  |
| A16                        | K11                        | A9                    | P0.5                       | functions must be enabled from software.                                                                                                                                                                                                                                                                                                                      |  |
| B17                        | B17 L10                    | B8                    | P0.6                       |                                                                                                                                                                                                                                                                                                                                                               |  |
| A17                        | L9                         | A8                    | P0.7                       |                                                                                                                                                                                                                                                                                                                                                               |  |

# Wellness Measurement Microcontroller


| BA                         | LL                         | BUMP                  |      |                                                                         |
|----------------------------|----------------------------|-----------------------|------|-------------------------------------------------------------------------|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP) | NAME | FUNCTION                                                                |
| B18                        | C13                        | H10                   | P1.0 |                                                                         |
| C17                        | D13                        | J10                   | P1.1 |                                                                         |
| C18                        | E11                        | F11                   | P1.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| D16                        | E12                        | G11                   | P1.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| D17                        | E13                        | J11                   | P1.4 | impedance mode with weak pullups after a reset. All alternate           |
| D18                        | F11                        | H11                   | P1.5 | functions must be enabled from software.                                |
| E17                        | F12                        | H12                   | P1.6 |                                                                         |
| E18                        | F13                        | G12                   | P1.7 |                                                                         |
| E16                        | H13                        | E10                   | P2.0 |                                                                         |
| F16                        | J13                        | F12                   | P2.1 |                                                                         |
| F17                        | K13                        | E11                   | P2.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| F18                        | L13                        | E12                   | P2.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| G16                        | M12                        | D11                   | P2.4 | impedance mode with weak pullups after a reset. All alternate           |
| G17                        | M13                        | D12                   | P2.5 | functions must be enabled from software.                                |
| G18                        | N12                        | D10                   | P2.6 |                                                                         |
| H18                        | N13                        | C12                   | P2.7 |                                                                         |
| H17                        | —                          | —                     | P3.0 |                                                                         |
| J18                        | _                          | —                     | P3.1 |                                                                         |
| J17                        | —                          | —                     | P3.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| K18                        | —                          | —                     | P3.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| K17                        | —                          | —                     | P3.4 | impedance mode with weak pullups after a reset. All alternate           |
| K16                        | —                          | —                     | P3.5 | functions must be enabled from software.                                |
| L18                        | —                          | —                     | P3.6 |                                                                         |
| L17                        | —                          | —                     | P3.7 |                                                                         |
| L16                        |                            | —                     | P4.0 |                                                                         |
| M18                        |                            | —                     | P4.1 |                                                                         |
| M17                        |                            | —                     | P4.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| M16                        |                            | _                     | P4.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| N18                        |                            | —                     | P4.4 | impedance mode with weak pullups after a reset. All alternate           |
| N17                        |                            |                       | P4.5 | functions must be enabled from software.                                |
| N16                        |                            |                       | P4.6 | ]                                                                       |
| P18                        |                            | —                     | P4.7 |                                                                         |

# Wellness Measurement Microcontroller

| BA                         | LL                         | BUMP                    |      |                                                                         |
|----------------------------|----------------------------|-------------------------|------|-------------------------------------------------------------------------|
| MAX32600-P85<br>(192 BALL) | MAX32600-J85<br>(120 BALL) | MAX32600-W85<br>(WLP)   | NAME | FUNCTION                                                                |
| P17                        | _                          | —                       | P5.0 |                                                                         |
| P16                        | _                          | —                       | P5.1 |                                                                         |
| R18                        | _                          | _                       | P5.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| R17                        | _                          | —                       | P5.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| R16                        | _                          | _                       | P5.4 | impedance mode with weak pullups after a reset. All alternate           |
| T18                        | _                          | _                       | P5.5 | functions must be enabled from software.                                |
| T17                        | _                          | —                       | P5.6 |                                                                         |
| U18                        | _                          | —                       | P5.7 |                                                                         |
| V17                        | —                          | —                       | P6.0 |                                                                         |
| U17                        | —                          | —                       | P6.1 |                                                                         |
| V16                        | —                          | —                       | P6.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| U16                        | —                          | —                       | P6.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| V15                        | _                          | —                       | P6.4 | impedance mode with weak pullups after a reset. All alternate           |
| U15                        | —                          | —                       | P6.5 | functions must be enabled from software.                                |
| T15                        | _                          | —                       | P6.6 |                                                                         |
| V14                        | _                          | —                       | P6.7 |                                                                         |
| U14                        | —                          | —                       | P7.0 |                                                                         |
| T14                        | _                          | —                       | P7.1 |                                                                         |
| V13                        | —                          | —                       | P7.2 | General-Purpose, Digital, I/O and Alternate Functions. These port       |
| U13                        | _                          | —                       | P7.3 | pins function as bidirectional I/O pins. All port pins default to high- |
| V12                        |                            |                         | P7.4 | impedance mode with weak pullups after a reset. All alternate           |
| U12                        |                            |                         | P7.5 | functions must be enabled from software.                                |
| T12                        |                            |                         | P7.6 |                                                                         |
| V11                        |                            | —                       | P7.7 |                                                                         |
|                            | _                          | A1, A12, H1,<br>J1, J12 | N.C. | Not Connected. Leave unconnected.                                       |
| _                          |                            | C6                      | CFG  | Must Be Tied to VDDIO.                                                  |

### Wellness Measurement Microcontroller

### **Functional Diagram**



#### Wellness Measurement Microcontroller

#### **Detailed Description**

The MAX32600 microcontroller is based on the industrystandard ARM Cortex-M3 32-bit RISC CPU and includes 256KB of flash memory, 32KB of SRAM, and a 2KB 2-way set associative cache. The device includes three SPI master interfaces, two UARTs, two I<sup>2</sup>C master interfaces and one I<sup>2</sup>C slave interface, four 32-bit timers (each of which can be optionally split into dual 16-bit timers), a real-time clock (RTC) with three programmable alarms, dual independent windowed watchdog timers, and four supply voltage monitors with multiple user-selectable, low-voltage detection levels.

For system security and integrity checking, a trust protection unit (TPU) is optionally available that includes all necessary features to secure communications and protect internal data and firmware.

Integrated high-performance analog peripherals include a 16-bit ADC with input buffer, programmable gain amplifier, and a dual 8:1 differential (or 16:1 singleended) input mux, two 12-bit DACs, two 8-bit DACs, four operational amplifiers with comparator mode, four lowpower comparators, an internal temperature sensor, a high-precision internal programmable reference, and four SPST analog switches.

Amultichannel PMU (peripheral management unit) interface, with operation during run mode and low-power sleep mode, can be used to configure and transfer data to and from peripherals including the ADC, DACs, communications ports, USB, TPU, and the CRC hardware module.

#### **ARM Cortex-M3 Core**

The device is based on the ARM Cortex M3 32-bit RISC CPU, which implements the ARMv7-M architectural profile. The implementation of the Cortex M3 core used in the device is targeted for a maximum operating frequency of 24MHz and provides the following features:

- 32-bit data path with mixed 16-bit and 32-bit instructions (Thumb<sup>®</sup>-2 instruction set)
- Single-cycle multiplication and hardware-based division operations
- Nested vectored interrupt controller (NVIC) with multiple interrupt priority levels and nested interrupt support

- 32-bit byte address data pointers for a maximum addressable 4GB memory space, shared by code memory, data memory, ARM core peripherals and device-specific peripherals
- Low-power, highly energy efficient core reduces power consumption
- Built-in debug functionality with JTAG port (connects to internal debug access port)
- Power-saving sleep and deep sleep modes with fast wake-up

#### **Interrupt Sources**

The devices include the ARM Nested Vector Interrupt Controller (NVIC) providing high-speed, deterministic response, interrupt masking, and multiple interrupt sources. Each peripheral is connected to the NVIC and can have multiple interrupt flags indicating the specific source of the interrupt within the peripheral. The device supports up to 64 distinct interrupt sources (including internal and external interrupts), with eight priority levels.

#### Low Power Modes

The MAX32600 has multiple operating modes with many user-configurable options offering significant flexibility in total power consumption. These options are stored in the data retention power domain registers and are continuously powered across all modes of operation. The registers dictate which analog and digital peripherals are intended to remain enabled during low power modes. Likewise, there are dedicated system registers that dictate the configuration of features during run modes. The MAX32600 supports four power modes: LP0: STOP, LP1: STANDBY, LP2: PMU, and LP3: RUN.

The low power modes (LP0: STOP and LP1: STANDBY) are under the control of the Power Sequencer, while LP2: PMU is controlled by the PMU, and the LP3: RUN mode is controlled by the ARM core.

The VRTC power pin (powered by battery or super cap) ensures that this domain is always on during battery change or other loss-of-power events on the main supply.

Thumb is a registered trademark of ARM Ltd.

#### Wellness Measurement Microcontroller

#### PMU

The device's peripheral management unit (PMU) is a DMA-based linked list processing engine. The PMU can perform operations and data transfers involving memory and/or peripherals in the Advanced Peripheral Bus (APB) and Advanced High-performance Bus (AHB) peripheral memory space while the main CPU is in a sleep state. This allows low-overhead peripheral operations (for which intensive CPU resources are not required) to be performed without the CPU, significantly reducing overall power consumption. Additionally, for certain analog and digital operations, switching the CPU off and handling the operations using the PMU provides a lower-noise environment that is critical for obtaining optimum analog-to-digital converter (ADC) and digital-to-analog converter (DAC) performance.

#### **CRC Module**

A CRC hardware module is included to provide fast calculations and data integrity checks by application software. The CRC module supports both the CRC-16-CCITT and CRC-32 polynomials. The CRC-16 and CRC-32 calculation engines operate independently in parallel; each CRC engine has a programmable start seed and can be used to calculate checksums of arbitrarily long data sequences. Data can be loaded either directly or using the PMU; the CRC-16-CCITT completes in two clock cycles and the CRC-32 completes in four clock cycles for each data input calculated.

#### Watchdog Timers

The device provides two independent watchdog timers (WDT) with window support. The watchdog timers are independent and have multiple clock source options to ensure system security. The watchdog uses a 32-bit timer with prescaler to generate the watchdog reset. When enabled, the watchdog timers must be fed prior to timeout or within a window of time if window mode is enabled. Failure to feed the watchdog timer during the programmed timing window results in a watchdog timeout.

#### 32-Bit/16-Bit Timers

The device includes four 32-bit timers that are usable for timing, capture/compare, or generation of pulsewidth modulated (PWM) signals. Each 32-bit timer can optionally be split into a pair of 16-bit timers. The capture/ compare, input/output, and PWM options are available on the 32-bit timers only.

Features of the 32-bit timers include the following:

 32-bit counter with one-shot and continuous autoreload modes

- Programmable prescaler for timer input clock
- External I/O pin option allows selectable input or output function for each timer instance using GPIO pin
- Output mode can be used for PWM output generation or timer rollover output
- Input mode can be used for timer input (counter mode), clock gating or capture, limited to an input frequency of one-fourth the peripheral clock frequency
- Timer interrupt

#### **Real-Time Clock**

A binary real-time clock (RTC) keeps the time of day in a 32-bit timer with resolution programmable from 244µs to 1 second. With a 1-second tick frequency, the RTC can count up to 139 years before rolling over. Two time-of-day alarms can be used to trigger an interrupt or wake up the devices from low-power mode when the RTC timer reaches a specified value; a separate sub-second alarm can be set to trigger on a programmable subdivide of the RTC tick period. For example, with a 1-second RTC resolution, the sub-second alarm can be triggered every second, every 500ms, every 250ms, every 125ms, and so on down to a minimum of 244µs.

#### **USB Device Controller**

The integrated USB controller is compliant with the USB 2.0 specification, providing full-speed operation as a USB peripheral device. Integrating the USB physical interface (PHY) allows direct connection to the USB cable, reducing board space and overall system cost. An integrated voltage regulator enables smart switching between the main supply and V<sub>BUS</sub> when connected to a USB host controller.

The USB controller includes a dedicated DMA engine (separate from the PMU) that is used to transfer data to and from the endpoint buffers located in SRAM. A total of seven endpoint buffers are supported with configurable selection of IN or OUT, in addition to Endpoint 0, which is used for control purposes only.

#### I<sup>2</sup>C Master/Slave Interfaces

Two I<sup>2</sup>C master interfaces and one I<sup>2</sup>C slave interface are available for communication with a wide variety of other I<sup>2</sup>C-enabled peripherals. The I<sup>2</sup>C bus is a 2-wire, bidirectional bus using a ground line and two bus lines, the serial data line (SDA) and the serial clock line (SCL). Both the SDA and SCL lines must be driven as open-collector/ drain outputs. External resistors (R<sub>P</sub>) are required pull the lines to a logic-high state.

### Wellness Measurement Microcontroller

The device supports both the master and slave protocols. In the master mode, the interfaces have ownership of the I<sup>2</sup>C bus, drive the clock, and generate the START and STOP signals. This allows them to send data to a slave or receive data from a slave as required. In slave mode, the interfaces rely on an externally generated clock to drive SCL and respond to data and commands only when requested by the I<sup>2</sup>C master device.

#### **SPI Master Interfaces**

The device has three SPI master interface ports. Each SPI controller provides an independent master-mode serial communication channel that communicates synchronously with peripheral SPI devices in a single or multiple slave system. The third SPI instance is intended for future Bluetooth module communication.

The SPI controllers support half- or full-duplex communications with single, dual, or quad data transmission modes, and can be operated in master mode only. Multiple slave select lines are available with configurable polarity, and optional slave ready (SR) inputs can be used for hardware flow control for SPI devices that support this function.

#### **UART Interfaces**

The device has two serial communication interfaces. The universal asynchronous receiver-transmitter (UART) interface ports support full-duplex asynchronous communications. The two UARTs implemented on the devices are identical in behavior and can be configured independently.

UART features include the following:

- 2-wire interface
- Programmable transmit and receive interrupts
- Independent baud-rate generators
- Programmable even/odd/no parity modes
- Programmable start/stop bit options
- Character lengths of 5/6/7/8 bits supported
- Optional hardware flow control (RTS/CTS)

#### **LCD Controller**

The 192-ball MAX32600 include an LCD controller with a boost regulator that interfaces directly to common lowvoltage liquid crystal displays. By integrating the LCD controller in hardware, the device allows designs that require only an LCD glass rather than a considerably more expensive LCD module. Every character in an LCD glass is composed of one or more segments, each of which is activated by selecting the appropriate segment and common signal.

The LCD controller can multiplex combinations of up to 40 segment outputs (SEG0 to SEG39) and four common signal outputs (COM0 to COM3). Unused segment outputs can be used as standard GPIO port pins. The segments are easily addressed by writing to dedicated display memory. Once the LCD controller settings and display memory have been initialized, the 21-byte display memory is periodically scanned, and the segment and common signals are generated automatically at the selected display frequency, with no additional CPU intervention required.

The design is further simplified and cost reduced by the inclusion of software-adjustable internal voltage-dividers to control display contrast, using either  $V_{DDIO}$  or an external voltage. If desired, contrast can also be controlled with an external resistor network.

Features of the LCD controller include the following:

- Automatic LCD segment and common-drive signal generation
- Integrated boost regulator ensures LCD operation over entire digital operating range
- Flexible LCD clock source selection with adjustable frame frequency
- Internal voltage-divider resistors eliminate requirement for external components
- Internal adjustable resistor allows contrast adjustment without external components
- Four display modes are supported by the LCD controller:
- Static (COM0)
- 1/2 duty multiplexed with 1/2 bias voltages (COM[0:1])
- 1/3 duty multiplexed with 1/3 bias voltages (COM[0:2])
- 1/4 duty multiplexed with 1/3 bias voltages (COM[0:3])

The voltages available for driving the LCD are V<sub>LCD</sub>, V<sub>LCD</sub> × 2/3, V<sub>LCD</sub> × 1/3, and V<sub>ADJ</sub>. The 1/2-bias mode, which uses an output level of V<sub>LCD</sub> × 1/2, requires two of the LCD voltage supply pins (V<sub>LCD2</sub> and V<sub>LCD1</sub>) to be shunted together externally.

#### 16-Bit ADC with PGA

The devices include a 16-bit analog-to-digital converter (ADC) with a 16-channel analog input multiplexer, to allow selection of an analog input from one of 16 input lines (single-ended mode) or one pair of eight input pairs (differential mode). The differential mode supports fully differential signal inputs.

The front end PGA allows programmable gain settings of x1, x2, x4, and x8 before the input sample is converted. An anti-aliasing filter is included between the output of the PGA and the ADC sample conversion stage.

The ADC reference voltage is selectable between  $V_{DDA3}$  and the dedicated ADC reference level. The ADC reference level can be set by software to one of four output levels—1.024V, 1.5V, 2.048V, and 2.5V—based on the 1.24V reference bandgap.

#### ADC/DAC Internal/External Reference and Programmable Output Buffers

Two programmable reference levels (one used by the ADC, one used by the DACs) are included, and each can be individually set to one of four output levels. An external reference can also be provided at the REFADJ pin; if this feature is used, the external reference voltage is used in place of the 1.24V bandgap output, and the programmable output levels for the ADC and DAC references shift accordingly.

#### 12-Bit Voltage Output DACs

The device includes two 12-bit voltage output DACs that output single-ended voltages. The reference used by these DACs is selectable between the DAC reference level and the ADC reference level. Each DAC instance includes PMU channel access to allow output values to be loaded to the DAC directly from memory.

#### 8-Bit Voltage Output DACs

The device includes two 8-bit voltage output DACs that output single-ended voltages. The reference used by these DACs is selectable between the DAC reference level and the ADC reference level. Each DAC instance includes PMU channel access to allow output values to be loaded to the DAC directly from memory.

# Uncommitted Op Amps with Comparator Mode

The device contains four uncommitted operational amplifiers. Any unused op amp should be connected with its positive input pin grounded and the negative input pin and output pin shorted together. Each op amp can be switched between amplifier and comparator mode under software control.

Each op amp contains an integrated internal switch that can be used to short the negative/inverting input pin to the output pin of the op amp under software control, putting the op amp in a voltage follower mode. In this configuration, the op amp can be used as an output buffer for any of the four DAC outputs. Any of the four DAC outputs may optionally be internally connected to the noninverting inputs of one or more of the four op amps, under software control.

#### **Uncommitted SPST Analog Switches**

The device contains four uncommitted SPST analog switches that can be opened and closed under software control. All SPST switches are open by default following any reset or power-on reset. The SPST switches support input voltages from ground to  $V_{DDA3}$ .

#### **Temperature Sensor**

The device includes an internal temperature sensor that can be read using the ADC, and additionally supports a mode for an external temperature sensor, which is connected to the same ADC input pair.

### Wellness Measurement Microcontroller

#### **Additional Benefits and Features**

- Industry-Standard Core and Flexible Peripherals
   Enable Rapid Prototyping for Improved Time to Market
  - ARM Cortex-M3 32-Bit RISC CPU Single-Cycle Multiplication Nested Vectored Interrupt Controller
  - Memory 256KB Flash Memory with 2KB Instruction Cache 32KB SRAM
  - Supply Voltage
     1.8V to 3.6V Digital Supply Voltage
     2.3V to 3.6V Analog Supply Voltage
  - · Tool Chains Supported Include GNU, Eclipse, and IAR
  - Low Power Wakeup (LP0/LP1) RTC Timeout 244µs Resolution Multiple Timer Wakeup Options All 64 GPIO Level Sensitive USB Power Detection
  - Peripheral Management Unit (PMU) PMU Services Peripherals While CPU is in Sleep Mode
    - Saves Power when ARM Cortex-M3 Core is Inactive
    - 6 PMU Channels, Each with Read/Write Access to All AHB and APB Devices
  - Digital and Communication Peripherals

     4 × 32-Bit Timers, Configurable to 8 x 16-Bit
     32-Bit Real-Time Clock with Subsecond Alarm and Two Time-of-Day Alarms
     Dedicated Backup Supply Pin and Trickle Charge Four Programmable Supply Voltage Detectors
     Power-On-Reset/Brownout Reset
     Two Programmable Windowed Watchdog Timers
     Three SPI Masters, Two UARTs, Two I<sup>2</sup>C Masters, and One I<sup>2</sup>C Slave Port
     Up to 64 GPIO Pins with External Interrupt and
     Wake from Low-Power Mode Support

USB Device Interface

2.0 Full-Speed Compliant USB Integrated Transceiver with Regulator, On-Chip Termination and Pullup Resistors 5V to 3.3V Regulation with Integrated Supply Management to Enable USB-Compliant Switching Dedicated USB DMA Engine Allows Automatic Transfer of Endpoint Data to/from SRAM

- Pulse Train Engine with Eight Digital Output Channels and 5 Analog Control Outputs
- Clock Sources

32kHz Crystal Oscillator for Accurate RTC External High-Frequency Crystal Oscillator PLL Generates 48MHz USB Clock (2x/4x/6x HFX) Internal 24MHz ±1% Relaxation Oscillator

LCD Controller

96, 128, or 160 Segments 4 x 24, 4 x 32, 4 x 40 Static, 1/2, 1/3, and 1/4 Duty Cycle Boost Converter for  $3.3V V_{LCD}$  Operation Adjustment Resistor for Contrast Control Eliminates Requirement for External Components

# Wellness Measurement Microcontroller

### **Ordering Information**

| PART                   | TEMP RANGE        | PIN-PACKAGE |
|------------------------|-------------------|-------------|
| MAX32600-P85A+         | -40°C to +85°C    | 192 CTBGA   |
| MAX32600-P85B+         | -40°C to +85°C    | 192 CTBGA   |
| MAX32600-J85A+         | -40°C to +85°C    | 120 CTBGA   |
| MAX32600-J85B+         | -40°C to +85°C    | 120 CTBGA   |
| MAX32600-W85A+         | -40°C to +85°C    | 108 WLP     |
| MAX32600-W85B+         | -40°C to +85°C    | 108 WLP     |
| +Donotos a load(Ph) fr | oo/PoUS compliant | tnookogo    |

+Denotes a lead(Pb)-free/RoHS-compliant package.

### **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE<br>TYPE | PACKAGE<br>CODE | OUTLINE<br>NO. | LAND<br>PATTERN<br>NO. |
|-----------------|-----------------|----------------|------------------------|
| 192 CTBGA       | X19222+1C       | <u>21-0712</u> | —                      |
| 120 CTBGA       | X12077+1C       | <u>21-0899</u> | —                      |
| 108 WLP         | W1084A5+1       | <u>21-1075</u> | —                      |

#### **Selector Table**

| PART           | FLASH<br>(KB) | SRAM<br>(KB) | ADC<br>CHANNELS | TRUST<br>PROTECTION<br>UNIT (TPU) | LCD         | PIN-PACKAGE       |
|----------------|---------------|--------------|-----------------|-----------------------------------|-------------|-------------------|
| MAX32600-P85A+ | 256           | 32           | 16 × 1, 8 × 2   | No                                | 160-segment | 12mm × 12mm CTBGA |
| MAX32600-P85B+ | 256           | 32           | 16 × 1, 8 × 2   | Yes                               | 160-segment | 12mm × 12mm CTBGA |
| MAX32600-J85A+ | 256           | 32           | 12 × 1, 6 × 2   | No                                | No LCD      | 7mm × 7mm CTBGA   |
| MAX32600-J85B+ | 256           | 32           | 12 × 1, 6 × 2   | Yes                               | No LCD      | 7mm × 7mm CTBGA   |
| MAX32600-W85A+ | 256           | 32           | 6 × 1, 3 × 2    | No                                | No LCD      | 5.4mm × 4.3mm WLP |
| MAX32600-W85B+ | 256           | 32           | 6 × 1, 3 × 2    | Yes                               | No LCD      | 5.4mm × 4.3mm WLP |

#### **Package/Feature Details**

| FEATURE                                | 5.4mm x 4.3mm<br>WLP        | 7mm x 7mm<br>CTBGA           | 12mm x 12mm<br>CTBGA         |
|----------------------------------------|-----------------------------|------------------------------|------------------------------|
| LCD                                    | —                           | _                            | 160-segment                  |
| GPIO (8-bit ports)                     | 3                           | 3                            | 8                            |
| ADC inputs                             | 6 single/<br>6 differential | 12 single/<br>6 differential | 16 single/<br>8 differential |
| Internal only op amp                   | 1                           | 0                            | 0                            |
| External input, external output op amp | 2                           | 0                            | 0                            |
| Fully external op amp control          | 1                           | 4                            | 4                            |
| Two-pad switches                       | 3                           | 4                            | 4                            |
| Shared-pad switches                    | 1                           | 0                            | 0                            |

## Wellness Measurement Microcontroller

### **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION                                                                                                                                                                                                                                                                   | PAGES<br>CHANGED                  |
|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 0                  | 6/14             | Initial release                                                                                                                                                                                                                                                               | —                                 |
| 1                  | 10/14            | Added WLP package and updated specifications in the <i>Electrical Characteristics</i> table                                                                                                                                                                                   | 1–3, 5–7, 11–13,<br>15–24, 29, 30 |
| 2                  | 11/14            | Revised Benefits and Features section                                                                                                                                                                                                                                         | 1, 30                             |
| 3                  | 12/14            | Updated Simplified Functional Diagram, Electrical Characteristics table notes,<br>Ball/Bump Descriptions, Detailed Description, and USB Device Controller<br>sections, Package/Feature Details table, and replaced ball configurations                                        | 1–18, 20–34                       |
| 4                  | 6/15             | Replaced the <i>Simplified Functional Diagram</i> ; updated the electrical characteristics tables; updated the SRSTN bump description; added the <i>Low Power Modes</i> and <i>PMU</i> sections; added LP0/LP1 information to <i>Additional Benefits and Features</i> section | 1–17, 23, 29, 33                  |
| 5                  | 7/15             | Added Note 5 to two DC Characteristics parameters (No Missing Codes and Integral Nonlinearity)                                                                                                                                                                                | 7                                 |
| 6                  | 2/16             | Updated Package Thermal Characteristics, ADC/PGA Electrical Characteristics,<br>Internal Voltage Reference Electrical Characteristics, Ball/Bump Description,<br>Detailed Description, Low Power Modes, I <sup>2</sup> C Master/Slave Interfaces sections                     | 2, 8, 14, 21,<br>22, 27, 29, 30   |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.



Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».



«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).



Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А