

ACT4751EVK1-101 User's Guide

Description

This document describes the characteristics and operation of the Active Semi ACT4751EVK1-101 evaluation kit (EVK). It provides setup and operation instructions, schematic, layout, BOM, and test data. This EVK demonstrates the ACT4751power management IC. Other ACT4751QIxxx options can be evaluated on this EVK by replacing the IC and any other necessary components.

Features

The EVK can be used as a standalone board if desired. However, to access the internal registers and to take full advantage of the IC's capability, the user must connect the EVK to a PC with Active Semi's USB-TO-I2C interface dongle and use the GUI software. The EVK provides full access to the each converter's input and output voltage, as well as all the digital control signals. This gives the user the flexibility to configure the EVK to match their real world system.

Figure 1. EVK Picture

Innovative Power[™] ActiveSwitcher[™] is a trademark of Active-Semi.

EVK Contents

The ACT4751EVK1-101evaluation kit comes with the following items:

- 1. EVK assembly
- 2. USB-TO-I2C dongle
 - a. Dongle
 - b. Custom 4-pin connector that connects the USB-TO-I2C dongle to the EVK assembly

Required Equipment

ACT4751EVK1-101

USB-TO-I2C Dongle

Power supply \rightarrow 4~40V @ 6A for full power operation

Oscilloscope \rightarrow 100MHz, 4 channels

Digital Multi-meters (DMM)

Windows compatible PC with spare USB port.

Hardware Setup

Quick Start

Hardware Connections

Refer to Figure 2 for hardware connections.

- 1. Connect a DC power supply to J8. Please ensure the correct power supply polarity.
- 2. Connect an E-Load to J9.
- 3. Connect Digital Multi-Meters to VIN and VOUT to monitor the input voltage and output voltages.
- 4. Add a digital Multi-Meter in series with VIN and VOUT if you want to observe input and output current.
- 5. Be careful to keep the input voltage within the specifications.
- 6. Optional Connect the EVK to the PC with the USB dongle.

GUI Setup (optional)

- 1. Refer to the end of this document for detailed instructions to install the ACT475x GUI.
- 2. Connect the USB-TO-I2C dongle to the computer via a USB cable.
- Connect the USB-TO-I2C dongle to the EVK J17 connector. Refer to Figure 3 to ensure the correct polarity of the connection. As a guide, use the "Active-Semi" logo on the top of the dongle so the black wire is connected to the Dongle GND pin.

Figure 3. USB-TO-I2C Dongle Connection

Recommended Operating Conditions

The ACT4751EVK1-101is designed for a 4V-40V input voltage. The maximum operating voltage is determined by the IC's maximum input voltage rating. The minimum operating voltage is determined by the converter's minimum input voltage. The maximum output current is configured by the CMI and external components.

Parameter	Description	Min	Тур	Max	Unit
VIN	Input voltage	4	-	40	V
VOUT	Main-buck output voltage	3	-	24	V
V5V	Mini-buck output voltage		5		V
I _{V5V_max}	Mini-buck maximum output current		300		mA
lout_max	Main-buck maximum output current		4		А

Table 1. Recommended Operating Conditions

EVK Operation

Turn On the Evaluation Board

After the power source and E-Load are connected to the evaluation board per the required connections, the EVK can be powered for operation. Perform the following steps to turn on the board.

- 1. Ensure that the power supply connected to VIN (J8) is >4V and <40V.
- 2. Turn on power supply.
- 3. Apply the load.
- 4. Remove the shorting jumper from J12 to enable output. Replace the jumper to disable the output.

Output Current Limit – The ACT4751EVK1-101 output current limit is set to 4A. This is a function of the 20m Ω current sense resister, R5, the 16k Ω ILIM resistor, R9, and the I²C Output Current Limit bits, which are set to 100uA by default. The ACT4751 integrates a digital-to-analog converter (ILIM DAC) for the purpose of generating the reference signal used by the Current Limit block. The ILIM DAC generates an output current at the ILIM pin. The output current limit is easily changed by modifying any of these three parameters. The easiest way to change the output current limit is with the ILIM DAC field in the GUI.

	92.276nà			
	92.667nà			
SISTER	93.058uA			
	93. 449uA			
Current State	93.84uA	MainBuck Normal		
T2C ADDRESS	94.231uA	FRFO RFAD	450kHz	
100 1001000	94.622uA	Time Tune	1001010	
	95.013uA			
	95.404uA			
MAINBUCK	95. 795uA			
BICK ON	96.186uA			
DOCH ON	96.577uA			
LOAD DAC VSET	96.968uA			
	97.359uA			
VOUT SETTING	97. 75uA			
TLEM DAG	98.141uA			
	98.532uA			
	98.923uA			
	99.314uA			
MiniBUCK	99.705uA			
W PURE ON	100.096uA	~		
MINIPOCK ON		_		
TRO				
LDO ON				
TTO ON				
LDO Output Voltage	3.3V	~		

Output Voltage Setting

The default output voltage can be changed by I²C using the VOUT SETTING field in the GUI.

	5.1125V				
SUSTER	5.120V				
Current State	5. 1575V 5. 1625V		MainBuck Normal		
I2C ADDRESS	5.175V 5.1875V 5.2V		FREQ READ	450kHa	
MAINBUCK	5.2125V 5.225V				
BUCK ON	5.2375V 5.25V				
LOAD DAC VSET	5.2625V				
VOUT SETTING	5.275V 5.2875V				
ILIM DAC	5.3V 5.3125V				
	5.325V 5.3375V				
HiniBUCK	5.35V				
MiniBUCK ON	5.3625V	~			
LDO					
LDO ON					
LDO Output Voltage	3. 3V	~			

Additional Programmable Functionality

The ACT475x contains many additional programmable parameters. Refer to the ACT4751 datasheet for additional functionality and default I²C register values.

Test Results

0.001

0.01

0.1

LOAD CURRENT (A)

1

10

Schematic

Figure 4. Schematic

Layout

Figure 5. Layout Top Layer

Figure 6. Layout Layer2 - GND

Figure 7. Layout Layer 3 -VCC

Figure 8. Layout Bottom Layer

Bill of Materials

Table 2. ACT4751EVK1-101 BOM

Item	Ref Des	QTY	Description	Package	MFR	Part Number
1	C1	1	Cap, Ceramic, 1uF, 50V, 20%, X5R	0805	Wurth Elektronik	std
2	C2	1	Cap, Ceramic, 10uF, 10V, 20%, X5R	0805	Wurth Elektronik	885012107010
3	C3	1	Cap, Ceramic, 1uF, 10V, 20%, X5R	0603	Wurth Elektronik	std
4	C4, C5	2	Cap, Ceramic, 1uF, 50V, 20%, X5R	0603	Wurth Elektronik	std
5	C6, C7, C18, C19, C20, C21	6	Cap, Ceramic, 10uF, 50V, 10%, X5R	1206	ток	CGA5L3X5R1H106K160AB
6	C8	1	Cap, Aluminium Electrolytic, 100uF, 50V	8x11.5mm	Wurth Elektronik	860010674014
7	С9	1	Cap, Ceramic, 100nF, 25V, 20%, X5R	0603	Wurth Elektronik	std
8	C10	1	Cap, Ceramic, 10pF, 50V, 20%, X5R	0603	Wurth Elektronik	std
9	C11	1	Cap, Ceramic, 330pF, 50V, 20%, X5R	0603	Wurth Elektronik	std
10	C12, C13, C14, C16	4	Cap, Ceramic, 22uF, 35V, 20%, X5R	1206	тдк	C3216X5R1V226M160AC
11	C15	0	NP	8x11.5mm	Wurth Elektronik	860010674014
12	C17	1	Cap, Ceramic, 10uF, 25V, 10%, X5R	0603	Wurth Elektronik	std
13	C22, C23, C24, C25	0	NP	1206	тдк	C3216X5R1V226M160AC
14	J1, J2, J3, J5, J12	5	Header,2pin,100mil		Wurth Elektronik	61300211121
15	J4, J6, J7, J10, J11, J13, J14, J15, J16	9	Header,1pin,100mil		Wurth Elektronik	61300111121
16	J8, J9	2	Entry modular,2pin		Wurth Elektronik	691214110002S
17	J17	1	Header, 4 pin,100mil		Wurth Elektronik	61300411121
18	L1	1	Inductor, 47uH, 0.71A, SMD	4mmx4mm	Wurth Elektronik	74404043470A
19	L2	1	Inductor, 4.7uH, 9.5A , SMD	8.8mmx8.8mm	Wurth Elektronik	74439358047
20	R1, R10	2	Res, 0Ω, 1%	0603	std	std
21	R2, R12, R13	3	Res, 100kΩ, 1%	0603	std	std
22	R3	1	Res, 10kΩ, 1%	0603	std	std
23	R4	1	Res, 51kΩ, 1%	0603	std	std
24	R7, R11, R14	0	NP	0603	NP	std
25	R5	1	Resistor, 20mΩ, 1%, 1W	1206	SART	SMF12MAFR020T
26	R6	1	Res, 200kΩ, 1%	0603	std	std
27	R8	1	Res, 20Ω, 1%	0603	std	std
28	R9	1	Res, 16kΩ, 1%	0603	std	std
29	TP1, TP3, TP5, TP7	4	Test Point, Red		Keystone	TESTPOINT 5000
30	TP2, TP4, TP6, TP8, TP9	5	Test Point, Black		Keystone	TESTPOINT 5001
31	U1	1	ACT4751	QFN32-5X5	Active-semi	ACT4751QI101
32		1	Multi-Jumper with Test Point, 100mil		Wurth Elektronik	60910213421
33		1	PCB, ACT475XEVK	n/a	n/a	PCB-0318-02

GUI Installation

- 1. Get GUI files from the Active Semi website
- 2. Plug the USB-TO-I2C dongle into a free USB port.
- 3. Follow the instructions in the "How to install driver for dongle" folder.
- 4. Double click on the ActiveGUI.exe to start the ACT475x GUI.

2018/8/28 16:21	文件夹	
2018/8/28 16:21	文件夹	
2018/8/1 16:27	Microsoft Office	317 KB
2018/7/25 18:44	CPMU 文件	40 KB
2017/3/30 16:24	Adobe Acrobat	1,257 KB
2017/10/2 11:12	应用程序	5,953 KB
	2018/8/28 16:21 2018/8/28 16:21 2018/8/1 16:27 2018/7/25 18:44 2017/3/30 16:24 2017/10/2 11:12	2018/8/28 16:21文件夹2018/8/28 16:21文件夹2018/8/1 16:27Microsoft Office2018/7/25 18:44CPMU 文件2017/3/30 16:24Adobe Acrobat2017/10/2 11:12应用程序

GUI Overview

The GUI has 2 basic function buttons allocated in top-left of the Tool Bar which are Read and Write I²C. The GUI contains 2 setting modes: Basic Mode and Advanced Mode. In Basic Mode screen it displays basic user programmable configuration options are programmed using the drop-down boxes or check boxes. Advanced Mode contains the button text for changing setting for every single bit.

Basic Mode

The following figure shows the GUI in basic mode. This mode allows the user to easily change one or more IC settings.

ACT475x GUI Rev 0	.0				_	×
🥟 💾 🚕 🔌	Þ 🗓 🦻 🙆 🧰	ACT47	5x			
Basic Mode Advanced Mode	SYSTEM Current State I2C ADDRESS	OKIA	MainBuck Normal FREQ READ	450kHz]	
	BUCK ON LOAD DAC VSET VOUT SETTING ILLM DAC	□ □ □ 100.096uA ✓				
	MiniBUCK MiniBUCK ON					
	LDO LDO ON LDO Output Voltage	□ 3.3V ~				
Cactive-semi Extension Extension						

Advanced Mode

Click the "Advanced Mode" button in the left of the GUI screen to see all available user programmable options. With Advanced Mode, additional user programmable features can be selected using the button text. In the left side of the Advanced Mode Screen, click on the Tiles Selector to display the register to view or change. Then change a register one bit at a time by clicking on the desired bit. The value of the bit is display right next to the bit-name button.

Note that the far right side of the screen contains a scroll down button to scroll down to additional registers since the Tile Screen can only display up to 8 bytes at once.

ACT475x GUI Rev	/ 0.0						- 0	×
V 💾 🔶 🖉	🗣 🖽 👂 🕐 1	佡	ACT475	x				•
Basic Mode	Address Ox00		Address Ox01		Address Ox02		Address OxO3	
Advanced Mode	RFU	0	BUCK_CVCC_CHG	0	BUCK_CC_FLT	0	STHC_CLK_HIGH	0
REGISTERS	BFU	0	RFU	0	BUCK_OC	0	SYNC_CLK_LOW	0
	RFU	0	SYNC_CLK_FLT	0	BUCK_OVP	0	BUCK_HODE100	0
	Current_State[4]	0	FREQ_PIN_FLT	0	BUCK_UVP	0	BUCK_IN_CC	0
	Current_State[3]	1	TSD_HARD	0	LDO_UVP	0	BUCK_MODE100	0
	Current_State[2]	0	TSD_SOFT	0	¥5¥_0C	0	BUCK_PG	0
	Current_State[1]	1	RFU	0	¥5¥_0¥P	0	LDO_PG	0
	Current_State[0]	0	PVIN_OV	0	¥5¥_U¥P	0	¥5¥_PG	0
	Address Ox04		Address OxO5		Address OxO6		Address Ox07	
	RFU	0	RFU	0	IRQ_BK_CVCC_WSK	0	IRQ_BK_CC_MSK	0
	RFU	0	RFU	0	RFU	0	IRQ_BK_OC_MSK	0
	RFU	0	RFU	0	IRQ_Sync_Clk_Wsk	0	IRQ_BK_OVP_WSK	0
	RFU	0	RFU	0	IRQ_Freq_Pin_Wsk	0	IRQ_BK_UVP_WSK	0
	RFU	0	RFU	0	IBQ_Tsd_Hard_Wsk	0	IBQ_Ldo_V+p_Wsk	0
		n	RFU	0	IRQ_Tsd_Soft_Wsk	0	IBQ_V5V_OC_ESK	0
	RFU							
	RFU RFU	0	LOAD_DAC_VSET	0	RFU	0	IBQ_V5V_OVP_WSK	0

Button Descriptions

Read: Clicking on this button reads the ACT475x registers and displays them in the GUI. Note that this reads all registers. Active-Semi recommends reading registers each time the ACT475x powers-up to acquire the initial register settings. Active-semi also recommends reading registers after making changes to them. Immediately reading the registers after a write confirms the changes were properly stored.

• ACT475x GUI Rev 0.0	_	×
ACT475x		

Read Button

Write: Clicking on this button writes the GUI settings to the ACT475x's registers. All registers are written, regardless of whether or not they were changed.

ACT475x GUI Rev 0.0				_	×
🎾 💾 📣 🏹 🖽	F	? 🔂	ACT475x		

Write Button

Dongle Connection Status: The GUI also contains a dongle connection status that indicates Active-Semi's USB-TO-I2C dongle is connected to the USB port. The figure below shows the two possible indication status graphics.

Dongle Disconnected

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А