

Propeller Manual
Version 1.01

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product.
If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase price. Before
returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the
outside of the box used to return the merchandise to Parallax. Please enclose the following along with the returned merchandise:
your name, telephone number, shipping address, and a description of the problem. Parallax will return your product or its
replacement using the same shipping method used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund.
Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the
product has been altered or damaged. See the Warranty section above for instructions on returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright © 2006 by Parallax Inc. By downloading or obtaining a printed copy of this documentation or
software you agree that it is to be used exclusively with Parallax products. Any other uses are not permitted and may represent a
violation of Parallax copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication
of this documentation for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is permitted,
subject to the following Conditions of Duplication: Parallax Inc. grants the user a conditional right to download, duplicate, and
distribute this text without Parallax's permission. This right is based on the following conditions: the text, or any portion thereof,
may not be duplicated for commercial use; it may be duplicated only for educational purposes when used solely in conjunction
with Parallax products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often less
than typical retail duplication charges.

Parallax, Propeller Spin, and the Parallax and Propeller Hat logos are trademarks of Parallax Inc. BASIC Stamp, Stamps in
Class, Boe-Bot, SumoBot, Toddler, and SX-Key are registered trademarks of Parallax, Inc. If you decide to use any trademarks
of Parallax Inc. on your web page or in printed material, you must state that (trademark) is a (registered) trademark of Parallax
Inc.” upon the first appearance of the trademark name in each printed document or web page. Other brand and product names
herein are trademarks or registered trademarks of their respective holders.

ISBN 1-928982-38-7

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under
any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is also not
responsible for any personal damage, including that to life and health, resulting from use of any of our products. You take full
responsibility for your Propeller microcontroller application, no matter how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our web site:

• Propeller chip – This list is specifically for our customers using Propeller chips and products.
• BASIC Stamp – This list is widely utilized by engineers, hobbyists and students who share their BASIC Stamp

projects and ask questions.
• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in Class

curriculum in their courses. The list provides an opportunity for both students and educators to ask questions
and get answers.

• Parallax Educators – A private forum exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a place for
educators to develop and obtain Teacher’s Guides.

• Robotics – Designed for Parallax robots, this forum is intended to be an open dialogue for robotics enthusiasts.
Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®, Toddler®, SumoBot®,
HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with Parallax assembly
language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know by
sending an email to editor@parallax.com. We continually strive to improve all of our educational materials and documentation,
and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and corrections for a given text will be
posted to our web site, www.parallax.com. Please check the individual product page’s free downloads for an errata file.

SUPPORTED HARDWARE, FIRMWARE AND SOFTWARE
This manual is valid with the following hardware, software, and firmware versions:

Hardware Software Firmware
P8X32A-D40
P8X32A-Q44
P8X32A-M44

Propeller Tool v1.0 P8X32A v1.0

CREDITS
Authorship: Jeff Martin. Format & Editing, Stephanie Lindsay.
Cover Art: Jen Jacobs; Technical Graphics: Rich Allred; with many thanks to everyone at Parallax Inc.

Table of Contents

Propeller Manual v1.0 · Page 5

PREFACE ... 12
CHAPTER 1 : INTRODUCING THE PROPELLER CHIP... 13

CONCEPT ... 13
PACKAGE TYPES... 14
PIN DESCRIPTIONS.. 15
SPECIFICATIONS ... 16
HARDWARE CONNECTIONS.. 17
BOOT UP PROCEDURE .. 18
RUN-TIME PROCEDURE... 18
SHUTDOWN PROCEDURE... 19
BLOCK DIAGRAM... 20
SHARED RESOURCES.. 22
SYSTEM CLOCK .. 22
COGS (PROCESSORS) ... 22
HUB ... 24
I/O PINS ... 26
SYSTEM COUNTER .. 27
CLK REGISTER... 28
LOCKS.. 30
MAIN MEMORY.. 30
MAIN RAM ... 31
MAIN ROM... 32
CHARACTER DEFINITIONS.. 32
LOG AND ANTI-LOG TABLES... 34
SINE TABLE .. 34
BOOT LOADER AND SPIN INTERPRETER.. 34

CHAPTER 2 : USING THE PROPELLER TOOL.. 35
CONCEPT ... 35
SCREEN ORGANIZATION .. 37
MENU ITEMS ... 45

File Menu.. 45
Edit Menu ... 46
Run Menu ... 47
Help Menu .. 48

FIND/REPLACE DIALOG.. 49
OBJECT VIEW ... 52
OBJECT INFO .. 55
CHARACTER CHART .. 58
VIEW MODES, BOOKMARKS AND LINE NUMBERS... 61

View Modes .. 61
Bookmarks.. 63

Table of Contents

Page 6 · Propeller Manual v1.0

Line Numbers..64
EDIT MODES ...65

Insert and Overwrite Modes..65
Align Mode ..66

BLOCK SELECTION AND SELECTION MOVING...68
INDENTING AND OUTDENTING ...69

Single Lines...70
Multiple Lines ..71

BLOCK-GROUP INDICATORS ...74
SHORTCUT KEYS ...75

Categorical Listings...75
Listing by Key..80

CHAPTER 3 : PROPELLER PROGRAMMING TUTORIAL..85
CONCEPT..85
PROPELLER LANGUAGES (SPIN AND PROPELLER ASSEMBLY) ..86
PROPELLER OBJECTS ..86

Quick Review: Intro...91
EXERCISE 1: OUTPUT.SPIN – OUR FIRST OBJECT ...92

Downloading to RAM vs. EEPROM..93
Quick Review: Ex 1...96

COGS (PROCESSORS) ...97
EXERCISE 2: OUTPUT.SPIN - CONSTANTS ...98
BLOCK DESIGNATORS..99
EXERCISE 3: OUTPUT.SPIN - COMMENTS ..100

Quick Review: Ex 2 & 3 ..103
EXERCISE 4: OUTPUT.SPIN – PARAMETERS, CALLS, AND FINITE LOOPS104
EXERCISE 5: OUTPUT.SPIN – PARALLEL PROCESSING ...106

Quick Review: Ex 4 & 5 ..109
EXERCISE 6: OUTPUT.SPIN & BLINKER1.SPIN – USING OUR OBJECT......................................110
THE OBJECT VIEW...112
TOP OBJECT FILE ..113
WHICH OBJECTS WERE COMPILED?...115

Quick Review: Ex 6...116
OBJECTS VS. COGS ...117
EXERCISE 7: OUTPUT.SPIN – MORE ENHANCEMENTS ..117

Quick Review: Ex 7...123
EXERCISE 8: BLINKER2.SPIN – MANY OBJECTS, MANY COGS ..124
OBJECT INFO WINDOW ..128
OBJECT LIFETIME ..129

Quick Review: Ex 8...130
EXERCISE 9: CLOCK SETTINGS...131
EXERCISE 10: CLOCK-RELATED TIMING..133

Table of Contents

Propeller Manual v1.0 · Page 7

Quick Review: Ex 9 & 10.. 137
EXERCISE 11: LIBRARY OBJECTS... 138

Work and Library Folders ... 141
EXERCISE 12: WHOLE AND REAL NUMBERS ... 143

Pseudo-Real Numbers ... 143
Floating-Point Numbers.. 144
Context-Sensitive Compile Information.. 147
Quick Review: Ex 11 & 12.. 148

CHAPTER 4 : SPIN LANGUAGE REFERENCE .. 149
STRUCTURE OF PROPELLER OBJECTS ... 150
CATEGORICAL LISTING OF PROPELLER SPIN LANGUAGE ... 152

Block Designators... 152
Configuration .. 152
Cog Control .. 153
Process Control .. 153
Flow Control ... 153
Memory... 154
Directives.. 155
Registers .. 155
Constants ... 156
Variable .. 156
Unary Operators ... 156
Binary Operators .. 157
Syntax Symbols.. 158

SPIN LANGUAGE ELEMENTS... 159
Symbol Rules ... 159
Value Representations ... 159
Syntax Definitions... 160

ABORT ... 161
BYTE ... 165
BYTEFILL.. 169
BYTEMOVE.. 170
CASE ... 171
CHIPVER ... 174
CLKFREQ ... 175
_CLKFREQ.. 177
CLKMODE ... 179
_CLKMODE.. 180
CLKSET ... 183
CNT... 184
COGID ... 186
COGINIT ... 187

Table of Contents

Page 8 · Propeller Manual v1.0

COGNEW..189
COGSTOP ..193
CON ...194
CONSTANT ..200
CONSTANTS (PRE-DEFINED) ...202
CTRA, CTRB ...204
DAT ...208
DIRA, DIRB ...212
FILE ...215
FLOAT..216
_FREE..218
FRQA, FRQB ...219
IF ...220
IFNOT..225
INA, INB ..226
LOCKCLR ..228
LOCKNEW ..230
LOCKRET ..233
LOCKSET ..234
LONG ...236
LONGFILL ..240
LONGMOVE ..241
LOOKDOWN, LOOKDOWNZ...242
LOOKUP, LOOKUPZ..244
NEXT ...246
OBJ ...247
OPERATORS..249
OUTA, OUTB ...280
PAR ...283
PHSA, PHSB ...285
PRI ...286
PUB ...287
QUIT ...291
REBOOT..292
REPEAT..293
RESULT..299
RETURN..301
ROUND..303
SPR ...305
_STACK..307
STRCOMP ..308
STRING..310
STRSIZE ..311

Table of Contents

Propeller Manual v1.0 · Page 9

SYMBOLS.. 312
TRUNC ... 314
VAR... 315
VCFG ... 317
VSCL ... 320
WAITCNT ... 322
WAITPEQ ... 326
WAITPNE ... 328
WAITVID ... 329
WORD ... 331
WORDFILL.. 335
WORDMOVE.. 336
_XINFREQ.. 337

CHAPTER 5 : ASSEMBLY LANGUAGE REFERENCE ... 339
THE STRUCTURE OF PROPELLER ASSEMBLY .. 339
CATEGORICAL LISTING OF PROPELLER ASSEMBLY LANGUAGE... 341

Directives.. 341
Configuration .. 341
Cog Control .. 341
Process Control .. 341
Conditions... 341
Flow Control ... 343
Effects... 343
Main Memory Access ... 343
Common Operations .. 343
Registers .. 345
Constants ... 346
Unary Operators ... 346
Binary Operators .. 347

ASSEMBLY LANGUAGE ELEMENTS.. 348
Syntax Definitions... 348
Propeller Assembly Instruction Master Table... 349

ABS... 353
ABSNEG ... 354
ADD... 354
ADDABS ... 355
ADDS ... 356
ADDSX ... 356
ADDX ... 357
AND... 358
ANDN ... 359
CALL ... 360

Table of Contents

Page 10 · Propeller Manual v1.0

CLKSET..361
CMP ...362
CMPS ...362
CMPSUB..363
CMPSX..364
CMPX ...364
COGID..365
COGINIT ..366
COGSTOP ..367
CONDITIONS (IF_X) ..368
DJNZ ...370
EFFECTS...371
FIT ...372
HUBOP..373
JMP ...374
JMPRET..374
LOCKCLR ..375
LOCKNEW ..376
LOCKRET ..376
LOCKSET ..377
MAX ...378
MAXS ...378
MIN ...379
MINS ...380
MOV ...380
MOVD ...381
MOVI ...382
MOVS ...382
MUXC ...383
MUXNC..384
MUXNZ..384
MUXZ ...385
NEG ...386
NEGC ...386
NEGNC..387
NEGNZ..388
NEGZ ...389
NOP ...389
OPERATORS..390
OR ...392
ORG ...392
RCL ...393
RCR ...394

Table of Contents

Propeller Manual v1.0 · Page 11

RDBYTE ... 394
RDLONG ... 395
RDWORD ... 396
REGISTERS... 397
RES... 398
RET... 399
REV... 399
ROL... 400
ROR... 400
SAR... 401
SHL... 402
SHR... 402
SUB... 403
SUBABS ... 404
SUBS ... 404
SUBSX ... 405
SUBX ... 406
SUMC ... 406
SUMNC ... 407
SUMNZ ... 408
SUMZ ... 408
TEST ... 409
TJNZ ... 410
TJZ... 410
WAITCNT ... 411
WAITPEQ ... 412
WAITPNE ... 413
WAITVID ... 414
WRBYTE ... 414
WRLONG ... 415
WRWORD ... 416
XOR... 417

APPENDIX A: RESERVED WORD LIST.. 419
APPENDIX B: ACCESSING MATH FUNCTION TABLES ... 420
INDEX ... 425

Preface

Page 12 · Propeller Manual v1.0

Preface
Thank you for purchasing a Propeller chip. You will be spinning your own programs in no
time!

Propeller chips are incredibly capable multiprocessor microcontrollers; the much-anticipated
result of over eight years of the intense efforts of Chip Gracey and the entire Parallax
Engineering Team.

This book is intended to be a complete reference guide to Propeller chips and their
programming languages, Spin and Propeller Assembly. Have fun!

Despite our best efforts, there are bound to be questions unanswered by this manual alone.
Check out our Propeller chip discussion forum – (accessible from www.parallax.com via the
Support → Discussion Forums menu) – this is a group especially for Propeller users where
you can post your questions or review discussions that may have already answered yours.

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 13

Chapter 1: Introducing the Propeller Chip
This chapter describes the Propeller chip hardware. To fully understand and use the Propeller
effectively, it’s important to first understand its hardware architecture. This chapter presents
the details of the hardware such as package types, package sizes, pin descriptions, and
functions.

Concept
The Propeller chip is designed to provide high-speed processing for embedded systems while
maintaining low current consumption and a small physical footprint. In addition to being
fast, the Propeller provides flexibility and power through its eight processors, called cogs,
that can perform simultaneous independent or cooperative tasks, all while maintaining a
relatively simple architecture that is easy to learn and utilize.

The resulting design of the Propeller frees application developers from common complexities
of embedded systems programming. For example:

• The memory map is flat. There is no need for paging schemes with blocks of code,
data or variables. This is a big time-saver during application development.

• Asynchronous events are easier to handle than they are with devices that use
interrupts. The Propeller has no need for interrupts; just assign some cogs to
individual, high-bandwidth tasks and keep other cogs free and unencumbered. The
result is a more responsive application that is easier to maintain.

• The Propeller Assembly language features conditional execution and optional result
writing for each individual instruction. This makes critical, multi-decision blocks of
code more consistently timed; event handlers are less prone to jitter and developers
spend less time padding, or squeezing, cycles here and there.

Introducing the Propeller Chip

Page 14 · Propeller Manual v1.0

Package Types
The Propeller chip is available in the package types shown here.

 P8X32A-Q44

44-pin LQFP

P8X32A-D40 40-pin DIP

P8X32A-M44
44-pin QFN

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 15

Pin Descriptions
Table 1-1: Pin Descriptions

Pin Name Direction Description

P0 – P31 I/O

General purpose I/O Port A. Can source/sink 30 mA each at 3.3 VDC. Do
not exceed 100 mA source/sink total across any group of I/O pins at once.
Logic threshold is ≈ ½ VDD; 1.65 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon power-up/reset but are
general purpose I/O afterwards.

P28 - I2C SCL connection to optional, external EEPROM.
P29 - I2C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.3 VDC).

VSS --- Ground.

BOEn I

Brown Out Enable (active low). Must be connected to either VDD or VSS.
If low, RESn becomes a weak output (delivering VDD through 5 KΩ) for
monitoring purposes but can still be driven low to cause reset. If high,
RESn is CMOS input with Schmitt Trigger.

RESn I/O
Reset (active low). When low, resets the Propeller chip: all cogs disabled
and I/O pins floating. Propeller restarts 50 ms after RESn transitions from
low to high.

XI I

Crystal Input. Can be connected to output of crystal/oscillator pack (with
XO left disconnected), or to one leg of crystal (with XO connected to other
leg of crystal or resonator) depending on CLK Register settings. No
external resistors or capacitors are required.

XO O
Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors
or capacitors are required.

The Propeller (P8X32A) has 32 I/O pins (Port A, pins P0 through P31). Four of these I/O
pins, P28-P31 have a special purpose upon power-up/reset. At power-up/reset, pins P30 and
P31 communicate with a host for programming and P28 and P29 interface to an external 32
KB EEPROM (24LC256).

Introducing the Propeller Chip

Page 16 · Propeller Manual v1.0

Specifications
Table 1-2: Specifications

Model P8X32A

Power Requirements 3.3 volts DC

External Clock Speed DC to 80 MHz (4 MHz to 8 MHz with Clock PLL running)

System Clock Speed DC to 80 MHz

Internal RC Oscillator 12 MHz or 20 kHz (approximate; may range from 8 MHz – 20 MHz,
or 13 kHz – 33 kHz, respectively)

Main RAM/ROM 64 K bytes; 32 KB RAM + 32 KB ROM

Cog RAM 512 x 32 bits each

RAM/ROM Organization Long (32-bit), Word (16-bit), or Byte (8-bit) addressable

I/O pins 32 CMOS signals with VDD/2 input threshold.

Current Source/Sink per I/O 30 mA

Current Source/Sink per 8 pins 100 mA

Current Draw @ 3.3 vdc, 70 °F 500 µA per MIPS (MIPS = Freq in MHz / 4 * Number of Active Cogs)

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 17

Hardware Connections
Figure 1-1 shows an example wiring diagram that provides host and EEPROM access to the
Propeller chip. In this example the host access is achieved through the Propeller Clip device
(a USB to TTL serial converter).

Figure 1-1: Example wiring diagram that allows for programming the Propeller chip and
an external 32 Kbyte EEPROM, and running the Propeller with an external crystal.

Introducing the Propeller Chip

Page 18 · Propeller Manual v1.0

Boot Up Procedure
Upon power-up (+ 100 ms), RESn low-to-high, or software reset:

1. The Propeller chip starts its internal clock in slow mode (≈ 20 KHz), delays for 50 ms
(reset delay), switches the internal clock to fast mode (≈ 12 MHz), and then loads and
runs the built-in Boot Loader program in the first processor (Cog 0).

2. The Boot Loader performs one or more of the following tasks, in order:

a. Detects communication from a host, such as a PC, on pins P30 and P31. If
communication from a host is detected, the Boot Loader converses with the
host to identify the Propeller chip and possibly download a program into
Main RAM and optionally into an external 32 KB EEPROM.

b. If no host communication was detected, the Boot Loader looks for an
external 32 KB EEPROM (24LC256) on pins P28 and P29. If an EEPROM
is detected, the entire 32 KB data image is loaded into the Propeller chip’s
Main RAM.

c. If no EEPROM was detected, the boot loader stops, Cog 0 is terminated, the
Propeller chip goes into shutdown mode, and all I/O pins set to inputs.

3. If either step 2a or 2b was successful in loading a program into the Main RAM, and a
suspend command was not given by the host, then Cog 0 is reloaded with the built-in
Spin Interpreter and the user code is run from Main RAM.

Run-Time Procedure
A Propeller Application is a user program compiled into its binary form and downloaded to
the Propeller chip’s RAM and, possibly, external EEPROM. The application consists of code
written in the Propeller chip’s Spin language (high-level code) with optional Propeller
Assembly language components (low-level code). Code written in the Spin language is
interpreted during run time by a cog running the Spin Interpreter while code written in
Propeller Assembly is run in its pure form directly by a cog. Every Propeller Application
consists of at least a little Spin code and may actually be written entirely in Spin or with
various amounts of Spin and assembly. The Propeller chip’s Spin Interpreter is started in
Step 3 of the Boot Up Procedure, above, to get the application running.

Once the boot-up procedure is complete and an application is running in Cog 0, all further
activity is defined by the application itself. The application has complete control over things
like the internal clock speed, I/O pin usage, configuration registers, and when, what and how
many cogs are running at any given time. All of this is variable at run time, as controlled by

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 19

the application, including the internal clock speed. See Chapter 3: Propeller Programming
Tutorial.

Shutdown Procedure
When the Propeller goes into shutdown mode, the internal clock is stopped causing all cogs
to halt and all I/O pins are set to input direction (high impedance). Shutdown mode is
triggered by one of the three following events:

1) VDD falling below the brown-out threshold (≈2.7 vdc), when the brown-out circuit is
enabled,

2) the RESn pin going low, or

3) the application requesting a reboot (see the REBOOT command, page 292).

Shutdown mode is discontinued when the voltage level rises above the brown-out threshold
and the RESn pin is high.

Introducing the Propeller Chip

Page 20 · Propeller Manual v1.0

Block Diagram
Figure 1-2: Propeller Chip Block Diagram

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 21

Cog and Hub interaction is critical to the Propeller chip. The Hub controls which cog can
access mutually-exclusive resources, such as Main RAM/ROM, configuration registers, etc.
The Hub gives exclusive access to every cog one at a time in a “round robin” fashion,
regardless of how many cogs are running, in order to keep timing deterministic.

Introducing the Propeller Chip

Page 22 · Propeller Manual v1.0

Shared Resources
There are two types of shared resources in the Propeller: 1) common, and 2) mutually-
exclusive. Common resources can be accessed at any time by any number of cogs.
Mutually-exclusive resources can also be accessed by any number of cogs, but only by one
cog at a time. The common resources are the I/O pins and the System Counter. All other
shared resources are mutually-exclusive by nature and access to them is controlled by the
Hub. See the Hub section on page 24.

System Clock
The System Clock (shown as “CLOCK” in Figure 1-2) is the central clock source for nearly
every component of the Propeller chip. The System Clock’s signal comes from one of three
possible sources: 1) the Internal RC Oscillator, 2) the Clock Phase-Locked Loop (PLL), or
3) the Crystal Oscillator (an internal circuit that is fed by an external crystal or
crystal/oscillator pack). The source is determined by the CLK register’s settings, which is
selectable at compile time or at run time. The only components that don’t use the System
Clock directly are the Hub and Bus; they divide the System Clock by two (2).

Cogs (processors)
The Propeller contains eight (8) processors, called cogs, numbered 0 to 7. Each cog contains
the same components (see Figure 1-2): a Processor block, local 2 KB RAM configured as 512
longs (512 x 32 bits), two I/O Assistants with PLLs, a Video Generator, I/O Output Register,
I/O Direction Register, and other registers not shown in the diagram. See Table 1-3 for a
complete list of cog registers. Each cog is designed exactly the same and can run tasks
independently from the others.

All eight cogs are driven from the same clock source, the System Clock, so they each
maintain the same time reference and all active cogs execute instructions simultaneously.
See System Clock, above. They also all have access to the same shared resources, like I/O
pins, Main RAM, and the System Counter. See Shared Resources, above.

Cogs can be started and stopped at run time and can be programmed to perform tasks
simultaneously, either independently or with coordination from other cogs through Main
RAM. Regardless of the nature of their use, the Propeller application designer has full
control over how and when each cog is employed; there is no compiler-driven or operating
system-driven splitting of tasks between multiple cogs. This method empowers the developer
to deliver absolutely deterministic timing, power consumption, and response to the embedded
application.

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 23

Each cog has its own RAM, called Cog RAM, which contains 512 registers of 32 bits each.
The Cog RAM is all general purpose RAM except for the last 16 registers, which are special
purpose registers, as described in Table 1-3. The Cog RAM is used for executable code, data,
variables, and the last 16 locations serve as interfaces to the System Counter, I/O pins, and
local cog peripherals.

When a cog is booted up, locations 0 ($000) through 495 ($1EF) are loaded sequentially from
Main RAM / ROM and its special purpose locations, 496 ($1F0) through 511 ($1FF) are
cleared to zero. After loading, the cog begins executing instructions, starting at location 0 of
Cog RAM. It will continue to execute code until it is stopped or rebooted by either itself or
another cog, or a reset occurs.

Table 1-3: Cog RAM Special Purpose Registers

Cog RAM Map Address Name Type Description
$1F0 PAR Read-Only1 Boot Parameter

$1F1 CNT Read-Only1 System Counter

$1F2 INA Read-Only1 Input States for P31 - P0

$1F3 INB Read-Only1 Input States for P63- P322

$1F4 OUTA Read/Write Output States for P31 - P0

$1F5 OUTB Read/Write Output States for P63 – P322

$1F6 DIRA Read/Write Direction States for P31 - P0

$1F7 DIRB Read/Write Direction States for P63 - P322

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write Counter A Phase:

$1FD PHSB Read/Write Counter B Phase

$1FE VCFG Read/Write Video Configuration

$1FF VSCL Read/Write Video Scale
Note 1: Only accessible as a Source Register (i.e. MOV DEST, SOURCE).
Note 2: Reserved for future use.

Introducing the Propeller Chip

Page 24 · Propeller Manual v1.0

Each Special Purpose Register may be accessed via:

1) its physical register address,

2) its predefined name, or

3) a register array variable with an index of 0 to 15.

The following are examples in Propeller Assembly:

MOV $1F4, #$FF 'Set OUTA 7:0 high
MOV OUTA, #$FF 'Same as above

The following are examples in Spin:

SPR[$4] := $FF 'Set OUTA 7:0 high
OUTA := $FF 'Same as above

Hub
To maintain system integrity, mutually-exclusive resources must not be accessed by more
than one cog at a time. The Hub maintains this integrity by controlling access to mutually-
exclusive resources, giving each cog a turn to access them in a “round robin” fashion from
Cog 0 through Cog 7 and back to Cog 0 again. The Hub, and the bus it controls, runs at half
the System Clock rate. This means that the Hub gives a cog access to mutually-exclusive
resources once every 16 System Clock cycles. Hub instructions, the Propeller Assembly
instructions that access mutually-exclusive resources, require 7 cycles to execute but they
first need to be synchronized to the start of the Hub Access Window. It takes up to 15 cycles
(16 minus 1, if we just missed it) to synchronize to the Hub Access Window plus 7 cycles to
execute the hub instruction, so hub instructions take from 7 to 22 cycles to complete.

Figure 1-3 and Figure 1-4 show examples where Cog 0 has a hub instruction to execute.
Figure 1-3 shows the best-case scenario; the hub instruction was ready right at the start of that
cog’s access window. The hub instruction executes immediately (7 cycles) leaving an
additional 9 cycles for other instructions before the next Hub Access Window arrives.

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 25

Figure 1-3: Cog-Hub Interaction – Best Case Scenario

Figure 1-4 shows the worst-case scenario; the hub instruction was ready on the cycle right
after the start of Cog 0’s access window; it just barely missed it. The cog waits until the next
Hub Access Window (15 cycles later) then the hub instruction executes (7 cycles) for a total
of 22 cycles for that hub instruction. Again, there are 9 additional cycles after the hub
instruction for other instructions to execute before the next Hub Access Window arrives. To
get the most efficiency out of Propeller Assembly routines that have to frequently access
mutually-exclusive resources, it can be beneficial to interleave non-hub instructions with hub
instructions to lessen the number of cycles waiting for the next Hub Access Window. Since
most Propeller Assembly instructions take 4 clock cycles, two such instructions can be
executed in between otherwise contiguous hub instructions.

Figure 1-4: Cog-Hub Interaction – Worst Case Scenario

Keep in mind that a particular cog’s hub instructions do not, in any way, interfere with other
cogs’ instructions because of the Hub mechanism. Cog 1, for example, may start a hub
instruction during System Clock cycle 2, in both of these examples, possibly overlapping its
execution with that of Cog 0 without any ill effects. Meanwhile, all other cogs can continue
executing non-hub instructions, or awaiting their individual hub access windows regardless of
what the others are doing.

Introducing the Propeller Chip

Page 26 · Propeller Manual v1.0

I/O Pins
The Propeller has 32 I/O pins, 28 of which are entirely general purpose. Four I/O pins (28 -
31) have a special purpose at Boot Up and are available for general purpose use afterwards;
see the Boot Up Procedure section on page 18. After boot up, any I/O pins can be used by
any cogs at any time since I/O pins are one of the common resources. It is up to the
application developer to ensure that no two cogs try to use the same I/O pin for different
purposes during run-time.

Each cog has its own 32-bit I/O Direction Register and 32-bit I/O Output Register. The state
of each cog’s Direction Register is OR’d with that of the previous cogs’ Direction Registers.
Similarly, each cog’s output states is OR’d with that of the previous cogs’ output states. Note
that each cog’s output states are made up of the OR’d states of its internal I/O hardware and
that is all AND’d with its Direction Register’s states. The result is that each I/O pin’s
direction and output state is the “wired-OR” of the entire cog collective. No electrical
contention between cogs is possible, yet they can all still access the I/O pins simultaneously!

The result of this I/O pin wiring configuration can easily be described in the following simple
rules:

A. A pin is an input only if no active cog sets it to an output.

B. A pin outputs low only if all active cogs that set it to output also set it to low.

C. A pin outputs high if any active cog sets it to an output and also sets it high.

Table 1-4 demonstrates a few possible combinations of the collective cogs’ influence on a
particular I/O pin, P12 in this example. For simplification, these examples assume that bit 12
of each cog’s I/O hardware, other than its I/O Output Register, is cleared to zero (0).

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 27

Table 1-4: I/O Sharing Examples

Bit 12 of Cogs’ I/O
Direction Register

Bit 12 of Cogs’ I/O
Output Register

Cog ID 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

State of I/O Pin
P12

Rule
Followed

Example 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Input A

Example 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Output Low B

Example 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Output High C

Example 4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output Low B

Example 5 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Output High C

Example 6 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 Output High C

Example 7 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 Output High C

Example 8 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 Output Low B
Note: For the I/O Direction Register, a 1 in a bit location sets the corresponding I/O pin to the
output direction while a 0 sets it to an input direction.

Any cog that is shut down has its Direction Register and output states cleared to zero,
effectively removing it from influencing the final state of the I/O pins that the remaining
active cogs are controlling.

Each cog also has its own 32-bit Input Register. This input register is really a pseudo-
register; every time it is read, the actual states of the I/O pins are read, regardless of their
input or output direction.

System Counter
The System Counter is a global, read-only, 32-bit counter that increments once every System
Clock cycle. Cogs can read the System Counter (via their CNT register, page 184) to perform
timing calculations and can use the WAITCNT command (page 322) to create effective delays
within their processes. The System Counter is a common resource. Every cog can read it
simultaneously. The System Counter is not cleared upon startup since its practical use is for
differential timing. If a cog needs to keep track of time from a specific, fixed moment in
time, it simply needs to read and save the initial counter value at that moment in time, and
compare all of the later counter values against that initial value.

Introducing the Propeller Chip

Page 28 · Propeller Manual v1.0

CLK Register
The CLK register is the System Clock configuration control; it determines the source of and
the characteristics for the System Clock. More precisely, the CLK register configures the RC
Oscillator, Clock PLL, Crystal Oscillator, and Clock Selector circuits. (See Figure 1-2:
Propeller Chip Block Diagram on page 20.) It is configured at compile time by the _CLKMODE
declaration and is writable at run time through the CLKSET command. Whenever the CLK
register is written, a global delay of ≈75 µs occurs as the clock source transitions.

Whenever this register is changed, a copy of the value written should be placed in the Clock
Mode value location (which is BYTE[4] in Main RAM) and the resulting master clock
frequency should be written to the Clock Frequency value location (which is LONG[0] in
Main RAM) so that objects which reference this data will have current information for their
timing calculations. (See CLKMODE, page 179, and CLKFREQ, page 175.) When possible, it is
recommended to use the CLKSET command (page 183), since it automatically updates all the
above-mentioned locations with the proper information.

Table 1-5: CLK Register Structure

Bit 7 6 5 4 3 2 1 0

Name RESET PLLENA OSCENA OSCM1 OSCM0 CLKSEL2 CLKSEL1 CLKSEL0

Table 1-6: RESET (Bit 7)

Bit Effect

0 Always write ‘0’ here unless you intend to reset the chip.

1 Same as a hardware reset – reboots the chip. The Spin command REBOOT writes a
‘1’ to the RESET bit.

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 29

Table 1-7: PLLENA (Bit 6)

Bit Effect

0 Disables the PLL circuit. The RCFAST and RCSLOW settings of the _CLKMODE
declaration configure PLLENA this way.

1

Enables the PLL circuit. Each of the PLLxx settings of the _CLKMODE declaration
configures PLLENA this way at compile time. The Clock PLL internally multiplies the
XIN pin frequency by 16. OSCENA must also be ‘1’ to propagate the XIN signal to the
Clock PLL. The Clock PLL's internal frequency must be kept within 64 MHz to 128 MHz
– this translates to an XIN frequency range of 4 MHz to 8 MHz. Allow 100 µs for the
Clock PLL to stabilize before switching to one of its outputs via the CLKSELx bits.
Once the Crystal Oscillator and Clock PLL circuits are enabled and stabilized, you can
switch freely among all clock sources by changing the CLKSELx bits.

Table 1-8: OSCENA (Bit 5)

Bit Effect

0 Disables the Crystal Oscillator circuit. The RCFAST and RCSLOW settings of the
_CLKMODE declaration configure OSCENA this way.

1

Enables the Crystal Oscillator circuit so that a clock signal can be input to XIN, or so
that XIN and XOUT can function together as a feedback oscillator. The XINPUT and
XTALx settings of the _CLKMODE declaration configure OSCENA this way. The
OSCMx bits select the operating mode of the Crystal Oscillator circuit. Note that no
external resistors or capacitors are required for crystals and resonators. Allow a crystal
or resonator 10 ms to stabilize before switching to a Crystal Oscillator or Clock PLL
output via the CLKSELx bits. When enabling the Crystal Oscillator circuit, the Clock
PLL may be enabled at the same time so that they can share the stabilization period.

Table 1-9: OSCMx (Bits 4:3)

OSCMx

1 0
_CLKMODE

Setting
XOUT

Resistance
XIN/XOUT

Capacitance Frequency Range

0 0 XINPUT Infinite 6 pF (pad only) DC to 128 MHz Input

0 1 XTAL1 2000 Ω 36 pF 4 to 16 MHz Crystal/Resonator

1 0 XTAL2 1000 Ω 26 pF 8 to 32 MHz Crystal/Resonator

1 1 XTAL3 500 Ω 16 pF 20 to 60 MHz Crystal/Resonator

Introducing the Propeller Chip

Page 30 · Propeller Manual v1.0

Table 1-10: CLKSELx (Bits 2:0)

CLKSELx

2 1 0
_CLKMODE

Setting
Master
Clock Source Notes

0 0 0 RCFAST ~12 MHz Internal No external parts.
May range from 8 MHz to 20 MHz.

0 0 1 RCSLOW ~20 kHz Internal Very low power.
May range from 13 kHz to 33 kHz.

0 1 0 XINPUT XIN OSC OSCENA must be '1'.

0 1 1 XTALx and PLL1x XIN x 1 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 0 XTALx and PLL2x XIN x 2 OSC+PLL OSCENA and PLLENA must be '1'.

1 0 1 XTALx and PLL4x XIN x 4 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 0 XTALx and PLL8x XIN x 8 OSC+PLL OSCENA and PLLENA must be '1'.

1 1 1 XTALx and PLL16x XIN x 16 OSC+PLL OSCENA and PLLENA must be '1'.

Locks
There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs at once and that block consists of more than one long (four bytes), the cogs will
each have to perform multiple reads and writes to retrieve or update that memory block. This
leads to the likely possibility of read/write contention on that memory block where one cog
may be writing while another is reading, resulting in misreads and/or miswrites.

The locks are global bits accessed through the Hub via the Hub Instructions: LOCKNEW,
LOCKRET, LOCKSET, and LOCKCLR. Because locks are accessed only through the Hub, only one
cog at a time can affect them, making this an effective control mechanism. The Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time. See LOCKNEW, 230; LOCKRET, 233;
LOCKSET, 234; and LOCKCLR, 228 for more information.

Main Memory
The Main Memory is a block of 64 K bytes (16 K longs) that is accessible by all cogs as a
mutually-exclusive resource through the Hub. It consists of 32 KB of RAM and 32 KB of

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 31

ROM. The 32 KB of Main RAM is general purpose and is the destination of a Propeller
Application either downloaded from a host or uploaded from the external 32 KB EEPROM.
The 32 KB of Main ROM contains all the code and data resources vital to the Propeller chip’s
function: character definitions, log, anti-log and sine tables, and the Boot Loader and Spin
Interpreter. The Main Memory organization is shown in Figure 1-5.

Figure 1-5: Main
Memory Map

Main RAM
The first half of Main Memory is all RAM. This space is used for your program, data,
variables and stack(s); otherwise known as your Propeller Application.

When a program is loaded into the chip, either from a host or from an external EEPROM, this
entire memory space is written. The first 16 locations, $0000 – $000F, hold initialization data
used by the Boot Loader and Interpreter. Your program’s executable code and data will
begin at $0010 and extend for some number of longs. The area after your executable code,
extending to $7FFF, is used as variable and stack space.

There are two values stored in the initialization area that might be of interest to your program:
a long at $0000 contains the initial master clock frequency, in Hertz, and a byte following it
at $0004 contains the initial value written into the CLK register. These two values can be
read/written using their physical addresses (LONG[$0] and BYTE[$4]) and can be read by using
their predefined names (CLKFREQ and CLKMODE). If you change the CLK register without using
the CLOCKSET command, you will also need to update these two locations so that objects which
reference them will have current information.

Introducing the Propeller Chip

Page 32 · Propeller Manual v1.0

Main ROM
The second half of Main Memory is all ROM. This space is used for character definitions,
math functions, and the Boot Loader and Spin Interpreter.

Character Definitions
The first half of ROM is dedicated to a set of 256 character definitions. Each character
definition is 16 pixels wide by 32 pixels tall. These character definitions can be used for
video displays, graphical LCD's, printing, etc. The character set is based on a North
American / Western European layout (Basic Latin and Latin-1 Supplement), with many
specialized characters inserted. The special characters are connecting waveform and
schematic building-blocks, Greek symbols commonly used in electronics, and several arrows
and bullets.

Figure 1-6: Propeller Font Characters

The character definitions are numbered 0 to 255 from left-to-right, top-to-bottom in Figure
1-6, above. In ROM, they are arranged with each pair of adjacent even-odd characters
merged together to form 32 longs. The first character pair is located in bytes $8000-$807F.
The second pair occupies bytes $8080-$80FF, and so on, until the last pair fills $BF80-
$BFFF. The Propeller Tool includes an interactive character chart (Help → View Character
Chart…) that has a ROM Bitmap view which shows where and how each character resides in
ROM.

1: Introducing the Propeller Chip

Propeller Manual v1.0 · Page 33

The character pairs are merged row-by-row such that each character's 16 horizontal pixels are
spaced apart and interleaved with their neighbors' so that the even character takes bits 0, 2, 4,
...30, and the odd character takes bits 1, 3, 5, ...31. The leftmost pixels are in the lowest bits,
while the rightmost pixels are in the highest bits, as shown in Figure 1-7. This forms a long (4
bytes) for each row of pixels in the character pair. 32 such longs, building from the
character’s top row down to the bottom, make up the complete merged-pair definition. The
definitions are encoded in this manner so that a cog’s video hardware can handle the merged
longs directly, using color selection to display either the even or the odd character. It also has
the advantage of allowing run-time character pairs (see next paragraph) that are four-color
characters used to draw beveled buttons, lines and focus indicators.

Figure 1-7: Propeller Character Interleaving

Some character codes have inescapable meanings, such as 9 for Tab, 10 for Line Feed, and 13
for Carriage Return. These character codes invoke actions and do not equate to static
character definitions. For this reason, their character definitions have been used for special
four-color characters. These four-color characters are used for drawing 3-D box edges at run
time and are implemented as 16 x 16 pixel cells, as opposed to the normal 16 x 32 pixel cells.
They occupy even-odd character pairs 0-1, 8-9, 10-11, and 12-13. Figure 1-8 shows an
example of a button with 3D beveled edges made from some of these characters.

Figure 1-8: Button
with 3-D Beveled
Edges

The Propeller Tool includes, and uses, the Parallax True Type® font which follows the design
of the Propeller Font embedded in the hardware. With this font, and the Propeller Tool, you

Introducing the Propeller Chip

Page 34 · Propeller Manual v1.0

can include schematics, timing diagrams and other diagrams right in the source code for your
application.

Log and Anti-Log Tables
The log and anti-log tables are useful for converting values between their number form and
exponent form.

When numbers are encoded into exponent form, simple math operations take on more
complex effects. For example ‘add’ and ‘subtract’ become ‘multiply’ and ‘divide.’ ‘Shift left’
becomes ‘square’ and ‘shift right’ becomes 'square-root.’ ‘Divide by 3’ will produce ‘cube
root.’ Once the exponent is converted back to a number, the result will be apparent.

See Appendix B: Accessing Math Function Tables on page 420 for more information.

Sine Table
The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°,
inclusively (0.0439° resolution). Sine values for all other quadrants covering > 90° to < 360°
can be calculated from simple transformations on this single-quadrant sine table. The sine
table can be used for calculations related to angular phenomena.

See Appendix B: Accessing Math Function Tables on page 420 for more information.

Boot Loader and Spin Interpreter
The last section in Main ROM contains the Propeller chip’s Boot Loader and Spin Interpreter
programs.

The Boot Loader is responsible for initializing the Propeller upon power-up/reset. When a
Boot Up procedure is started, the Boot Loader is loaded into Cog 0’s RAM and the cog
executes the code starting at location 0. The Boot Loader program first checks the host and
EEPROM communication pins for code/data to download/upload, processes that information
accordingly and finally it either launches the Spin Interpreter program into Cog 0’s RAM
(overwriting itself) to run the user’s Propeller Application, or it puts the Propeller into
shutdown mode. See the Boot Up Procedure section on page 18.

The Spin Interpreter program fetches and executes the Propeller Application from Main
RAM. This may lead to launching additional cogs to run more Spin code or Propeller
Assembly code, as is requested by the application. See Run-Time Procedure, page 18.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 35

Chapter 2: Using the Propeller Tool
This chapter describes the features of the Propeller Tool software starting with the concept
and structure, followed by the software’s screen organization and purpose, details of menu
functions, and advanced features, and finishing with shortcut keys.

Concept
The engineering staff at Parallax has used many development environments over a period of
more than 20 years. On many occasions we found ourselves thinking things like:

• It sure would be nice if feature “x” were easier to find/invoke.

• Where are my project files and why are there so many of them?

• Can I legally install/recompile/maintain this on another computer, years from now?

• Isn’t there a less expensive solution?

This experience has driven us to renew our determination to create simple, inexpensive tools
for our products.

The Propeller Tool was designed with those ideas in mind to provide many useful functions
while maintaining a simple, consistent development environment that encourages quick and
easy development of Propeller chip firmware objects.

The Propeller Tool software consists of a single executable file, some on-line help files and
Propeller library files, all stored in the same folder by the installer, typically:
C:\Program Files\Parallax Inc\Propeller. The Propeller Tool’s executable file “Propeller.exe”
can be copied and run from any folder on the computer; it does not rely on special system
files other than what comes standard with the operating system.

Each library file (files with a “.spin” extension) is a self-contained object, available for use by
your Propeller Projects, with both source code and documentation built-in. These are really
just text files, either ANSI- or Unicode-encoded, that may be edited in any text editor that
supports the encoding type; even Notepad in Windows® 2000 (and above) supports both
ANSI and Unicode-encoded text files.

Did you notice we mentioned that an object’s documentation is “built-in” to the object file?
We encourage writing the user documentation for an object right inside the object’s source

Using the Propeller Tool

Page 36 · Propeller Manual v1.0

file. This means fewer files to maintain and a higher likelihood that the documentation will
stay in sync with the source code revision. To further enable this process, we’ve created:

• Two types of source comments, 1) code comments (for commenting portions of the
source code), and 2) document comments (entered in code also, but intended for
reading through the “documentation view” feature).

• A “documentation view” mode in the Propeller Tool that extracts an object’s
documentation from its source code for viewing purposes.

• A special font, the Parallax font, which contains special characters for things like
schematics, timing diagrams, and tables within the object’s documentation.

The Parallax font is a True Type® font built right into the Propeller Tool executable. It was
designed in the same style as the font built into the Propeller chip’s ROM. Using the special
characters of the font, the object’s documentation can include helpful diagrams for
engineering purposes such as these:

 330ω sig1
 P0 ─────┐ sig2

 ┌──┬───┬───┐
 220ω │AB│ C │ D │
 P1 ───┳───────┳──┐ ├──┼───┼───┤
 │ │ │ │00│ 1 │n/a│
 0.1µF 50kω ─┘ ├──┼───┼───┤
 │ pot │ │01│ 2 │ 5 │
 └──┴───┴───┘

Figure 2-1: Graphics Built with the Parallax Font

After running the Propeller Tool at least once, this font becomes available for other programs
on that computer as well so that you can see these special diagrams using other text editors,
such as Notepad, or even within your email software, provided it supports Unicode-encoded
text (a requirement of the special characters).

Every object you create for your project will also be stored in the same format as library files
(with a “.spin” extension) but in the working directory of your choice. This is all designed to

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 37

promote sharing and learning from existing objects, whether they were designed by us or by
users of the Propeller products.

For more information about files, objects, object documentation, library files and source
code, see Chapter 3: Propeller Programming Tutorial.

Screen Organization
The Propeller Tool software’s main window is split into four sections, called “panes,” each
having a specific function.

Figure 2-2: The Propeller Tool software’s main window
contains four major sections, or “panes.”

Using the Propeller Tool

Page 38 · Propeller Manual v1.0

Panes one, two and three are all part of the Integrated Explorer. The Integrated Explorer is
the region to the left of the Editor pane (pane four) that provides views of the project you’re
working on as well as folders and files on disk. The Integrated Explorer is separated from the
Editor pane by a tall, vertical splitter bar that can be resized with the mouse at any time. The
Integrated Explorer can even be hidden by resizing it down to nothing (left-click and drag its
vertical splitter bar), by selecting File → Hide Explorer, or by pressing Ctrl+E. The menu
and shortcut options toggle the Integrated Explorer between: 1) Visible (set to its last known
size), and 2) Invisible (completely collapsed into the left edge of the Propeller Tool.

Figure 2-3: The Integrated Explorer and its components
can be resized via the splitter bars.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 39

Pane 1: Object View Pane
Pane one is the Object View pane. The Propeller chip’s language, Spin, is object-based and a
Propeller Project can be made up of multiple objects. The Object View displays the
hierarchical view of the project you most recently compiled successfully, providing valuable
feedback on the relational structure of your project. Using the Object View, you can
determine what objects are used, how they fit together with other objects, their physical
location on disk (work folder, library folder or editor only), redundancy optimization results
(if any) and any potential object collision issues. See “Object View” on page 52 for more
information.

Pane 2: Recent Folders field and Folder List
Pane two contains two components: 1) the Recent Folders field, and 2) the Folder List. These
two components work together to provide navigational access to the disk drives available to
your computer. The Folder List displays a hierarchical view of folders within each disk drive
and can be manipulated in a similar fashion as the left pane of Windows® Explorer.

The Recent Folders field (above the Folder List) provides a drop-down list of special folders
as well as the most recent folders you’ve loaded files from. Selecting a folder from the
Recent Folders field causes the Folder List to immediately navigate to that folder. In
addition, if you select a folder in the Folder List which exists in the Recent Folders list, the
Recent Folder field will automatically update itself to display that item.

The first items in the Recent Folders list are “Propeller Library” and “Propeller Library –
Demos.” These are automatically included to point to the folders where the Propeller library
files exist and where the demos for the library files exist. Those files are included by the
Propeller Tool installer.

If you select a folder that is not in the Recent Folders list, the Recent Folder field will be
blank. The button to the left of the Recent Folders field toggles the function of both the
Recent Folders and Folder List between: 1) showing every drive and folder, and 2) showing
only drives and folders recently used. Setting the mode to show recent folders only is a
convenient way to quickly navigate to commonly used Propeller Project folders among a
large set of unrelated folders on a particular drive or network.

Pane 3: File List and Filter Field
Pane three contains two components: 1) the File List, and 2) the Filter field. The File List
displays all the files contained in the folder selected from the Folder List which match the
filter criteria of the Filter field. The File List can be used in a similar fashion as the right
pane of Windows Explorer.

Using the Propeller Tool

Page 40 · Propeller Manual v1.0

The Filter field (below the File List) provides a drop-down list of file extensions, called
filters, to display in the File List. Typically it will be set to show Spin files only (those with
“.spin” file extensions) but can also be set to show text files or all files. If you navigate to a
folder and don’t see the files you expect to see, make sure that the current filter in the Filter
field is set appropriately.

Files in the Files List can be opened into the editor by: 1) double-clicking them, 2) selecting
and dragging them into the Editor pane (pane four), or 3) right-clicking them and selecting
Open from the shortcut menu.

Pane 4: Editor Pane
Pane four is the Editor pane. The Editor pane provides a view of the Spin source code files
you’ve opened and is the area where you can review, edit, or otherwise manipulate, all the
source code objects for your project. Each file (source code object) you open is organized
within the Editor pane as an individual edit tab named after the file it contains. The currently
active edit tab is highlighted differently than the rest. You can have as many files open at
once as you wish, limited only by memory.

Clicking on an edit tab brings its edit page into view. You can switch between open files by:
1) pressing Alt+CrsrLeft or Alt+CrsrRight, or 2) pressing Ctrl+Tab or Ctrl+Shift+Tab. If you
let the mouse pointer hover over an edit tab long enough it will display a hint message with
the full path and filename of the file it represents. The source code in the edit page is
automatically syntax highlighted, both in foreground and background colors, to help
distinguish block types, element types, comments vs. executable code, etc.

Figure 2-4: Hover the mouse over an edit tab to see
the full path and file name that tab contains.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 41

Each edit page can display source code in one of four views:

1) Full Source

2) Condensed

3) Summary

4) Documentation.

The view mode can be seen or changed, individually for each edit tab, by:

1) selecting the respective radio button with the mouse,

2) pressing Alt+Up or Alt+Down,

3) pressing Alt+<letter>, where <letter> is the underlined hot key of the desired view, or

4) pressing Alt and moving the mouse wheel up or down.

Note that the Documentation view can not be entered if the object can not be fully compiled
at that moment. See the View Modes, Bookmarks and Line Numbers section beginning on
page 61 for more information about view modes.

Since a project can consist of many objects, developing a project can be awkward unless you
can see both the object you’re working on and the object you’re interfacing to at the same
time. The Editor pane helps here by allowing its edit tabs to be dragged and dropped to
different locations. For example, once multiple objects are open, you can use the left mouse
button to select and drag the edit tab of an object down towards the bottom half of the Editor
pane and simply drop it there. The display changes to show you a new edit tab region where
you just dropped that edit tab. You can continue to drag and drop edit tabs to this new region
if you wish. These steps are illustrated in Figure 2-5.

Using the Propeller Tool

Page 42 · Propeller Manual v1.0

Figure 2-5: Viewing and Arranging Multiple Objects

Step 1: To see more than one object’s
source code simultaneously, left-click
and drag an edit tab to a lower region
of the Editor Pane.

Step 2: Release the button to drop the
edit tab. The edit tab and its contents
now appear in the new region.

Step 3: Repeat steps 1 and 2 as
necessary for other edit tabs and
resize both regions using the
horizontal splitter between them.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 43

The vertical size of these two regions can be changed by dragging the horizontal splitter bar
separating them. Of course, the objects you’re interfacing to can be viewed in whatever
mode is convenient at the moment (Full Source, Condensed, Summary, or Documentation)
while the object you’re developing remains in the Full Source view (the only editable view).

The Editor pane even allows its edit tabs to be dragged and dropped completely outside of the
Propeller Tool. When this is done, the new edit tabs occupy a new window that can be
manipulated independently of the Propeller Tool application window. This is particularly
useful for development on computers with more than one monitor; edit tabs can be dragged
from the application in one monitor and dropped onto the desktop of a second monitor.

Figure 2-6: Arranging Objects

Step 1: If desktop space allows, you
can even drag edit tabs outside the
application itself; left-click and drag an
edit tab to a region outside the
Propeller Tool.

Step 2: Release the button to drop the
edit tab; it will drop into a form of its
own that can be moved and sized
independent of the Propeller Tool. You
can drag and drop more edit tabs into
this new form also.

Using the Propeller Tool

Page 44 · Propeller Manual v1.0

The Status Bar at the bottom of the Propeller Tool, is separated into six panels, each
displaying useful information at various stages of the development process.

Panel one of the Status Bar always displays the row and column position of the editor’s caret
in the currently active edit tab.

Figure 2-7: Status Bar

Panel two displays the modified status of the current edit tab: 1) blank, meaning not modified,
2) modified, or 3) read-only.

Panel three shows the current edit mode: 1) Insert (default), 2) Align, or 3) Overwrite. The
edit mode can be changed by pressing the Insert key. See the Edit Modes section beginning
on page 65 for more information about how the different edit modes work.

Panel four shows the compiled status of the current edit tab: 1) blank, meaning uncompiled,
or 2) compiled. This panel indicates whether or not the source code it represents is still in the
form it was in when it was last compiled. If the code has not been changed in any way since
the last compile operation, this panel will say “Compiled.”

Panel five displays context sensitive information about the current edit tab’s source code if
that code has not been changed since the last compile operation. Move the edit page’s caret
to CON or DAT block symbols or anywhere within PUB/PRI blocks to see information pertaining
to that region.

Panel six displays temporary messages about the most recent operation. This is the area of
the Status Bar where the error message, if any, from the last compile operation is displayed
until another message overwrites it. This area also indicates successful compilations, font
size changes and other status.

The entire Status Bar displays hints describing the function of each menu item on the menu
bar as well as various other items when you let the mouse pointer hover over those items.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 45

Menu Items

File Menu
New Create a new edit tab with a blank page. Any existing edit

tabs are unaffected.

Open… Open a file in a new edit tab with the Open file dialog.

Open From… Open a file in a new edit tab from a recently accessed folder
using the Open file dialog.

Save Save current edit tab’s contents to disk using the existing file
name, if applicable.

Save As… Save current edit tab’s contents to disk with a new file name
using the Save As dialog.

Save To… Save current edit tab’s contents to disk in a recently accessed
folder using the Save As dialog.

Save All Save all unsaved edit tab’s contents to disk using their
existing names, if applicable.

Close Close current edit tab (will prompt if file is unsaved).

Close All Close all edit tabs (will prompt for any files unsaved).

Select Top Object File… Select the top object file of current project. This setting is
used for all of the Compile Top… operations and remains
until changed.

Archive

 → Project… Collect all objects and data files for the project shown in
Object View and store them in a compressed (.zip) file along
with a “readme” file containing archive and structure
information. The compressed file is named after the
project’s top file with “Archive” plus the date/time stamp
appended and is stored in the top file’s work directory.

 → Project + Propeller Tool... Perform the same task as above but add the entire Propeller
Tool executable to the compressed file.

Using the Propeller Tool

Page 46 · Propeller Manual v1.0

Hide/Show Explorer Hide or show the Integrated Explorer panels (left side of the
application window).

Print Preview… View a sample of the output before printing.

Print… Print the current edit tab’s contents.

<recent files> The menu area between the Print… and Exit items displays
the most recently accessed files, up to ten. Selecting one of
these items opens that file. Point the mouse at a recent file
menu item to see the full path and file name in the status bar.

Exit Close the Propeller Tool.

Edit Menu
Undo Undo the last edit action on the current edit page. Each edit

page retains its own undo history buffer until closed.
Multiple undo actions are allowed, limited only by memory.

Redo Redo the last undone action on the current edit page. Each
edit page retains its own redo history buffer until closed.
Multiple redo actions are allowed, limited only by memory.

Cut Delete the selected text from the current edit page and copy
it to the Windows clipboard.

Copy Copy the selected text from the current edit page to the
Windows clipboard.

Paste Paste text from the Windows clipboard to the current edit
page at the current caret position.

Select All Select all text in the current edit page.

Find / Replace… Open the Find/Replace dialog; see Find/Replace Dialog on
page 49 for details.

Find Next Find the next occurrence of the last search string entered into
the Find/Replace dialog.

Replace Replace the current selection with the string entered into the
Replace field of the Find/Replace dialog.

Go To Bookmark Go to bookmark 1, 2, 3… (visible only when bookmarks are
shown).

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 47

Text Bigger Increase the font size in every edit page.

Text Smaller Decrease the font size in every edit page.

Preferences… Open the Preferences window. Users can customize many
settings within the Propeller Tool using this feature.

Run Menu
Compile Current

 → View Info… Compile source code in current edit tab and, if successful,
display Object Info form with the results. The Object Info
form displays many details about the resulting object
including object structure, code size, variable space, free
space and redundancy optimizations.

 → Update Status Compile source code in current edit tab and, if successful,
update the status info on the Status Bar for every object in
the project.

 → Load RAM Compile source code in current edit tab and, if successful,
download the resulting application into Propeller chip’s
RAM and run it.

 → Load EEPROM Compile source code in current edit tab and, if successful,
download the resulting application into Propeller chip’s
EEPROM (and RAM) and run it.

Compile Top

 → View Info… Same as Compile Current → View Info except compilation
is started from the file designated as the “Top Object File.”

 → Update Status Same as Compile Current → Update Status except
compilation is started from the file designated as the “Top
Object File.”

 → Load RAM Same as Compile Current → Load RAM + Run except
compilation is started from the file designated as the “Top
Object File.”

 → Load EEPROM Same as Compile Current → Load EEPROM + Run except
the compilation is started from the file designated as the
“Top Object File.”

Using the Propeller Tool

Page 48 · Propeller Manual v1.0

Identify Hardware… Scan available ports for the Propeller chip and, if found,
display the port it is connected to and the hardware version
number.

Help Menu
Propeller Tool… Display on-line help about the Propeller Tool.

Spin Language… Display on-line help about the Spin language.

Assembly Language… Display on-line help about the Propeller Assembly language.

Example Projects… Display on-line help containing example Propeller Projects.

View Character Chart… Display the interactive Parallax Character Chart. This
character chart shows the Parallax font’s character set in
three possible views: Standard Order, ROM Bitmap and
Symbolic Order. Standard Order is the standard ANSI order.
ROM Bitmap demonstrates how the character data is
organized in the Propeller chip’s ROM. Symbolic Order
lists the characters in a categorical order (i.e.: alpha
characters, numerics, punctuation, schematic symbols, etc).
See Character Chart on page 58.

View Parallax Website… Open up the Parallax website using the computer’s default
web browser.

E-mail Parallax Support… Open up the computer’s default email software and start a
new message to Parallax support.

About… Displays the About window with details about the Propeller
Tool.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 49

Find/Replace Dialog
The Find/Replace dialog is used to find and/or replace text in the current edit page.

Figure 2-8: The Find/Replace Dialog

Find:
The Find: field is where to enter the string you wish to search for. If a word or phrase was
selected in the current edit page when the Find/Replace dialog was opened, that word or
phrase will automatically be entered in the Find: field. The Find: field remembers the last ten
unique items entered into it. To select a previous entry, click the Find: field’s down arrow
and choose it from the drop-down list.

Replace:
The Replace: field is where to enter the string you wish to replace the found string with. The
Replace: field remembers the last ten unique items entered into it. To select a previous entry,
click the Replace: field’s down arrow and choose it from the drop-down list.

Match
The Match group controls how the string in the Find: field is matched to text in the edit page.
The Match options are: 1) Whole Words, 2) Case, and 3) With Wildcards.

Using the Propeller Tool

Page 50 · Propeller Manual v1.0

Whole Words
Select the Whole Words checkbox if you want the string in the Find: field to match only
characters of entire words rather than both characters of entire words and characters within
larger words.

Case
Select the Case checkbox if you want the string in the Find: field to match only text of the
same case; a case-sensitive search.

With Wildcards
Select the With Wildcards checkbox if you want the search to be performed using regular
expression wildcards from the string in the Find: field.

The Origin, Scope and Direction groups all work together to dictate the start, range and
direction the search process should use.

Origin
The Origin group controls where the search begins from; from the Top or from the Cursor.
Selecting Top starts the search from the top of the file (or from the top of the selection if
Selection is set in the Scope group). Selecting Cursor starts the search from the current
cursor (caret) position in the file. Note: The “Top” option changes to “Bottom” if the
Direction group is set to Backward.

Scope
The Scope group controls the range of the search: the Entire File or just the current Selection.
This is a convenient way to perform a find, or a find and replace, within only a limited region
of the file. The Scope group is set to Entire File by default and is disabled unless a selection
is made prior to opening the Find/Replace dialog. The Scope group is set to Selection
automatically if a selection of at least one entire line is made prior to opening the
Find/Replace dialog.

Direction
The Direction group controls the direction of the search; in the Forward direction (towards
the bottom of the file) or the Backward direction (towards the top of the file). If set to
Backward, the Origin group’s first option changes from “Top” to “Bottom,” meaning the
origin is from the bottom of the file or selection.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 51

Find Button
The Find button starts the search process based on all the settings in the Find/Replace dialog.
If text in the edit page matches the criteria, it is selected and moved into view, and then the
Find button changes to a Find Next button. Additional clicks on the Find Next button result
in the next matching text being selected and shown. You can also use the F3 key, with or
without the Find/Replace dialog open, to perform more Find Next searches.

Replace Button
The Replace button is enabled if a string was entered in the Replace: field and a matching
string was found (via Find button or F3). Clicking Replace, or pressing F4 with or without
the Find/Replace dialog open, causes the currently matched string in the file to be replaced
with the string in the Replace: field. After a replace, the Find Next button, or F3 key, needs
to be used before Replace becomes available again. Holding the Control (Ctrl) key down
changes the Replace button to “Replace/Find” and clicking it, or pressing Ctrl+F4 with or
without the Find/Replace dialog open, causes the currently matched string to be replaced and
then another Find Next operation to be performed immediately.

Replace All Button
The Replace All button is enabled if a string was entered in the Replace: field. Clicking on
Replace All causes every matching string in the file to be found and replaced with the string
in the Replace field, the dialog closes, and a results dialog appears indicating the number of
occurrences found and replaced.

Close Button
The Close button closes the Find/Replace dialog.

Using the Propeller Tool

Page 52 · Propeller Manual v1.0

Object View
The Object View displays a hierarchical view of the project you most recently compiled
successfully. There are two Object Views in the Propeller Tool: 1) The Object View at the
top of the Integrated Explorer in the main application’s window (see Pane 1: Object View
Pane on page 39), and 2) The Object Info View in the upper left of the Object Info form (see
Object Info on page 55). Both of these Object Views function in a similar fashion.

The Object View provides visual feedback on the structure of the most recent successful
compilation as well as information for each object within the compiled project.

Figure 2-9: Example Object View display showing
the structure of the ABC Product compilation

In Figure 2-9 above, the Object View indicates the structure of the ABC Product application.
In this example, the ABC Product object is the “top object file” (see Objects and
Applications, page 87) and it uses the Numbers, Rotary Encoder and Controller objects.
Additionally, the Controller object uses the TV object.

The object names shown are their actual file names without the extension. The name
includes their file extension only if they are data files (see FILE, page 215) and is shown in
italics as well.

The icons to the left of each object name indicate the folder that the object exists in. This list
shows the four possibilities:

 (yellow): Object is within the Work Folder.

 (blue) : Object is within the Library Folder.

 (striped): Object is in Work Folder but another object with the same name is also
being used from the Library Folder.

 (hollow): Object is not in any folder because it has never been saved.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 53

Work Folder
The Work Folder (yellow) is the folder where the top object file exists. Every project has
one, and only one, work folder.

Library Folder
The Library Folder (blue) is where the Propeller Tool’s library objects exist, such as those
that came with the Propeller Tool software. The Library Folder is always the folder that the
Propeller Tool executable started from, and every object (file with .spin extension) within it is
considered to be a library object.

Striped Folders
Objects with striped icons indicate that an object from the work folder and an object from the
library folder each refer to a sub-object of the same name and that sub object happens to exist
in both the work and library folders. This same-named object may be: 1) an exact copy of the
same object, 2) two versions of the same object, or 3) two completely different objects that
just happen to have the same name. Regardless of the situation, it is recommended that you
resolve this potential problem as soon as possible since it may lead to problems later on, such
as not being able to use the Archive feature.

Hollow Folders
Objects with hollow icons indicate that the object was created in the editor and has never
been saved to any folder on the hard drive. This situation, like the one mentioned above, is
not an immediate problem but can lead to future problems if it is not addressed soon.

Using the mouse to point at and select objects can provide additional information as well.
Clicking on an object within the Object View opens that object into the Editor pane. Left-
clicking opens that object in Full Source view, right-clicking opens it in Documentation view
and double-clicking opens it, and all its sub-objects, in Full Source view. If the object was
already open, the Editor pane simply makes the related edit tab active and switches to the
appropriate view; Full Source for a left-click or double-click, or Documentation for a right-
click.

Using the Propeller Tool

Page 54 · Propeller Manual v1.0

Hovering the mouse over an object in the Object View displays a hint with additional
information for that object. Figure 2-10a shows the hint for the ABC Product object. This
hint indicates 1) the ABC Product object is the top object file of the project, 2) it exists in the
work folder, and 3) its path and file name are: C:\Source\ABC Product.spin. From this
information you can also infer that the work folder for this project is:

C:\Source

a.

b.

Figure 2-10: Hover the mouse over an object
to see hints with additional information

Figure 2-10b shows the hint for the Numbers object: 1) it’s an object file (i.e.: a sub object,
rather than the top object), 2) it’s in the library folder, and 3) it’s at the path and file name:
C:\Program Files\Parallax Inc\Propeller\Numbers.spin. From this information you can also
infer that the library folder for this project is:

C:\Program Files\Parallax Inc\Propeller.

It’s a good idea to review the hints in the Object View occasionally since they may also
contain additional helpful information, such as warnings about conflicts and optimization
results.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 55

Object Info
The Object Info form displays details about the project you just compiled successfully using
the Compile Current/Top → View Info… function. At the top is an Info Object View very
similar to that of the Integrated Explorer’s Object View (see Object View, p. 52). Below the
Info Object View are two panels with summary information.

Figure 2-11: Object Info
Form

This example Object Info
display shows details about
the “ABC Product” project
compilation.

Using the Propeller Tool

Page 56 · Propeller Manual v1.0

Info Object View
The Info Object View works exactly like the Object View (see Object View, p. 52) with a
few exceptions:

• Clicking on an object within the Info Object View updates the Object Info display
with information pertaining to that object.

• Double-clicking on an object within the Info Object View opens that object in the
Edit pane.

• Data files are not selectable in the Info Object View.

RAM Usage Panel
The RAM Usage panel displays statistics about RAM allocation by the object currently
selected in the Info Object View. The horizontal bar gives a summary view of the entire
RAM with its color legend and numerical details below it. For example, Figure 2-11 shows
that the ABC Product object consumes 524 longs (2096 bytes) for program space and 12
longs (48 bytes) for variable space, leaving over 7k longs (over 30k bytes) free.

Clock Panel
The clock panel, under the RAM Usage panel, displays the clock/oscillator settings of the
object currently selected in the Info Object View. For example, Figure 2-11 shows that the
ABC Product object configured the clock for RCFAST, approximately 12 MHz and no XIN
frequency.

Hex View
The Show/Hide Hex button shows or hides the detailed object hex view, as in Figure 2-12 on
the next page. The hex view shows the actual compiled object data, in hexadecimal, that are
loaded into the Propeller chip’s RAM/EEPROM upon download.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 57

Figure 2-12: Example Object Info Form display with the object Hex View
open showing the hex values of the ABC Product compilation.

The buttons under the hex display allow for downloading and saving of the currently
displayed hex data.

The first two buttons, Load RAM and Load EEPROM, perform the same function as the
similarly named menu items under the Compile Current/Top menu. It’s important to note
that they use the current object (the one selected in the Info Object View) as the source to
download. In other words, you can actually select a sub-object from the project and
download just that; a practical procedure only if that object were designed to run completely
on its own.

The last three buttons, Open File, Save Binary File, and Save EEPROM File, either open a
file or save a file to disk. The Open File button opens a previously saved Binary or EEPROM
file into the Object Info window. The “save” buttons save the hex data from the currently
selected object to a file on disk. Save Binary File saves only the portion actually used by the
object; the program data, but not variable or stack/free space. Save EEPROM File saves the
entire EEPROM image, including variable and stack/free space. Use Save EEPROM File if
you wish to have a file that you can load into an EEPROM programmer for production
purposes.

Using the Propeller Tool

Page 58 · Propeller Manual v1.0

Character Chart
The Character Chart window is available from the Help → View Character Chart… menu
item. It shows the entire character set for the Parallax Font that is used by the Propeller Tool
and is also built into the ROM of the Propeller chip. There are three views in the Character
Chart: 1) Standard Order, 2) ROM Bitmap, and 3) Symbolic Order.

In each of the three views, the mouse, left mouse button, cursor keys and enter button can be
used to highlight and select a character. If clicked (or enter pressed), the highlighted
character will be entered into the current edit page at the current cursor location. As a new
character is highlighted, the title bar and info bar of the window updates to show the name,
size and address information for that character. Moving the mouse wheel up or down
changes the font size displayed in this window.

Standard Order
Standard Order, shown in Figure 2-13, displays the characters in the order that follows that of
the ANSI set typically used by modern day computers.

Figure 2-13: Parallax Font Character Chart, Standard Order

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 59

The Vertical Resistor character (near the lower right of the display) is selected in this
example. The information at the bottom of the window shows the font size, in points, and the
character’s location in the character set in decimal, hexadecimal, and Unicode. Note: The
Unicode value is the address of the character in the True Type® Font file that is used by the
Propeller Tool. The decimal and hexadecimal values are the logical addresses of the
character in the character set within the Propeller chip and correspond to that location in the
ANSI character set used by most computers.

ROM Bitmap
The ROM Bitmap, Figure 2-14, shows the characters in a way representative of how they are
stored in the Propeller chip’s ROM. This view uses four colors, white, light gray, dark gray,
and black, to represent the bit pattern of each font character. Each character, in the Propeller
chip’s ROM, is defined with two bits of color (four colors per row in each character cell). The
rows of each pair of adjacent characters are overlapped in memory for the purpose of creating
the run-time characters used to draw 3D buttons with hot key and focus indicators; see
Character Definitions on page 32. The information at the bottom of the window shows the
font size, in points, and the selected character’s pixel data address range in the Propeller
chip’s ROM.

Figure 2-14: Parallax Font Character Chart, ROM Bitmap

Using the Propeller Tool

Page 60 · Propeller Manual v1.0

Symbolic Order
Symbolic Order, Figure 2-15, shows the characters arranged categorically. This is useful for
finding the special characters in the Parallax font for depicting timing diagrams, lines, arrows,
and schematics.

Figure 2-15: Parallax Font Character Chart, Symbolic Order

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 61

View Modes, Bookmarks and Line Numbers
While developing objects, or conversing about them with other users, it may sometimes be
difficult to quickly navigate to certain regions of code simply because of the size of the file
itself or because large sections of code and comments obscure the desired section. There are
a number of features built into the Propeller Tool to assist with this problem, including
different View Modes, Bookmarks and Line Numbers.

View Modes
Each edit tab can display an object’s source in one of four view modes: 1) Full Source, 2)
Condensed, 3) Summary, and 4) Documentation.

• Full Source view displays every line of source code within the object and is the only
view that supports editing.

• Condensed view hides every line that contains only a code comment as well as
contiguous lines that are blank, showing only compilable lines of code.

• Summary view displays only the block heading lines (CON, VAR, OBJ, PUB, PRI, and
DAT); a convenient way to see the entire object’s structure at a glance.

• Documentation view displays the object’s documentation generated by the compiler
from the source code’s doc comments (see Exercise 3: Output.spin - Comments on
page 100 for more information).

By briefly switching to another view you may be able to locate the routine or region of code
desired. For example, Figure 2-16a shows the Graphics object open in an edit page. If you
were having trouble finding the “plot” routine within the source code, you could switch to the
Summary view (Figure 2-16b) locate the “plot” routine’s header line and click the mouse on
that line to place the cursor there, then switch back to Full Source view (Figure 2-16c). Keep
your eye on the line with the cursor because the code will expand to full view above and
below the line where the cursor is.

The view mode can be changed a number of ways; see the Shortcut Keys listing beginning on
page 75. For example, while in any view mode other than Full Source, pressing the Escape
key will take you back to Full Source view. While in Condensed or Summary view modes,
double-clicking on a line will switch back to Full Source view; expanding above and below
that line. Also, the view mode bar items act like a toggle so that clicking on the Summary
item switches back and forth between Summary view and the previous view mode.

Using the Propeller Tool

Page 62 · Propeller Manual v1.0

Figure 2-16: View Modes Example

a.

b.

c.

Can’t find a routine in an object?

Step 1: Select Summary Mode

Step 2: Click on the routine’s line.

Step 3: Select Full Source mode
again; the code re-expands around
the cursor’s line,

-or-

Double-click on the desired line from
Step 2.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 63

Bookmarks
You can also set bookmarks on various lines of each edit page’s source code to quickly jump
to desired locations. Figure 2-17 shows an example of two bookmarks set in the Graphics
object’s edit tab. To enable bookmarks, press Ctrl+Shift+B to make the Bookmark Gutter
visible; a blank area to the left of the edit page. Then click the mouse in the Bookmark
Gutter next to each line you want to be able to navigate to quickly. Finally, from anywhere in
the page, press Ctrl+# where # is the bookmark number that you want to go to; the cursor will
instantly jump to that location. Up to 9 bookmarks (1 – 9) can be set in each edit tab. The
bookmarks are not saved in the source code; however, the bookmark settings of the last 10
files accessed are remembered by the Propeller Tool and restored upon reopening those files.

Figure 2-17: Example edit page with Bookmarks enabled and two bookmarks set.
Click on Bookmark Gutter (blank area left of edit page) to set or clear bookmarks.
Press Ctrl+# where # is the desired bookmark number to instantly navigate to an
existing bookmark.

Using the Propeller Tool

Page 64 · Propeller Manual v1.0

Line Numbers
Maybe it is easier to remember a region of code by its line number. At any time, you can
enable or disable line numbers in the edit page. Line Numbers show up in the Line Number
Gutter, next to the Bookmark Gutter (see Figure 2-18), and can be made visible/invisible by
pressing Ctrl+Shift+N. Lines are automatically numbered as they are created; they are a
visual item only and are not stored in the source code. Though Line Numbers share space
with Bookmarks, the two are independent of each other and can be enabled or disabled
individually. Line numbers can be printed, if desired.

Figure 2-18: Example Edit Page with Bookmarks
and Line Numbers Enabled

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 65

Edit Modes
There are three edit modes provided by the Editor pane: 1) Insert (default), 2) Align
(available for “.spin” objects only), and 3) Overwrite. You can switch between each mode by
using the Insert key. The current mode is reflected by both the caret shape and by panel three
of the status bar.

Figure 2-19: Edit Modes

Insert Edit Mode

Caret is the standard blinking, vertical
bar and the status bar shows “Insert.”

Align Edit Mode

Caret is a blinking underline and the
status bar shows “Align.”

Overwrite Edit Mode

Caret is a blinking, solid block and the
status bar shows “Overwrite.”

Insert and Overwrite Modes
The Insert and Overwrite modes are similar to that of many other text editors. These are the
only two modes available to edit tabs containing files other than Propeller “.spin” objects,
such as “.txt” files.

Using the Propeller Tool

Page 66 · Propeller Manual v1.0

Align Mode
The Align mode is a special version of the Insert mode designed specifically for maintaining
source code. To understand Align mode, we first need to consider common programming
techniques. There are two very common practices used when writing modern source code:
indention of code and alignment of comments to the right of code. It is also common for
source code to be viewed and edited using more than one editor application. Historically,
programmers have used either tabs or spaces for indention and alignment purposes, both of
which prove problematic. Tab characters cause alignment issues because some editors use
different sized tab settings than others. Both tab and space characters cause alignment issues
because future edits cause right-side comments to shift out of alignment. Here are some
examples; Figure 2-20 is our original code.

Figure 2-20: Common Alignment Issues – Original Code

If the original code used tab characters to align the comments, changing “Delay” to
“BtnDelay” will cause a comment to shift right if the altered text crosses a tab boundary.

Figure 2-21: Common Alignment Issues – Tab Aligned

If the original code had been made with tab characters to align the comments,
changing “Delay” to “BtnDelay” results in the second comment suddenly being
pushed out by another tab width.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 67

If the original code used space characters to align the comments, changing “Delay” to
“BtnDelay” will cause the comments to shift right by three characters.

Figure 2-22: Common Alignment Issues – Space Aligned

If the original code had been made with space characters to align the comments,
and a standard Insert edit mode is used, changing “Delay” to “BtnDelay” results in
the second and fifth comments being pushed out by 3 spaces.

For Spin code, the Propeller Tool solves this problem first by disallowing tab characters (Tab
key presses emit the proper number of space characters), and second by providing the Align
edit mode. While in the Align mode, characters inserted into a line affect neighboring
characters but not characters separated by more than one space. The result is that comments
and other items separated by more than one space maintain their intended alignment for as
long as possible, as shown in Figure 2-23.

Figure 2-23: Effects of the Align Edit Mode

Using the Align edit mode, changing “Delay” to “BtnDelay” leaves all the comments
in their original, aligned, location. No manual re-aligning of comments is necessary
in this case.

Using the Propeller Tool

Page 68 · Propeller Manual v1.0

Since the Align mode maintains existing alignments as much as possible, much less time is
wasted realigning elements due to future edits by the programmer. Additionally, since spaces
are used instead of tab characters, the code maintains the same look and feel in any editor that
displays it with a mono-spaced font.

The Align mode isn’t perfect for all situations, however. We recommend you use Insert
mode for most code writing and briefly switch to Align mode to maintain existing code where
alignment is a concern. The Insert key rotates the mode through Insert → Align → Overwrite
and back to Insert again. The Ctrl+Insert key shortcut toggles only between Insert and Align
modes. A little practice with the Align and Insert modes will help you program more time-
efficiently.

Note that non-Spin source (without a .spin extension) does not allow the Align mode. This is
because, for non-Spin source, the Propeller Tool is designed to maintain any existing tab
characters and to insert tab characters when the Tab key is pressed in order to maintain the
original intent of the file, which may be a tab-delimited data source for a Spin program or
other use where tab characters are desired.

Block Selection and Selection Moving
In addition to normal text selections made with the mouse, the Propeller Tool allows block
selections (rectangular regions of text). To make a block selection, first press and hold the
Alt key, then left-click and drag the mouse to select the text region. After the selection is
made, cut and copy operations behave as they do with other selections. Figure 2-24
demonstrates block selection and movement of the text block with the mouse.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 69

Figure 2-24: Block Selection and Selection Moving

Original code. We’d like to
move the “LCD Screen Addr’’
comments to the right of
the PrintMode routine.

First press and hold the Alt
key. Next left-click and
drag the mouse to make the
selection.

Finally, click and drag (from
anywhere in the selected
block) and drop the
selection in the desired
location.

Indenting and Outdenting
A common programming practice is to indent blocks of code that are either in loops or are
conditionally executed in order to make that code easier to read. The act of doing this is
called “indenting.” We’ll call the opposite action, shifting code to the left, “outdenting.” The
Spin language requires this kind of formatting to indicate which lines are within loops or
conditional blocks. The Propeller Tool includes the following features to make this easier to
accomplish while creating or maintaining code.

Using the Propeller Tool

Page 70 · Propeller Manual v1.0

Single Lines
For Spin code, the Propeller Tool uses a set of fixed tab positions that you can change via the
Edit → Preferences menu. Each Spin block (CON, VAR, OBJ, PUB, PRI, and DAT) has its own
Fixed Tab settings.

The Tab key moves the cursor to the next tab position (to the right) and Shift + Tab moves
the cursor to the previous tab position (to the left). Additionally, the Backspace key moves to
the previous tab position depending on the text around it; more on this later.

The default tab settings for the PUB and PRI blocks include tab positions for every two
characters near the start of the line to support common code indentions. For example, Figure
2-25, below, shows a public method, FSqr, containing lines at various levels of indention,
each two characters apart.

Figure 2-25: Fixed Tab
Default Setting for
PUB and PRI Blocks

Using the Tab key, this code could have quickly been entered with the following sequence on
the keyboard:

• Type: “PUB FSqr” <Enter>

• Type: <Tab> “repeat 31” <Enter>

• Type: <Tab> “result |= root” <Enter>, etc.

Note that the Enter key automatically aligns the cursor to the level of indention currently in
use; this means the Tab key needs to be pressed only once to indent to the next level.

If there are characters to the right of the cursor when the Tab key is pressed, they are shifted
to the right as well, as in Figure 2-26.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 71

Figure 2-26: Indenting

If the cursor is immediately to the left of the first character on a line, both the Shift + Tab and
the Backspace keys cause the cursor and the text to be shifted left to the previous tab position;
i.e.: outdenting. If, however, the cursor is not immediately to the left of the first character on
a line, Backspace acts normally (deleting the previous character) and Shift + Tab moves only
the cursor to the previous tab position.

Figure 2-27: Outdenting

Multiple Lines
In addition to affecting single lines, multiple lines of code can be indented or outdented to
fixed tab positions easily. Take a look at Figure 2-28.

Figure 2-28: Sample
Code Block. We want to
make the first four lines
repeat 31 times.

Suppose we wanted to take the first four lines of this example and encase them in a “repeat
31” loop; to repeat those lines 31 times. You can quickly achieve this with the following
steps: 1) enter the “repeat 31” line above the existing lines, 2) using the mouse, select the four
lines to indent, and 3) press the Tab key. These steps are illustrated in Figure 2-29.

Using the Propeller Tool

Page 72 · Propeller Manual v1.0

Figure 2-29: Code Block Indenting

Step1: Insert the
instruction repeat 31
above the block.

Step 2: With a mouse,
Select the four lines to
indent.

Step 3: Press the Tab
key to indent the
selected lines.

Note that the four lines we had selected in the second step are now indented to the next fixed
tab position (two spaces to the right of the start of the “repeat”) and the selection changed to a
single column surrounding the first characters of the lines. The selection changed to indicate
that we performed a multi-line indention action. Pressing the Tab key again will indent that
group of lines further and pressing Shift + Tab will outdent that group of lines.

Any contiguous group of lines can be indented or outdented in this fashion. The selection
itself doesn’t have to include the entire line either; it only needs to include at least one
character of more than one line to work. This type of selection is called a “stream” selection.

The second type of selection, a “block” selection (see Block Selection and Selection Moving,
page 68), can also be used to indent or outdent portions of lines. For example, Figure 2-30
shows our example with comments to the right of the lines.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 73

Figure 2-30: Sample Code Block with Comments to the Right

If we block select the first few characters of the comments (Alt + Left Mouse Button and
Drag, Figure 2-31), we can press the Tab key to indent those comments to the next fixed tab
position. Pressing Shift + Tab will outdent them, at least up to any characters they bump into
on their left, as in Figure 2-32.

Figure 2-31: Using Block Selection to Outdent Comments

Step 1: Block-select the comment lines (Alt + Left Mouse Button and Drag).

Step 2: Press the Tab key to outdent the comments.

Using the Propeller Tool

Page 74 · Propeller Manual v1.0

Block-Group Indicators
Sometimes it may be hard to see exactly how groups of code are logically arranged simply by
their level of indention. The Propeller Tool can optionally indicate the logical block-groups
of conditional blocks or loop blocks as shown in Figure 2-32. To toggle this feature on or
off, press Ctrl + I.

Figure 2-32: Block
Group Indicators

Note that only compilable code that is actually within a conditional block or a loop block is
actually enhanced with the indention indicators. Also, this is simply a visual aid to see how
the code will be executed; it does not affect the code or the source file physically; only the
actual levels of indention do that.

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 75

Shortcut Keys

Categorical Listings
In Table 2-1, keyboard shortcuts are grouped by related functions. In Table 2-2, which
begins on page 80, the keyboard shortcuts are grouped by key rather than by function.

Table 2-1: Shortcut Keys – Categorical Listing
Tool Shortcuts

Function Keys

New Ctrl + N

Open Ctrl + O

Close Alt + Q -or- Ctrl + W

Save Ctrl + S

Save All Ctrl + Alt + S

Print Ctrl + P

Toggle Show/Hide Bookmarks Ctrl + Shift + B

Toggle Bookmark on current line Ctrl + B

Toggle Block Group Indicators Ctrl + I

Toggle Show/Hide Explorer Ctrl + E

Toggle Show/Hide Line Numbers Ctrl + Shift + N

Increase font size Ctrl + Up -or- Ctrl + Mouse Wheel Up

Decrease font size Ctrl + Down -or- Ctrl + Mouse Wheel Down

Select Full Source view mode Alt + S

Select Condensed view mode Alt + C

Select Summary view mode Alt + U

Select Documentation view mode Alt + D

Select alternate view (towards Full Source) Alt + Up

Select alternate view (towards Documentation) Alt + Down -or- Alt + Mouse Wheel Down

Set focus on active edit Esc

Using the Propeller Tool

Page 76 · Propeller Manual v1.0

Table 2-1: Shortcut Keys – Categorical Listing (continued)
Compiler Shortcuts

Function Keys

Select Top File Ctrl + T

Identify Hardware F7

Compile Current File and View Information F8

Compile Current File and Update Status F9

Compile Current File, Load RAM and Run F10

Compile Current File, Load EEPROM and Run F11

Compile Top File and View Information Ctrl + F8

Compile Top File and Update Status Ctrl + F9

Compile Top File, Load RAM and Run Ctrl + F10

Compile Top File, Load EEPROM and Run Ctrl + F11

Navigation Shortcuts

Select next edit tab Alt + Right -or- Ctrl + Tab

Select previous edit tab Alt + Left -or- Ctrl + Shift + Tab

Scroll up one page size Page Up

Scroll down one page size Page Down

Scroll left Shift + Mouse Wheel Up

Scroll right Shift + Mouse Wheel Down

Jump to start of next word Ctrl + Right

Jump to start of previous word Ctrl + Left

Jump to start of line Home

Jump to end of line End

Jump to start of page Ctrl + Page Up

Jump to end of page Ctrl + Page Down

Jump to start of file Ctrl + Home

Jump to end of file Ctrl + End

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 77

Table 2-1: Shortcut Keys – Categorical Listing (continued)
Navigation Shortcuts (cont.)

Function Keys

Select word Double-Click

Select line Triple-Click

Select to start of next word Ctrl + Shift + Right

Select to start of previous word Ctrl + Shift + Left

Select to start of line Shift + Home

Select to end of line Shift + End

Select to start of page Ctrl + Shift + Page Up

Select to end of page Ctrl + Shift + Page Down

Select to previous page above Shift + Page Up

Select to next page below Shift + Page Down

Select to start of file Ctrl + Shift + Home

Select to end of file Ctrl + Shift + End

Editing Shortcuts

Undo Ctrl + Z

Redo Ctrl + Shift + Z

Select All Ctrl + A

Copy to Clipboard Ctrl + C

Cut to Clipboard Ctrl + X

Paste from Clipboard Ctrl + V

Find / Replace Ctrl + F

Find Next F3

Replace F4

Replace then Find Next Ctrl + F4

Change edit mode to Align, Insert or Overwrite Insert

Toggle edit mode between Align and Insert Ctrl + Insert

Insert white space up to next tab position Tab

Delete white space back to previous tab position Shift + Tab

Using the Propeller Tool

Page 78 · Propeller Manual v1.0

Table 2-1: Shortcut Keys – Categorical Listing (continued)
Editing Shortcuts (cont.)

Function Keys
Delete current line Ctrl + Y
Delete to end of line Ctrl + Shift + Y
Rename Folder/File (in Folder List or File List) F2

Symbol Shortcuts

Insert Negative One Superior Character () Ctrl + Alt + 1

Insert One Superior Character (¹) Ctrl + Shift + 1

Insert Two Superior Character (²) Ctrl + Shift + 2

Insert Three Superior Character (³) Ctrl + Shift + 3

Insert Bullet Character (•) Ctrl + Shift + .

Insert Rectangle Bullet Character (‣) Ctrl + Alt + .

Insert Left Bullet Character (◀) Ctrl + Shift + Alt + <

Insert Right Bullet Character (▶) Ctrl + Shift + Alt + >

Insert Left Arrow Bullet Character (←) Ctrl + Shift + Alt + Left

Insert Right Arrow Bullet Character (→) Ctrl + Shift + Alt + Right

Insert Up Arrow Bullet Character (↑) Ctrl + Shift + Alt + Up

Insert Right Arrow Bullet Character (→) Ctrl + Shift + Alt + Right

Insert Euro Character (€) Ctrl + Shift + $

Insert Yen Character (¥) Ctrl + Alt + $

Insert Sterling Character (£) Ctrl + Shift + Alt + $

Insert Left Arrow Character () Ctrl + Alt + Left

Insert Right Arrow Character () Ctrl + Alt + Right

Insert Up Arrow Character () Ctrl + Alt + Up

Insert Down Arrow Character () Ctrl + Alt + Down

Insert Degree Character (°) Ctrl + Shift + %

Insert Plus/Minus Character (±) Ctrl + Shift + -

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 79

Table 2-1: Shortcut Keys – Categorical Listing (continued)
Symbol Shortcuts (cont.)

Function Keys

Insert Multiply Character (×) Ctrl + Shift + *

Insert Divide Character (÷) Ctrl + Shift + /

Insert Radical Character (√) Ctrl + Shift + R

Insert Infinity Character (∞) Ctrl + Shift + I

Insert Delta Character (δ) Ctrl + Shift + D

Insert Mu Character (µ) Ctrl + Shift + M

Insert Omega Character (ω) Ctrl + Shift + O

Insert Pi Character (π) Ctrl + Shift + P

Insert Sigma Character (σ) Ctrl + Shift + S

Using the Propeller Tool

Page 80 · Propeller Manual v1.0

Listing by Key
Table 2-2: Shortcuts By Key

Single Key or Mouse
Function Keys

F2 Rename Folder/File (in Folder List or File List)

F3 Find Next

F4 Replace

F7 Identify Hardware

F8 Compile Current File and View Information

F9 Compile Current File and Update Status

F10 Compile Current File, Load RAM and Run

F11 Compile Current File, Load EEPROM and Run

End Jump to end of line

Esc Select Full Source view mode or set focus on active edit

Home Jump to start of line

Insert Change edit mode to Align (default), Insert or Overwrite

Page Down Scroll down one page size

Page Up Scroll up one page size

Tab Insert white space up to next tab position

Double-Click Select word

Triple-Click Select line

Ctrl + …

Ctrl + A Select All

Ctrl + B Toggle Bookmark on current line

Ctrl + C Copy to Clipboard

Ctrl + E Toggle Show/Hide Explorer

Ctrl + F Find / Replace

Ctrl + I Toggle Block Group Indicators

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 81

Table 2-2: Shortcuts By Key (continued)
Ctrl + … (cont.)

Function Keys

Ctrl + N New

Ctrl + O Open

Ctrl + S Save

Ctrl + P Print

Ctrl + T Select Top File

Ctrl + V Paste from Clipboard

Ctrl + W Close

Ctrl + X Cut to Clipboard

Ctrl + Y Delete current line

Ctrl + Z Undo

Ctrl + F4 Replace then Find Next

Ctrl + F8 Compile Top File and View Information

Ctrl + F9 Compile Top File and Update Status

Ctrl + F10 Compile Top File, Load RAM and Run

Ctrl + F11 Compile Top File, Load EEPROM and Run

Ctrl + F4 Replace then Find Next

Ctrl + Down Decrease font size

Ctrl + End Jump to end of file

Ctrl + Home Jump to start of file

Ctrl + Insert Toggle edit mode between Align and Insert

Ctrl + Left Jump to start of previous word

Ctrl + Page Down Jump to end of page

Ctrl + Mouse Wheel Down Decrease font size

Ctrl + Mouse Wheel Up Increase font size

Ctrl + Up Increase font size

Using the Propeller Tool

Page 82 · Propeller Manual v1.0

Table 2-2: Shortcuts By Key (continued)
Alt + …

Alt + C Select Condensed view mode

Alt + D Select Documentation view mode

Alt + S Select Full Source view mode

Alt + Q Close

Alt + U Select Summary view mode

Alt + Down Select alternate view mode (towards Documentation)

Alt + Left Select previous edit tab

Alt + Mouse Wheel Down Select alternate view mode (towards Documentation)

Alt + Mouse Wheel Up Select alternate view mode (towards Full Source view)

Alt + Right Select next edit tab

Alt + Up Select alternate view mode (towards Full Source view)

Shift + …

Shift + End Select to end of line

Shift + Home Select to start of line

Shift + Page Down Select to next page below

Shift + Page Up Select to previous page above

Shift + Tab Delete white space back to previous tab position

Shift + Mouse Wheel Down Scroll right

Shift + Mouse Wheel Up Scroll left

Ctrl + Alt + …

Ctrl + Alt + . Insert Rectangle Bullet Character (‣)

Ctrl + Alt + $ Insert Yen Character (¥)

Ctrl + Alt + 1 Insert Negative One Superior Character ()

Ctrl + Alt + S Save All

Ctrl + Alt + Down Insert Down Arrow Character ()

Ctrl + Alt + Left Insert Left Arrow Character ()

Ctrl + Alt + Right Insert Right Arrow Character ()

Ctrl + Alt + Up Insert Up Arrow Character ()

2: Using the Propeller Tool

Propeller Manual v1.0 · Page 83

Table 2-2: Shortcuts By Key (continued)

Ctrl + Shift + …
Function Keys

Ctrl + Shift + $ Insert Euro Character (€)

Ctrl + Shift + % Insert Degree Character (°)

Ctrl + Shift + * Insert Multiply Character (×)

Ctrl + Shift + - Insert Plus/Minus Character (±)

Ctrl + Shift + . Insert Bullet Character (•)

Ctrl + Shift + / Insert Divide Character (÷)

Ctrl + Shift + = Insert Approximate Character (≈)

Ctrl + Shift + 1 Insert One Superior Character (¹)

Ctrl + Shift + 2 Insert Two Superior Character (²)

Ctrl + Shift + 3 Insert Three Superior Character (³)

Ctrl + Shift + B Toggle Show/Hide Bookmarks

Ctrl + Shift + D Insert Delta Character (δ)

Ctrl + Shift + I Insert Infinity Character (∞)

Ctrl + Shift + M Insert Mu Character (µ)

Ctrl + Shift + N Toggle Show/Hide Line Numbers

Ctrl + Shift + O Insert Omega Character (ω)

Ctrl + Shift + P Insert Pi Character (π)

Ctrl + Shift + R Insert Radical Character (√)

Ctrl + Shift + S Insert Sigma Character (σ)

Ctrl + Shift + Y Delete to end of line

Ctrl + Shift + Z Redo

Ctrl + Shift + End Select to end of file

Ctrl + Shift + Home Select to start of file

Ctrl + Shift + Left Select to start of previous word

Ctrl + Shift + Page Down Select to end of page

Ctrl + Shift + Page Up Select to start of page

Ctrl + Shift + Right Select to start of next word

Using the Propeller Tool

Page 84 · Propeller Manual v1.0

Ctrl + Shift + … (cont.)

Function Keys

Ctrl + Shift + Tab Select previous edit tab

Table 2-2: Shortcuts By Key (continued)

Ctrl + Shift + Alt…
Function Keys

Ctrl + Shift + Alt + $ Insert Sterling Character (£)

Ctrl + Shift + Alt + < Insert Left Bullet Character (◀)

Ctrl + Shift + Alt + > Insert Right Bullet Character (▶)

Ctrl + Shift + Alt + Down Insert Down Arrow Bullet Character (↓)

Ctrl + Shift + Alt + Left Insert Left Arrow Bullet Character (←)

Ctrl + Shift + Alt + Right Insert Right Arrow Bullet Character (→)

Ctrl + Shift + Alt + Up Insert Up Arrow Bullet Character (↑)

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 85

Chapter 3: Propeller Programming Tutorial
This chapter assumes you are familiar with the general programming concepts of other
programming languages, including object-oriented languages. Discussion of some basic
concepts will be presented, but some prior knowledge and programming experience is
recommended.

In addition to the above, this material should be read only after reading Chapters 1 and 2. If
you have not read through all of Chapter 1 and at least most of Chapter 2, please do so before
continuing with this chapter. Many items presented in Chapters 1 and 2 will be referred to
here, but will not be described in detail.

The following Propeller Programming Tutorial describes Propeller chip programming
concepts in a step-by-step fashion with quick review notes along the way. It is best to read
this chapter from its start to its finish, without skipping around, while working with your
computer and the Propeller chip and trying each example as it is taught. The earlier exercises
are basic in nature and each later exercise covers more advanced material.

Concept
The Propeller product (hardware, firmware and software) was designed with many well-
known and also many brand-new concepts in mind. To this end, we designed the hardware,
firmware, software and the two programming languages that go with it (Spin and Propeller
Assembly) completely from scratch to give users the most direct and efficient control over
the Propeller device.

To fully understand and utilize these tools and languages, it is best that you approach it all
with an open mind. In other words, please be careful not to let legacy programming concepts
and methods prevent you from experiencing the advantages made available by the Propeller
chip and its programming languages. We believe that some legacy concepts do not belong in
true real-time processing environments since they tend to bring turmoil to those who rely on
them.

Propeller Programming Tutorial

Page 86 · Propeller Manual v1.0

Propeller Languages (Spin and Propeller Assembly)
The Propeller chip is programmed using two languages designed specifically for it: 1) Spin, a
high-level object-based language, and 2) Propeller Assembly, a low-level, highly-optimized
assembly language. There are many hardware-based commands in Propeller Assembly that
have direct equivalents in the Spin language. This makes learning both languages, and the
use of the Propeller chip overall, much easier to handle.

The Spin language is compiled by the Propeller Tool software into tokens that are interpreted
at run time by the Propeller chip’s built-in Spin Interpreter. Those familiar with other
programming languages usually find that Spin is easy to learn and is well-suited for many
applications. With Spin you can easily perform high-level/low-bandwidth tasks and can even
create code to handle some typically higher-bandwidth features like asynchronous serial
communication at 19200 baud.

The Propeller Assembly language is assembled into pure machine code by the Propeller Tool
and is executed in its pure form at run time. Assembly language programmers enjoy
Propeller Assembly’s nature and its ability to achieve high-bandwidth tasks with very little
code.

Propeller Objects (see below) can be written entirely in Spin or can use various combinations
of Spin and Propeller Assembly. It’s possible to write objects almost entirely in Propeller
Assembly as well, but at least two lines of Spin code are required to launch the final
application.

Propeller Objects
The Propeller chip’s Spin language is object-based and serves as the foundation for every
Propeller Application.

What is an Object?
Objects are really just programs written in a way that: 1) create a self-contained entity, 2)
perform a specific task, and 3) may be reused by many applications.

For example, the Keyboard object and Mouse object each come with the Propeller Tool
software. The Keyboard object is a program that interfaces the Propeller chip to a standard
PC-style keyboard. Similarly, the Mouse object interfaces to a standard computer mouse.
Both of these objects are self-contained programs with carefully designed software interfaces
that allow other objects, and developers, to use them easily.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 87

By using existing objects, more sophisticated applications can be built very quickly. For
instance, an application can include both the Keyboard and Mouse objects, and with just a
few additional lines of code, a standard user interface is realized. Since the objects are self-
contained and provide a concise software interface, application developers don’t necessarily
need to know exactly how an object achieves its task just to be able to use it. In a similar
way, a driver of a car doesn’t necessarily know how the engine works, but as long as that
driver understands the interface (the ignition key, gas pedal, brakes, etc.) he or she can make
the car accelerate and decelerate.

Well-written objects can be created by one developer and easily used by many different
applications from many different developers.

Objects and Applications
A Propeller Object consists of Spin code and, optionally, Propeller Assembly code; see
Figure 3-1. We’ll simply call these “objects” from now on.

Propeller Object

Spin Code

Propeller Assembly Code

Figure 3-1: Propeller
Object

Objects are stored on your computer as files with “.spin” extensions, therefore you should
always think of each Spin file as an object.

Propeller Programming Tutorial

Page 88 · Propeller Manual v1.0

Figure 3-2: Object Files consist of Spin, and possibly Propeller Assembly, and are
stored as “.spin” files on your computer’s hard drive.

Each object can be thought of as a “building block” for an application. An object may choose
to utilize one or more other objects in order to build a more sophisticated application. This is
loosely called “referencing” or “including” another object. When an object references other
objects it forms a hierarchy where it is the object at the top, as in Figure 3-3. The topmost
object is referred to as the “Top Object File” and is the starting point for compiling a
Propeller Application.

Figure 3-3: Object
Hierarchy

When compiled, the
Graphics Demo object
is the “Top Object
File” that references
the other three
objects shown below
it.

In the above figure, the Graphics Demo object references three other objects: TV, Graphics,
and Mouse. If the Graphics Demo object is compiled by the user, it is considered the Top

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 89

Object File and the other three objects are loaded and compiled with it resulting in a finished
program called a Propeller Application, or “application” for short.

Applications are formed from one or more objects. The application is really a specially
compiled binary stream that consists of executable code and data and can be run by the
Propeller chip.

When downloaded, the application is stored in the Propeller chip’s Main RAM and optionally
into an external EEPROM. At run time, the application is executed by one or more of the
Propeller chip’s processors, called cogs, as directed by the application itself.

Figure 3-4:
Downloading

Applications
consisting of one
or more objects are
downloaded to the
Propeller chip’s
RAM, and
optionally, its
external EEPROM.

Propeller Programming Tutorial

Page 90 · Propeller Manual v1.0

Connect for Downloading
In order to download a Propeller Application from the PC, you first need to connect the
Propeller chip properly.

• If you have a Propeller Demo Board (Rev C or D), it includes the Propeller chip and
all the necessary circuitry. Connect it to a power supply and the PC’s USB cable and
switch the power on. You may also need to install the USB drivers as directed by the
Propeller Demo Board’s documentation.

• If you do not have the Propeller Demo Board, we’ll assume you have the Propeller
chip and that you are experienced with wiring prototype circuits. Refer to Package
Types on page 14 (showing the Propeller pinout) and Hardware Connections on page
17 for an example circuit showing the connections for power and programming. If
you are using the Propeller Plug device, you may also need to install the USB drivers
as directed by its documentation. The rest of this chapter relies heavily on circuitry
similar to that of the Propeller Demo Board. In addition to the above power and
programming connections, include the components and connections of the following
schematic in your prototype circuit. You may also refer to the Propeller Demo
Board’s schematic; downloadable from the Parallax website.

Figure 3-5: Propeller Tutorial Schematic

If you have made the connections suggested above, you should be able to verify and identify
the Propeller chip via the Propeller Tool software. Start the Propeller Tool software (Version
1.0) and then press the F7 key (or select Run → Identify Hardware… from the menu). If the

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 91

Propeller chip is powered and connected to the PC properly, you should see an “Information”
dialog similar to Figure 3-6.

Figure 3-6: The
Information Dialog

The port (COM5) may
be different on your
computer.

Quick Review: Intro
• The Propeller is programmed using two custom-designed languages: Spin and

Propeller Assembly.
o Spin is a high-level, object-based language interpreted at run time.
o Propeller Assembly is a low-level, optimized assembly language which is

executed directly at run time.
• Objects are programs that:

o are self-contained.
o perform a specific task.
o may be reused by many applications.

• Well-written objects from one developer can easily be used by other developers and
applications.

• A Propeller Object:
o consists of two or more lines of Spin code and possibly Propeller Assembly

code.
o is stored on the computer as a file with a “.spin” extension.
o may use one or more other objects to build a sophisticated application.

• Propeller Applications:
o consist of one or more objects.
o are compiled binary streams containing executable code and data.
o are run by the Propeller chip in one or more cogs (processors) as directed by

the application.
• The topmost object in a compiled application is called the “Top Object File.”

Propeller Programming Tutorial

Page 92 · Propeller Manual v1.0

Exercise 1: Output.spin – Our First Object
The following is a simple object, written in Spin, that will toggle an I/O pin high and low
repeatedly. Start the Propeller Tool software and enter this program into the editor. We’ll
explain how it works in a moment. Make sure the “PUB” line begins in column 1 (the leftmost
edge of the edit pane) and pay very close attention to each line’s indention; it’s important for
proper operation.

PUB Toggle
 dira[16]~~
 repeat
 !outa[16]
 waitcnt(3_000_000 + cnt)

While indentation is critical, capitalization is not. Propeller code is not case-senitive.
However, throughout this book, reserved words appear in bold all-captials, except in code
snippets and excerpts, to help you become familiar with them.

After checking that you’ve typed it in properly, press the F10 key (or select Run → Compile
Current → Load RAM + Run from the menu) to compile and download our example
program. If the program you entered is syntactically correct and the Propeller chip is
properly powered and connected to the PC, you should see a “Propeller Communication”
dialog appear momentarily on the screen, like the one in Figure 3-7, and now the LED on I/O
pin 16 of the Propeller chip should be blinking about twice per second. What we just
accomplished is what is shown at the top of Figure 3-4: Downloading on page 89.

Figure 3-7: Propeller
Communication
Dialog

What really happened was probably too fast to see because the example program we entered
is so small. When you pressed F10 it caused the Propeller Tool to compile the source code
you entered and turn it into a Propeller Application. The Propeller Tool then searched for a
Propeller chip connected to the PC and downloaded the application into its RAM. Finally,
the Propeller started running the application from RAM, blinking the LED on I/O pin 16.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 93

Downloading to RAM vs. EEPROM
Before we explain the code, let’s take a closer look at the downloading process. Since our
code was downloaded to RAM only, power cycling or resetting the Propeller will cause RAM
contents to be lost and the program to stop permanently. Try pressing the reset button. The
LED should turn off and never turn on again.

What if we don’t want it to stop permanently? We could download to EEPROM instead of
just RAM. Let’s download again, but this time press the F11 key (or select Run → Compile
Current → Load EEPROM + Run from the menu) to compile and download our example
program to EEPROM. This is what is shown at the bottom of Figure 3-4: Downloading on
page 89. As you may see from the figure, this actually downloaded to RAM first, then the
Propeller chip programmed its external EEPROM, then started running the application from
RAM, blinking the LED on I/O pin 16.

You probably noticed that the “Propeller Communication” dialog stayed on the screen much
longer; EEPROMs take much longer to program than RAMs do.

Try pressing the reset button now. When you release the reset button, you’ll notice a delay of
about 1 ½ seconds and then the LED starts blinking. This is exactly what we wanted; a more
permanent application in our Propeller chip.

Upon waking up from reset, the Propeller chip performed the boot-up procedure detailed on
page 18. During that procedure, it determined it needed to boot up from the external
EEPROM and then it took approximately 1½ seconds to completely copy the 32 Kbytes of
content into its RAM and start running it.

Downloading only to RAM is convenient for development sessions because it is much faster.
Downloading to both RAM and EEPROM to make the application more permanent is best
done only when necessary because of the extra download time required.

A word of caution: If you download to EEPROM one or more times then revise your program
and download to RAM only, when manually reset, the Propeller will boot up with your old
program. This may make sense now, but that result can be very confusing when you’re not
paying attention. If things don’t work right after a reset occurs, suspect the program in
EEPROM first.

Propeller Programming Tutorial

Page 94 · Propeller Manual v1.0

Exercise 1: Output.spin Explanation
Now for an explanation of the source code:

PUB Toggle
 dira[16]~~
 repeat
 !outa[16]
 waitcnt(3_000_000 + cnt)

The first line, PUB Toggle, declares that we’re creating a “public” method called “Toggle.” A
method is the object-oriented term for “procedure” or “routine.” We chose the name Toggle
simply because it is descriptive of what the method does and we knew it is a unique symbol;
it must be a unique symbol and conform to the Symbol Rules on page 159. We’ll describe
the term PUB, “public,” in more detail later, but it’s important to note that every object must
contain at least one public (PUB) method.

The rest of the code is logically part of the Toggle method. We indented each line by two
spaces from the PUB’s column to make that more clear; this indenting isn’t required but is a
good habit for clarity.

The first line of the Toggle method (second line of our example), dira[16]~~, sets the
direction of I/O pin 16 to output. The DIRA symbol is the direction register for I/O pins P0
through P31; clearing or setting bits within it changes the corresponding I/O pin’s direction to
input or output. The [16] following dira indicates we want to access only the direction
register’s bit 16; the one that corresponds to I/O pin 16. Finally, the ~~ is the Post-Set
operator that causes direction register bit 16 to be set to high (1); which makes I/O pin 16’s
direction an output. The Post-Set operator is a shorthand way of saying something like
dira[16] := 1 which may look familiar to you from other languages.

The next line, repeat, creates a loop consisting of the two lines of code below it. This REPEAT
loop runs infinitely, toggling P16, waiting ¼ second, toggling P16, waiting ¼ second, etc.

The next line, !outa[16], toggles the state of I/O pin 16 between high (VDD) and low (VSS).
The OUTA symbol is the output state register for I/O pins P0 through P31. The [16] in
!outa[16] indicates we want to access only the output register’s bit 16; the one that
corresponds to I/O pin 16. The ! at the start of this statement is the Bitwise Not operator; it
toggles the state of all bits specified to its right (the bit corresponding to I/O pin 16 in this
case).

The last line, waitcnt(3_000_000 + cnt), causes a delay of 3 million clock cycles. WAITCNT
means “Wait for System Counter.” The cnt symbol is the System Counter register; CNT

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 95

returns the current value of the System Counter, so this line means “wait for System Counter
to equal 3 million plus its current value.” In this code example, we didn’t specify any clock
settings for the Propeller chip, so by default it runs with its internal fast clock (about 12 MHz)
meaning a delay of 3 million clock cycles is about ¼ second.

Remember how we said to pay close attention to each line’s indenting? Here is where
indenting is required: the Spin language uses levels of indention on lines following
conditional or loop commands (IF, CASE, REPEAT, etc.) to determine which lines belong to that
structure. In this case, since the two lines following repeat are indented to the right by at
least one space beyond repeat’s column, those two lines are considered to be a part of the
repeat loop. If you have trouble recognizing these structural groupings, the Propeller Tool
can make them more visible on-screen through the Block-Group Indicators feature. Use
Ctrl+I to toggle this feature on or off. Figure 3-8 shows our example code with these
indicators visible.

Figure 3-8: Block-
Group Indicators

Ctrl+I toggles them on
and off.

If you haven’t saved this example object yet, you may do so by pressing Ctrl+S (or selecting
File → Save from the menu). You may save it in a folder of your choosing but make sure to
save it with the filename “Output.spin” since some exercises below rely on it.

Propeller Programming Tutorial

Page 96 · Propeller Manual v1.0

Quick Review: Ex 1
• Applications are downloaded to either Propeller RAM only or RAM and EEPROM.

o Those in RAM will not survive power cycling or resetting the Propeller chip.
o Those in EEPROM are loaded into RAM on boot-up in approximately 1½

seconds.
o To download the current object to:

 RAM only: press F10 or select Run → Compile Current → Load
RAM + Run.

 RAM + EEPROM: press F11 or select Run → Compile Current →
Load EEPROM + Run.

• Spin language:
o Method means “procedure” or “routine.”
o PUB Symbol declares a public method called Symbol. Every object must

contain at least one public (PUB) method. See PUB on page 287 and Symbol
Rules on page 159.

o DIRA is the direction register for I/O pins 0-31. Each bit sets the
corresponding I/O pin’s direction to input (0) or output (1). See DIRA, DIRB
on page 212.

o OUTA is the output state register for I/O pins 0-31. Each bit sets the
corresponding I/O pin’s output state to low (0) or high (1). See OUTA, OUTB
on page 280.

o Registers can use indexes, like [16], to access individual bits within them.
See DIRA, DIRB on page 212 or OUTA, OUTB on page 280.

o ~~ following a register/variable sets its bit(s) high. See Sign-Extend 15 or
Post-Set ‘~~’ on page 263 in the Operators section.

o ! preceding a value/register/variable sets its bit(s) opposite their current state.
See Bitwise NOT ‘!’on page 272 in the Operators section.

o REPEAT creates a loop structure. See REPEAT on page 293.
o WAITCNT creates a delay. See WAITCNT on page 322.
o Indention at the start of lines:

 indicates they belong to the preceding structure; it is required for
lines following conditional or loop commands (like REPEAT).
(Indenting is optional after block indicators, such as PUB.)

 Ctrl+I toggles visible block-group “structure” indicators on and off.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 97

Cogs (Processors)
The Propeller has eight identical processors, called cogs. Each cog can be individually set to
run or stop at any time as directed by the application it is running. Each cog can be
programmed to run independent tasks or cooperative tasks with other cogs, as needed, and
this can change as desired during the application’s run time.

But we didn’t specify which cog(s) to run in our Output.spin example, so how did it work?
For a review, you could read Boot Up Procedure, page 18, and Run-Time Procedure, page 18,
in Chapter 1, but we’ll discuss it a bit more here.

For our example, upon power-up, the Propeller chip starts the first processor (Cog 0) and
loads it with a built-in Boot Loader program. The Boot Loader program is copied from the
Propeller chip’s ROM into Cog 0’s internal RAM memory. Cog 0 then runs the Boot Loader
program in its internal memory and the Boot Loader soon determines it should copy user-
code from the external EEPROM. So Cog 0 copies the entire 32 K byte EEPROM contents
into the Propeller chip’s 32 K byte main RAM memory (separate from the cog’s internal
memory). Then the Boot Loader program makes Cog 0 reload itself with the built-in Spin
Interpreter; the Boot Loader program in Cog 0 halts at this point while it is being overwritten
with the Spin Interpreter program.

Main RAM

C
og

 0
R

A
M

C
og

 1
R

A
M

C
og

 2
R

A
M

C
og

 7
R

A
M

Application

...

ROMInterpreter

Figure 3-9: Running
Output.spin

Notice that the Spin
Interpreter, not the
Spin Application, is
loaded into Cog RAM.
The Spin Application
resides in Main RAM
and is interpreted by
the Spin Interpreter
program that is
running in the cog.

Now, Cog 0 is running the Spin Interpreter, which fetches and executes our application’s
code from main memory (RAM). This is shown in Figure 3-9. Since our application consists

Propeller Programming Tutorial

Page 98 · Propeller Manual v1.0

entirely of interpreted Spin code, it continues to reside only in main memory while a cog
running the Spin Interpreter (Cog 0 in this case) reads, interprets and effectively executes it.
No other cogs were started during boot up or during our application’s execution; the other
seven cogs remain in a dormant state consuming virtually no current at all. Later, we’ll
change our application to start other cogs as well.

Exercise 2: Output.spin - Constants
Let’s enhance our program a little. Suppose we want to make it easy to change the I/O pin
and the length of the delay used. As it is written currently, we’d have to find and change the
pin number in two places and the delay in yet another place. We can make it better by
defining those items in a separate place that is easy to find and edit. Look at the following
example and edit your code to match (we highlighted every new or modified element).

CON
 Pin = 16
 Delay = 3_000_000

PUB Toggle
 dira[Pin]~~
 repeat
 !outa[Pin]
 waitcnt(Delay + cnt)

The new CON block at the top of the code defines global constants for the object (see CON,
page 194.) In it, we created two symbols, Pin and Delay, and assigned the constant values 16
and 3,000,000 to them, respectively. We can now use the symbols Pin and Delay elsewhere
in the code to represent our constant values 16 and 3,000,000. Notice that we used
underscores (_) to separate the “thousands” groups in the number 3,000,000? Commas are
not allowed there but underscores are allowed anywhere inside of constant values; this makes
large numbers more readable.

In the Toggle method, we replaced both occurrences of 16 with the symbol Pin, and replaced
the 3_000_000 with the symbol Delay. When compiled, the Propeller Tool will use the
constant values in place of their respective symbols. This makes it easy, later on, to change
the pin number or delay at will since we only have to change it up at the top of code in a
place that is easy to find and understand.

Try changing the Delay constant from 3,000,000 to 500,000 and download again; the LED
should now flicker at a rate of 12 blinks per second (24 toggles per second). You can also

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 99

change the Pin constant from 16 to 17 and download again to see a different LED blink.
NOTE: you can try 18 through 23 as well, but on the Propeller Demo Board they are
connected in pairs with resistors for the VGA driver circuit, so two LEDs will blink at once.

Block Designators
You may have noticed that the backgrounds of the CON and PUB blocks of code were colored
differently when you entered them into the editor. This is the Propeller Tool’s way to
indicate these are distinct blocks of code.

Spin code is organized in blocks that have distinct purposes. CON and PUB are block
designators that indicate the start of a “constant block” and “public method block”,
respectively. Every block designator must start in the first column of text (the leftmost edge
of the edit pane) on a line. There are six types of blocks in the Spin language: CON, VAR, OBJ,
PUB, PRI, and DAT. The following is a list of the block designators and their purpose:

CON Global Constant Block. Defines symbolic constants that can be used anywhere
within the object (and in some cases outside the object) wherever numeric values
are allowed.

VAR Global Variable Block. Defines symbolic variables that can be used anywhere
within the object wherever variables are allowed.

OBJ Object Reference Block. Defines symbolic references to other existing objects.
These are used to access those objects and the methods and constants within
them.

PUB Public Method Block. Public methods are code routines that are accessible both
inside and outside the object. Public routines provide the interface to the object;
the way methods outside of the object interact with the object. There must be at
least one PUB declaration in every object.

PRI Private Method Block. Private methods are code routines that are accessible only
inside the object. Since they are not visible from the outside, they provide a level
of encapsulation to protect critical elements within the object and help maintain
the integrity of the object’s purpose.

DAT Data Block. Defines data tables, memory buffers, and Propeller Assembly code.
The data block’s data can be assigned symbolic names and can be accessed via
Spin code and assembly code.

There can be multiple occurrences of each block type, arranged in any order desired, but there
must be at least one PUB block per object. Even though the number of blocks and their order

Propeller Programming Tutorial

Page 100 · Propeller Manual v1.0

is quite flexible, typically there is only one occurrence of CON, VAR, OBJ and DAT blocks,
multiple occurrences of PUB and PRI blocks, and the suggested order for typical programs is
the order they are given in the list above.

The very first PUB block in the very first object (the Top Object File where compilation starts
from) automatically becomes the Propeller Application’s starting point; it is executed first
when the application starts. No other public or private method is executed automatically, but
rather they are executed only as determined by the natural flow of the application.

The Propeller Tool automatically colors the backgrounds of each block differently, even two
consecutive occurrences of the same block type, in order to make it easy to identify the type,
start, and end of each block. This in no way affects the actual source code itself, it is simply
an indicator for on-screen use that is intended to solve a typical problem with source code;
that is, as the code gets larger, it is harder to find a particular method quickly as you scroll up
and down through the code unless you have some kind of separator between methods. The
background color coding serves as an automatic separator that prevents you from having to
waste time typing in text-based separators manually.

Exercise 3: Output.spin - Comments
Our Output object is better now, but it still could be more readable. How about adding some
comments to the code to make it easier for other readers to understand? The next example
functions the same as before, but with a number of comments (human-readable, non-
executable text) above and to the right of our existing code.

These comments should help people figure out what it does. There are four types of
comments supported by the Propeller Tool (all of which are shown in this example):

 '… - Single-line code comment (apostrophe).

 ''… - Single-line document comment (two apostrophes, NOT a quotation mark).

 {…} - Multi-line code comment (curly braces).

 {{…}} - Multi-line document comment (two curly braces).

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 101

{{Output.spin

Toggles Pin with Delay clock cycles of high/low time.}}

CON
 Pin = 16 { I/O pin to toggle on/off }
 Delay = 3_000_000 { On/Off Delay, in clock cycles}

PUB Toggle
''Toggle Pin forever
{Toggles I/O pin given by Pin and waits Delay system clock cycles
in between each toggle.}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat 'Repeat following endlessly
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Single line comments begin with at least one apostrophe (') and continue until the end of the
line. Executable code can be to the left of a single-line comment but not to the right of it
since that would make it “commented out.” The “'Set I/O pin…” and “'Repeat
following…” comments are examples of single-line comments.

Multi-line comments begin with at least one open curly brace ({) and end with at least one
close curly brace (}). Unlike single-line comments, executable code can be to the left and
the right of multi-line comments. Multi-line comments can actually be entirely on one line,
or can span across multiple lines. The “{On/Off Delay...}” and “{Toggles I/O pin

given...}” comments are both examples of a multi-line comments.

If a comment begins with just one apostrophe (') or one open curly brace ({), it is a “code”
comment. This is a comment meant to be read by code developers while reviewing the
source code itself.

If a comment begins with either two apostrophes ('') or two open curly braces ({{), with
no spaces in between, it is a “document” comment. This is a special type of comment that is
visible within the code, but can also be extracted by the Propeller Tool into a document
formatted for easier reading, containing no executable code.

As discussed in Chapter 2View Modes on page 61, the Propeller Tool’s editor has a
Documentation view mode. With the above code entered into the editor, if the
Documentation view mode is selected, the code is compiled and the document comments are

Propeller Programming Tutorial

Page 102 · Propeller Manual v1.0

shown along with some statistics about the compiled code. The following is what this looks
like:

Output.spin

Toggles Pin with Delay clock cycles of high/low time.
Object "Output" Interface:

PUB Toggle

Program: 8 Longs
Variable: 0 Longs

PUB Toggle

Toggle Pin forever

If you compare this to our code you should recognize all the text that came directly from our
document comments. The section “Object "Output" Interface:” is created automatically by
the Propeller Tool; it lists all the public methods (just PUB Toggle in this case) and shows that
the program size is 8 longs (32 bytes) and no variables were used. Following that, it lists all
the public methods again, with an overbar above each method, and the document comments
that belong with them. This section shows the public Toggle method and our last document
comment, “Toggle Pin forever,” indicating what the Toggle method does.

Adding document comments to your code allows you to create just one file that contains both
source code and documentation for an object. This is extremely convenient for developers
since they can easily switch to Documentation view to learn how to use an object they are
unfamiliar with. To support this further, the Propeller Tool’s Parallax font has many special
characters for including schematics, timing diagrams, and mathematical symbols right in the
objects that they relate to, like those shown in Figure 2-1 on page 36.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 103

Quick Review: Ex 2 & 3
• The Propeller has eight identical processors, called cogs.

o Any number of cogs can be running or halted at any time as directed by the
application.

o Each cog can run independent or cooperative tasks.
o At boot-up, Cog 0 runs the Spin Interpreter to execute the main memory-

based Spin application.
• Spin language:

o Organized in blocks that have distinct purposes.
 CON - Defines global constants, see page 194.
 VAR - Defines global variables, see page 315.
 OBJ - Defines object references, see page 247.
 PUB - Defines a public method, see page 287.
 PRI - Defines a private method, see page 286.
 DAT - Defines data, buffers, and assembly code, see page 208.

o Block designators must be in column 1 of a line.
o Each block type can occur multiple times and can be arranged in any order.
o The very first PUB block in the very first object is the Propeller Application’s

starting point.
o Underscores “_” in constants denote logical groupings, like thousands in

decimal numbers.
o Types of comments:

 Code comments; visible in source code only. Great for notes to
developers regarding function of specific code.

▫ '… – Single-line; starts at apostrophe and continues to
end of line.

▫ {…} – Multi-line; starts and ends with single curly
braces.

 Document comments; visible in source code and documentation
view. Great for object documentation. Can even include schematics,
timing diagrams and other special symbols.

▫ ''… – Single-line; starts at double-apostrophe and
continues to end of line.

▫ {{…}} – Multi-line; starts and ends with double-curly
braces.

Propeller Programming Tutorial

Page 104 · Propeller Manual v1.0

Exercise 4: Output.spin – Parameters, Calls, and Finite Loops
Our current object from Exercise 3 is interesting, but still isn’t very flexible; after all, the
Toggle method only works with a specific pin and delay. Let’s make the Toggle method
more flexible and also give it the ability to toggle a specific, finite number of times. Look at
the following example and edit your code to match. We’ve crossed out the elements that
should be removed, and highlighted every new element.

{{Output.spin

Toggles Pin with Delay clock cycles of high/low time.}}
Toggles two pins, one after another.}}

CON
 Pin = 16 { I/O pin to toggle on/off }
 Delay = 3_000_000 { On/Off Delay, in clock cycles}

PUB Main
 Toggle(16, 3_000_000, 10) 'Toggle P16 ten times, 1/4 s each
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty times, 1/6 s each

PUB Toggle(Pin, Delay, Count)
''Toggle Pin forever
{Toggles I/O pin given by Pin and waits Delay system clock cycles
in between each toggle.}
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Compile and download this application to see the results. The LED on pin 16 should blink
five times (10 toggles) with 1/4th second durations and intervals, then it will stop and the
LED on pin 17 will blink ten times (20 toggles) at 1/6th second durations and intervals.

In this example we removed the constant (CON) block, added a new method called Main, and
made some minor modifications to the Toggle method. The Toggle method still performs the
actual pin-toggling action, but the Main method tells it when and how to do so.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 105

The Toggle Method
Let’s look closely at the Toggle method first. In its declaration, we added (Pin, Delay,
Count) immediately to the right of its name. This creates a “parameter list” for our Toggle
method consisting of three parameters, Pin, Delay and Count. A parameter list is one or more
symbols that must be filled with values when the method is called; more on that in a moment.
Each parameter symbol is a long-sized (4-byte) variable that is local to the method; they are
all accessible within the method but not outside of the method. Parameter variables can be
modified within the method but those modifications do not affect anything outside the
method.

Now, our Toggle method can be called by other methods and given unique values to use as its
Pin, Delay and Count symbols; it is more flexible since we can adjust its operational
parameters.

Inside of Toggle, nothing changed except the REPEAT command, which is now repeat Count.
Remember, in our previous examples the REPEAT loop was an infinite loop; it never stopped.
Well, if you immediately follow REPEAT with an expression, it becomes a finite loop that
iterates the number of times indicated by the expression. In this case our REPEAT loop will
execute Count times, then it will stop, and any lines of code below the end of the loop will
begin to execute.

The Main Method
Now look at the Main method. Main’s first line, Toggle(16, 3_000_000, 10), is a method call;
it causes the Toggle method to execute using 16 for its Pin parameter, 3 million for its Delay
parameter, and 10 for its Count parameter. The following line looks similar, Toggle(17,
2_000_000, 20), but it calls the Toggle method with different values: 17 for Pin, 2 million for
Delay, and 20 for Count.

Notice that we put the Main method above Toggle? Remember that the first public method in
the first object is automatically executed when the application is started by the Propeller. We
are only using one object in this case, so Main is automatically executed after we download
this application.

When Main’s first line, Toggle(16, 3_000_000, 10), is executed, the Toggle method is called
and it executes its function: blinking the LED on pin 16 five times with a delay of 1/4th
second in between. Then, because Toggle has no more code to execute after the loop, it
returns to the caller, Main, and execution continues at the next line of Main: Toggle(17,
2_000_000, 20). When that line executes, the Toggle method is called, and it blinks the LED
on pin 17 ten times with a delay of 1/6th second in between. Finally, the Toggle method
returns to Main again, but Main has no more code to execute so it exits and the application

Propeller Programming Tutorial

Page 106 · Propeller Manual v1.0

terminates; the cog stops and the Propeller goes into a low-power mode until the next reset or
power cycle.

Don’t be confused by the look of the code. The two methods, Main and Toggle, are shown one
right after another, but they are treated as distinct routines starting at their PUB block
declarations and ending at the next block declaration or the end of the source code, whichever
comes first. In other words, the Propeller knows that the Toggle method is not a part of the
Main method’s executable code.

Also note we’ve still used just one cog in our example, and the entire application is executed
serially: first blink P16, then stop, blink P17, then stop. We’ll begin to use multiple cogs in
the next exercise.

Exercise 5: Output.spin – Parallel Processing
In exercises 1 through 4 we’ve used just one cog to process the application; it toggles P16
only, then stops and toggles P17 only, then terminates. This is called “serial processing.”

Suppose, however, that we want to do things in parallel; simultaneously toggling pins 16 and
17, each at different rates and for different finite periods. Tasks like this can certainly be
done with serial processing and clever programming but it is easier with parallel processing
by having the Propeller activate two cogs. Look at the following example and edit your code
to match. We added a variable block (VAR) and made a slight change to the Main method.

{{Output.spin
Toggle two pins, one after another simultaneously.}}

VAR
 long Stack[9] 'Stack space for new cog

PUB Main
 cognew(Toggle(16, 3_000_000, 10), @Stack) 'Toggle P16 ten…
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty…

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 107

The VAR Block
In the VAR block we defined an array of longs, Stack, which is 9 elements in length. This is
used by the Main method.

The Main Method
We modified the Main method’s first line such that its original code, the call to Toggle, is
encased in a COGNEW command. The COGNEW command starts a new cog to run either Spin or
Propeller Assembly code. In this case, we entered Toggle(16, 3_000_000, 10), for COGNEW’s
first parameter, and @Stack for its second parameter. This means COGNEW will start a new cog
to run the Toggle method and will use the memory starting at the address of Stack for run-
time stack space. The @ is the Symbol Address operator; it returns the actual address of the
variable following it.

To run Spin code, the new cog needs some run-time workspace, called “stack space,” where
it can store temporary things like return addresses, return values, intermediate expression
values, etc. We chose to reserve 9 longs of space (36 bytes), and passed the address of that
space as COGNEW’s second parameter, @Stack. How much stack space is needed? It varies
depending on the Spin code being executed, but we’ll discuss those details later. For now,
rest assured that 9 longs of space is enough for our Toggle method.

Compile and download Output.spin. You should see that the LEDs on P16 and P17 now
simultaneously blink at different rates, 5 times and 10 times, respectively. This is because we
now have two cogs running simultaneously; one toggles P16 while the other toggles P17.

Here’s how it works: Cog 0 starts executing our application’s Main method. The first line of
Main uses the COGNEW command to activate a new cog (Cog 1) to run the Toggle method with
the parameters (16, 3_000_000, 10) passed to it. While Cog 1 is starting up, Cog 0
continues on with the second line of the Main method, the direct call to Toggle with the
parameters (17, 2_000_000, 20) passed to it. Ultimately, Cog 0 is left executing Toggle on
P17 while Cog 1 executes Toggle on P16, simultaneously. When their individual tasks have
expired, they each terminate due to lack of code. Cog 1 terminates the moment it finishes
Toggle. Cog 0 finishes Toggle, returns to Main and then terminates. Cog 1 happens to
terminate earlier than Cog 0 in this case.

Propeller Programming Tutorial

Page 108 · Propeller Manual v1.0

Figure 3-10 illustrates this. The Propeller loads the Spin Interpreter into Cog 0 to execute the
application (the two leftmost arrows in the figure). Then the application requests a new cog
to activate, via the COGNEW command, which causes the Propeller to load the Spin Interpreter
into the next available cog, Cog 1, to execute a smaller portion of Spin code from the
application, the Toggle method (the two rightmost arrows in the figure). Each cog executes
its code completely independently of the other; true parallel processing. Note that towards
the end of the application both cogs are executing the same piece of Spin code, the Toggle
method, but each is using its own workspace and its own values for Pin, Delay and Count.

Main RAM

C
og

 0
R

A
M

C
og

 1
R

A
M

C
og

 2
R

A
M

C
og

 7
R

A
M

Application

...

Spin Code

ROMInterpreter

Figure 3-10: Two
Cogs Running Output
Application and
Toggle method.

Notice that the Spin
Interpreter is loaded
into each Cog’s RAM.
The Spin Application,
Output, resides in
Main RAM interpreted
by Cog 0 and it
launches Cog 1 to run
just the Toggle
method.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 109

Quick Review: Ex 4 & 5
• Spin language:

o Methods:
 To call methods in the same object, use method where method is the

method’s name, see PUB on page 287.
 Methods automatically exit, returning to their caller, when they run

out of code to execute.
 When an application’s first method exits, the application and the cog

it is running in terminate.
o Parameter Lists

 Methods declare parameters in the form: method(param1, param2,
etc.) , see PUB on page 287.

 Parameters are long-sized, local variables that are accessible from
within the method only.

• They can be modified within the method but any
corresponding variables used in the call are left unaffected.

o REPEAT command:
 Infinite loop: repeat
 Finite loop: repeat expression where expression evaluates to the

desired number of loops to iterate through, see REPEAT on page 293.
o Arrays:

 Arrays are defined with the form symbol [count] where symbol is the
array’s symbolic name and count is the number of elements in the
array, see VAR on page 315.

o COGNEW command:
 Activates another cog (processor) to run either Spin or Propeller

Assembly code, see COGNEW on page 189.
 Allows for true parallel processing.
 Requires an address to reserve run-time stack space for Spin code.

o The Symbol Address operator (@) returns the address of the variable
following it. See Symbol Address ‘@’ on page 278.

Propeller Programming Tutorial

Page 110 · Propeller Manual v1.0

Exercise 6: Output.spin & Blinker1.spin – Using Our Object
Now let’s explore the power of objects. All of the preceding exercises created an application
that contained only one object; the Output.spin object is the entire application. This is typical
of how new objects begin their development. Suppose that the motivation behind all this
work was really to create an object other developers could use to easily toggle one or more
I/O pins. Yes, it may be silly to create an object for such a use, but let’s have fun with it
anyway!

It’s time to make our Output object easily interface with other objects. Edit your code to look
like the following:

Example Object: Output.spin

{{ Output.spin }}
Toggle two pins, one after another.}}

VAR
 long Stack[9] 'Stack space for new cog

PUB Main
 cognew(Toggle(16, 3_000_000, 10), @Stack) 'Toggle P16 ten…
 Toggle(17, 2_000_000, 20) 'Toggle P17 twenty…

PUB Start(Pin, Delay, Count)
{{Start new toggling process in a new cog.}}

 cognew(Toggle(Pin, Delay, Count), @Stack)

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}

 dira[Pin]~~ 'Set I/O pin to output direction
 repeat Count 'Repeat for Count iterations
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles

Be sure to save this object with the filename “Output.spin” for later use by our next object.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 111

The Start Method
Here we replaced the Main method with a Start method. The Start method activates another
cog to run the Toggle method independently and passes along the Pin, Delay, and Count
parameters.

The interface to an object is made up of its public (PUB) methods, so our Output object now
has two interface components, the Start method and the Toggle method.

Now our Output object can be used by other objects to toggle any pin at any rate for any
number of times they want. They can also choose to do this serially, by calling Output’s
Toggle method, or in parallel with other tasks, by calling Output’s Start method.

Let’s create another object that uses Output. To create a new object, select File → New from
the menu and a new edit tab will appear. In this new edit page, enter the following code. Pay
attention to the bold items, as we will discuss them soon.

Example Object: Blinker1.spin

{{ Blinker1.spin }}

OBJ
 LED : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}
 LED.Start(16, 3_000_000, 10)
 LED.Toggle(17, 2_000_000, 20)

Save this new object as “Blinker1.spin” in the same folder as you saved Output.spin. Now,
with Blinker1’s edit tab active, press F10 to compile and download. The LEDs should have
blinked in the same way they did in Exercise 5, but a different technique was used by the
code; Blinker1 used our Output object and simply called Output’s Start and Toggle methods.

Here’s how it worked. In Blinker1 we have an object block (OBJ) and a public method (PUB).
The object block’s LED : "Output" line declares that we’re going to use another object called
Output and that we’ll refer to it as LED within this Blinker1 object.

The Object-Method Reference
In the public method, Main, we have two method calls. Remember how we learned in
Exercise 4 that one method can call another just by referencing its name? That works for
methods that are in the same object, but now we need to call a method that is in another
object. To do this, we use the form object . method where object is the symbolic name we

Propeller Programming Tutorial

Page 112 · Propeller Manual v1.0

gave the object in the OBJ block (LED in this case) and method is the name of that object’s
method. This is called an Object-Method reference. Blinker1 refers to the Output object as
LED, so LED.Start calls Output’s Start method, and LED.Toggle calls Output’s Toggle
method.

When Blinker1 is compiled, since it references Output, the two objects get compiled into one
application. Figure 3-11 illustrates this. This structure is also shown in the Object View,
which we’ll learn about next.

Figure 3-11: Blinker1 Hierarchy and Blinker1 Application

The Object View
When you compiled Blinker1, the Object View pane updated to indicate the application’s
structure. The Object View is in the upper left corner of the Propeller Tool if you have the
Integrated Explorer pane open (see Pane 1: Object View Pane on page 39.) Figure 3-12
shows what it should look like now.

Figure 3-12: Blinker1
Object View

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 113

The Object View updates itself each time an application is successfully compiled to show you
the logical structure of that application. The view shown in Figure 3-12 is the Object View’s
way of illustrating the logical structure in Figure 3-11. It is necessary to check the Object
View once in a while to troubleshoot or to verify proper compilation.

Your entire application is displayed in the Object View, or at least what it looked like after
the last successful compile. You can also use it to explore the application. For example,
pointing the mouse at each object in the Object View gives you hint information about that
object. Left-clicking each of those objects either opens them up or switches the active edit
tab to that object. Right-clicking each of those objects does the same as left-clicking but it
makes the object switch to Documentation view instead of Full Source view.

Top Object File
The object at the top of the Object View is always the “Top Object File” for that particular
compilation. That means the compilation started from Blinker1, in this case. When we
compile by using the F10 or F11 shortcut keys, or their corresponding menus, the Propeller
Tool starts the compile operation using whatever edit tab is active at that moment. The active
edit tab is the one that is highlighted differently than the rest; see Pane 4: Editor Pane on page
40 and Figure 2-4 on page 40 for an example.

If we had accidentally clicked on the Output object’s tab first and then compiled with F10 or
F11 the compile would have started from that object instead. This would not have resulted in
the application we desired and the Object View would have shown only one object, Output,
in its structure. This is all because the compile functions we’ve been using are the “Compile
Current” options; meaning they compile from the currently active object, or edit tab.

There are other compile functions that can help us. Select the Run menu and look at the
options. You should see a “Compile Current” and “Compile Top” flyout menu (Figure 3-13).

Propeller Programming Tutorial

Page 114 · Propeller Manual v1.0

Figure 3-13: Compile
Current Menu (top)
and Compile Top
Menu (bottom)

Each menu, Compile Current and Compile Top, has the same sub-options but they start their
compilation from different places. Compile Current starts from the active edit tab and
Compile Top starts from the designated Top Object File.

You can tell the Propeller Tool which object to treat as the “designated Top Object File” at
any time. You do this by any one of the following methods:

1) Right-click the desired object’s edit tab and select “Top Object File,” or

2) Right-click the desired object from the File List (in the Integrated Explorer) and
select “Top Object File,” or

3) Choose the File → Select Top Object File… menu option and select the desired file
from the browse window, or

4) Press Ctrl+T and select the desired file from the browse window.

We used option #1 to select Blinker1 as the Top Object File, in the figure below. Note that
afterwards, the Blinker1 tab’s text is bold; see Figure 3-14b. The file the Propeller Tool
knows as the Top Object File always appears in bold.

Now, if we use one of the Compile Top options, such as Ctrl+F10 or Ctrl+F11, regardless of
which edit tab is active, the Propeller Tool will compile starting from the Top Object File.
For example, in Figure 3-14b the Output object is the active edit tab. If we press Ctrl+F10,
the application will be compiled starting with the Blinker1 object, however. If we had
pressed F10 instead, the Output object would have been compiled.

Each of the shortcut keys for the Compile Current options, F8, F9, F10, etc., has a similar
variation for the Compile Top options, Ctrl+F8, Ctrl+F9, Ctrl+10, etc.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 115

Figure 3-14: Setting Blinker1 to be the Top Object File

a.

One way to set the Top Object File is by
right-clicking the desired edit tab, and
choosing Top Object File.

b.

The Top Object File’s name will show in
bold on its Edit Tab.

Which Objects Were Compiled?
If there’s ever a question of which object files were compiled in the last successful compile
operation, use the mouse to explore the resulting application’s structure in the Object View.

It’s important to keep track of which file you’ve designated as the Top Object File and what
compile option you chose; Current vs. Top. Only one file can be designated as the Top
Object File at a time and the Propeller Tool remembers that file even between sessions.

Also, keep in mind that an object doesn’t really need to be open in the Propeller Tool just to
be compiled. If an object you compiled references another object, that object will be
compiled whether or not it is currently open. Even the Top Object File can be compiled
without it being open. For example, pressing Ctrl+F10 will compile the last designated Top
Object File regardless of whether or not it even belongs to the current application you are
working on.

Propeller Programming Tutorial

Page 116 · Propeller Manual v1.0

Quick Review: Ex 6
• Spin language:

o Methods:
 To call methods in anoTher object, use object . method where object

is the object’s symbolic name (given to it in the OBJ block) and
method is the method’s name within that other object. See OBJ on
page 247.

 Public (PUB) methods are an object’s interface; other objects call its
public methods. See PUB on page 287.

• Object View
o Illustrates the structure of the most recent successfully compiled application.

See Object View, page 52.
o Pointing the mouse at displayed objects displays hints about them.
o Left-clicking a displayed object either opens it up or makes it the active edit

tab.
o Right-clicking a displayed object opens or switches to it in Documentation

view.
• Compile Current – (F8 through F11) - compiles starting from the current object

(active edit tab).
• Compile Top – (Ctrl+F8 through Ctrl+F11) - compiles starting from the Top Object

File.
• Top Object File:

o Appears with a bold name in the edit tab and File List.
o Can be designated by one of the following (and compiled via Compile Top

operation):
1) Right-click object’s edit tab and select “Top Object File,” or
2) Right-click object in the File List and select “Top Object File,” or
3) Choose File → Select Top Object File… menu and select object from

browser, or
4) Press Ctrl+T and select object from browser.

• Objects don’t have to be open to be compiled; they may be compiled as the result of
another object’s compilation or as the result of a Compile Top operation.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 117

Objects vs. Cogs
It’s important to understand that there is no direct relationship between objects and cogs.
Remember, Exercise 5 used just one object but two cogs and Exercise 6 used two objects and
two cogs, but each of these exercises could have used only one cog if they wanted to process
everything serially. When and how cogs are used is completely determined by the
application and the developer(s) who wrote it.

Exercise 7: Output.spin – More Enhancements
Let’s add some significant enhancements to our Output object. Currently the Toggle method
can be called to toggle a pin serially, or the Start method can be called to launch the Toggle
method as a separate process, to run in parallel. But we haven’t provided a way to stop that
process once it is going or even a way to determine if it’s running in the first place. Also, it
would be nice to have the option of toggling the pin endlessly, in addition to the finite count
feature we already have.

Let’s add a Stop method to stop the active process and an Active method to test whether a
parallel process is currently running. In addition, we’ll enhance our Toggle method as
described above.

For objects like this one, it is a common and recommended convention to use the name
“Start” for a method that activates a new cog and the name “Stop” for a method that
deactivates a cog previously started by that object. This way, while scanning an object in
summary or documentation view, other developers can more quickly understand how to use
your object; when they see Start and Stop they can infer that the object activates/deactivates
another cog. For objects that don’t activate another cog but still need some kind of
initialization, it is recommended to use the name “Init” for the key method.

This code is loaded with clever changes; be prepared, it will take a lot to explain it but the
knowledge you’ll gain is well worth it.

Here’s the code; modify yours to match:

Propeller Programming Tutorial

Page 118 · Propeller Manual v1.0

{{ Output.spin }}

VAR
 long Stack[9] 'Stack space for new cog
 byte Cog 'Hold ID of cog in use, if any

PUB Start(Pin, Delay, Count): Success
{{Start new blinking process in new cog; return TRUE if successful}}

 Stop
 Success := (Cog := cognew(Toggle(Pin, Delay, Count), @Stack) + 1)

PUB Stop
{{Stop toggling process, if any.}}

 if Cog
 cogstop(Cog~ - 1)

PUB Active: YesNo
{{Return TRUE if process is active, FALSE otherwise.}}

 YesNo := Cog > 0

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}
 If Count = 0, toggle Pin forever.}}

 dira[Pin]~~ 'Set I/O pin to output…
 repeat Count 'Repeat for Count iterations
 repeat 'Repeat the following
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(Delay + cnt) ' Wait for Delay cycles
 while Count := --Count #> -1 'While not 0 (make min -1)
 Cog~ 'Clear Cog ID variable

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 119

The VAR Block
In the VAR block we’ve added a byte-sized variable, Cog. This will be used to keep track of
the ID of the cog started by the Start method, if any. Both Stack and Cog variables are global
to the object; they can be used within any PUB or PRI block in the Output object. If they are
modified by one method, other methods will see the new value when they are referenced.

The Start Method
For the Start method, we’ve decided it may be nice to know if it was successful or not.
Since there are a limited number of cogs in the Propeller, the Start method may not be able
to activate another cog every time it is called. For this reason, we’ll make it return a Boolean
(TRUE or FALSE) value as an indication of its outcome; the “: Success” in its declaration
indicates it will return this value we chose to call Success. Each PUB and PRI method always
returns a long value (4 bytes) whether or not it is specified to have one. When a method is
designed to return a meaningful value, it is always good practice to declare a return value as
we have done here. Our Success symbol becomes an alias for the method’s built-in RESULT
variable, so we can assign either Success or RESULT a value to have that value returned upon
exit.

The body of the Start method now does two things: first it stops any existing process and
then it starts a new process. It calls the Stop method first just in case Start has been called
multiple times without first calling Stop from outside the object. Without that, a new cog
would start up and overwrite another cog’s workspace variables, such as Stack.

The next line is similar to our original but may seem a bit overwhelming because it is a
compound expression. We’ll dissect it a piece at a time from the inside out. The COGNEW
portion of the line is exactly as it was before: cognew(Toggle(Pin, Delay, Count), @Stack).
It activates another cog to run the Toggle method. What you may not have known is that
COGNEW always returns the ID of the cog it started; 0 to 7, or -1 if no cog was available to start.
In the prior version of the Output object, we simply ignored the return value. This time,
however, we use COGNEW’s return value in this expression and assign the result to a variable:
Cog := cognew(Toggle(Pin, Delay, Count), @Stack) + 1. This expression says to execute
COGNEW, take its returned value and add it to 1, then assign that result to the variable named
Cog. The ‘:=’is the assignment operator; similar to the equal sign ‘=’ in other languages.

We’ll use the Cog variable to remember the ID of the cog we started so we can later stop it if
necessary. We’ll explain why we added 1 to it in a moment.

We’re not done with that line yet. To the left of the Cog := … part is the Success :=
assignment statement. So after the new cog’s ID is returned, added to 1 and stored in Cog,
that final value is also stored in the Success variable. Remember how Success is supposed to

Propeller Programming Tutorial

Page 120 · Propeller Manual v1.0

be our Start method’s Boolean return value? A Boolean result of FALSE is actually the
numerical value 0 and TRUE is -1, but Boolean comparisons treat zero (0) as FALSE and any
non-zero value (≠0) as TRUE. This is very convenient and is the reason we added 1 to
COGNEW’s return value; the range -1 to 7 becomes 0 to 8, and 0 (FALSE) means no cog was
started while 1 to 8 (TRUE) means a cog was started.

So, in that single line of code we launched a new cog (hopefully), passed it the reference to
the Toggle routine and stack space to use, stored the newly activated cog ID plus 1 in the
variable Cog and used that final result to set Start’s return value, the Success variable! This
line demonstrates one of the most powerful features of the Spin language: compound
expressions with assignable intermediate results.

The outer parentheses encasing the Cog :=… part are not required but we added them to help
separate the two different variable assignments; Cog is assigned first then that result is
assigned to Success. To assist you in studying complex expressions such as this one, the
Propeller Tool temporarily bolds the matching pairs of parentheses that surround the current
cursor position. Place the cursor in various positions on the line to see the effect. The figure
below illustrates this; the star shows the cursor position, arrows show the bolded parentheses,
and the shaded area is what is contained within those parentheses.

Figure 3-15: Matching Parentheses Bolded
Matching parentheses are temporarily displayed in bold for the expression group
the cursor is currently within. Use this feature to study complex expressions.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 121

The Stop Method
Our Stop method needs to stop the cog that was started by Start. The if Cog statement is a
conditional structure meaning “if the Cog variable is TRUE execute the following indented
block. ” Remember, Cog was set to 0 if no cog was started, and set to 1 through 8 if a cog was
started. Since 0 means FALSE and non-0 means TRUE, the IF statement is true only if we
actually started a cog.

The COGSTOP statement is indented below the IF statement so it is executed only when the IF
statement is true. The COGSTOP command deactivates the cog whose ID is indicated by its
parameter: Cog~ - 1. This is another tricky but powerful expression in Spin. Remember the
Post-Set operator, ~~, from earlier exercises? Well, a single ~ following a variable is the
Post-Clear operator; it clears the variable preceding it to zero (0). These are called “post”
operators because they perform their duty “after” the variable’s original value is used by the
expression that it is involved in. So Cog~ - 1 takes the value of Cog, subtracts 1, gives that
value to the COGSTOP command, then clears Cog to zero (0). In effect, the cogstop(Cog~ - 1)
statement stops the cog whose ID is Cog-1, then clears the Cog variable to 0 so future
references to Cog reflect that there is no additional cog running.

The Active Method
The Active method is simple, it sets its return value, YesNo, to TRUE if Cog is greater than 0,
FALSE otherwise. The > symbol is the Is Greater Than operator. Note that we could also have
just set YesNo equal to Cog since zero is considered to be FALSE and non-zero is considered to
be TRUE; that would have the additional advantage of being a true/false return value as well as
the actual ID of the cog in use by this object.

The Toggle Method
We made a couple of minor but significant enhancements to the Toggle method. First, let’s
look at the last line, Cog~. Remember that if Start is called, it runs the Toggle method in
another cog and stores the ID of that cog in the Cog variable. When Toggle terminates, that
cog terminates as well, but the Cog variable would be left holding the ID of that cog, fooling
the Active and Start methods into thinking its cog was still active. We put Cog~ at the end of
Toggle to clear the Cog variable to zero (0) to maintain the code’s integrity.

Remember we said we’d like to change Toggle to allow for an infinite loop as well as a finite
loop? Our next change achieves that in a clever way. The Count parameter is the number of
times to toggle the pin. That means it doesn’t make sense to set Count equal to 0… who
would want to toggle a pin zero times? So, we’ll make 0 an exception case that means
“toggle the pin infinitely.”

Propeller Programming Tutorial

Page 122 · Propeller Manual v1.0

We changed the loop from repeat Count to repeat..while. The while is at the end of the
loop, three lines below repeat. This is another form of REPEAT loop structure called a
“conditional one-to-many loop.” It executes the statement block within it at least once, and
iterates again and again as long as the “while” condition is true. In this case it repeats while
Count := --Count #> -1 is TRUE (ie: non-zero). This condition is another compound
expression. The double-minus, ‘--‘ ‘preceding Count is the Pre-Decrement operator; it
decrements Count by 1 before its value is used by the expression. The #> is the Limit
Minimum operator; it takes the value on its left and returns either that value, or the number
on its right, whichever is greater. So each time this expression is evaluated, Count is
decremented by 1, that result is limited to -1 or higher, and that final result is assigned back
into Count. This has a clever effect that we’ll explain next.

If Toggle was called with Count set to 2, the loop would execute two times, just like we want.
After the first iteration, the while Count := --Count #> -1 would decrement Count, making
it 1, then would limit it to -1 or higher (still 1) and store that value in Count. Since the result,
1, is non-zero (TRUE) the loop would execute again. After the second iteration, the WHILE
statement would decrement Count, making it 0, would limit that to -1 or higher (still 0) and
store that in Count. Since 0 is FALSE, the WHILE condition terminates the loop.

That works for all normal Count values, but what about when Toggle is called with a Count
of 0? After the first iteration, the while Count := --Count #> -1 would decrement Count,
making it -1, then would limit it to -1 or higher (still -1) and store that value in Count. Since
the result, -1, is non-zero (TRUE) the loop would execute again. After the second iteration, the
WHILE statement decrements Count, making it -2, limits that to -1 or higher (it is changed to
-1) and stores that in Count. Once again, since the result, -1, is non-zero (TRUE) the loop
would execute again.

So, if Count started out as 0, the loop iterates endlessly! If Count started out as greater than 0,
it loops only that number of times!

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 123

Quick Review: Ex 7
• Objects:

o Have no direct relationship with cogs.
o Should call interface methods “Start” and “Stop” if they affect other cogs.
o Should call interface method “Init” if it needs initialization.

• Spin language:
o Variables defined in variable blocks are global to the object so modifications

by one method are visible by other methods. See VAR, page 315.
o Booleans: (See Constants (pre-defined), page 202 and Operators, page 249).

 FALSE = 0
 TRUE = -1; any non-zero (≠0) value is True for Boolean comparisons.

o Compound expressions can include Intermediate Assignments, see page 253.
o Operators:

 “Pre”/“Post” operators perform their duty before/after the variable’s
value is used by the expression.

 Assignment ‘:=’ is similar to equal ‘=’ in other languages, see
Variable Assignment ‘:=’, page 255.

 Post-Clear ‘~’ clears the variable preceding it to zero (0), see Sign-
Extend 7 or Post-Clear ‘~’, page 262.

 Pre-Decrement ‘--’ decrements the variable following it, giving the
expression the result, see Decrement, pre- or post- ‘- -’, page 257.

 Is Greater Than ‘>’ returns True if value on left-side is greater than
that of right-side, see Boolean Is Greater Than ‘>’, ‘>=’, page 276.

 Limit Minimum ‘#>’ returns the greater of either the value on its left
or its right, see Limit Minimum ‘#>’, ‘#>=’, page 260.

o Methods: (See PUB, page 287).
 Always return a long value (4 bytes) whether or not one is specified.
 Contain a built-in local variable, RESULT, that holds its return value.
 Return values are declared by following the method’s name and

parameters with a colon (:) and a descriptive return value name.
o COGNEW returns the ID (0 to 7) of cog started; -1 if none, see COGNEW, page 189.
o COGSTOP deactivates a cog by ID, see COGSTOP, page 193.
o IF is a conditional structure that executes the indented block of code

following it if the conditional statement is true, see IF, page 220.
o REPEAT’s conditional, one-to-many form: REPEAT WHILE Condition executes at

least once and continue while Condition is true. See REPEAT, page 293.
• The Propeller Tool bolds matching parentheses pairs surrounding the cursor.

Propeller Programming Tutorial

Page 124 · Propeller Manual v1.0

Exercise 8: Blinker2.spin – Many Objects, Many Cogs
Now let’s make a new object that takes advantage of the enhancements to Output to use many
cogs for many parallel processes. Here’s the code:

Example Object: Blinker2.spin

{{ Blinker2.spin }}

CON
 MAXLEDS = 6 'Number of LED objects to use

OBJ
 LED[6] : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}

 dira[16..23]~~ 'Set pins to outputs
 LED[NextObject].Start(16, 3_000_000, 0) 'Blink LEDs
 LED[NextObject].Start(17, 2_000_000, 0)
 LED[NextObject].Start(18, 600_000, 300)
 LED[NextObject].Start(19, 6_000_000, 40)
 LED[NextObject].Start(20, 350_000, 300)
 LED[NextObject].Start(21, 1_250_000, 250)
 LED[NextObject].Start(22, 750_000, 200) '<-Postponed
 LED[NextObject].Start(23, 400_000, 160) '<-Postponed
 LED[0].Start(20, 12_000_000, 0) 'Restart object 0
 repeat 'Loop endlessly

PUB NextObject : Index
{Scan LED objects and return index of next available LED object.
 Scanning continues until one is available.}

 repeat
 repeat Index from 0 to MAXLEDS-1
 if not LED[Index].Active
 quit
 while Index == MAXLEDS

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 125

Compile and download Blinker2. You should see six LEDs start blinking with different,
independent, rates and periods. Look carefully, after about 8 seconds P20 will stop blinking
and P22 will start. A few seconds later, P18 will stop and P23 will start, then P16 will stop
and P20 will start again, but at a different rate. Eventually, all but P17 and P20 will cease.
Can you figure out why it behaves this way? We’ll explain it below.

The OBJ Block
In the object block we defined an array of Output objects, called LED, with six elements. This
is so we can have six simultaneous processes running, each operating independently.

The Main Method
The first line of Main, dira[16..23]~~, sets I/O pins 16 through 23 to outputs. The I/O
registers, DIRA, OUTA, and INA, can use this form to affect multiple contiguous pins. We are
setting this group of I/O pins to outputs only to prevent confusing results due to the Propeller
Demo Board’s resistors between the I/O pairs in 18 to 23. If a cog is the only one making a
particular pin an output, upon shutting down that pin becomes an input again which allows
the resistor between it and its neighbor to affect the LED on it. We’ll keep this application’s
cog active so results are clear.

The next nine lines, LED[…, call the Output object’s Start method to activate a new cog and
toggle different I/O pins at different rates. The lines in the form LED[NextObject].Start…,
call the NextObject method to get an index value for the array. We’ll explain the NextObject
method in more detail soon, but simply put, it returns the index of the next available Output
object in the LED array (i.e. the index of the first idle object) and pauses until one is available.

We only have six Output objects defined for the LED array, so the first six calls to Start are
going to execute quickly, each one accessing LED indexes 0 through 5 and activating a total of
6 additional cogs. The first two have a Count parameter of 0, so they will toggle infinitely;
the last four will terminate after the given number of toggles is performed.

The seventh line, LED[NextObject].Start(22, 750_000, 200) will first call NextObject to get
the index of the next available object, but since all six objects are busy toggling pins,
NextObject will wait and won’t return to Main until it finds that an object has finished. As it
turns out, the object at index 4 (I/O pin 20) finishes its task first and shuts down. The
NextObject method then returns the number 4, allowing that object’s Start method to
execute, which will re-launch another cog to toggle pin 22. A similar process happens with
the eighth line, LED[NextObject].Start(23, 400_000, 160); all objects are busy so
NextObject postpones further operation until one becomes available, index 2 in this case.

Immediately after the eighth line is executed, the ninth line executes, LED[0].Start(20,
12_000_000, 0). This statement is unlike the previous in that it doesn’t call NextObject, but

Propeller Programming Tutorial

Page 126 · Propeller Manual v1.0

rather it uses a fixed index of 0. This means the LED object at index 0, which is busy toggling
I/O pin 16 endlessly, suddenly has its Start method called again. This causes the cog that is
toggling P16 to immediately stop and start again but with P20 instead.

The final line, repeat, is only there to keep the application’s cog alive. It creates an endless
loop that executes no additional code since there is nothing indented underneath it. If the
application cog stopped, the I/O pins it directed to be outputs may switch back to inputs,
causing strange-looking results due to the resistors between some pairs of LEDs on the
Propeller Demo Board. If you are not using the Propeller Demo Board, the first line and last
line of Main are not necessary.

The NextObject Method
We have six LED objects in this code and any number of them can be processing in parallel at
any time. The point of the NextObject method is to tell us which one is available and to
postpone future operations until one is available. To do this, it scans through all six LED
objects looking for the first one that is not running as a parallel process and returns the LED-
based index of that object. If all are currently running, it continues scanning until one
becomes available. NextObject uses our Output object’s Active method to assist with this.

There are two nested REPEAT loops. The outer loop, repeat..while Index == MAXLEDS
iterates as long as Index equals MAXLEDS, 6 in this case. We learned how this type of REPEAT
loop works in the previous exercise.

The inner REPEAT loop, repeat Index from 0 to MAXLEDS-1, is new to us, however. It is
called a “counted loop” and repeats the indented block below it but for each iteration it sets
the variable Index to a new value. Index is set to 0 for the first iteration, 1 for the second,
etc., until the last iteration where Index equals MAXLEDS-1, or 5. This is an excellent way to
adjust the operation within a loop based on how many times the loop has executed.

The next line, if not LED[Index].Active, is a conditional statement that executes the
indented code below it if the LED object at Index is “not active.” Since the inner loop changes
the value of Index from 0 through 5 as it executes, this conditional statement calls the Active
method of each of our LED objects, in order.

Once the condition is true (the LED object at Index is not active) the next line, quit, executes.
The QUIT command is a special command for REPEAT loops only; it causes the REPEAT loop it
is contained within to terminate immediately. When this happens, execution continues with
the end of the outer REPEAT loop, the “while” condition.

If all LED objects are active, the inner loop will count, with Index, from 0 to 5, then Index will
be 6 (MAXLEDS) when it exits, causing the outer loop to iterate again and the whole process
starts over. If, however, an inactive LED object is found, the Index value will be less than

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 127

MAXLEDS, and the outer loop will terminate, causing the NextObject method to return the Index
of the available object. That value is used by Main to select the right LED object to start.

Behind the Scenes
In the object block, we created an array of six Output objects. Each object that an application
uses needs to be treated as its own individual entity with its critical data kept separate from
that of any other object. So, since we needed the capabilities of six Output objects, we
declared the need for six of them in the object block.

After compiling Blinker2, the Object View shows that there are six occurrences of the Output
object in our application; the “[6]” that appears to the right of the Output object image. This
is the Object View’s way of illustrating the structure of our application, indicated by Figure
3-16.

Figure 3-16:
Blinker2 Application

There are six
instances of the
Output object. The
application actually
uses only one copy of
its executable code
and six copies of its
global variable space.

Does this mean our application grew by the size of the Output object times six? Fortunately,
the answer is no. The Propeller Tool optimizes the application’s code such that, for every
occurrence of an object only one copy of the object’s code is included, but multiple copies of
the object’s global variables are created. This is because the code is considered to be static
(unchanging) and exactly the same for each object. However, the object’s global variables
(defined in its VAR block), are not static; each object needs its own variable space in order to
work independently without interference from other instances of itself.

Propeller Programming Tutorial

Page 128 · Propeller Manual v1.0

Object Info Window
We can see this effect using the Propeller Tool’s Object Info feature. First, change the object
block in Blinker2 to specify only one instance of the Output object; LED[1] : "Output".
Don’t run the code this way, it will not work, we’re just experimenting for a moment.

Now, press the F8 key (or select Run → Compile Current → View Info…) to compile the
application and display the Object Info window. Figure 3-17 shows how this should look.

Figure 3-17:
Object Info Window
for Blinker2
Application

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 129

The top part of the window is the Info Object View; it is similar to the Object View. The
center part of the window shows the application’s RAM Usage. Notice that the “Program”
(the compiled source code) itself consumes 68 longs of RAM and the “Variable” (the global
variables) consumes 10 longs of space.

Now, close this window and change the object block back to the way it was, specifying six
instances of the Output object; LED[6] : "Output". Compile and view info again (F8 or Run
→ Compile Current → View Info…). Notice that now the program consumes 73 longs of
RAM and the variable space consumes 60 longs. This is only 5 additional longs of program
space but 50 additional longs of variable space. The extra program space is just overhead to
deal with five additional objects but the variable space is six times its previous size; each
object has its own global variable space. Our Blinker2 object doesn’t define any global
variable space, but Output defines nine longs for Stack and one byte for Cog for a total of 10
longs of space since an object’s variable space is always long-aligned.

In the Object Info window, you can also click on the Output object to see how much space
each individual instance of that object consumes. We can see that Output’s program size is
21 longs and variable space is 10 longs.

Object Lifetime
When applications are compiled a binary image of the executable code is created. That
binary image is what is actually downloaded into the Propeller and is usually what we are
referring to when we say “application” or “Propeller Application.”

The compiled code for each object used by an application is included within that binary
image along with variable space for each instance of each of those objects.

During run time, the application may use any object for any amount of time; some may be
used always and others only on occasion but all are consuming a static amount of memory for
their code and variables.

For developers accustomed to programming with objects on a computer, this is an important
concept to understand. On the Propeller an object’s lifetime is static; whether or not it is
actively in use at the time, it always requires a specific amount of memory in the
application’s binary image. On desktop/laptop computers, objects require a dynamic amount
of memory because they are “created” and “destroyed” during the run-time process as is
needed. On the Propeller, the objects are “created” at compile time and are never “created”
or “destroyed” at run time because the act of doing so would fragment memory and cause
indeterministic behaviour in real-time embedded systems.

Propeller Programming Tutorial

Page 130 · Propeller Manual v1.0

This means that every instance of an object that is, or may be, required must be declared at
compile time in the OBJ block, just as we did in Exercise 8 with the array of Output objects.

Quick Review: Ex 8
• Applications:

o Use unique symbols, or elements of an array, for each distinct object in use.
o Use one copy of an object’s code and one or more copies of its global

variables.
• Objects:

o An object array may be created in object blocks similar to a variable array in
variable blocks.

o An object’s lifetime is static, consuming a specific, static amount of memory
regardless of whether or not it is active. This eliminates the possibility of
fragmented memory during normal run-time use and ensures deterministic
behavior in real-time systems.

• Spin language:
o REPEAT command: (See REPEAT, page 293).

 Finite, counted loop: REPEAT Variable FROM Start TO Finish where
Variable is the variable to use as the counter and Start and Finish
indicate the range.

 The QUIT command works inside REPEAT loops only and causes the
loop to terminate immediately, see QUIT, page 291.

o I/O registers (DIRx, OUTx, and INx) may use the form reg[a..b] to affect
multiple contiguous pins; where reg is the register (DIRx, OUTx, or INx) and a
and b are I/O pin numbers, see DIRA, DIRB on page 212, OUTA, OUTB on page
280, and INA, INB on page 225.

• I/O pins are set to outputs only while a cog that set them that way remains active, see
DIRA, DIRB, page 212.

• Compile & View Info: F8 key (or select Run → Compile Current → View Info…),
see Object Info, page 55.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 131

Exercise 9: Clock Settings
The Propeller chip’s internal clock has two speeds, slow (≈ 20 KHz) and fast (≈ 12 MHz).
Since we never specified any clock settings for our application, all previous exercises used
the Propeller chip’s default, internal RC clock in fast mode.

To specify the clock settings for the application, the top object file must set values for one or
more special constants in a CON block. These constants are: _CLKMODE, _CLKFREQ and _XINFREQ.

We’ll start with _CLKMODE first. Refer to Table 4-3: Clock Mode Setting Constants on page
180 for a listing of pre-defined symbolic values to set _CLKMODE to. For example, continuing
with our Blinker2 object, changing the CON block as follows sets the clock mode to use the
internal slow clock (only the CON block is shown here).

{{ Blinker2.spin }}

CON
 _CLKMODE = RCSLOW 'Set to internal slow clock
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Try compiling and downloading Blinker2 now. Once the Propeller finishes the
download/boot-up process, it switches to the RCSLOW clock mode and executes the application.
Since the application is now running with a clock that is hundreds of times slower that before,
the application will run much slower, taking more than 20 seconds for the fastest toggling
pin, P20, to toggle off for the first time.

You can replace _CLKMODE = RCSLOW with _CLKMODE = RCFAST to have the application run with
the internal fast clock (the default).

If you’d like to use an external clock, there are many more options for _CLKMODE. We’ll
assume you’re using a 5 MHz external crystal, like the one that comes with the Propeller
Demo Board.

Propeller Programming Tutorial

Page 132 · Propeller Manual v1.0

Modify your code to match the following:

{{ Blinker2.spin }}

CON
 _CLKMODE = RCSLOW 'Set to internal slow clock
 _CLKMODE = XTAL1 'Set to ext. low-speed crystal
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Here we set _CLKMODE to XTAL1 which configures the clock mode for an external low-speed
crystal and configures the Propeller internal oscillator gain circuitry to drive a 4 MHz to 16
MHz crystal. Besides the crystal itself (which should be connected to the XI and XO pins),
no other external circuitry is required for this clock configuration.

Whenever external crystals or clocks are used, either _XINFREQ or _CLKFREQ must be specified
in addition to _CLKMODE. _XINFREQ specifies the frequency coming into the XI pin (Crystal
Input pin). _CLKFREQ specifies the System Clock frequency. The two are related by PLL
settings which we’ll discuss later.

In this example we specified an _XINFREQ value of 5 million to indicate that the frequency on
the XI pin is 5 MHz, since we have a 5 MHz crystal connected to XI and XO. Once that is
specified, the _CLKFREQ value is automatically calculated and set by the Propeller Tool.

You could also have specified a _CLKFREQ of 5 MHz (instead of _XINFREQ) and the proper
_XINFREQ value would automatically be set by the Propeller Tool. However, it is more typical
to specify the _XINFREQ value since _CLKFREQ is directly affected by PLL settings. In our
example, both _XINFREQ and _CLKFREQ end up with the same value, but a later example will
show how they can typically differ.

If you compile and download Blinker2 now, you should see the LEDs toggle at slightly less
than half the speed as in Exercise 8. Our settings specified an external 5 MHz crystal instead
of the internal 12 MHz oscillator.

So why would anyone want to use an external crystal that is slower than the internal clock?
Two reasons: 1) for accuracy; the internal clock is not very accurate from chip to chip or
across voltage variances but external crystals or clock/oscillators are typically very accurate,
and 2) the phase-locked loop (PLL) can only be used with external clock sources.

Try the following example:

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 133

{{ Blinker2.spin }}

CON
 _CLKMODE = XTAL1 + PLL4X 'Set to ext low-speed crystal, 4x PLL
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

<remaining code unchanged>

Here we changed the _CLKMODE setting slightly by adding the + PLL4X value. This configures
the clock mode to use the internal phase-locked loop (PLL) to wind up the XIN frequency by
four times, resulting in a System Clock frequency of 5 MHz * 4 = 20 MHz.

Try compiling and downloading Blinker2 with these settings. You should see the LEDs blink
at a faster rate than you’ve seen before.

NOTE: Since we specified _XINFREQ here, _CLKFREQ is automatically calculated to be 20 MHz.
If we had specified a _CLKFREQ value of 5 MHz instead, adding the PLL4X setting would have
calculated an _XINFREQ value of 1.25 MHz, which doesn’t match our external crystal’s
frequency. This is why it is more common to specify an XIN frequency (_XINFREQ) rather
than a clock frequency (_CLKFREQ).

The Clock PLL circuit, when enabled, always winds up the frequency by 16 times, but you
can select any of the 1x, 2x, …16x taps for the final System Clock frequency using the
settings PLL1X, PLL2X, PLL4X, PLL8X and PLL16X.

Try changing _CLKMODE from XTAL1 + PLL4x to XTAL1 + PLL16x and download again. That
configures the System Clock to be 5 MHz * 16 = 80 MHz! Most of the LEDs blink so
quickly that they appear to be solidly on.

Exercise 10: Clock-Related Timing
The last exercise may have made you aware of something; our Output object is easily
affected by the clock frequency. It relies on a specific, hard-coded time-base but subordinate
objects (those that are not the top object) should never do that because they cannot predict
what the clock frequency will be for the many applications they may be used for.
Additionally, the Propeller application can change the System Clock frequency a number of
times throughout its run time.

Suppose that we really intended to make an Output object that toggles pins at a specific rate
that is essentially clock independent. This means that it must respond dynamically to the
System Clock frequency. Below is the modified code; make sure to edit your code to match.

Propeller Programming Tutorial

Page 134 · Propeller Manual v1.0

Example Object: Output.spin

{{ Output.spin }}

VAR
 long Stack[9] 'Stack space for new cog
 byte Cog 'Hold ID of cog in use, if any

PUB Start(Pin, DelayMS, Count): Success
{{Start new blinking process in new cog; return True if successful.}}

 Stop
 Success := (Cog := cognew(Toggle(Pin, DelayMS, Count), @Stack) + 1)

PUB Stop
{{Stop toggling process, if any.}}

 if Cog
 cogstop(Cog~ - 1)

PUB Active: YesNo
{{Return TRUE if process is active, FALSE otherwise.}}

 YesNo := Cog > 0

PUB Toggle(Pin, DelayMS, Count)
{{Toggle Pin, Count times with DelayMS milliseconds clock cycles
 in between. If Count = 0, toggle Pin forever.}}

 dira[Pin]~~ 'Set I/O pin to output…
 repeat 'Repeat the following
 !outa[Pin] ' Toggle I/O Pin
 waitcnt(clkfreq / 1000 * DelayMS + cnt) ' Wait for DelayMS…
 while Count := --Count #> -1 'While not 0 (make min…
 Cog~ 'Clear Cog ID variable

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 135

We modified the Start and Toggle methods by changing the Delay parameter to DelayMS,
meaning “delay in units of milliseconds.” Then we modified the waitcnt… statement such
that instead of waiting a fixed number of clock cycles, it calculates the number of clock
cycles that there are in DelayMS milliseconds of time. CLKFREQ is a command that returns the
current System Clock frequency in Hertz (cycles per second). Its value is set by the Propeller
Tool at compile time and also by the CLKSET command at run time; see CLKSET on page 183.
There are 1,000 milliseconds per second and CLKFREQ is the number of clock cycles per
second, so clkfreq / 1000 * DelayMS is the number of clock cycles in DelayMS milliseconds
of time.

With this modification, regardless of the application’s start-up frequency, or how often the
application changes the frequency during run time, the Output object will recalculate the
proper delay each time through its loop.

Now, of course, we need to modify our Blinker2 object to adjust the DelayMS parameters
appropriately. Enter the code modifications shown in the listing on page 136. Note that we
entered the _CLKMODE and _XINFREQ settings just as we had left them from the last exercise.

Propeller Programming Tutorial

Page 136 · Propeller Manual v1.0

Example Object: Blinker2.spin

{{ Blinker2.spin }}

CON
 _CLKMODE = XTAL1 + PLL4X 'Set to ext low-speed crystal, 4x PLL
 _XINFREQ = 5_000_000 'Frequency on XIN pin is 5 MHz
 MAXLEDS = 6 'Number of LED objects to use

OBJ
 LED[6] : "Output"

PUB Main
{Toggle pins at different rates, simultaneously}

 dira[16..23]~~ 'Set pins to outputs
 LED[NextObject].Start(16, 250, 0) 'Blink LEDs
 LED[NextObject].Start(17, 500, 0)
 LED[NextObject].Start(18, 50, 300)
 LED[NextObject].Start(19, 500, 40)
 LED[NextObject].Start(20, 29, 300)
 LED[NextObject].Start(21, 104, 250)
 LED[NextObject].Start(22, 63, 200) '<-Postponed
 LED[NextObject].Start(23, 33, 160) '<-Postponed
 LED[0].Start(20, 1000, 0) 'Restart object 0
 repeat 'Loop endlessly

PUB NextObject : Index
{Scan LED objects and return index of next available LED object.
 Scanning continues until one is available.}

 repeat
 repeat Index from 0 to MAXLEDS-1
 if not LED[Index].Active
 quit
 while Index == MAXLEDS

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 137

In Main, we adjusted the second parameter of the all the calls to Start from “delay in clock
cycles” to “delay in milliseconds.” Compile and download the Blinker2 object now. Notice
that the rate at which each LED blinks is the same as it was when we used the internal fast
clock. Try increasing the clock speed by changing _CLKMODE from XTAL1 + PLL4X to XTAL1 +
PLL16X. You should not see any change in the blink rates even though we just multiplied the
clock frequency by four!

Keep in mind that the accuracy of the internal clock on your particular Propeller chip can
play a big role in the way this example looks, especially when using the RCSLOW mode.

There are two techniques for using the WAITCNT command but we only demonstrated one of
them. For further tips regarding timing, see the WAITCNT command on page 322.

Quick Review: Ex 9 & 10
• Clock:

o The internal clock has two speeds, slow (≈ 20 KHz) and fast (≈ 12 MHz).
o To specify clock settings for an application, the top object file sets values for

one or more special constants: _CLKMODE, _CLKFREQ and _XINFREQ.
o Whenever external crystals or clocks are used, either _XINFREQ or _CLKFREQ

must be specified in addition to _CLKMODE.
o _CLKMODE specifies the clock mode: internal/external, oscillator gain, PLL

settings, etc. See _CLKMODE, page 180.
o _XINFREQ specifies the frequency coming into the XI pin (Crystal Input pin).

See _XINFREQ, page 337.
o _CLKFREQ specifies the System Clock frequency. See _CLKFREQ, page 177.
o Use the internal clock for convenience where accuracy doesn’t matter. Use

an external clock for accuracy or when the phase-locked loop (PLL) is
needed.

• Timing:
o Subordinate objects can’t rely on a specific, hard-coded time-base since

applications which use them may change the clock frequency.
o Use the CLKFREQ command to get the current System Clock frequency in

Hertz for timing calculations. See CLKFREQ, page 175.

Propeller Programming Tutorial

Page 138 · Propeller Manual v1.0

Exercise 11: Library Objects
The Propeller Tool comes with a library of objects created by Parallax engineers. These
objects perform many useful functions such as serial communication, floating-point math,
number-to-string and string-to-number conversion, and TV display generation, using standard
PC-style keyboards, mice and monitors, etc.

The Propeller Object Library is simply a folder containing Propeller object files that are
automatically created during the Propeller Tool software installation. You can get to the
Propeller Library folder by selecting “Propeller Library” from the Recent Folders list; see
Figure 3-18. After selecting the Propeller Library, the Files List will display all the available
objects.

Figure 3-18:
Propeller Library
Browsing

Select “Propeller
Library” from the
Integrated Explorer’s
Recent Folders list to
quickly browse to the
library folder.

Let’s use some of them now. Create a new file and enter the code below. The highlighted
items are important for the discussion following the code.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 139

Example Object: Display.spin

{{ Display.spin }}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ
 Num : "Numbers"
 TV : "TV_Terminal"

PUB Main | Temp
 Num.Init 'Initialize Numbers
 TV.Start(12) 'Start TV Terminal

 Temp := 900 * 45 + 401 'Evaluate expression
 TV.Str(string("900 * 45 + 401 = ")) 'then display it and
 TV.Str(Num.ToStr(Temp, Num#DDEC)) 'its result in decimal
 TV.Out(13)
 TV.Str(string("In hexadecimal it's = ")) 'and in hexadecimal
 TV.Str(Num.ToStr(Temp, Num#IHEX))
 TV.Out(13)
 TV.Out(13)

 TV.Str(string("Counting by fives:")) 'Now count by fives
 TV.Out(13)
 repeat Temp from 5 to 30 step 5
 TV.Str(Num.ToStr(Temp, Num#DEC))
 if Temp < 30
 TV.Out(",")

Save this object as “Display.spin” in a folder of your choice; for this example we’ll use the
“C:\Source\” folder.

In this example we use two Propeller Library objects, Numbers and TV_Terminal, to convert
numeric values to strings and display them on a TV. Compile and download this example
object and connect a TV (NTSC) display to the composite output (RCA jack) on the Propeller
Demo Board. The TV display should show the following text:

Propeller Programming Tutorial

Page 140 · Propeller Manual v1.0

900 * 45 + 401 = 40,901
In hexadecimal it's = $9FC5
Counting by fives:
 5, 10, 15, 20, 25, 30

Look at what we just achieved! Using just a few lines of our own code plus two existing
library objects and three resistors (on the Propeller Demo Board) we converted numeric
values to text strings and generated a TV-compatible signal to display that text in real time on
a standard TV! In fact, while you are reading this, a cog is keeping busy constantly
generating an NTSC signal at 60 frames per second that the TV can lock onto.

The TV_Terminal object provides a great display for debugging purposes. Since the
Propeller has many processors and can run quite fast, a real-time display such as a TV
monitor (CRT or LCD) used for debugging purposes goes a long way toward developing
optimal source code. We recommend using this technique along with the usual debugging
techniques to speed up development time.

Let’s look at some important parts of our code now. The first new item in our code is the
| Temp that appears in Main’s declaration line. Don’t be fooled, this may look like a return
variable declaration, but it is not. The pipe symbol ‘|’ indicates we are declaring local
variables next. So, | Temp declares that Temp is a long-sized local variable for Main.

Next we have two very important statements, Num.Init and TV.Start(12). These two
statements initialize the Numbers object and start the TV_Terminal object (on pins 12, 13 and
14), respectively. Each of these objects requires some kind of initialization before using it.
Numbers requires that its Init method is called to initialize some internal registers.
TV_Terminal requires that its Start method is called to configure the proper output pins and
to start two more cogs to generate the display signals. Objects typically indicate these
requirements in their documentation, but it is common that they include an Init or a Start
method if they require some initial setup before use.

The next line performs some arithmetic and sets our local variable, Temp, to the result. We’ll
use this result soon.

The next three statements create the first line of text on the TV display:
9 * 45 + 401 = 40,901. The TV.Str method outputs a zero-terminated string to the display.
Its parameter, string("900 * 45 + 401 = ") is new to us. STRING is a directive that creates a
zero-terminated string of characters (multiple bytes of character data followed by a zero;
sometimes called a z-string) and returns the address of that string. Most methods that deal
with strings require just the address of the starting character and for the string to end with a
byte equal to zero. TV.Str method’s parameter requires exactly that, the address of a zero-

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 141

terminated string. So the line TV.Str(string("900 * 45 + 401 = ")) causes the string “900
* 45 + 401 = ” to be displayed on the TV.

The next statement, TV.Str(Num.ToStr(Temp, Num#DDEC)) prints the “40,901” part of the line.
The Num.ToStr method converts the numeric value in Temp into a string using delimited
decimal format and returns the address of that string. Temp, of course, holds the long-sized
result of our earlier expression: 40901. The Num#DDEC part is new to us, however. The #
symbol when used this way is an Object-Constant reference; it is used to reference a constant
that was defined in another object. In this case, Num#DDEC refers to the “format constant” DDEC
that is declared within the Numbers object. As defined by Numbers, DDEC stands for
Delimited Decimal and holds a value that indicates to the ToStr method that it should format
the number with a thousands-group delimiter; a comma in this case. So, ToStr creates a z-
string equal to “40,901” and returns the address of it. TV.Str then outputs that string onto the
display. Read the documentation in the Numbers object for more information about this and
other format constants.

TV.Out(13) outputs a single byte, 13, to the display. The 13 is the ASCII code for a carriage
return (a non-visible character) and causes the TV_Terminal object to move to the next text
line. We do this in preparation for the next string we’ll print afterward.

Work and Library Folders
When our Display object is compiled, the Object View displays the structure shown below.
This shows us that our Display object uses the Numbers and TV_Terminal objects and the
TV_Terminal object uses the TV and Graphics objects.

Figure 3-19:
Object View of
Display Application

Yellow folders
indicate objects in the
“work” folder. Blue
folders indicate
objects in the
“library” folder.

The folder icons in front of each object are different colors to indicate their individual folder
locations. Objects with yellow folders are in the “work” folder while those with blue folders

Propeller Programming Tutorial

Page 142 · Propeller Manual v1.0

are in the “library” folder. From this display we can see that the Propeller Tool found the
Numbers, TV_Terminal, TV and Graphics objects in the library folder and the Display object
in the work folder.

Remember that we saved our Display object in the C:\Source folder? When an application is
compiled, the folder that the top object file is stored within becomes known as the work
folder. If that file refers to other objects, the work folder is the first place where the Propeller
Tool looks for them. If the referenced object is not in the work folder, the library folder is
searched next. If an object in the library folder refers to another object, the library folder is
searched for that other object. An error occurs if referenced objects are not found in either
the work folder or the library folder.

Due to this nature, it can be said that every application is composed entirely of files from as
many as two folders; the work folder and/or the library folder. Keep this in mind while
building your applications.

You can find out the location of each object, and the work and library folders, by pointing the
mouse at each object in the Object View. In the figures below we see that Display is in
C:\Source (the “work” folder) and Numbers is in C:\Program Files\Parallax Inc\Propeller
Tool (the “library” folder).

Figure 3-20:
Object View Hints for
Display Application

The work and library
folder paths can be
seen in the hint
messages

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 143

Exercise 12: Whole and Real Numbers
The Propeller is a 32-bit device and can naturally handle whole numbers as signed integers
(-2,147,483,648 to 2,147,483,647) both in constants or in run-time math expressions.
However, for real numbers (those with both integer and fraction components) the compiler
supports floating-point format (single-precision, IEEE-754 compliant) for constants, and
there are library objects that allow for run-time floating-point math operations.

Pseudo-Real Numbers
For handling real numbers, there are many possible techniques. One technique is to use
integer math in a way that accommodates your real values as well as the run-time expressions
involved. We call this pseudo-real numbers.

Having 32-bit integers built in to the Propeller provides us with a lot of “elbow room” for
calculations. For example, perhaps we have an equation to multiply and divide values that
have 2-digit fractions, like the following:

A = B * C / D

For our example, let’s use A = 7.6 * 38.75 / 12.5 which evaluates to 23.56.

To solve this at run time, we can adjust all the equation’s values upward by 2 digits to make
them all integers, perform the math and then treat the rightmost 2 digits of the result as being
the fractional portion. Multiplying each value by 100 achieves this. Here’s the algebraic
proof:

A = (B* 100) * (C * 100) / (D * 100)

A = (7.6 * 100) * (38.75 * 100) / (12.5 * 100)

A = 760 * 3875 / 1250

A = 2356

Since we multiplied all the original values by 100, we know that the final value is really
2356 / 100 = 23.56, but for most purposes we can keep it in integer form knowing that the
rightmost two digits are really to the right of the decimal point.

The above solution works as long as each of the original values and each of the intermediate
results never exceed the signed integer boundaries: -2,147,483,648 to 2,147,483,647.

The example presented next includes code that uses both the pseudo-real number technique as
well as floating-point numbers.

Propeller Programming Tutorial

Page 144 · Propeller Manual v1.0

Floating-Point Numbers
In many cases, expressions involving real numbers can be solved without using floating-point
values and methods, such as with the pseudo-real number technique. Since solutions like the
one above tend to execute much faster and consume less memory, it is recommended that you
think carefully about whether or not you really need floating-point support before you
actually use it. If you can afford the extra execution time and memory usage, floating-point
support may be the best solution.

The Propeller Tool supports floating-point constants directly. The Propeller chip supports
floating-point run-time expressions through the use of objects; ie: at run time the Spin
Interpreter can only directly process integer-based expressions.

The next example object, RealNumbers.spin, demonstrates using integer constants (iB, iC,
and iD) that are pre-translated to pseudo-real numbers, floating-point constants (B, C, and D)
used in their native form by the FloatMath and FloatString library objects, and also those
same floating-point constants translated to pseudo-real numbers at compile time.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 145

Example Object: RealNumbers.spin

{{ RealNumbers.spin}}
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 iB = 760 'Integer constants
 iC = 3875
 iD = 1250

 B = 7.6 'Floating-point constants
 C = 38.75
 D = 12.5

 K = 100.0 'Real-to-Pseudo-Real multiplier

OBJ
 Term : "TV_Terminal"
 F : "FloatMath"
 FS : "FloatString"

PUB Math
 Term.Start(12)

 {Integer constants (real numbers * 100) to do fast integer math}
 Term.Str(string("Pseudo-Real Number Result: "))
 Term.Dec(iB*iC/iD)

 {Floating-point constants using FloatMath and FloatString objects}
 Term.Out(13)
 Term.Str(string("Floating-Point Number Result: "))
 Term.Str(FS.FloatToString(F.FDiv(F.FMul(B, C), D)))

 {Floating-point constants translated to pseudo-real for fast math}
 Term.Out(13)
 Term.Str(string("Another Pseudo-Real Number Result: "))
 Term.Dec(trunc(B*K)*trunc(C*K)/trunc(D*K))

Propeller Programming Tutorial

Page 146 · Propeller Manual v1.0

Compile and download RealNumbers.spin. It will display the following on a TV display:

Pseudo-Real Number Result: 2356
Floating-Point Number Result: 23.56
Another Pseudo-Real Number Result: 2356

The pseudo-real results, of course, each represent the value 23.56 but the entire value is
shifted upwards by two digits to maintain integer math compatibility. With some additional
code we could output it as 23.56 for display purposes.

The constants iB, iC, and iD are standard integer constants as we’ve seen before, but their
values are really pseudo-real numbers representing the values in our example equation.

The constants B, C, D, and K, are floating-point constants (real numbers). The compiler
automatically recognizes them as such and stores them in 32-bit single-precision floating-
point format. They can be used in other compile-time floating-point expressions directly but
at run time they should only be used with floating-point methods such as those found in the
FloatMath and FloatString objects.

The statement Term.Dec(iB*iC/iD) uses the pre-translated pseudo-real constants as suggested
by the Pseudo-Real Numbers technique, above. This is evaluated about 1.6 times faster than
with the floating-point technique and takes much less code space.

The statement Term.Str(FS.FloatToString(F.FDiv(F.FMul(B, C), D))) calls FloatMath’s
FMul method to multiply the floating-point values B and C, then calls FloatMath’s FDiv method
to divide that result by the floating-point value D, translates the result to a string using
FloatString’s FloatToString method and displays that on the TV.

The statement Term.Dec(trunc(B*K)*trunc(C*K)/trunc(D*K)) uses compile-time expressions
inside of TRUNC directives to shift the floating-point constants B, C, and D upwards by two
digits and truncate the values to integers. The resulting expression is equivalent to that of the
first pseudo-real number equation Term.Dec(iB*iC/iD) but has the added benefit of allowing
its component values to be defined in floating-point terms.

The TRUNC directive truncates fully resolved floating-point expressions to their integer form at
compile time. It is required here since floating-point constant values can not be used directly
by run-time expressions.

3: Propeller Programming Tutorial

Propeller Manual v1.0 · Page 147

Context-Sensitive Compile Information
After an object has been compiled, the Propeller Tool displays context-sensitive compile
information on the status bar (panel 5) about the source item the cursor is currently near or
within. This is very useful in verifying and understanding the values of constants declared in
an object. For example, compile this example by pressing F9 (or selecting the Run →
Compile Current → Update Status menu option) and then place the cursor on the iB constant
in the CON block. The status bar will temporarily highlight the context information and should
look similar to the figure below.

Figure 3-21:
Status Bar with
Compile Information

After a compile
operation, the status
bar’s panel 5 displays
information about the
source item nearest
the cursor.

This tells us that our iB constant is defined by the CON block to be 760 decimal, or $2F8
hexadecimal.

Try placing the cursor on the B constant. The compile information should now read “CON B
= 7.6 ($40F3_3333) Floating Point” to indicate this is a real number, in floating-point form,
equal to 7.6 decimal ($40F3_3333 hexadecimal) This illustrates that floating-point values are
encoded into 32 bits in a way that makes them incompatible with integer values.

In addition to symbols in CON and DAT blocks, the compile information displays shows the
size, in bytes, of PUB/PRI/DAT blocks when the cursor is within that block. In our case, the
Math method is 196 bytes long. This is a great feature to use when optimizing code for size;
make small changes to code, press F9, check size against that of the previous code, and so on.

Propeller Programming Tutorial

Page 148 · Propeller Manual v1.0

Quick Review: Ex 11 & 12
• Propeller Library:

o Is a folder automatically created by the Propeller Tool installer.
o Contains Parallax-made Propeller objects that perform useful functions.
o The “Propeller Library” item in the Recent Folders list allows for quick

access.
• Spin Language:

o The pipe symbol ‘|’ on method declaration lines declares a list of local
variables for the method; see Parameters and Local Variables, page 289.

o The STRING directive creates a zero-terminated string and returns its address;
see STRING, page 310.

o The # symbol forms an Object-Constant reference used to access constants
defined in other objects; see Scope of Constants, page 199.

o The TRUNC directive truncates floating-point constants to integers; see TRUNC,
page 314.

• Work and Library Folders:
o The Object View’s folder icons indicate the object’s location.

 Objects with yellow folders are in the “work” folder.
 Objects with blue folders are in the “library” folder.

o Every application is composed entirely of files from as many as two folders;
the work folder and/or the library folder.

• Integers and Real Numbers: (See CON, page 194, or Operators, page 249)
o Integers are directly supported both in constants and in run-time expressions.
o Real numbers, in floating-point format, are directly supported in constants

and are indirectly supported at run time by special library objects.
o In many cases, expressions involving real numbers can be solved without

using floating-point values and methods.
• The Status Bar displays compile information about the source item nearest to the

cursor. This includes CON/DAT block symbol’s size/address and PUB/PRI/DAT block’s
size.

Where to go from here...
You should now have the knowledge you need to explore the Propeller chip on your own and
develop your first applications. Use the rest of this manual as a reference to the Spin and
Propeller Assembly languages, explore every existing library object that interests you and
join the Propeller Forum to keep learning and sharing with other active Propeller chip users.

4: Spin Language Reference

Propeller Manual v1.0 · Page 149

Chapter 4: Spin Language Reference
This chapter describes all elements of the Propeller chip’s Spin language and is best used as a
reference for individual elements of the Spin language. For a general tutorial of the use of the
Spin language, first read Chapter 3: Propeller Programming Tutorial, then return here for
more details.

The Spin Language Reference is divided into three sections:

1) The Structure of the Propeller Objects. Propeller Objects consist of Spin code,
optional Assembly Code, and data. An object’s Spin code provides it with structure,
consisting of special-purpose blocks. This section lists these blocks and the elements
that may be used in each. Each listed element has a page reference for more
information.

2) The Categorical Listing of the Propeller Spin Language. All elements, including
operators and syntax symbols, are grouped by related function. This is a great way to
quickly realize the breadth of the language and what features are available for
specific uses. Each listed element has a page reference for more information. Some
elements are marked with a superscript “a” indicating that they are also available in
Propeller Assembly, though syntax may vary. Such marked elements are also
included in Chapter 5: Assembly Language Reference.

3) The Spin Language Elements. Most elements have their own dedicated sub-
section, alphabetically arranged to ease searching for them. Those individual
elements without a dedicated sub-section, such as Operators, Symbols and some
constants, are grouped within other related sub-sections but can be easily located by
following their page reference from the Categorical Listing.

Spin Language Reference

Page 150 · Propeller Manual v1.0

Structure of Propeller Objects
Each Propeller object has an inherent structure consisting of up to six different special-
purpose blocks: CON, VAR, OBJ, PUB, PRI, and DAT. These blocks are shown below (in the order
that they typically appear in objects) along with the set of elements usable within each.

For detailed examples of the object structure and usage, refer to Chapter 3: Propeller
Programming Tutorial which begins on page 85.

CON: Constant blocks define global constants (page 194).
_CLKFREQ p 177 NEGX p 202 PLL16X p 180 XINPUT p 180
_CLKMODE p 180 Operators* p 249 POSX p 202 XTAL1 p 180
_FREE p 218 PI p 202 RCFAST p 180 XTAL2 p 180
_STACK p 307 PLL1X p 180 RCSLOW p 180 XTAL3 p 180
_XINFREQ p 337 PLL2X p 180 ROUND p 303
FALSE p 202 PLL4X p 180 TRUE p 202
FLOAT p 216 PLL8X p 180 TRUNC p 314

* Non-assignment operators only.

VAR: Variable blocks define global variables (page 315).
BYTE p 165 LONG p 236 ROUND p 303 TRUNC p 314
FLOAT p 216 Operators* p 249 WORD p 331

* Non-assignment operators only.

OBJ: Object blocks define referenced objects (page 247).
FLOAT p 216 Operators* p 249 ROUND p 303 TRUNC p 314

* Non-assignment operators only.

4: Spin Language Reference

Propeller Manual v1.0 · Page 151

PUB/PRI: Public and Private method blocks define Spin routines (pages 287/286).
ABORT p 161 FLOAT p 216 Operators p 249 ROUND p 303
BYTE p 165 FRQA p 219 OUTA p 280 SPR p 305
BYTEFILL p 169 FRQB p 219 OUTB p 280 STRCOMP p 308
BYTEMOVE p 170 IF p 220 PAR p 283 STRING p 310
CASE p 171 IFNOT p 225 PHSA p 285 STRSIZE p 311
CHIPVER p 174 INA p 225 PHSB p 285 TRUE p 202
CLKFREQ p 175 INB p 225 PI p 202 TRUNC p 314
CLKMODE p 179 LOCKCLR p 228 PLL1X p 180 VCFG p 317
CLKSET p 183 LOCKNEW p 230 PLL2X p 180 VSCL p 320
CNT p 184 LOCKRET p 233 PLL4X p 180 WAITCNT p 322
COGID p 186 LOCKSET p 234 PLL8X p 180 WAITPEQ p 326
COGINIT p 187 LONG p 236 PLL16X p 180 WAITPNE p 328
COGNEW p 189 LONGFILL p 240 POSX p 202 WAITVID p 329
COGSTOP p 193 LONGMOVE p 241 QUIT p 291 WORD p 331
CONSTANT p 200 LOOKDOWN p 242 RCFAST p 180 WORDFILL p 335
CTRA p 204 LOOKDOWNZ p 242 RCSLOW p 180 WORDMOVE p 336
CTRB p 204 LOOKUP p 244 REBOOT p 292 XINPUT p 180
DIRA p 212 LOOKUPZ p 244 REPEAT p 293 XTAL1 p 180
DIRB p 212 NEGX p 202 RESULT p 299 XTAL2 p 180
FALSE p 202 NEXT p 246 RETURN p 301 XTAL3 p 180

DAT: Data blocks define data and Propeller Assembly code (page 208).

Assembly p 339 FRQB p 219 PI p 202 TRUNC p 314
BYTE p 165 INA p 225 PLL1X p 180 VCFG p 317
CNT p 184 INB p 225 PLL2X p 180 VSCL p 320
CTRA p 204 LONG p 236 PLL4X p 180 WORD p 331
CTRB p 204 NEGX p 202 PLL8X p 180 XINPUT p 180
DIRA p 212 Operators* p 249 PLL16X p 180 XTAL1 p 180
DIRB p 212 OUTA p 280 POSX p 202 XTAL2 p 180
FALSE p 202 OUTB p 280 RCFAST p 180 XTAL3 p 180
FILE p 215 PAR p 283 RCSLOW p 180
FLOAT p 216 PHSA p 285 ROUND p 303
FRQA p 219 PHSB p 285 TRUE p 202
* Non-assignment operators only.

Spin Language Reference

Page 152 · Propeller Manual v1.0

Categorical Listing of Propeller Spin Language
Elements marked with a superscript “a” are also available in Propeller Assembly.

Block Designators
CON Declare constant block; p 194.
VAR Declare variable block; p 315.
OBJ Declare object reference block; p 247.
PUB Declare public method block; p 287.
PRI Declare private method block; p 286.
DAT Declare data block; p 208.

Configuration
CHIPVER Propeller chip version number; p 174.
CLKMODE Current clock mode setting; p 179.
_CLKMODE Application-defined clock mode (read-only); p 180.
CLKFREQ Current clock frequency; p 175.
_CLKFREQ Application-defined clock frequency (read-only); p 177.
CLKSETa Set clock mode and clock frequency; p 183.
_XINFREQ Application-defined external clock frequency (read-only); p 337.
_STACK Application-defined stack space to reserve (read-only); p 307.
_FREE Application-defined free space to reserve (read-only); p 218.
RCFAST Constant for _CLKMODE: internal fast oscillator; p 180.
RCSLOW Constant for _CLKMODE: internal slow oscillator; p 180.
XINPUT Constant for _CLKMODE: external clock/osc (XI pin); p 180.
XTAL1 Constant for _CLKMODE: external low-speed crystal; p 180.
XTAL2 Constant for _CLKMODE: external med-speed crystal; p 180.
XTAL3 Constant for _CLKMODE: external high-speed crystal; p 180.
PLL1X Constant for _CLKMODE: external frequency times 1; p 180.
PLL2X Constant for _CLKMODE: external frequency times 2; p 180.
PLL4X Constant for _CLKMODE: external frequency times 4; p 180.

4: Spin Language Reference

Propeller Manual v1.0 · Page 153

PLL8X Constant for _CLKMODE: external frequency times 8; p 180.
PLL16X Constant for _CLKMODE: external frequency times 16; p 180.

Cog Control
COGIDa Current cog’s ID (0-7); p 186.
COGNEW Start the next available cog; p 189.
COGINITa Start, or restart, a cog by ID; p 187.
COGSTOPa Stop a cog by ID; p 193.
REBOOT Reset the Propeller chip; p 292.

Process Control
LOCKNEWa Check out a new lock; p 230.
LOCKRETa Release a lock; p 233.
LOCKCLRa Clear a lock by ID; p 228.
LOCKSETa Set a lock by ID; p 234.
WAITCNTa Wait for System Counter to reach a value; p 322.
WAITPEQa Wait for pin(s) to be equal to value; p 326.
WAITPNEa Wait for pin(s) to be not equal to value; p 328.
WAITVIDa Wait for video sync and deliver next color/pixel group; p 329.

Flow Control
IF Conditionally execute one or more blocks of code; p 220.

IFNOT Conditionally execute one or more blocks of code; p 225.

CASE Evaluate expression and execute block of code that satisfies a condition;

p 171.

...ELSEIF

...ELSEIFNOT

...ELSE

...OTHER

...ELSEIF

...ELSEIFNOT

...ELSE

Spin Language Reference

Page 154 · Propeller Manual v1.0

REPEAT Execute block of code repetitively an infinite or finite number of times
with optional loop counter, intervals, exit and continue conditions; p
293.

NEXT Skip rest of REPEAT block and jump to next loop iteration; p 246.
QUIT Exit from REPEAT loop; p 291.
RETURN Exit PUB/PRI with normal status and optional return value; p 301.
ABORT Exit PUB/PRI with abort status and optional return value; p 161.

Memory
BYTE Declare byte-sized symbol or access byte of main memory; p 165.
WORD Declare word-sized symbol or access word of main memory; p 331.
LONG Declare long-sized symbol or access long of main memory; p 236.
BYTEFILL Fill bytes of main memory with a value; p 169.
WORDFILL Fill words of main memory with a value; p 335.
LONGFILL Fill longs of main memory with a value; p 240.
BYTEMOVE Copy bytes from one region to another in main memory; p 170.
WORDMOVE Copy words from one region to another in main memory; p 336.
LONGMOVE Copy longs from one region to another in main memory; p 241.
LOOKUP Get value at index (1..N) from a list; p 244.
LOOKUPZ Get value at zero-based index (0..N−1) from a list; p 244.
LOOKDOWN Get index (1..N) of a matching value from a list; p 242.
LOOKDOWNZ Get zero-based index (0..N−1) of a matching value from a list; p 242.
STRSIZE Get size of string in bytes; p 311.
STRCOMP Compare a string of bytes against another string of bytes; p 308.

...FROM

...TO

...STEP

...UNTIL

...WHILE

4: Spin Language Reference

Propeller Manual v1.0 · Page 155

Directives
STRING Declare in-line string expression; resolved at compile time; p 310.
CONSTANT Declare in-line constant expression; resolved at compile time; p 200.
FLOAT Declare floating-point expression; resolved at compile time; p 216.
ROUND Round compile-time floating-point expression to integer; p 303.
TRUNC Truncate compile-time floating-point expression at decimal; p 314.
FILE Import data from an external file; p 215.

Registers
DIRAa Direction Register for 32-bit port A; p 212.
DIRBa Direction Register for 32-bit port B (future use); p 212.
INAa Input Register for 32-bit port A (read only); p 225.
INBa Input Register for 32-bit port B (read only) (future use); p 226.
OUTAa Output Register for 32-bit port A; p 280.
OUTBa Output Register for 32-bit port B (future use); p 282.
CNTa 32-bit System Counter Register (read only); p 184.
CTRAa Counter A Control Register; p 204.
CTRBa Counter B Control Register; p 204.
FRQAa Counter A Frequency Register; p 219.
FRQBa Counter B Frequency Register; p 219.
PHSAa Counter A Phase-Locked Loop (PLL) Register; p 285.
PHSBa Counter B Phase-Locked Loop (PLL) Register; p 285.
VCFGa Video Configuration Register; p 317.
VSCLa Video Scale Register; p 320.
PARa Cog Boot Parameter Register (read only); p 283.
SPR Special-Purpose Register array; indirect cog register access; p 305.

Spin Language Reference

Page 156 · Propeller Manual v1.0

Constants
TRUEa Logical true: -1 ($FFFFFFFF); p 202.
FALSEa Logical false: 0 ($00000000) ; p 202.
POSXa Maximum positive integer: 2,147,483,647 ($7FFFFFFF); p 202.
NEGXa Maximum negative integer: -2,147,483,648 ($80000000); p 202.
PIa Floating-point value for PI: ~3.141593 ($40490FDB); p 202.

Variable
RESULT Default result variable for PUB/PRI methods; p 299.

Unary Operators
+ Positive (+X); unary form of Add; p 256.
- Negate (-X); unary form of Subtract; p 256.
- - Pre-decrement (--X) or post-decrement (X--) and assign; p 257.
+ + Pre-increment (++X) or post-increment (X++) and assign; p 257.
^^ Square root; p 261.
|| Absolute Value; p 261.
~ Sign-extend from bit 7 (~X) or post-clear to 0 (X~); p 262.
~~ Sign-extend from bit 15 (~~X) or post-set to -1(X~~); p 263.
? Random number forward (?X) or reverse (X?); p 264.
|< Decode value (modulus of 32; 0-31) into single-high-bit long; p 265.
>| Encode long into magnitude (0 - 32) as high-bit priority; p 266.
! Bitwise: NOT; p 272.
NOT Boolean: NOT (promotes non-0 to -1); p 274.
@ Symbol address; p 278.
@@ Object address plus symbol value; p 279.

4: Spin Language Reference

Propeller Manual v1.0 · Page 157

Binary Operators
NOTE: All right-column operators are assignment operators.

= --and-- = Constant assignment (CON blocks); p 254.
:= --and-- := Variable assignment (PUB/PRI blocks); p 255.
+ --or-- += Add; p 255.
- --or-- -= Subtract; p 256.
* --or-- *= Multiply and return lower 32 bits (signed); p 258.
** --or-- **= Multiply and return upper 32 bits (signed); p 259.
/ --or-- /= Divide (signed); p 259.
// --or-- //= Modulus (signed); p 259.
#> --or-- #>= Limit minimum (signed); p 260.
<# --or-- <#= Limit maximum (signed); p 261.
~> --or-- ~>= Shift arithmetic right; p 264.
<< --or-- <<= Bitwise: Shift left; p 266.
>> --or-- >>= Bitwise: Shift right; p 267.
<- --or-- <-= Bitwise: Rotate left; p 267.
-> --or-- ->= Bitwise: Rotate right; p 268.
>< --or-- ><= Bitwise: Reverse; p 268.
& --or-- &= Bitwise: AND; p 269.
| --or-- |= Bitwise: OR; p 270.
^ --or-- ^= Bitwise: XOR; p 271.
AND --or-- AND= Boolean: AND (promotes non-0 to -1); p 272.
OR --or-- OR= Boolean: OR (promotes non-0 to -1); p 273.
= = --or-- = = = Boolean: Is equal; p 275.
<> --or-- <>= Boolean: Is not equal; p 275.
< --or-- <= Boolean: Is less than (signed); p 276.
> --or-- >= Boolean: Is greater than (signed); p 276.
=< --or-- =<= Boolean: Is equal or less (signed); p 277.
=> --or-- =>= Boolean: Is equal or greater (signed); p 277.

Spin Language Reference

Page 158 · Propeller Manual v1.0

Syntax Symbols
% Binary number indicator, as in %1010; p 312.
%% Quaternary number indicator, as in %%2130; p 312.
$ Hexadecimal number indicator, as in $1AF; p 312.
" String designator "Hello"; p 312.
_ Group delimiter in constant values, or underscore in symbols; p 312.
Object-Constant reference: obj#constant; p 312.
. Object-Method reference: obj.method(param) or decimal point; p 312.
.. Range indicator, as in 0..7; p 312.
: Return separator: PUB method : sym, or object assignment, etc.; p 312.
| Local variable separator: PUB method | temp, str; p 313.
\ Abort trap, as in \method(parameters); p 313.
, List delimiter, as in method(param1, param2, param3); p 313.
() Parameter list designators, as in method(parameters); p 313.
[] Array index designators, as in INA[2]; p 313.
{ } In-line/multi-line code comment designators; p 313.
{{ }} In-line/multi-line document comment designators; p 313.
' Code comment designator; p 313.
' ' Document comment designator; p 313.

4: Spin Language Reference

Propeller Manual v1.0 · Page 159

Spin Language Elements
The remainder of this chapter describes the elements of the Spin Language, shown above, in
alphabetical order. A few elements are explained within the context of others for clarity; use
the page references from the categorical listing, above, to find those discussions. Many
elements are available both in Spin and Propeller Assembly. Those elements are described in
detail within this section, with references to them, and any differences, in the appropriate
areas of Chapter 5: Assembly Language Reference beginning on page 339.

Symbol Rules
Symbols are case-insensitive, alphanumeric names either created by the compiler (reserved
word) or by the code developer (user-defined word). They represent values (constants or
variables) to make source code easier to understand and maintain. Symbols must fit the
following rules:

1) Begins with a letter (a – z) or an underscore ‘_’.
2) Contains only letters, numbers, and underscores (a – z, 0 – 9, _); no spaces allowed.
3) Must be 32 characters or less.
4) Is unique to the object; not a reserved word (p. 419) or previously user-defined symbol.

Value Representations
Values can be entered in binary (base-2), quaternary (base-4), decimal (base-10),
hexadecimal (base-16), or character formats. Numerical values can also use underscores, ‘_’,
as a group separator to clarify numbers. The following are examples of these formats.

Table 4-1: Value Representations
Base Type of Value Examples

2 Binary %1010 –or– %11110000_10101100
4 Quaternary %%2130_3311 –or– %%3311_2301_1012

10 Decimal (integer) 1024 –or– 2_147_483_647 –or– -25
10 Decimal (floating-point) 1e6 –or– 1.000_005 –or– -0.70712
16 Hexadecimal $1AF –or– $FFAF_126D_8755
n/a Character "A"

Separators can be used in place of commas (in decimal values) or to form logical groups,
such as nibbles, bytes, words, etc.

Spin Language Reference

Page 160 · Propeller Manual v1.0

Syntax Definitions
In addition to detailed descriptions, the following pages contain syntax definitions for many
elements that describe, in short terms, all the options of that element. The syntax definitions
use special symbols to indicate when and how certain element features are to be used.

BOLDCAPS Items in bold uppercase should be typed in as shown.

Bold Italics Items in bold italics should be replaced by user text;
symbols, operators, expressions, etc.

. .. : , # Periods, double-periods, colons, commas, pound signs,
pipes, back slashes, square brackets and parentheses
should be typed in where shown.

〈 〉 Angle bracket symbols enclose optional items. Enter the
enclosed item if desired. Do not enter the angle brackets.

((┆)) Double parentheses symbols enclose mutually-exclusive
items, separated by a dash-bar. Enter one, and only one,
of the encoded items. Do not enter the double
parentheses or dash-bar.

… Repetition symbol indicates that the previous item, or
group, can be repeated numerous times. Repeat the last
item(s) if desired. Do not enter the repetition symbol.

 New Line/Indent symbol indicates following items should
appear on the next line, indented by at least one space.

 Indent symbol indicates following items should be
intended by at least one space.

Single line Separates various syntax structure options.

Double line Separates instruction from the value it returns.

Since elements are limited to specific Spin blocks, all syntax definitions begin with an
indication of the type of block required. For example, the following syntax indicates that the
BYTEFILL command and its parameters must appear in either a PUB or PRI block, but it may be
one of many commands within that block.

((PUB ┆ PRI))
 BYTEFILL (StartAddress, Value, Count)

| \ [] ()

4: Spin Language Reference – ABORT

Propeller Manual v1.0 · Page 161

ABORT
Exit from PUB/PRI method using abort status with optional return Value.

((PUB ┆ PRI))
 ABORT 〈Value〉
Returns: Either the current RESULT value, or Value if provided.

• Value is an optional expression whose value is to be returned, with abort status, from
the PUB or PRI method.

Explanation
ABORT is one of two commands (ABORT and RETURN) that terminate a PUB or PRI method’s
execution.

ABORT causes a return from a PUB or PRI method with abort status; meaning it pops the call
stack repeatedly until either the call stack is empty or it reaches a caller with an Abort Trap,
(\), and delivers a value in the process.

ABORT is useful for cases where a method needs to terminate and indicate an abnormal or
elevated status to the immediate caller or one its previous callers. For example, an
application may be involved in a complicated chain of events where any one of those events
could lead to a different branch of the chain or a final action decision. It may be easier to
write that application using small, specialized methods that are called in a nested fashion,
each meant to deal with a specific sub-event in the chain. When one of the simple methods
determines a course of action, it can issue an abort that completely collapses the nested call
chain and prevents all the intermediate methods from continuing.

When ABORT appears without the optional Value, it returns the current value of the PUB/PRI’s
built-in RESULT variable. If the Value field was entered, however, the PUB or PRI aborts and
returns that Value instead.

About the Call Stack
When methods are called simply by referring to them from other methods, there must be
some mechanism in place to store where to return to once the called method is completed.
This mechanism is a called a “stack” but we’ll use the term “call stack” here. It is simply
RAM memory used to store return addresses, return values, parameters and intermediate
results. As more and more methods are called, the call stack logically gets longer. As more

ABORT – Spin Language Reference

Page 162 · Propeller Manual v1.0

and more methods are returned from (via RETURN or by reaching the end of the method) the
call stack gets shorter. This is called “pushing” onto the stack and “popping” off of the stack,
respectively.

The RETURN command pops the most recent data off the call stack to facilitate returning to the
immediate caller; the one who directly called the method that just returned. The ABORT
command, however, repetitively pops data off the call stack until it reaches a caller with an
Abort Trap (see below); returning to some higher-level caller that may have just been one
call, or many calls, up the nested chain of calls. Any return points along the way between an
aborting method and an abort trapping method are ignored and essentially terminated. In this
way, ABORT allows code to back way out of a very deep and potentially complicated series of
logic to handle a serious issue at a high level.

Using ABORT
Any method can choose to issue an ABORT command. It’s up to the higher-level code to
check for an abort status and handle it. This higher-level code can be either that which called
an aborting method directly, or via some other set of methods. To issue an ABORT command,
use something like the following:

 if <bad condition>
 abort 'If bad condition detected, abort

—or—

 if <bad condition>
 abort <value> 'If bad condition detected, abort with value

...where <bad condition> is a condition that determines the method should abort and <value>
is a value to return upon aborting.

The Abort Trap (\)
To trap an ABORT, the call to the method or method chain that could potentially abort must be
preceded with the Abort Trap symbol, a backslash (\). For example, if a method called
MayAbort could abort, or calls other methods that may abort, a calling method could trap this
with the following:

 if \MayAbort 'Call MayAbort with abort trap

 abort <value> 'Process abort

4: Spin Language Reference – ABORT

Propeller Manual v1.0 · Page 163

The type of exit that MayAbort actually used, ABORT or RETURN, is not automatically known by
the trapping call; it may have just happened to be the destination of a RETURN command.
Therefore, the code must be written in a way to detect which type was used. Some
possibilities are: 1) code may be designed such that a high-level method is the only place that
traps an abort and other mid-level code processes things normally without allowing RETURNs
to propagate higher, or 2) aborting methods may return a special value that can not occur in
any normal circumstance, or 3) a global flag can be set by the aborting method prior to
aborting.

Example Use Of Abort
The following is an example of a simple-minded robot application in which the robot is
designed to move away from an object it senses with its four sensors (Left, Right, Front and
Back). Assume that CheckSensors, Beep, and MotorStuck are methods defined elsewhere.

CON
 #0, None, Left, Right, Front, Back 'Direction Enumerations

PUB Main | Direction
 Direction := None
 repeat
 case CheckSensors 'Get active sensor
 Left : Direction := Right 'Object on left? Let's go right
 Right : Direction := Left 'Object on right? Let's go left
 Front : Direction := Back 'Object in front? Let's go back
 Back : Direction := Front 'Object in back? Let's go front
 other : Direction := None 'Otherwise, stay still
 if not \Move(Direction) 'Move robot
 Beep 'We're stuck? Beep

PUB Move(Direction)
 result := TRUE 'Assume success
 if Direction == None
 return 'Return if no direction
 repeat 1000
 DriveMotors(Direction) 'Drive motor 1000 times

PUB DriveMotors(Direction)
 <code to drive motors>
 if MotorStuck
 abort FALSE 'If motor is stuck, abort

ABORT – Spin Language Reference

Page 164 · Propeller Manual v1.0

 <more code>

The above example shows three methods of various logical levels, Main (“high-level”), Move
(“mid-level”) and DriveMotors (“low-level”). The high-level method, Main, is the decision
maker of the application; deciding how to respond to events like sensor activations and motor
movements. The mid-level method, Move, is responsible for moving the robot a short
distance. The low-level method, DriveMotors, handles the details of driving the motors
properly and verifying that it is successful.

In an application like this, critical events could occur in low-level code that needs to be
addressed by high-level code. The ABORT command can be instrumental in getting the
message to the high-level code without requiring complicated message-passing code for all
the mid-level code in-between. In this case, we have only one mid-level method but there
could be many nested mid-level methods between the high-level and the low-level.

The Main method gets sensor inputs and decides what direction to move the robot via the CASE
statement. It then calls Move in a special way, with the Abort Trap symbol, \ , preceding it.
The Move method sets its RESULT to TRUE and then calls DriveMotors in a finite loop. If it
successfully completes, Move returns TRUE. The DriveMotors method handles the
complication of moving the robot’s motors to achieve the desired direction, but if it
determines the motors are stuck, it cannot move them further and it aborts with a FALSE value.
Otherwise it simply returns normally.

If everything is fine, the DriveMotors method returns normally, the Move method carries on
normally and eventually returns TRUE, and the Main method continues on normally. If,
however, DriveMotors finds a problem, it ABORTs which causes the Propeller to pop the call
stack all the way through the Move method and up to the Main method where the Abort Trap
was found. The Move method is completely oblivious to this and is now effectively
terminated. The Main method checks the value returned by its call to Move (which is now the
FALSE value that was actually returned by the aborted DriveMotors method deep down the call
stack) and it decides to Beep as a result of the detected failure.

If we had not put the Abort Trap, (\), in front of the call to Move, when DriveMotors aborted,
the call stack would have been popped until it was empty and this application would have
terminated immediately.

4: Spin Language Reference – BYTE

Propeller Manual v1.0 · Page 165

BYTE
Declare byte-sized symbol, byte aligned/sized data, or read/write a byte of main memory.

VAR

 BYTE Symbol 〈[Count]〉
DAT
 BYTE Data
((PUB ┆ PRI))
 BYTE [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.BYTE 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or the existing name of the
variable (Syntax 4).

• Count is an optional expression indicating the number of byte-sized elements for
Symbol, arranged in an array from element 0 to element Count-1.

• Data is a constant expression or comma-separated list of constant expressions.
Quoted strings of characters are also allowed; they are treated as a comma-separated
list of characters.

• BaseAddress is an expression describing the address of main memory to read or write.
If Offset is omitted, BaseAddress is the actual address to operate on. If Offset is
specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on,
or the offset from byte 0 of Symbol.

Explanation
BYTE is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declare or operate
on memory. BYTE can be used to:

1) declare a byte-sized (8-bit) symbol or a multi-byte symbolic array in a VAR block, or
2) declare byte-aligned, and possibly byte-sized, data in a DAT block, or
3) read or write a byte of main memory at a base address with an optional offset, or
4) access a byte within a word-sized or long-sized variable.

BYTE – Spin Language Reference

Page 166 · Propeller Manual v1.0

Byte Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of BYTE is used to declare global, symbolic variables that are either
byte-sized, or are any array of bytes.

For example:

VAR
 byte Temp 'Temp is a byte
 byte Str[25] 'Str is a byte array

The above example declares two variables (symbols), Temp and Str. Temp is simply a single,
byte-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 byte-sized variable elements called Str. Both Temp and Str can be
accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 250 'Set Temp to 250
 Str[0] := "A" 'Set first element of Str to "A"
 Str[1] := "B" 'Set second element of Str to "B"
 Str[24] := "C" 'Set last element of Str to "C"

For more information about using BYTE in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 315, and keep in mind that BYTE is used for the Size field in
that description.

Byte Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of BYTE is used to declare byte-aligned, and/or byte-sized data that is
compiled as constant values in main memory. DAT blocks allow this declaration to have an
optional symbol preceding it, which can be used for later reference (See DAT, page 208). For
example:

DAT
 MyData byte 64, $AA, 55 'Byte-aligned and byte-sized data
 MyString byte "Hello",0 'A string of bytes (characters)

The above example declares two data symbols, MyData and MyString. Each data symbol
points to the start of byte-aligned and byte-sized data in main memory. MyData’s values, in
main memory, are 64, $AA and 55, respectively. MyString’s values, in main memory, are
“H”, “e”, “l”, “l”, “o”, and 0, respectively. This data is compiled into the object and resulting
application as part of the executable code section and may be accessed using the read/write

4: Spin Language Reference – BYTE

Propeller Manual v1.0 · Page 167

form, syntax 3, of BYTE (see below). For more information about using BYTE in this way, refer
to the DAT section’s Declaring Data (Syntax 1) on page 208, and keep in mind that BYTE is
used for the Size field in that description.

Reading/Writing Bytes of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of BYTE is used to read or write byte-sized values of main
memory. In the following two examples, we’ll assume our object contained the DAT block
from the example above, and we will demonstrate two different ways to access that data.

First, let’s try accessing the data directly using the labels we provided in our data block.

PUB GetData | Index, Temp
 Temp := MyData 'Read 1st byte of MyData to Temp
 <do something with Temp> 'Perform task with Temp

 Index := 0
 repeat
 Temp := MyString[Index++] 'Read chars into Temp
 <do something with Temp> 'Perform task with character
 while Temp > 0 'Loop until end found

The first line inside of the GetData method, Temp := MyData, reads the first value in the
MyData list (the byte-sized value 64) and stores it in Temp. Further down, in the REPEAT loop,
the Temp := MyString[Index++] line reads a byte of from the location of MyString + Index.
Since Index is earlier set to 0, the first byte of MyString is read, “H”. On that same line Index
is post incremented with ++, so the next time through the loop it reads the next byte,
effectively MyString + 1 (the “e”), and the next time MyString + 2 (the “l”), etc.

Similar to the above, we can use the BYTE declaration to achieve our goal, as in the following
example.

PUB GetData | Index, Temp
 Temp := BYTE[@MyData] 'Read 1st byte of MyData to Temp
 <do something with Temp> 'Perform task with Temp

 Index := 0
 repeat
 Temp := BYTE[@MyString][Index++] 'Read chars into Temp
 <do something with Temp> 'Perform task with character
 while Temp > 0 'Loop until end found

BYTE – Spin Language Reference

Page 168 · Propeller Manual v1.0

This example works just like the previous, except that we use the BYTE declaration to read a
byte of main memory from the address of MyData and the address of MyString + Index.

With a similar syntax, bytes of main memory can be written to as well, as long as they are
RAM locations. For example:

 BYTE[@MyString][0] := "M" 'Write M to first character of MyString

This line writes the character “M” to the first byte of string data at MyString, changing the
string to be “Mello”,0.

Accessing Bytes of Larger-Sized Variables (Syntax 4)
In PUB and PRI blocks, syntax 4 of BYTE is used to read or write byte-sized components of
word-sized or long-sized variables. For example:

VAR
 word WordVar
 long LongVar

PUB Main
 WordVar.byte := 0 'Set first byte of WordVar to 0
 WordVar.byte[0] := 0 'Same as above
 WordVar.byte[1] := 100 'Set second byte of WordVar to 100
 LongVar.byte := 25 'Set first byte of LongVar to 25
 LongVar.byte[0] := 25 'Same as above
 LongVar.byte[1] := 50 'Set second byte of LongVar to 50
 LongVar.byte[2] := 75 'Set third byte of LongVar to 75
 LongVar.byte[3] := 100 'Set fourth byte of LongVar to 100

This example accesses the byte-sized components of both WordVar and LongVar, individually.
The comments indicate what each line is doing. At the end of the Main method, WordVar will
equal 25,600 and LongVar will equal 1,682,649,625.

4: Spin Language Reference – BYTEFILL

Propeller Manual v1.0 · Page 169

BYTEFILL
Fill bytes of main memory with a value.

((PUB ┆ PRI))
 BYTEFILL (StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first byte of memory to fill
with Value.

• Value is an expression indicating the value to fill bytes with.
• Count is an expression indicating the number of bytes to fill, starting with

StartAddress.

Explanation
BYTEFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. BYTEFILL fills Count bytes of main memory with Value,
starting at location StartAddress.

Using BYTEFILL
BYTEFILL is a great way to clear large blocks of byte-sized memory. For example:

VAR
 byte Buff[100]

PUB Main
 bytefill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-byte Buff array to all zeros.
BYTEFILL is faster at this task than a dedicated REPEAT loop is.

BYTEMOVE – Spin Language Reference

Page 170 · Propeller Manual v1.0

BYTEMOVE
Copy bytes from one region to another in main memory.

((PUB ┆ PRI))
 BYTEMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
byte of source to.

• SrcAddress is an expression specifying the main memory location of the first byte of
source to copy.

• Count is an expression indicating the number of bytes of the source to copy to the
destination.

Explanation
BYTEMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. BYTEMOVE copies Count bytes of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using BYTEMOVE
BYTEMOVE is a great way to copy large blocks of byte-sized memory. For example:

VAR
 byte Buff1[100]
 byte Buff2[100]

PUB Main
 bytemove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-byte Buff1 array to the Buff2
array. BYTEMOVE is faster at this task than a dedicated REPEAT loop.

4: Spin Language Reference – CASE

Propeller Manual v1.0 · Page 171

CASE
Compare expression against matching expression(s) and execute code block if match found.

((PUB ┆ PRI))
 CASE CaseExpression
 MatchExpression :
 Statement(s)
 〈 MatchExpression :
 Statement(s) 〉
 〈 OTHER :
 Statement(s) 〉

• CaseExpression is the expression to compare.
• MatchExpression is a singular or comma-delimited set of value- and/or range-

expressions, to compare CaseExpression against. Each MatchExpression must be
followed by a colon (:).

• Statement(s) is a block of one or more lines of code to execute when the
CaseExpression matches the associated MatchExpression. The first, or only,
statement in Statement(s) may appear to the right of the colon on the
MatchExpression line, or below it and slightly indented from the MatchExpression
itself.

Explanation
CASE is one of the three conditional commands (IF, IFNOT, and CASE) that conditionally
executes a block of code. CASE is the preferred structure to use, as opposed to
IF..ELSEIF..ELSE, when you need to compare the equality of CaseExpression to a number of
different values.

CASE compares CaseExpression against the values of each MatchExpression, in order, and if a
match is found, executes the associated Statement(s). If no previous matches were found, the
Statement(s) associated with the optional OTHER command are executed.

Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,

CASE – Spin Language Reference

Page 172 · Propeller Manual v1.0

you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See Indenting and Outdenting, page 69, and Block-Group Indicators, page 74.

Using CASE
CASE is handy where one of many actions needs to be performed depending on the value of an
expression. The following example assumes A, X and Y are variables defined earlier.

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 A*2 : !outa[1] 'X+Y = A*2? Toggle P1
 30..40: !outa[2] 'X+Y in 30 to 40? Toggle P2
 X += 5 'Add 5 to X

Since the MatchExpression lines are indented from the CASE line, they belong to the CASE
structure and are executed based on the CaseExpression comparison results. The next line,
X += 5, is not indented from CASE, so it is executed regardless of the CASE results.

This example compares the value of X + Y against 10 or 15, A*2 and the range 30 through
40. If X + Y equals 10 or 15, P0 is toggled. If X + Y equals A*2, P1 is toggled. If X + Y is in
the range 30 through 40, inclusive, then P2 is toggled. Whether or not any match was found,
the X += 5 line is executed next.

Using OTHER
The optional OTHER component of CASE is similar to the optional ELSE component of an IF
structure. For example:

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 25 : !outa[1] 'X+Y = 25? Toggle P1
 20..30: !outa[2] 'X+Y in 20 to 30? Toggle P2
 OTHER : !outa[3] 'Othewise toggle P3
 X += 5 'Add 5 to X

This example is similar to the last one except that the third MatchStatement checks for the
range 20 to 30 and there’s an OTHER component. If X + Y does not equal 10, 15, 25, or is not
in the range 20 to 30, the Statement(s) block following OTHER is executed. Following that, the
X += 5 line is executed.

There is an important concept to note about this example. If X + Y is 10 or 15, P0 is toggled,
or if X + Y is 25, P1 is toggled, or if X + Y is 20 to 30, P2 is toggled, etc. This is because the
MatchExpressions are checked, one at a time, in the order they are listed and only the first

4: Spin Language Reference – CASE

Propeller Manual v1.0 · Page 173

expression that is a match has its block of code executed; no further expressions are tested
after that. This means that if we had rearranged the 25 and 20..30 lines, so that the range of
20..30 is checked first, we’d have a bug in our code. We did this below:

 case X+Y 'Test X+Y
 10, 15: !outa[0] 'X+Y = 10 or 15? Toggle P0
 20..30: !outa[2] 'X+Y in 20 to 30? Toggle P2
 25 : !outa[1] 'X+Y = 25? Toggle P1 <-- THIS NEVER RUNS

The above example contains an error because, while X + Y could be equal to 25, that match
expression would never be tested since the previous one, 20..30 would be tested first, and
since it is true, its block is executed and no further match expressions are checked.

Variations of Statement(s)
The above examples only use one line per Statement(s) block, but each block can be many
lines of course. Additionally, the Statement(s) block may also appear below, and slightly
indented from, the MatchExpression itself. The following two examples show these
variations.

 case A 'Test A
 4 : !outa[0] 'A = 4? Toggle P0
 Z+1 : !outa[1] 'A = Z+1? Toggle P1
 !outa[2] 'And toggle P2
 10..15: !outa[3] 'A in 10 to 15? Toggle P3

 case A 'Test A
 4: 'A = 4?
 !outa[0] 'Toggle P0
 Z+1: 'A = Z+1?
 !outa[1] 'Toggle P1
 !outa[2] 'And toggle P2
 10..15: 'A in 10 to 15?
 !outa[3] 'Toggle P3

CHIPVER – Spin Language Reference

Page 174 · Propeller Manual v1.0

CHIPVER
Get the Propeller chip’s version number.

((PUB ┆ PRI))
 CHIPVER
Returns: Version number of the Propeller chip.

Explanation
The CHIPVER command reads and returns the version number of the Propeller chip. For
example:

V := chipver

This example sets V to the version number of the Propeller chip, 1 in this case. Future
Propeller Applications can use this to determine the version and type of Propeller chip they
are running on and make modifications to their operation as necessary.

4: Spin Language Reference – CLKFREQ

Propeller Manual v1.0 · Page 175

CLKFREQ
Current System Clock frequency; the frequency at which each cog is running.

((PUB ┆ PRI))
 CLKFREQ
Returns: Current System Clock frequency, in Hz.

Explanation
The value returned by CLKFREQ is the actual System Clock frequency as determined by the
current clock mode (oscillator type, gain, and PLL settings) and the external XI pin
frequency, if any. Objects use CLKFREQ to determine the proper time delays for time-sensitive
operations. For example:

 waitcnt(clkfreq / 10 + cnt) 'wait for .1 seconds (100 ms)

This statement divides CLKFREQ by 10 and adds the result to CNT (the current System Counter
value) then waits (WAITCNT) until the System Counter reaches the result value. Since CLKFREQ
is the number of cycles per second, a divide by 10 yields the number of clock cycles per 0.1
seconds, or 100 ms. So, disregarding the time it takes to process the expression, this
statement pauses the cog’s program execution for 100 ms. The table below shows more
examples of System Clock tick verses Time calculations.

Table 4-2: System Clock Ticks vs. Time Calculations
Expression Result

clkfreq / 10 Clock ticks per 0.1 seconds (100 ms)

clkfreq / 100 Clock ticks per 0.01 seconds (10 ms)
clkfreq / 1_000 Clock ticks per 0.001 seconds (1 ms)
clkfreq / 10_000 Clock ticks per 0.0001 seconds (100 µs)
clkfreq / 100_000 Clock ticks per 0.00001 seconds (10 µs)
clkfreq / 9600 Clock ticks per serial bit period at 9,600 baud (~ 104 µs)
clkfreq / 19200 Clock ticks per serial bit period at 19,200 baud (~ 52 µs)

The value that CLKFREQ returns can change whenever the application changes the clock mode,
either manually or via the CLKSET command. Objects that are time-sensitive should check
CLKFREQ at strategic points in order to adjust to new settings automatically.

CLKFREQ – Spin Language Reference

Page 176 · Propeller Manual v1.0

CLKFREQ vs. _CLKFREQ
CLKFREQ is related to, but not the same as, _CLKFREQ. CLKFREQ is command that returns the
current System Clock frequency whereas _CLKFREQ is an application-defined constant that
contains the application’s System Clock frequency at startup. In other words, CLKFREQ is the
current clock frequency and _CLKFREQ is the original clock frequency; they both may happen
to be the same value but they certainly can be different.

4: Spin Language Reference – _CLKFREQ

Propeller Manual v1.0 · Page 177

_CLKFREQ
Pre-defined, one-time settable constant for specifying the System Clock frequency.

CON
 _CLKFREQ = Expression

• Expression is an integer expression that indicates the System Clock frequency upon
application start-up.

Explanation
_CLKFREQ specifies the System Clock frequency for start-up. It is a pre-defined constant
symbol whose value is determined by the top object file of an application. _CLKFREQ is either
set directly by the application itself, or is set indirectly as the result of the _CLKMODE and
_XINFREQ settings.

The top object file in an application (the one where compilation starts from) can specify a
setting for _CLKFREQ in its CON block. This defines the initial System Clock frequency for the
application and is the frequency that the System Clock will switch to as soon as the
application is booted up and execution begins.

The application can specify either _CLKFREQ or _XINFREQ in the CON block; they are mutually
exclusive and the non-specified one is automatically calculated and set as a result of
specifying the other.

The following examples assume that they are contained within the top object file. Any
_CLKFREQ settings in child objects are simply ignored by the compiler.

For example:

CON
 _CLKMODE = XTAL1 + PLL8X
 _CLKFREQ = 32_000_000

The first declaration in the above CON block sets the clock mode for an external low-speed
crystal and a Clock PLL multiplier of 8. The second declaration sets the System Clock
frequency to 32 MHz, which means the external crystal’s frequency must be 4 MHz because
4 MHz * 8 = 32 MHz. The _XINFREQ value is automatically set to 4 MHz because of these
declarations.

_CLKFREQ – Spin Language Reference

Page 178 · Propeller Manual v1.0

CON
 _CLKMODE = XTAL2
 _CLKFREQ = 10_000_000

These two declarations set the clock mode for an external medium-speed crystal, no Clock
PLL multiplier, and a System Clock frequency of 10 MHz. The _XINFREQ value is
automatically set to 10 MHz, as well, because of these declarations.

_CLKFREQ vs CLKFREQ
_CLKFREQ is related to, but not the same as, CLKFREQ. _CLKFREQ contains the application’s
System Clock frequency at startup whereas CLKFREQ is a command that returns the current
System Clock frequency. In other words, _CLKFREQ is the original System Clock frequency
and CLKFREQ is the current System Clock frequency; they both may happen to be the same
value but they certainly can be different.

4: Spin Language Reference – CLKMODE

Propeller Manual v1.0 · Page 179

CLKMODE
Current clock mode setting.

((PUB ┆ PRI))
 CLKMODE
Returns: Current clock mode.

Explanation
The clock mode setting is the byte-sized value, determined by the application at compile
time, from the CLK register. See CLK Register, page 28, for explanation of the possible
settings. For example:

 Mode := clkmode

This statement can be used to set a variable, Mode, to the current clock mode setting. Many
applications maintain a static clock mode setting; however, some applications will change the
clock mode setting during run time for clock speed adjustments, low-power modes, etc. It
may be necessary for some objects to pay attention to the potential for dynamic clock modes
in order to maintain proper timing and functionality.

CLKMODE vs _CLKMODE
CLKMODE is related to, but not the same as, _CLKMODE. CLKMODE is a command that returns the
current clock mode (in the form of the CLK register’s bit pattern) whereas _CLKMODE is an
application-defined constant containing the requested clock mode at startup (in the form of
clock setting constants that are OR’d together). Both may describe the same logical clock
mode but their values are not equivalent.

_CLKMODE – Spin Language Reference

Page 180 · Propeller Manual v1.0

_CLKMODE
Pre-defined, one-time settable constant for specifying application-level clock mode settings.

CON
 _CLKMODE = Expression

• Expression is an integer expression made up of one or two Clock Mode Setting
Constants shown in table Table 4-3. This will be the clock mode upon application
start-up.

Explanation
_CLKMODE is used to specify the desired nature of the System Clock. It is a pre-defined
constant symbol whose value is determined by the top object file of an application. The clock
mode setting is a byte whose value is described by a combination of the RCxxxx, XINPUT,
XTALx and PLLxx constants at compile time. Table 4-3 illustrates the clock mode setting
constants. Note that not every combination is valid; Table 4-4 shows all valid combinations.

Table 4-3: Clock Mode Setting Constants
Clock Mode

Setting
Constant1

XO
Resistance2

XI/XO
Capacitance2 Description

RCFAST Infinite n/a Internal fast oscillator (~12 MHz). May be 8 MHz to 20 MHz. (Default)
RCSLOW Infinite n/a Internal slow oscillator (~20 KHz). May be 13 KHz to 33 KHz.
XINPUT Infinite 6 pF (pad only) External clock-oscillator (DC to 80 MHz); XI pin only, XO disconnected
XTAL1 2 kΩ 36 pF External low-speed crystal (4 MHz to 16 MHz)
XTAL2 1 kΩ 26 pF External medium-speed crystal (8 MHz to 32 MHz)
XTAL3 500 Ω 16 pF External high-speed crystal (20 MHz to 80 MHz)
PLL1X n/a n/a Multiply external frequency times 1
PLL2X n/a n/a Multiply external frequency times 2
PLL4X n/a n/a Multiply external frequency times 4
PLL8X n/a n/a Multiply external frequency times 8
PLL16X n/a n/a Multiply external frequency times 16

1. All constants are also available in Propeller Assembly.
2. All necessary resistors/capacitors are included in Propeller chip.

4: Spin Language Reference – _CLKMODE

Propeller Manual v1.0 · Page 181

Table 4-4: Valid Clock Mode Expressions and CLK Register Values

Valid Expression CLK Register Value Valid Expression CLK Register Value

RCFAST 0_0_0_00_000

RCSLOW 0_0_0_00_001

XINPUT 0_0_0_00_010

XTAL1 + PLL1X 0_1_1_01_011
XTAL1 + PLL2X 0_1_1_01_100
XTAL1 + PLL4X 0_1_1_01_101
XTAL1 + PLL8X 0_1_1_01_110
XTAL1 + PLL16X 0_1_1_01_111

XTAL1 0_0_1_01_010
XTAL2 0_0_1_10_010
XTAL3 0_0_1_11_010

XTAL2 + PLL1X 0_1_1_10_011
XTAL2 + PLL2X 0_1_1_10_100
XTAL2 + PLL4X 0_1_1_10_101
XTAL2 + PLL8X 0_1_1_10_110
XTAL2 + PLL16X 0_1_1_10_111

XINPUT + PLL1X 0_1_1_00_011
XINPUT + PLL2X 0_1_1_00_100
XINPUT + PLL4X 0_1_1_00_101
XINPUT + PLL8X 0_1_1_00_110
XINPUT + PLL16X 0_1_1_00_111

XTAL3 + PLL1X 0_1_1_11_011
XTAL3 + PLL2X 0_1_1_11_100
XTAL3 + PLL4X 0_1_1_11_101
XTAL3 + PLL8X 0_1_1_11_110
XTAL3 + PLL16X 0_1_1_11_111

The top object file in an application (the one where compilation starts from) can specify a
setting for _CLKMODE in its CON block. This defines the initial clock mode setting for the
application and is the mode that the System Clock will switch to as soon as the application is
booted up and execution begins. The following examples assume that they are contained
within the top object file. Any _CLKMODE settings in child objects are simply ignored by the
compiler. For example:

CON
 _CLKMODE = RCFAST

This sets the clock mode for the internal, fast RC Clock/Oscillator circuit. The System Clock
would run at approximately 12 MHz with this setting. The RCFAST setting is the default
setting, so if no _CLKMODE was actually defined, this is the setting that would be used. Note
that the Clock PLL can not be used with the internal RC Clock/Oscillator. Here’s an example
with an external clock:

CON
 _CLKMODE = XTAL1 + PLL8X

This sets the clock mode for an external low-speed crystal (XTAL1), enables the Clock PLL
circuit and sets the System Clock to use the 8x tap from the Clock PLL (PLL8X). If an
external 4 MHz crystal was attached to XI and XO, for example, its signal would be

_CLKMODE – Spin Language Reference

Page 182 · Propeller Manual v1.0

multiplied by 16 (the Clock PLL always multiplies by 16) but the 8x result would be used;
the System Clock would be 4 MHz * 8 = 32 MHz.

CON
 _CLKMODE = XINPUT + PLL2X

This sets the clock mode for an external clock-oscillator, connected to XI only, and enables
the Clock PLL circuit and sets the System Clock to use the 2x result. If an external clock-
oscillator pack of 8 MHz was attached to XI, the System clock would run at 16 MHz; that’s 8
MHz * 2.

Note that the Clock PLL is not required and can be disabled by simply not specifying any
multiplier setting, for example:

CON
 _CLKMODE = XTAL1

This sets the clock mode for an external low-speed crystal but leaves the Clock PLL disabled;
the System Clock will be equal to the external crystal’s frequency.

The _CLKFREQ and _XINFREQ Settings
For simplicity, the examples above only show _CLKMODE settings, but either a _CLKFREQ or
_XINFREQ setting is required to follow it so that objects can determine their actual System
Clock’s frequency. The following is the second example with an external crystal frequency
(_XINFREQ) of 4 MHz.

CON
 _CLKMODE = XTAL1 + PLL8X 'low-speed crystal x 8
 _XINFREQ = 4_000_000 'external crystal of 4 MHz

This example is exactly like the second example above, but _XINFREQ indicates that the
frequency of the external crystal is 4 MHz. The Propeller chip uses this value along with the
_CLKMODE setting to determine the System Clock frequency (as reported by the CLKFREQ
command) so that objects can properly adjust their timing. See _XINFREQ, page 337.

_CLKMODE vs CLKMODE
_CLKMODE is related to, but not the same as, CLKMODE. _CLKMODE is an application-defined
constant containing the requested clock mode at startup (in the form of clock setting constants
that are OR’d together) whereas CLKMODE is a command that returns the current clock mode
(in the form of the CLK register’s bit pattern). Both may describe the same logical clock
mode but their values are not equivalent.

4: Spin Language Reference – CLKSET

Propeller Manual v1.0 · Page 183

CLKSET
Set both the clock mode and System Clock frequency at run time.

((PUB ┆ PRI))
 CLKSET (Mode, Frequency)

• Mode is an integer expression that will be written to the CLK register to change the
clock mode.

• Frequency is an integer expression that indicates the resulting System Clock
frequency.

Explanation
One of the most powerful features of the Propeller chip is the ability to change the clock
behavior at run time. An application can choose to toggle back and forth between a slow
clock speed (for low-power consumption) and a fast clock speed (for high-bandwidth
operations), for example. CLKSET is used to change the clock mode and frequency during run
time. It is the run-time equivalent of the _CLKMODE and _CLKFREQ constants defined by the
application at compile time. For example:

clkset(%01101100, 4_000_000) 'Set to XTAL1 + PLL2x

This sets the clock mode to a low-speed external crystal and a Clock PLL multiplier of 2, and
indicates the resulting System Clock frequency (CLKFREQ) is 4 MHz. After executing this
command, the CLKMODE and CLKFREQ commands will report the updated settings for objects
that use them.

When switching from the internal clock to an external crystal, it is important to perform it as
a three-stage process:

1) First set the PLLENA, OSCENA, OSCM1 and OSCM2 bits as necessary,

2) Wait for 10 ms to give the crystal time to stabilize,

3) Set the CLKSELx bits as necessary to switch the System Clock to the new source.

It takes approximately 75 µs for the Propeller Chip to perform the clock source switching
action.

CNT – Spin Language Reference

Page 184 · Propeller Manual v1.0

CNT
System Counter register.

((PUB ┆ PRI))
 CNT
Returns: Current 32-bit System Counter value.

Explanation
The CNT register contains the current value in the global 32-bit System Counter. The System
Counter serves as the central time reference for all cogs; it increments its 32-bit value once
every System Clock cycle.

Upon power-up/reset, the System Counter starts with an arbitrary value and counts upwards
from there, incrementing with every System Clock cycle. Since the System Counter is a
read-only resource, every cog can read it simultaneously and can use the returned value to
synchronize events, count cycles and measure time.

Using CNT
Read CNT to get the current System Counter value. The actual value itself does not matter for
any particular purpose, but the difference in successive reads is very important. Most often,
the CNT register is used to delay execution for a specific period or to synchronize an event to
the start of a window of time. The next examples use the WAITCNT instruction to achieve this.

 waitcnt(3_000_000 + cnt) 'Wait for 3 million clock cycles

The above code is an example of a “fixed delay.” It delays the cog’s execution for 3 million
system clock cycles (about ¼ second when running with the internal fast oscillator).

The next is an example of a “synchronized delay.” It notes the current count at one place and
performs an action (toggles a pin) every millisecond thereafter with accuracy as good as that
of the oscillator driving the Propeller chip.

PUB Toggle | TimeBase, OneMS
 dira[0]~~ 'Set P0 to output
 OneMS := clkfreq / 1000 'Calculate cycles per 1 millisecond
 TimeBase := cnt 'Get current count
 repeat 'Loop endlessly
 waitcnt(TimeBase += OneMS) ' Wait to start of next millisecond
 !outa[0] ' Toggle P0

4: Spin Language Reference – CNT

Propeller Manual v1.0 · Page 185

Here, I/O pin 0 is set to output. Then the local variable OneMS is set equal to the current
System Clock frequency divided by 1000; i.e.: the number of System Clock cycles per 1
millisecond of time. Next, the local variable TimeBase is set to the current System Counter
value. Finally, the last two lines of code repeat endlessly; each time waiting until the start of
the next millisecond and then toggling the state of P0.

For more information, see the WAITCNT sections’s Fixed Delays on page 322 and
Synchronized Delays on page 323.

COGID – Spin Language Reference

Page 186 · Propeller Manual v1.0

COGID
Current cog’s ID number (0-7).

((PUB ┆ PRI))
 COGID
Returns: The current cog’s ID (0-7).

Explanation
The value returned by COGID is the ID of the cog that executed the command. Normally, the
actual cog that code is running in does not matter, however, for some objects it might be
important to keep track of it. For example:

PUB StopMyself
 'Stop cog this code is running in
 cogstop(cogid)

This example method, StopMyself, has one line of code that simply calls COGSTOP with COGID
as the parameter. Since COGID returns the ID of the cog running that code, this routine causes
the cog to terminate itself.

4: Spin Language Reference – COGINIT

Propeller Manual v1.0 · Page 187

COGINIT
Start or restart a cog by ID to run the Spin code or Propeller Assembly code.

((PUB ┆ PRI))
 COGINIT (CogID, SpinMethod 〈(ParameterList)〉, StackPointer)
((PUB ┆ PRI))
 COGINIT (CogID, AsmAddress, Parameter)

• CogID is the ID (0 – 7) of the cog to start, or restart. A CogID above 7 results in the
next available cog being started (if possible).

• SpinMethod is the PUB or PRI Spin method that the affected cog should run.
Optionally, it can be followed by a parameter list enclosed in parentheses.

• ParameterList is an optional, comma-delimited list of one or more parameters for
SpinMethod. It must be included only if SpinMethod requires parameters.

• StackPointer is a pointer to memory, such as a long array, reserved for stack space for
the affected cog. The affected cog uses this space to store temporary data during
further calls and expression evaluations. If insufficient space is allocated, either the
application will fail to run or it will run with strange results.

• AsmAddress is the address of a Propeller Assembly routine from a DAT block.
• Parameter is used to optionally pass a value to the new cog. This value ends up in the

affected cog’s read-only Cog Boot Parameter (PAR) register. Parameter can be used
to pass a either a single 14-bit value or the address of a block of memory to be used
by the assembly routine. Parameter is required by COGINIT, but if not needed for
your routine simply set it to an innocuous value like zero (0).

Explanation
COGINIT works exactly like COGNEW with two exceptions: 1) it launches code into a specific
cog whose ID is CogID, and 2) it does not return a value. Since COGINIT operates on a
specific cog, as directed by the CogID parameter, it can be used to stop and restart an active
cog in one step. This includes the current cog; i.e.: a cog can use COGINIT to stop and restart
itself to run, perhaps, completely different code.

Spin Code (Syntax 1)
To run a Spin method in a specific cog, the COGINIT command needs the cog ID, the method
name, its parameters, and a pointer to some stack space. For example:

 coginit(1, Square(@X), @SqStack) 'Launch Square in Cog 1

COGINIT – Spin Language Reference

Page 188 · Propeller Manual v1.0

This example launches the Square method into Cog 1, passing the address of X into Square
and the address of SqStack as COGINIT’s stack pointer. See COGNEW, page 189, for more
information.

Propeller Assembly Code (Syntax 2)
To run Propeller Assembly code in a specific cog, the COGINIT command needs the cog ID,
the address of the assembly routine, and a value that can optionally be used by the assembly
routine. For example:

 coginit(2, @Update, Pos)

This example launches the Propeller Assembly routine, Update, into Cog 2 with the address
of Pos in Cog 2’s PAR parameter. See COGNEW, page 189, for more information.

4: Spin Language Reference – COGNEW

Propeller Manual v1.0 · Page 189

COGNEW
Start the next available cog to run Spin code or Propeller Assembly code.

((PUB ┆ PRI))
 COGNEW (SpinMethod 〈(ParameterList)〉, StackPointer)
((PUB ┆ PRI))
 COGNEW (AsmAddress, Parameter)
Returns: The ID of the newly started cog (0-7) if successful, or -1 otherwise.

• SpinMethod is the PUB or PRI Spin method that the new cog should run. Optionally, it

can be followed by a parameter list enclosed in parentheses.
• ParameterList is an optional, comma-delimited list of one or more parameters for

SpinMethod. It must be included only if SpinMethod requires parameters.
• StackPointer is a pointer to memory, such as a long array, reserved for stack space for

the new cog. The new cog uses this space to store temporary data during further calls
and expression evaluations. If insufficient space is allocated, either the application
will fail to run or it will run with strange results.

• AsmAddress is the address of a Propeller Assembly routine, usually from a DAT block.
• Parameter is used to optionally pass a value to the new cog. This value ends up in the

new cog’s read-only Cog Boot Parameter (PAR) register. Parameter can be used to
pass a either a single 14-bit value or the address of a block of memory to be used by
the assembly routine. Parameter is required by COGNEW, but if not needed for your
routine, simply set it to an innocuous value like zero (0).

Explanation
COGNEW starts a new cog and runs either a Spin method or a Propeller Assembly routine within
it. If successful, COGNEW returns the ID of the newly started cog. If there were no more cogs
available, COGNEW returns -1.

COGNEW – Spin Language Reference

Page 190 · Propeller Manual v1.0

Spin Code (Syntax 1)
To run a Spin method in another cog, the COGNEW command needs the method name, its
parameters, and a pointer to some stack space. For example:

VAR
 long SqStack[6] 'Stack space for Square cog

PUB Main | X
 X := 2 'Initialize X
 cognew(Square(@X), @SqStack) 'Launch square cog
 <check X here> 'Loop here and check X

PUB Square(XAddr)
 'Square the value at XAddr
 repeat 'Repeat the following endlessly
 long[XAddr] *= long[XAddr] ' Square value, store back
 waitcnt(2_000_000 + cnt) ' Wait 2 million cycles

This example shows two methods, Main and Square. Main starts another cog that runs Square
endlessly, then Main can monitor the results in the X variable. Square, being run by another
cog, takes the value of XAddr, squares it and stores the result back into XAddr, then waits for 2
million cycles before it does it again. More explanation follows, but the result is that X starts
out as 2, and the second cog, running Square, iteratively sets X to 4, 16, 256, 65536 and then
finally to 0 (it overflowed 32 bits), all independent of the first cog which may be checking the
value of X or performing some other task.

The Main method declares a local variable, X, that is set to 2 in its first line. Then Main starts a
new cog, with COGNEW, to run the Square method in a separate cog. COGNEW’s first parameter,
Square(@X), is the Spin method to run and its required parameter; in this case we pass it the
address of the X variable. The second parameter of COGNEW, @SqStack, is the address of stack
space reserved for the new cog. When a cog is started to run Spin code, it needs some stack
space where it can store temporary data such as call stacks, parameters and intermediate
expression results. This example only requires 6 longs of stack space for proper operation
(see the “Stack Length” object in the Propeller Library for more information).

After the COGNEW command is executed, two cogs are running; the first is still running the Main
method and the second is starting to run the Square method. Despite the fact that they are

4: Spin Language Reference – COGNEW

Propeller Manual v1.0 · Page 191

using code from the same Spin object, they are running independently. The “<check X
here>” line can be replaced with code that uses the value of X in some way.

Propeller Assembly Code (Syntax 2)
To run Propeller Assembly code in another cog, the COGNEW command needs the address of
the assembly routine and a value that can optionally be used by the assembly routine. For
example:

VAR
 byte Cog 'Used to store ID of newly started cog

PUB Start(Pos) : Pass
 'Start a new cog to run Update with Pos,
 'return TRUE if successful
 Pass := (Cog := cognew(@Update, Pos) + 1) > 0

PUB Stop
 'Stop the cog we started earlier, if any.
 if Cog
 cogstop(Cog~ - 1)

This example shows two methods, Start and Stop, within a hypothetical object. The design
of that object is such that it needs to launch another cog to run an assembly routine, called
Update (not shown), and pass it a parameter, Pos. Later it may need to stop that new cog.

The Start method takes a single parameter, Pos, and returns TRUE or FALSE to indicate
whether or not a new cog was successfully started. First, it calls COGNEW, “cognew(@Update,
Pos)” with the address of the Update routine as the first parameter and Pos as the second
parameter. Additionally, it takes the value returned by COGNEW, which is the ID of the new
cog, or -1 if none available, adds 1 and stores the result in the Cog variable; “Cog :=

cognew(@Update, Pos) + 1”. Lastly, if Cog is greater than zero (0) it sets its return value,
Pass, to TRUE; otherwise Pass is set to FALSE. At this point, if a new cog was successfully
started, that new cog begins loading up the Propeller Assembly code called Update, and runs
it. Meanwhile this object’s Cog variable (in the original cog) will be in the range 1 to 8,
representing the new cog’s ID, 0 through 7. If no cog was started, Cog will be 0.

COGNEW – Spin Language Reference

Page 192 · Propeller Manual v1.0

Later, if the Stop method is called, it first checks the condition, “if Cog”. This condition is
true only if Cog is non-zero. If true (i.e.: a cog was successfully started by the Start routine)
then the following line, “cogstop(Cog~ - 1)”, is executed and is passed the ID of the cog to
stop, “Cog~ - 1”. The expression Cog~ - 1 returns the result of Cog - 1 for the COGSTOP
parameter, then clears the Cog variable to zero (0). Because the Cog variable is cleared to zero
after its value is used to stop the new cog, any future calls to Stop will not inadvertently stop
cogs that this object didn’t start.

This example can be improved by making the Start method call the Stop method, first, just
in case the calling object called Start two times in a row. For example:

PUB Start(Pos) : Pass
 'Start a new cog to run Update with Pos,
 'return TRUE if successful
 Stop
 Pass := (Cog := cognew(@Update, Pos) + 1) > 0

It’s important to note that the Parameter field is intended to pass a long address, so only 14-
bits (bits 2 through 15) are passed into the cog’s PAR register.

4: Spin Language Reference – COGSTOP

Propeller Manual v1.0 · Page 193

COGSTOP
Stop cog by its ID.

((PUB ┆ PRI))
 COGSTOP (CogID)

• CogID is the ID (0 – 7) of the cog to stop.

Explanation
COGSTOP stops a cog whose ID is CogID and places that cog into a dormant state. In the
dormant state, the cog ceases to receive System Clock pulses so that power consumption is
greatly reduced.

To stop a cog, issue the COGSTOP command with the ID of the cog to stop. For example:

VAR
 byte Cog 'Used to store ID of newly started cog

PUB Start(Pos) : Pass
 'Start a new cog to run Update with Pos,
 'return TRUE if successful
 Pass := (Cog := cognew(@Update, Pos) + 1) > 0

PUB Stop
 'Stop the cog we started earlier, if any.
 if Cog
 cogstop(Cog~ - 1)

This example, from the COGNEW description, uses COGSTOP in the public Stop method to stop
the cog that was previously started by the Start method. See COGNEW, page 189, for more
information about this example.

CON – Spin Language Reference

Page 194 · Propeller Manual v1.0

CON
Declare a Constant Block.

CON
 Symbol = Expression 〈((,┆)) Symbol = Expression〉…
CON
 #Expression ((,┆)) Symbol 〈((,┆)) Symbol〉…
CON
 Symbol 〈((,┆)) Symbol〉…

• Symbol is the desired name for the constant.
• Expression is any valid integer, or floating-point, constant algebraic expression.

Expression can include other constant symbols as long as they were defined
previously.

Explanation
The Constant Block is a section of source code that declares global constant symbols and
global Propeller configuration settings. This is one of six special declarations (CON, VAR, OBJ,
PUB, PRI, and DAT) that provide inherent structure to the Spin language.

Constants are numerical values that can not change during run time. They can be defined in
terms of single values (1, $F, 65000, %1010, %%2310, “A”, etc.) or as expressions, called
constant expressions, (25 + 16 / 2, 1000 * 5, etc.) that always resolve to a specific number.

The Constant Block is an area of code specifically used for assigning symbols (useful names)
to constants so that the symbols can be used anywhere in code where that constant value is
needed. This makes code more readable and easier to maintain should you later have to
change the value of a constant that appears in many places. These constants are global to the
object so that any method within it can use them. There are many ways to define constants,
described below.

Common Constant Declarations (Syntax 1)
The most common forms of constant declarations begin with CON on a line by itself followed
by one or more declarations. CON must start in column 1 (the leftmost column) of the line it is
on and we recommend the lines following be indented by at least one space. The expressions
can be combinations of numbers, operators, parentheses, and single quoted characters. See
Operators, page 249, for examples of expressions.

4: Spin Language Reference – CON

Propeller Manual v1.0 · Page 195

Example:

CON
 Delay = 500
 Baud = 9600
 AChar = "A"

—or—

CON
 Delay = 500, Baud = 9600, AChar = "A"

Both of these examples create a symbol called Delay that is equal to 500, a symbol called
Baud that is equal to 9600, and a symbol called AChar that is equal to the character “A”. For
the Delay declaration, for example, we could also have used an algebraic expression, such as:

 Delay = 250 * 2

The above statement results in Delay equaling 500, like before, but the expression may make
the code easier to understand if the resulting number were not just an arbitrary value.

The CON block is also used for specifying global settings, such as system clock settings. The
example below shows how to set the Clock Mode to low-speed crystal, the Clock PLL to 8x,
and specify that the XIN pin frequency is 4 MHz.

CON
 _CLKMODE = XTAL1 + PLL8X
 _XINFREQ = 4_000_000

See _CLKMODE, page 180, and _XINFREQ, page 337, for detailed descriptions of these settings.

Floating-point values can also be defined as constants. Floating-point values are real
numbers (with fractional components) and are encoded within 32 bits differently than integer
constants. To specify a floating-point constant, you must give a clear indication that the
value is a floating-point value; the expression must either be a single floating-point value or
be made up entirely of floating-point values (no integers).

Floating-point values must be written as:

1) decimal digits followed by a decimal point and at least one more decimal digit,
2) decimal digits followed by “e” (for exponent) and an integer exponent value, or,
3) a combination of 1 and 2.

CON – Spin Language Reference

Page 196 · Propeller Manual v1.0

The following are examples of valid constants:

0.5 floating-point value

1.0 floating-point value

3.14 floating-point value

1e16 floating-point value

51.025e5 floating-point value

3 + 4 integer expression

3.0 + 4.0 floating-point expression

3.0 + 4 invalid expression; causes compile error

3.0 + FLOAT(4) floating-point expression

Here is an example declaring an integer constant and two floating-point constants.

CON
 Num1 = 20
 Num2 = 127.38
 Num3 = 32.05 * 18.1 - Num2 / float(Num1)

The above code sets Num1, Num2 and Num3 to 20, 127.38 and 573.736, respectively. Notice that
the last expression required Num1 to be enclosed in the FLOAT declaration so that the compiler
treats it as a floating-point value.

The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

For run-time floating-point operations, the FloatMath and FloatString objects provide math
functions compatible with single-precision numbers.

See FLOAT on page 216, ROUND on page 303, TRUNC on page 314, and the FloatMath and
FloatString objects for more information.

4: Spin Language Reference – CON

Propeller Manual v1.0 · Page 197

Enumerations (Syntax 2 and 3)
Constant Blocks can also declare enumerated constant symbols. Enumerations are logically
grouped symbols which have incrementing integer constant values assigned to them that are
each unique for the group. For example, an object may have the need for certain modes of
operation. Each of these modes can be identified by a number, 0, 1, 2 and 3, for example.
The numbers themselves don’t really matter for our purposes; they just need to be unique
within the context of the operation mode. Since the numbers themselves are not descriptive,
it may be difficult to remember what mode 3 does, but it is a lot easier to remember what the
mode means if it had a descriptive name instead. Look at the following example.

CON
 'Declare modes of operation
 RunTest = 0
 RunVerbose = 1
 RunBrief = 2
 RunFull = 3

The above example would suffice for our purposes; now users of our object can indicate
“RunFull” instead of “3” to specify the desired mode of operation. The problem is, defining a
logical group of items this way may cause bugs and maintenance problems because if any
value was changed (on purpose or by accident) without changing the rest accordingly, it may
cause the program to fail. Also, imagine a case where there were 20 modes of operation.
That would be a much longer set of constants and even more opportunities for maintenance
issues.

Enumerations solve these problems by automatically incrementing values for symbols. We
can rewrite the above example with enumeration syntax as follows:

CON 'Declare modes of operation
 #0, RunTest, RunVerbose, RunBrief, RunFull

Here, #0, tells the compiler to start counting from the number 0 and it sets the next symbol
equal to that value. Then, any additional symbols that do not specify their own value (via an
‘= expression’) are automatically assigned the previous value plus 1. The result is that
RunTest equals 0, RunVerbose equals 1, RunBrief equals 2 and RunFull equals 3. For most
cases, the values themselves don’t usually matter; all that matters is that they are each
assigned a unique number. Defining enumerated values like this has the advantages of
insuring that the assigned values are unique and contiguous within the group.

CON – Spin Language Reference

Page 198 · Propeller Manual v1.0

Using the example above, the methods that use them can do things like the following (assume
Mode is a symbol set by a calling object):

 case Mode
 RunTest : <test code here>
 RunVerbose : <verbose code here>
 RunBrief : <brief code here>
 RunFull : <full code here>
—or—

 if Mode > RunVerbose
 <brief and run mode code here>

Notice that these routines do not rely on the exact value of the mode, but rather they rely on
the enumerated mode symbol itself for comparisons as well as the position of the symbol in
relation to other symbols in the same enumeration. It is important to write code this way to
decrease potentials for bugs introduced by future changes.

Enumerations don’t have to consist of comma-separated items either. The following also
works and leaves room for right-side comments about each mode.

CON 'Declare modes of operation
 #0
 RunTest 'Run in test mode
 RunVerbose 'Run in verbose mode
 RunBrief 'Run with brief prompts
 RunFull 'Run in full production mode

The above example does the same thing as the previous in-line example, but now we have
convenient room to describe the purpose of each mode without losing the automatic
incrementing advantage. Later on, if there’s a need to add a fifth mode, simply add it to the
list in whatever position is necessary. If there is a need for the list to begin at a certain value,
simply change the #0 to whatever you need: #1, #20, etc.

It is even possible to modify the enumerated value in the middle of the list.

CON
 'Declare modes of operation
 #1, RunTest, RunVerbose, #5, RunBrief, RunFull

4: Spin Language Reference – CON

Propeller Manual v1.0 · Page 199

Here, RunTest and RunVerbose are 1 and 2, respectively, and RunBrief and RunFull are 5 and
6, respectively. While this feature may be handy, to maintain good programming practices it
should only be used in rare cases.

Syntax 3 is a variation of the enumeration syntax. It doesn’t specify any starting value.
Anything defined this way will always start with the first symbol equal to either 0 (for new
CON blocks) or to the last enumerated value plus 1 (within the same CON block).

Scope of Constants
Symbolic constants defined in Constant Blocks are global to the object in which they are
defined but not outside of that object. This means that constants can be accessed directly
from anywhere within the object but their name will not conflict with symbols defined in
other parent or child objects.

Symbolic constants can be indirectly accessed by parent objects, however, by using the
constant reference syntax. Example:

OBJ
 Num : "Numbers"

PUB SomeRoutine
 Format := Num#DEC 'Set Format to Number's Decimal constant

Here an object, “Numbers,” is declared as the symbol Num. Later, a method refers to numbers’
DEC constant with Num#DEC. Num is the object reference, # indicates we need to access that
object’s constants, and DEC is the constant within the object we need. This feature allows
objects to define constants for use with themselves and for parent objects to access those
constants freely without interfering with any symbols they created themselves.

CONSTANT – Spin Language Reference

Page 200 · Propeller Manual v1.0

CONSTANT
Declare in-line constant expression to be completely resolved at compile time.

((PUB ┆ PRI))
 CONSTANT (ConstantExpression)
Returns: Resolved value of constant expression.

• ConstantExpression is the desired constant expression.

Explanation
The CON block may be used to create constants from expressions that are referenced from
multiple places in code, but there are occasions when a constant expression is needed for
temporary, one-time purposes. The CONSTANT directive is used to fully resolve a method’s in-
line, constant expression at compile time. Without the use of the CONSTANT directive, a
method’s in-line expressions are always resolved at run time, even if the expression is always
a constant value.

Using CONSTANT
The CONSTANT directive can create one-time-use constant expressions that save code space and
speed up run-time execution. Note the two examples below:

Example 1, using standard run-time expressions:

CON
 X = 500
 Y = 2500

PUB Blink
 !outa[0]
 waitcnt(X+200 + cnt) 'Standard run-time expression
 !outa[0]
 waitcnt((X+Y)/2 + cnt) 'Standard run-time expression

Example 2, same as above, but with CONSTANT directive around constant, run-time
expressions:

4: Spin Language Reference – CONSTANT

Propeller Manual v1.0 · Page 201

CON
 X = 500
 Y = 2500

PUB Blink
 !outa[0]
 waitcnt(constant(X+200) + cnt) 'exp w/compile & run-time parts
 !outa[0]
 waitcnt(constant((X+Y)/2) + cnt)'exp w/compile & run-time parts

The above two examples do exactly the same thing: their Blink methods toggle P0, wait for
X+200 cycles, toggle P0 again and wait for (X+Y)/2 cycles before returning. While the CON
block’s X and Y symbols may need to be used in multiple places within the object, the WAITCNT
expressions used in each example’s Blink method might only need to be used in that one
place. For this reason, it may not make sense to define additional constants in the CON block
for things like X+200 and (X+Y)/2. There is nothing wrong with putting the expressions right
in the run-time code, as in Example 1, but that entire expression is unfortunately evaluated at
run time, requiring extra time and code space.

The CONSTANT directive is perfect for this situation, because it completely resolves each one-
time-use constant expression to a single, static value, saving code space and speeding up
execution. In Example 1, the Blink method consumes 33 bytes of code space while Example
2’s Blink method, with the addition of the CONSTANT directives, only requires 23 bytes of
space. Note that the “+ cnt” portion of the expressions are not included within the CONSTANT
directive’s parentheses; this is because cnt is a variable (the System Counter variable; see
CNT, page 184) so its value cannot be resolved at compile time.

If a constant needs to be used in more than one place in code, it is better to define it in the CON
block so it is defined only once and the symbol representing it can be used multiple times.

Constants (pre-defined) – Spin Language Reference

Page 202 · Propeller Manual v1.0

Constants (pre-defined)

The following constants are pre-defined by the compiler:

TRUE Logical true: -1 ($FFFFFFFF)

FALSE Logical false: 0 ($00000000)

POSX Maximum positive integer: 2,147,483,647 ($7FFFFFFF)

NEGX Maximum negative integer: -2,147,483,648 ($80000000)

PI Floating-point value for PI: ≈ 3.141593 ($40490FDB)

RCFAST Internal fast oscillator: $00000001 (%00000000001)

RCSLOW Internal slow oscillator: $00000002 (%00000000010)

XINPUT External clock/oscillator: $00000004 (%00000000100)

XTAL1 External low-speed crystal: $00000008 (%00000001000)

XTAL2 External medium-speed crystal: $00000010 (%00000010000)

XTAL3 External high-speed crystal: $00000020 (%00000100000)

PLL1X External frequency times 1: $00000040 (%00001000000)

PLL2X External frequency times 2: $00000080 (%00010000000)

PLL4X External frequency times 4: $00000100 (%00100000000)

PLL8X External frequency times 8: $00000200 (%01000000000)

PLL16X External frequency times 16: $00000400 (%10000000000)

(All of these constants are also available in Propeller Assembly.)

TRUE and FALSE
TRUE and FALSE are usually used for Boolean comparison purposes:

if (X = TRUE) or (Y = FALSE)
 <code to execute if total condition is true>

4: Spin Language Reference – Constants (pre-defined)

Propeller Manual v1.0 · Page 203

POSX and NEGX
POSX and NEGX are typically used for comparison purposes or as a flag for a specific event:

if Z > NEGX
 <code to execute if Z hasn't reached smallest negative>

—or—

PUB FindListItem(Item) : Index
 Index := NEGX 'Default to "not found" response
 <code to find Item in list>
 if <item found>
 Index := <items index>

PI
PI can be used for floating-point calculations, either floating-point constants or floating-point
variable values using the FloatMath and FloatString object.

RCFAST through PLL16X
RCFAST through PLL16X are Clock Mode Setting constants. They are explained in further
detail in the _CLKMODE section beginning on page 180.

CTRA, CTRB – Spin Language Reference

Page 204 · Propeller Manual v1.0

CTRA, CTRB
Counter A and Counter B Control Registers.

((PUB ┆ PRI))
 CTRA
((PUB ┆ PRI))
 CTRB
Returns: Current value of Counter A or Counter B Control Register, if used as a source
variable.

Explanation
CTRA and CTRB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The CTRA and CTRB registers contain the
configuration settings of the Counter A and Counter B Modules, respectively.

The following discussion uses CTRx, FRQx and PHSx to refer to both the A and B pairs of each
register.

Each of the two counter modules can control or monitor up to two I/O pins and perform
conditional 32-bit accumulation of the value in the FRQx register into the PHSx register on
every clock cycle. Each Counter Module has its own phase-locked loop (PLLx) which can be
used to synthesize frequencies from 64 MHz to 128 MHz.

With just a little configuration and in some cases a little maintenance from the cog, the
counter modules can be used for:

• Frequency synthesis

• Frequency measurement

• Pulse counting

• Pulse measurement

• Multi-pin state measurement

• Pulse-width modulation (PWM)

• Duty-cycle measurement

• Digital-to-analog conversion (DAC)

• Analog-to-digital conversion (ADC)

• And more.
For some of these operations the cog can set the counter’s configuration, via CTRA or CTRB,
and it will perform its task completely independently. For others, the cog may use WAITCNT to
time-align the counter’s reads and writes within a loop; creating the effect of a more complex

4: Spin Language Reference – CTRA, CTRB

Propeller Manual v1.0 · Page 205

state machine. Since the counter’s update period may be brief (12.5 ns at 80 MHz), very
dynamic signal generation and measurement is possible.

Control Register Fields
The CTRA and CTRB registers each contain four fields shown in the table below.

Table 4-5: CTRA and CTRB Registers
31 30..26 25..23 22..15 14..9 8..6 5..0
- CTRMODE PLLDIV - BPIN - APIN

APIN
The APIN field of CTRA selects a primary I/O pin for that counter. May be ignored if not
used. %0xxxxx = Port A, %1xxxxx = Port B (reserved for future use). In Propeller
Assembly, the APIN field can conveniently be written using the MOVS instruction.

Note that writing a zero to CTRA will immediately disable the Counter A and stop all related
pin output and PHSA accumulation.

BPIN
The BPIN field of CTRx selects a secondary I/O pin for that counter. This field may be
ignored if not used. %0xxxxx = Port A, %1xxxxx = Port B (reserved for future use). In
Propeller Assembly, the BPIN field can conveniently be written using the MOVD instruction.

PLLDIV
The PLLDIV field of CTRx selects a PLLx output tap, see table below. This determines which
power-of-two division of the VCO frequency will be used as the final PLLx output (a range
of 500 KHz to 128 MHz). This field may be ignored if not used. In Propeller Assembly, the
PLLDIV field can conveniently be written, along with CTRMODE, using the MOVI
instruction.

Table 4-6: PLLDIV Field
PLLDIV %000 %001 %010 %011 %100 %101 %110 %111
Output VCO ÷ 128 VCO ÷ 64 VCO ÷ 32 VCO ÷ 16 VCO ÷ 8 VCO ÷ 4 VCO ÷ 2 VCO ÷ 1

CTRA, CTRB – Spin Language Reference

Page 206 · Propeller Manual v1.0

CTRMODE
The CTRMODE field of CTRA and CTRB selects one of 32 operating modes, shown in Table
4-7, for the corresponding Counter A or Counter B. In Propeller Assembly, the CTRMODE
field can conveniently be written, along with PLLDIV, using the MOVI instruction.

The modes %00001 through %00011 cause FRQx-to-PHSx, accumulation to occur every clock
cycle. This creates a numerically-controlled oscillator (NCO) in PHSx[31], which feeds the
PLLx's reference input. The PLLx will multiply this frequency by 16 using its voltage-
controlled oscillator (VCO).

For stable operation, it is recommended that the VCO frequency be kept within 64 MHz to
128 MHz. This translates to an NCO frequency of 4 MHz to 8 MHz.

Using CTRA and CTRB
In Spin, CTRx can be read/written just like any other register or pre-defined variable. As soon
as this register is written, the new operating mode goes into effect for the counter. For
example:

 CTRA := %00100 << 26

The above code sets CTRA’s CTRMODE field to the NCO mode (%00100) and all other bits
to zero.

4: Spin Language Reference – CTRA, CTRB

Propeller Manual v1.0 · Page 207

Table 4-7: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%00000 Counter disabled (off) 0 (never) 0 (none) 0 (none)
%00001
%00010
%00011

PLL internal (video mode)
PLL single-ended
PLL differential

1 (always)
1
1

0
PLLx
PLLx

0
0
!PLLx

%00100
%00101

NCO/PWM single-ended
NCO/PWM differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

%00110
%00111

DUTY single-ended
DUTY differential

1
1

PHSx-Carry
PHSx-Carry

0
!PHSx-Carry

%01000
%01001
%01010
%01011

POS detector
POS detector with feedback
POSEDGE detector
POSEDGE detector w/ feedback

A1
A1
A1 & !A2
A1 & !A2

0
0
0
0

0
!A1
0
!A1

%01100
%01101
%01110
%01111

NEG detector
NEG detector with feedback
NEGEDGE detector
NEGEDGE detector w/ feedback

!A1
!A1
!A1 & A2
!A1 & A2

0
0
0
0

0
!A1
0
!A1

%10000
%10001
%10010
%10011
%10100
%10101
%10110
%10111
%11000
%11001
%11010
%11011
%11100
%11101
%11110
%11111

LOGIC never
LOGIC !A & !B
LOGIC A & !B
LOGIC !B
LOGIC !A & B
LOGIC !A
LOGIC A <> B
LOGIC !A | !B
LOGIC A & B
LOGIC A == B
LOGIC A
LOGIC A | !B
LOGIC B
LOGIC !A | B
LOGIC A | B
LOGIC always

0
!A1 & !B1
A1 & !B1
!B1
!A1 & B1
!A1
A1 <> B1
!A1 | !B1
A1 & B1
!A1 == B1
A1
A1 | !B1
B1
!A1 | B1
A1 | B1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

*Must set corresponding DIR bit to affect pin
A1 = APIN input delayed by 1 clock
A2 = APIN input delayed by 2 clocks
B1 = BPIN input delayed by 1 clock

DAT – Spin Language Reference

Page 208 · Propeller Manual v1.0

DAT
Declare a Data Block.

DAT
 〈Symbol〉 Alignment 〈Size〉 〈Data〉 〈, 〈Size〉 Data〉…
DAT
 〈Symbol〉 〈Condition〉 Instruction 〈Effect(s)〉

• Symbol is an optional name for the data, reserved space, or instruction that follows.
• Alignment is the desired alignment and default size (BYTE, WORD, or LONG) of the data

elements that follow.
• Size is the desired size (BYTE, WORD, or LONG) of the following data element

immediately following it; alignment is unchanged.
• Data is a constant expression or comma-separated list of constant expressions.

Quoted strings of characters are also allowed; they are treated as a comma-separated
list of characters.

• Condition is an assembly language condition, IF_C, IF_NC, IF_Z, etc.
• Instruction is an assembly language instruction, ADD, SUB, MOV, etc., and all its operands.
• Effect(s) is/are one, two or three assembly language effects that cause the result of the

instruction to be written or not, NR, WR, WC, or WZ.

Explanation
A Data Block is a section of source code that contains pre-defined data, memory reserved for
run-time use and Propeller Assembly code. This is one of six special declarations (CON, VAR,
OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin language.

Data blocks are multi-purpose sections of source code that are used for data tables, run-time
workspace, and Propeller Assembly code. Assembly code and data can be intermixed, if
necessary, so that data is loaded into a cog along with the assembly code.

Declaring Data (Syntax 1)
Data is declared with a specific alignment and size (BYTE, WORD, or LONG) to indicate how it
should be stored in memory. The location where data is actually stored depends on the
structure of the object and the application it is compiled into since data is included as part of
the compiled code.

For example:

4: Spin Language Reference – DAT

Propeller Manual v1.0 · Page 209

DAT
 byte 64, "A", "String", 0
 word $FFC2, 75000
 long $44332211, 32

The first thing on line two of this example, BYTE, indicates the data following it should be
byte-aligned and byte-sized. At compile time, the data following BYTE, 64, “A”, etc., is stored
in program memory a byte at a time starting at the next available location. Line three
specifies word-aligned and word-sized data. Its data, $FFC2 and 75000, will begin at the next
word boundary position following the data that appeared before it; with any unused bytes
from the previous data filled with zeros to pad up to the next word boundary. The fourth line
specifies long-aligned and long-sized data; its data will be stored at the next long boundary
following the word-aligned data that appeared before it, with zero-padded words leading up
to that boundary. Table 4-8 shows what this looks like in memory (shown in hexadecimal).

Table 4-8: Example Data in Memory
L 0 2 3 4 5 6
W 0 1 2 3 4 5 6 7 8 9 10 11
B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
D 40 41 53 74 72 69 6E 67 00 00 C2 FF F8 24 00 00 11 22 33 44 20 00 00 00

L = longs, W = words, B = bytes, D = data

The first nine bytes (0 – 8) are the byte data from line one; $40 = 64 (decimal), $41 = “A”,
$53 = “S”, etc. Byte 9 is padded with zero to align the first word of word-aligned data,
$FFC2, at byte 10. Bytes 10 and 11 (word 5) contain the first word-sized value, $FFC2,
stored in low-byte-first format as $C2 and $FF. Bytes 12 and 13 (word 6) is the lowest word
of 75000; more on this later. Bytes 14 and 15 (word 7) are zero padded to align the first long
of long-aligned data, $44332211. Bytes 16 through 19 (long 5) contain that value in low-
byte-first format. Finally, bytes 20 through 23 (long 6) contains the second long of data, 32,
in low-byte-first format.

You may have noticed that the value 75000 was specified as a word-sized one. The number
75000 in hexadecimal is $124F8, but since that’s larger than a word, only the lowest word
($24F8) of the value was stored. This resulted in word 6 (bytes 12 and 13) containing $F8
and $24, and word 7 (bytes 14 and 15) containing $00 and $00 due to the padding for the
following long-aligned values.

DAT – Spin Language Reference

Page 210 · Propeller Manual v1.0

This phenomenon, whether or not it is intentional, occurs for byte-aligned/byte-sized data as
well, for example:

DAT
 byte $FFAA, $BB995511

...results in only the low bytes of each value, $AA and $11 being stored in consecutive
locations.

Occasionally, however, it is desirable to store an entire large value as smaller elemental units
that are not necessarily aligned according to the size of the value itself. To do this, specify
the value’s size just before the value itself.

DAT
 byte word $FFAA, long $BB995511

This example specifies byte-aligned data, but a word-sized value followed by a long-sized
value. The result is that the memory contains $AA and $FF, consecutively, and following it,
$11, $55, $99 and $BB.

If we modify line three of the first example above as follows:

 word $FFC2, long 75000

...then we’d end up with $F8, $24, $01, and $00 occupying bytes 12 through 15. Byte 15 is
the upper byte of the value and it just happens to be immediately left of the next long
boundary so no additional zero-padded bytes are needed for the next long-aligned data.

Optionally, the Symbol field of syntax 1 can be included to “name” the data. This makes
referencing the data from a PUB or PRI block easy. For example:

DAT
 MyData byte $FF, 25, %1010

PUB GetData | Temp
 Temp := MyData[0] 'Get first byte of data table

This example creates a data table called MyData that consists of bytes $FF, 25 and %1010.
The public method, GetData, reads the first byte of MyData from main memory and stores it in
its local variable, Temp.

You can also use the BYTE, WORD, and LONG declarations to read main memory locations. For
example:

4: Spin Language Reference – DAT

Propeller Manual v1.0 · Page 211

DAT
 MyData byte $FF, 25, %1010

PUB GetData | Temp
 Temp := BYTE[@MyData][0] 'Get first byte of data table

This example is similar to the previous one except that it uses the BYTE declaration to read the
value stored at the address of MyData. Refer to BYTE, page 165; WORD, page 331; and LONG,
page 236, for more information on reading and writing main memory.

Writing Propeller Assembly Code (Syntax 2)
In addition to numerical and string data, the Data Block is used for Propeller Assembly code.
For example,

DAT
org 'reset address pointer

Loop rdlong t1, par WZ 'wait for command
if_z jmp #Loop 'jump of zero

movd :arg, #arg0 'get 8 arguments
:arg mov t2, t1

This example contains optional symbols, “Loop” and “:arg”, an optional conditional, “IF_Z”,
the required instruction field, ORG, RDLONG, etc, followed by operands and an effect statement,
“WZ.”

Note that any dual commands (those available in both Spin and Propeller Assembly) that are
used in a DAT block are treated as assembly instructions. Conversely, any dual commands that
are used outside of a DAT block are treated as Spin commands.

DIRA, DIRB – Spin Language Reference

Page 212 · Propeller Manual v1.0

DIRA, DIRB
Direction Register for 32-bit Ports A and B.

((PUB ┆ PRI))
 DIRA 〈[Pin(s)]〉
((PUB ┆ PRI))
 DIRB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current value of direction bits for I/O Pin(s) in Ports A or B, if used as a source
variable.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
DIRA and DIRB are one of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The DIRA register holds the direction states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The DIRB register holds the direction states
for each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: DIRB is reserved for future use; the Propeller P8X32A does not include Port B I/O
pins so only DIRA is discussed below.

DIRA is used to both set and get the current direction states of one or more I/O pins in Port A.
A low (0) bit sets the corresponding I/O pin to an input direction. A high (1) bit sets the
corresponding I/O pin to an output direction. The DIRA register defaults zero, all 0 bits, upon
cog startup; all I/O pins are specified as inputs by that cog until the code instructs otherwise.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually-exclusive access involved.
Each cog maintains its own DIRA register that gives it the ability to set any I/O pin’s direction.
Each cog’s DIRA register is OR’d with that of the other cogs’ DIRA registers and the resulting
32-bit value becomes the I/O directions of Port A pins P0 through P31. The result is that
each I/O pin’s direction state is the “wired-OR” of the entire cog collective. See I/O Pins on
page 26 for more information.

4: Spin Language Reference – DIRA, DIRB

Propeller Manual v1.0 · Page 213

This configuration can easily be described in the following simple rules:

A. A pin is an input only of no active cog sets it to an output.
B. A pin is an output if any active cog sets it to an output.

If a cog is disabled, its direction register is treated as if were cleared to 0, causing it to exert
no influence on I/O pin directions and states.

Note that because of the “wired-OR” nature of the I/O pins, no electrical contention between
cogs is possible, yet they can all still access I/O pins simultaneously. It is up to the
application developer to ensure that no two cogs cause logical contention on the same I/O pin
during run time.

Using DIRA
Set or clear bits in DIRA to affect the direction of I/O pins as desired. For example:

 DIRA := %00000000_00000000_10110000_11110011

The above code sets the entire DIRA register (all 32 bits at once) to a value that makes I/O pins
15, 13, 12, 7, 6, 5, 4, 1 and 0 to outputs and the rest to inputs.

Using the post-clear (~) and post-set (~~) unary operators, the cog can set all I/O pins to
inputs, or outputs, respectively; it’s not usually desirable to set all I/O pins to outputs,
however. For example:

 DIRA~ 'Clear DIRA register (all I/Os are inputs)

—and—

 DIRA~~ 'Set DIRA register (all I/Os are outputs)

The first example above clears the entire DIRA register (all 32 bits at once) to zero; all I/Os P0
through P31 to inputs. The second example above sets the entire DIRA register (all 32 bits at
once) to ones; all I/Os P0 through P31 to outputs.

To affect only one I/O pin (one bit), include the optional Pin(s) field. This treats the DIRA
register as an array of 32 bits.

 DIRA[5]~~ 'Set DIRA bit 5 (P5 to output)

This sets P5 to an output. All other bits of DIRA (and thus all other corresponding I/O pins)
remain in their previous state.

DIRA, DIRB – Spin Language Reference

Page 214 · Propeller Manual v1.0

The DIRA register supports a special form of expression, called a range-expression, which
allows you to affect a group of I/O pins at once, without affecting others outside the specified
range. To affect multiple, contiguous I/O pins at once, use a range expression (like x..y) in
the Pin(s) field.

 DIRA[5..3]~~ 'Set DIRA bits 5 through 3 (P5-P3 to output)

This sets P5, P4 and P3 to outputs; all other bits of DIRA remain in their previous state. Here’s
another example:

 DIRA[5..3] := %110 'Set P5 and P4 to output, P3 to input

The above example sets DIRA bits 5, 4 and 3 equal to 1, 1, and 0, respectively, leaving all
other bits in their previous state. Consequently, P5 and P4 are now outputs and P3 is an
input.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range-expression of the previous example.

 DIRA[3..5] := %110 'Set P3 and P4 to output, P5 to input

Here, DIRA bits 3, 4 and 5 are set equal to 1, 1, and 0, respectively, making P3 and P4 outputs
and P5 an input.

This is a powerful feature of range-expressions, but if care is not taken, it can also cause
strange, unintentional results.

Normally DIRA is only written to but it can also be read from to retrieve the current I/O pin
directions. The following assumes Temp is a variable created elsewhere:

 Temp := DIRA[7..4] 'Get direction of P7 through P4

The above sets Temp equal to DIRA bits 7, 6, 5, and 4; i.e.: the lower 4 bits of Temp are now
equal to DIRA7:4 and the other bits of Temp are cleared to zero.

4: Spin Language Reference – FILE

Propeller Manual v1.0 · Page 215

FILE
Import external file as data.

DAT
 FILE "FileName"

• FileName is the name, without extension, of the desired data file. Upon compile, a file
with this name is searched for in the editor tabs, the working directory and the library
directory. FileName can contain any valid filename characters; disallowed characters
are \, /, :, *, ?, ", <, >, and |.

Explanation
The FILE directive is used to import an external data file (usually a binary file) into the DAT
block of an object. The data can then be accessed by the object just like any regular DAT
block data.

Using FILE
FILE is used in DAT blocks similar to how BYTE would be used, except that following it is a
filename in quotes instead of data values. For example:

DAT
 Str byte "This is a data string.", 0
 Data file "Datafile.dat"

In this example, the DAT block is made up of a byte string followed by the data from a file
called Datafile.dat. Upon compile, the Propeller Tool will search through the editor tabs, the
working directory or the library directory for a file called Datafile.dat and will load its data
into the first byte following the zero-terminated string, Str. Methods can access the imported
data using the BYTE, WORD or LONG declarations as they would normal data. For example:

PUB GetData | Index, Temp
 Index := 0
 repeat
 Temp := byte[Data][Index++] 'Read data into Temp 1 byte at a time
 <do something with Temp> 'Perform task with value in Temp
 while Temp > 0 'Loop until end found

This example will read the imported data, one byte at a time, until it finds a byte equal to 0.

FLOAT – Spin Language Reference

Page 216 · Propeller Manual v1.0

FLOAT
Convert an integer constant expression to a compile-time floating-point value.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 FLOAT (IntegerConstant)
Returns: Resolved value of integer constant expression as a floating-point number.

• IntegerConstant is the desired integer constant expression to be used as a constant
floating-point value.

Explanation
FLOAT is one of three directives (FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. The FLOAT directive converts a constant integer value to a constant floating-
point value.

Using FLOAT
While most constants are 32-bit integer values, the Propeller compiler supports 32-bit
floating-point values and constant expressions for compile-time use. Note that this is for
constant expressions only, not run-time variable expressions.

For typical floating-point constant declarations, the expression must be shown as a floating-
point value in one of three ways: 1) as an integer value followed by a decimal point and at
least one digit, 2) as an integer with an E followed by an exponent value, or 3) both 1 and 2.
For example:

 CON
 OneHalf = 0.5
 Ratio = 2.0 / 5.0
 Miles = 10e5

The above code creates three floating-point constants. OneHalf is equal to 0.5, Ratio is equal
to 0.4 and Miles is equal to 1,000,000.

Notice that in the above example, every component of every expression is shown as a
floating-point value. Now take a look at the following example:

 CON
 Two = 2
 Ratio = Two / 5.0

4: Spin Language Reference – FLOAT

Propeller Manual v1.0 · Page 217

Here, Two is defined as an integer constant and Ratio appears to be defined as a floating-point
constant. This causes an error on the Ratio line because, for floating-point constant
expressions, every value within the expression must be a floating-point value; you cannot mix
integer and floating-point values like Ratio = 2 / 5.0.

You can, however, use the FLOAT directive to convert an integer value to a floating-point
value, such as in the following:

 CON
 Two = 2
 Ratio = float(Two) / 5.0

The FLOAT directive in this example converts the integer constant, Two, into the floating-point
form of that value so that it can be used in the floating-point expression.

About Floating Point
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath and FloatString objects provide
math functions compatible with single-precision numbers.

See Constant Assignment ‘=’ in the Operators section on page 254, ROUND on page 303, and
TRUNC on page 314, as well as the the FloatMath and FloatString objects for more
information.

_FREE – Spin Language Reference

Page 218 · Propeller Manual v1.0

_FREE
Pre-defined, one-time settable constant for specifying the size of an application’s free space.

CON
 _FREE = Expression

• Expression is an integer expression that indicates the number of longs to reserve for
free space.

Explanation
_FREE is a pre-defined, one-time settable optional constant that specifies the required free
memory space of an application. This value is added to _STACK, if specified, to determine the
total amount of free/stack memory space to reserve for a Propeller Application. Use _FREE if
an application requires a minimum amount of free memory in order to run properly. If the
resulting compiled application is too large to allow the specified free memory, an error
message will be displayed. For example:

CON
 _FREE = 1000

The _FREE declaration in the above CON block indicates that the application needs to have at
least 1,000 longs of free memory left over after compilation. If the resulting compiled
application does not have that much room left over, an error message will indicate by how
much it was exceeded. This is a good way to prevent successful compiles of an application
that will fail to run properly due to lack of memory.

Note that only the top object file can set the value of _FREE. Any child object’s _FREE
declarations will be ignored.

4: Spin Language Reference – FRQA, FRQB

Propeller Manual v1.0 · Page 219

FRQA, FRQB
Counter A and Counter B frequency registers.

((PUB ┆ PRI))
 FRQA
((PUB ┆ PRI))
 FRQB
Returns: Current value of Counter A or Counter B Frequency Register, if used as a source
variable.

Explanation
FRQA and FRQB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The FRQA register contains the value that is
accumulated into the PHSA register. The FRQB register contains the value that is accumulated
into the PHSB register. See CTRA, CTRB on page 204 for more information.

Using FRQA and FRQB
FRQA and FRQB can be read/written just like any other register or pre-defined variable. For
example:

 FRQA := $00001AFF

The above code sets FRQA to $00001AFF. Depending on the CTRMODE field of the CTRA
register, this value in FRQA may be added into the PHSA register at a frequency determined by
the System Clock and the primary and/or secondary I/O pins. See CTRA, CTRB on page 204 for
more information.

IF – Spin Language Reference

Page 220 · Propeller Manual v1.0

IF
Test condition(s) and execute a block of code if valid (positive logic).

((PUB ┆ PRI))
 IF Condition(s)
 IfStatement(s)
 〈 ELSEIF Condition(s)
 ElseIfStatement(s) 〉…
 〈 ELSEIFNOT Condition(s)
 ElseIfNotStatement(s) 〉…
 〈 ELSE
 ElseStatement(s) 〉

• Condition(s) is one or more Boolean expressions to test.
• IfStatement(s) is a block of one or more lines of code to execute when the IF’s

Condition(s) is true.
• ElseIfStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid and the ELSEIF’s Condition(s) is true.
• ElseIfNotStatement(s) is an optional block of one or more lines of code to execute when

all the previous Condition(s) are invalid and the ELSEIFNOT’s Condition(s) is false.
• ElseStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid.

Explanation
IF is one of the three major conditional commands (IF, IFNOT, and CASE) that conditionally
executes a block of code. IF can optionally be combined with one or more ELSEIF
commands, one or more ELSEIFNOT commands, and/or an ELSE command to form
sophisticated conditional structures.

IF tests Condition(s) and, if true, executes IfStatement(s). If Condition(s) is false, the
following optional ELSEIF Condition(s), and/or ELSEIFNOT Condition(s), are tested, in order,
until a valid condition line is found, then the associated ElseIfStatement(s), or
ElseIfNotStatement(s), block is executed. The optional ElseStatement(s) block is executed if
no previous valid condition lines are found.

A “valid” condition is one that evaluates to TRUE for a positive conditional statement (IF or
ELSEIF) or evaluates to FALSE for a negative conditional statement (ELSEIFNOT).

4: Spin Language Reference – IF

Propeller Manual v1.0 · Page 221

Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,
you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See Indenting and Outdenting, page 69, and Block-Group Indicators, page 74.

Simple IF Statement
The most common form of the IF conditional command performs an action if, and only if, a
condition is true. This is written as an IF statement followed by one or more indented lines of
code. For example:

 if X > 10 'If X is greater than 10
 !outa[0] 'Toggle P0
 !outa[1] 'Toggle P1

This example tests if X is greater than 10; if it is, I/O pin 0 is toggled. Whether or not the IF
condition was true, I/O pin P1 is toggled next.

Since the !outa[0] line is indented from the IF line, it belongs to the IfStatement(s) block
and is executed only if the IF condition is true. The next line, !outa[1], is not indented from
the IF line, so it is executed next whether or not the IF’s Condition(s) was true. Here’s
another version of the same example:

 if X > 10 'If X is greater than 10
 !outa[0] 'Toggle P0
 !outa[1] 'Toggle P1
 waitcnt(2_000 + cnt) 'Wait for 2,000 cycles

This example is very similar to the first, except there are now two lines of code indented from
the IF statement. In this case, if X is greater than 10, P0 is toggled then P1 is toggled and
finally the waitcnt line is executed. If, however, X was not greater than 10, the !outa[0] and
!outa[1] lines are skipped (since they are indented and part of the IfStatement(s) block) and
the waitcnt line is executed (since it is not indented; it is not part of the IfStatement(s) block).

Combining Conditions
The Condition(s) field is evaluated as one single Boolean condition, but it can be made up of
more than one Boolean expression by combining them with the AND and OR operators; see
pages 272-273. For example:

IF – Spin Language Reference

Page 222 · Propeller Manual v1.0

 if X > 10 AND X < 100 'If X greater than 10 and less than 100

This IF statement would be true if, and only if, X is greater than 10 and X is also less than 100.
In other words, it’s true if X is in the range 11 to 99. Sometimes statements like these can be
a little difficult to read. To make it easier to read, parentheses can be used to group each sub-
condition, such as with the following.

 if (X > 10) AND (X < 100)'If X greater than 10 and less than 100

Using IF with ELSE
The second most common form of the IF conditional command performs an action if a
condition is true or a different action if that condition is false. This is written as an IF
statement followed by its IfStatement(s) block, then an ELSE followed by its ElseStatement(s)
block, as shown below:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 else 'Else, X <= 100
 !outa[1] 'Toggle P1

Here, if X is greater than 100, I/O pin 0 is toggled, otherwise, X must be less than or equal to
100, and I/O pin 1 is toggled. This IF...ELSE construct, as written, always performs either a
toggle on P0 or a toggle on P1; never both, and never neither.

Remember, the code that logically belongs to the IfStatement(s) or the ElseStatement(s) must
be indented from the IF or the ELSE, respectively, by at least one space. Also note that the
ELSE must be lined up horizontally with the IF statement; they must both begin on the same
column or the compiler will not know that the ELSE goes with that IF.

For every IF statement, there can be zero or one ELSE component. ELSE must be the last
component in an IF statement, appearing after any potential ELSEIFs.

Using IF with ELSEIF
The third form of the IF conditional command performs an action if a condition is true or a
different action if that condition is false but another condition is true, etc. This is written as
an IF statement followed by its IfStatement(s) block, then one or more ELSEIF statements
followed by their respective ElseIfStatement(s) blocks. Here’s an example:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90

4: Spin Language Reference – IF

Propeller Manual v1.0 · Page 223

 !outa[1] 'Toggle P1

Here, if X is greater than 100, I/O pin 0 is toggled, otherwise, if X equals 90, I/O pin 1 is
toggled, and if neither of those conditions were true, neither P0 nor P1 is toggled. This is a
slightly shorter way of writing the following code:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 else 'Otherwise,
 if X == 90 'If X = 90
 !outa[1] 'Toggle P1

Both of these examples perform the same actions, but the first is shorter and is usually
considered easier to read. Note that the ELSEIF, just like the ELSE, must be lined up (start in
the same column) as the IF that it is associated with.

Each IF conditional statement can have zero or more ELSEIF statements associated with it.
Look at the following:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90
 !outa[1] 'Toggle P1
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2

We have three conditions and three possible actions here. Just like the previous example, if X
is greater than 100, P0 is toggled, otherwise, if X equals 90, P1 is toggled, but if neither of
those conditions were true and X is greater than 50, P2 is toggled. If none of those conditions
were true, then none of those actions would occur.

There is an important concept to note about this example. If X is 101 or higher, P0 is toggled,
or if X is 90, P1 is toggled, or if X is 51 to 89, or 91 to 100, P2 is toggled. This is because the
IF and ELSEIF conditions are tested, one at a time, in the order they are listed and only the
first condition that is true has its block of code executed; no further conditions are tested after
that. This means that if we had rearranged the two ELSEIFs so that the “X > 50” were checked
first, we’d have a bug in our code.

IF – Spin Language Reference

Page 224 · Propeller Manual v1.0

We did this below:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2
 elseif X == 90 'Else If X = 90 <-- ERROR, ABOVE COND.
 !outa[1] 'Toggle P1 <-- SUPERSEDES THIS AND
 ' THIS CODE NEVER RUNS

The above example contains an error because, while X could be equal to 90, the elseif X ==
90 statement would never be tested because the previous one, elseif X > 50, would be tested
first, and since it is true, its block is executed and no further conditions of that IF structure
are tested. If X were 50 or less, the last ELSEIF condition is tested, but of course, it will never
be true.

Using IF with ELSEIF and ELSE
Another form of the IF conditional command performs one of many different actions if one
of many different conditions is true, or an alternate action if none of the previous conditions
were true. This is written as with an IF, one or more ELSEIFs, and finally an ELSE. Here’s an
example:

 if X > 100 'If X is greater than 100
 !outa[0] 'Toggle P0
 elseif X == 90 'Else If X = 90
 !outa[1] 'Toggle P1
 elseif X > 50 'Else If X > 50
 !outa[2] 'Toggle P2
 else 'Otherwise,
 !outa[3] 'Toggle P3

This is just like the example above, except that if none of the IF or ELSEIF conditions are true,
P3 is toggled.

The ELSEIFNOT Condition
The ELSEIFNOT condition behaves exactly like ELSEIF except that it uses negative logic; it
executes its ElseIfNotStatement(s) block only if its Condition(s) expression evaluates to
FALSE. Multiple ELSEIFNOT and ELSEIF conditions can be combined in a single IF conditional
command, in any order, between the IF and the optional ELSE.

4: Spin Language Reference – IFNOT

Propeller Manual v1.0 · Page 225

IFNOT
Test condition(s) and execute a block of code if valid (negative logic).

((PUB ┆ PRI))
 IFNOT Condition(s)
 IfNotStatement(s)
 〈 ELSEIF Condition(s)
 ElseIfStatement(s) 〉…
 〈 ELSEIFNOT Condition(s)
 ElseIfNotStatement(s) 〉…
 〈 ELSE
 ElseStatement(s) 〉

• Condition(s) is one or more Boolean expressions to test.
• IfNotStatement(s) is a block of one or more lines of code to execute when the IFNOT’s

Condition(s) is false.
• ElseIfStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid and the ELSEIF’s Condition(s) is true.
• ElseIfNotStatement(s) is an optional block of one or more lines of code to execute when

all the previous Condition(s) are invalid and the ELSEIFNOT’s Condition(s) is false.
• ElseStatement(s) is an optional block of one or more lines of code to execute when all

the previous Condition(s) are invalid.

Explanation
IFNOT is one of the three major conditional commands (IF, IFNOT, and CASE) that conditionally
executes a block of code. IFNOT is the complementary (negative) form of IF.

IFNOT tests Condition(s) and, if false, executes IfNotStatement(s). If Condition(s) is true, the
following optional ELSEIF Condition(s), and/or ELSEIFNOT Condition(s), are tested, in order,
until a valid condition line is found, then the associated ElseIfStatement(s), or
ElseIfNotStatement(s), block is executed. The optional ElseStatement(s) block is executed if
no previous valid condition lines are found.

A “valid” condition is one that evaluates to FALSE for a negative conditional statement (IFNOT,
or ELSEIFNOT) or evaluates to TRUE for a positive conditional statement (ELSEIF).

See IF on page 220 for information on the optional components of IFNOT.

INA, INB – Spin Language Reference

Page 226 · Propeller Manual v1.0

INA, INB
Input Registers for 32-bit Ports A and B.

((PUB ┆ PRI))
 INA 〈[Pin(s)]〉
((PUB ┆ PRI))
 INB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current state of I/O Pin(s) for Port A or B.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
INA and INB are two of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The INA register contains the current states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The INB register contains the current states
for each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: INB is reserved for future use; the Propeller P8X32A does not include Port B I/O pins
so only INA is discussed below.

INA is read-only and is not really implemented as a register but rather is just an address that,
when accessed as a source item in an expression, reads the Port A I/O pins directly at that
moment. In the result, a low (0) bit indicates the corresponding I/O pin senses ground, and a
high (1) bit indicates the corresponding I/O pin senses VDD (3.3 volts). Since the Propeller
is a CMOS device, the I/O pins sense anything above ½ VDD to be high, so a high means the
pin senses approximately 1.65 volts or higher.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually-exclusive access involved.
Each cog has its own INA pseudo-register that gives it the ability to read the I/O pins states
(low or high) at any time. The actual I/O pins’ values are read, regardless of their designated
input or output direction.

4: Spin Language Reference – INA, INB

Propeller Manual v1.0 · Page 227

Note because of the “wired-OR” nature of the I/O pins, no electrical contention between cogs
is possible, yet they can all still access I/O pins simultaneously. It is up to the application
developer to ensure that no two cogs cause logical contention on the same I/O pin during run
time. Since all cogs share all I/O pins, a cog could use INA to read pins it is using as well as
the pins that are in use by one or more other cogs.

Using INA
Read INA to get the state of I/O pins at that moment. The following example assumes Temp
was created elsewhere.

 Temp := INA 'Get state of P0 through P31

This example reads the states of all 32 I/O pins of Port A into Temp.

Using the optional Pin(s) field, the cog can read one I/O pin (one bit) at a time. For example:

 Temp := INA[16] 'Get state of P16

The above line reads I/O pin 16 and stores its state (0 or 1) in the lowest bit of Temp; all other
bits of Temp are cleared.

In Spin, the INA register supports a special form of expression, called a range-expression,
which allows you to read a group of I/O pins at once, without reading others outside the
specified range. To read multiple, contiguous I/O pins at once, use a range expression (like
x..y) in the Pin(s) field.

 Temp := INA[18..15] 'Get states of P18:P15

Here, the lowest four bits of Temp (3, 2, 1, and 0) are set to the states of I/O pins 18, 17, 16,
and 15, respectively, and all other bits of Temp are cleared to 0.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range from the previous example.

 Temp := INA[15..18] 'Get states of P15:P18

Here, Temp bits 3, 2, 1, and 0 are set to the states of I/O pins 15, 16, 17, and 18, respectively.

This is a powerful feature of range-expressions, but if care is not taken it can also cause
strange, unintentional results.

LOCKCLR – Spin Language Reference

Page 228 · Propeller Manual v1.0

LOCKCLR
Clear lock to false and get its previous state.

((PUB ┆ PRI))
 LOCKCLR (ID)
Returns: Previous state of lock (TRUE or FALSE).

• ID is the ID (0 – 7) of the lock to clear to false.

Explanation
LOCKCLR is one of four lock commands (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKCLR clears lock
ID to FALSE and retrieves the previous state of that lock (TRUE or FALSE).

See About Locks, page 230, and Suggested Rules for Locks, page 231 for information on the
typical use of locks and the LOCKxxx commands.

The following assumes that a cog (either this one or another) has already checked out a lock
using LOCKNEW and shared the ID with this cog, which saved it as SemID. It also assumes this
cog has an array of longs called LocalData.

PUB ReadResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'read all 10 longs of resource
 LocalData[Idx] := long[Idx]
 lockclr(SemID) 'unlock the resource

PUB WriteResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'write all 10 longs to resource
 long[Idx] := LocalData[Idx]
 lockclr(SemID) 'unlock the resource

Both of these methods, ReadResource and WriteResource, follow the same rules before and
after accessing the resource. First, they wait indefinitely at the first repeat loop until it has
locked the resource; i.e.: it has successfully “set” the associated lock. If LOCKSET returns TRUE,
the condition “until not lockset…” is FALSE, meaning that some other cog is currently
accessing the resource, so that first repeat loop tries again. If LOCKSET returns FALSE, the

4: Spin Language Reference – LOCKCLR

Propeller Manual v1.0 · Page 229

condition “until not lockset…” is true, meaning we have “locked the resource” and the first
repeat loop ends. The second repeat loop in each method reads or writes the resource, via the
long[Idx] and LocalData[Idx] statements. The last line of each method, lockclr(SemID),
clears the resource’s associated lock to FALSE, logically unlocking or releasing the resource
for others to use.

See LOCKNEW, page 230; LOCKRET, page 233; and LOCKSET, page 234 for more information.

LOCKNEW – Spin Language Reference

Page 230 · Propeller Manual v1.0

LOCKNEW
Check out a new lock and get its ID.

((PUB ┆ PRI))
 LOCKNEW
Returns: ID (0-7) of the lock checked out, or -1 if none were available.

Explanation
LOCKNEW is one of four lock commands (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKNEW checks out
a unique lock, from the hub, and retrieves the ID of that lock. If no locks were available,
LOCKNEW returns -1.

About Locks
A lock is a semaphore mechanism that is used to communicate between to two or more
entities. In the Propeller chip, a lock is simply one of eight global bits in a protected register
within the Hub. The Hub maintains an inventory of which locks are in use and their current
states. Cogs can check out, set, clear, and return locks as needed during run time to indicate
whether a custom shared item, such as a block of memory, is available or not. Since locks
are managed by the Hub only one cog can affect them at a time, making this an effective
control mechanism.

In applications where two or more cogs are sharing the same memory, a tool such as a lock
may be required to prevent catastrophic collisions from occurring. The Hub prevents such
collisions from occurring on elemental data (such a byte, word or long) at every moment in
time, but it can not prevent “logical” collisions on blocks of multiple elements (such as a
block of bytes, words, longs or any combination of these). For example, if two or more cogs
are sharing a single byte of main memory, each one is guaranteed exclusive access to that
byte by nature of the Hub. But if those two cogs share multiple bytes of main memory, the
Hub can not prevent one cog from writing a few of those bytes while another cog is reading
all of them; all cogs’ interactions with those bytes may be interleaved in time. In this case,
the developer should design each process (in each cog that shares this memory) so that they
cooperatively share the memory block in a non-destructive way. Locks serve as flags that
notify each cog when a memory block is safe to manipulate or not.

4: Spin Language Reference – LOCKNEW

Propeller Manual v1.0 · Page 231

Using LOCKNEW
A user-defined, mutually-exclusive resource should be initially set up by a cog, then that
same cog should use LOCKNEW to check out a unique lock in which to manage that resource
and pass the ID of that lock to any other cogs that require it. For example:

VAR
 byte SemID

PUB SetupSharedResource
 <code to set up user-defined, shared resource here>
 if (SemID := locknew) == -1
 <error, no locks available>
 else
 <share SemID's value with other cogs>

The example above calls LOCKNEW and stores the result in SemID. If that result is -1, an error
occurs. If the SemID is not -1, then a valid lock was checked out and that SemID needs to be
shared with other cogs along with the address of the resource that SemID is used for. The
method used to communicate the SemID and resource address depends on the application, but
typically they are both passed as parameters to the Spin method that is launched into a cog, or
as the PAR parameter when launching an assembly routine into a cog. See COGNEW, page 189.

Suggested Rules for Locks
The following are the suggested rules for using locks.

• Objects needing a lock to manage a user-defined, mutually-exclusive resource should
check out a lock using LOCKNEW and save the ID returned, we’ll call it SemID here.
Only one cog should check out this lock. The cog that checked out the lock must
communicate SemID to all other cogs that will use the resource.

• Any cog that needs to access the resource must first successfully set the lock SemID.
A successful “set” is when LOCKSET(SemID) returns FALSE; ie: the lock was not already
set. If LOCKSET returned TRUE, then another cog must be accessing the resource; you
must wait and try again later to get a successful “set”.

• The cog that has achieved a successful “set” can manipulate the resource as
necessary. When done, it must clear the lock via LOCKCLR(SemID) so another cog can
have access to the resource. In a well-behaved system, the result of LOCKCLR can be
ignored here since this cog is the only one with the logical right to clear it.

LOCKNEW – Spin Language Reference

Page 232 · Propeller Manual v1.0

• If a resource is no longer needed, or becomes non-exclusive, the associated lock
should be returned to the lock pool via LOCKRET(SemID). Usually this is done by the
same cog that checked out the lock originally.

Applications should be written such that locks are not accessed with LOCKSET or LOCKCLR
unless they are currently checked out.

Note that user-defined resources are not actually locked by either the Hub or the checked-out
lock. The lock feature only provides a means for objects to cooperatively lock those
resources. It’s up to the objects themselves to decide on, and abide by, the rules of lock use
and what resource(s) will be governed by them. Additionally, the Hub does not directly
assign a lock to the cog that called LOCKNEW, rather it simply marks it as being “checked out”
by a cog; any other cog can “return” locks to the pool of available locks. Also, any cog can
access any lock through the LOCKCLR and LOCKSET commands even if those locks were never
checked out. Doing such things is generally not recommended because of the havoc it can
cause with other, well-behaved objects in the application.

See LOCKRET, page 233; LOCKCLR, page 228; and LOCKSET, page 234 for more information.

4: Spin Language Reference – LOCKRET

Propeller Manual v1.0 · Page 233

LOCKRET
Release lock back to lock pool, making it available for future LOCKNEW requests.

((PUB ┆ PRI))
 LOCKRET (ID)

• ID is the ID (0 – 7) of the lock to return to the lock pool.

Explanation
LOCKRET is one of four lock commands (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKRET returns a
lock, by ID, back to the Hub’s lock pool so that it may be reused by other cogs at a later time.
For example:

 LOCKRET(2)

This example returns Lock 2 back to the Hub. This doesn’t prevent cogs from accessing
Lock 2 afterwards, it only allows the Hub to reassign it to cogs that call LOCKNEW in the future.
Applications should be written such that locks are not accessed with LOCKSET or LOCKCLR
unless they are currently checked out.

See About Locks, page 230, and Suggested Rules for Locks, page 231 for information on the
typical use of locks and the LOCKxxx commands.

Note that user-defined resources are not actually locked by either the Hub or the checked-out
lock. The lock feature only provides a means for objects to cooperatively lock those
resources. It’s up to the objects themselves to decide on, and abide by, the rules of lock use
and what resource(s) will be governed by them. Additionally, the Hub does not directly
assign a lock to the cog that called LOCKNEW, rather it simply marks it as being “checked out”
by a cog; any other cog can “return” locks to the pool of available locks. Also, any cog can
access any lock through the LOCKCLR and LOCKSET commands even if those locks were never
checked out. Doing such things is generally not recommended because of the havoc it can
cause with other, well-behaved objects in the application.

See LOCKNEW, page 230; LOCKCLR, page 228; and LOCKSET, page234 for more information.

LOCKSET – Spin Language Reference

Page 234 · Propeller Manual v1.0

LOCKSET
Set lock to true and get its previous state.

((PUB ┆ PRI))
 LOCKSET (ID)
Returns: Previous state of lock (TRUE or FALSE).

• ID is the ID (0 – 7) of the lock to set to TRUE.

Explanation
LOCKSET is one of four lock commands (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKSET sets lock ID
to TRUE and retrieves the previous state of that lock (TRUE or FALSE).

See About Locks, page 230, and Suggested Rules for Locks, page 231 for information on the
typical use of locks and the LOCKxxx commands.

The following assumes that a cog (either this one or another) has already checked out a lock
using LOCKNEW and shared the ID with this cog, which saved it as SemID. It also assumes this
cog has an array of longs called LocalData.

PUB ReadResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'read all 10 longs of resource
 LocalData[Idx] := long[Idx]
 lockclr(SemID) 'unlock the resource

PUB WriteResource | Idx
 repeat until not lockset(SemID) 'wait until we lock the resource
 repeat Idx from 0 to 9 'write all 10 longs to resource
 long[Idx] := LocalData[Idx]
 lockclr(SemID) 'unlock the resource

Both of these methods, ReadResource and WriteResource, follow the same rules before and
after accessing the resource. First, they wait indefinitely at the first repeat loop until it has
locked the resource; i.e.: it has successfully “set” the associated lock. If LOCKSET returns TRUE,
the condition “until not lockset…” is false, meaning that some other cog is currently
accessing the resource, so that first repeat loop tries again. If LOCKSET returns FALSE, the

4: Spin Language Reference – LOCKSET

Propeller Manual v1.0 · Page 235

condition “until not lockset…” is true, meaning we have “locked the resource” and the first
repeat loop ends. The second repeat loop in each method reads or writes the resource, via the
long[Idx] and LocalData[Idx] statements. The last line of each method, lockclr(SemID),
clears the resource’s associated lock to FALSE, logically unlocking or releasing the resource
for others to use.

See LOCKNEW, page 230; LOCKRET, page 233; and LOCKCLR, page 228 for more information.

LONG – Spin Language Reference

Page 236 · Propeller Manual v1.0

LONG
Declare long-sized symbol, long aligned/sized data, or read/write a long of main memory.

VAR
 LONG Symbol 〈[Count]〉
DAT
 LONG Data
((PUB ┆ PRI))
 LONG [BaseAddress] 〈[Offset]〉

• Symbol is the desired name for the variable.
• Count is an optional expression indicating the number of long-sized elements for

Symbol, arranged in an array from element 0 to element Count-1.
• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the address of main memory to read or write.

If Offset is omitted, BaseAddress is the actual address to operate on. If Offset is
specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on.

Explanation
LONG is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declares or
operates on memory. LONG can be used to:

1) declare a long-sized (32-bit) symbol or a multi-long symbolic array in a VAR block, or
2) declare long-aligned, and/or long-sized, data in a DAT block, or
3) read or write a long of main memory at a base address with an optional offset.

Long Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of LONG is used to declare global, symbolic variables that are either
long-sized, or are any array of longs. For example:

VAR
 long Temp 'Temp is a long (2 words, 4 bytes)
 long List[25] 'List is a long array

The above example declares two variables (symbols), Temp and List. Temp is simply a single,
long-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 long-sized variable elements called List. Both Temp and List can be

4: Spin Language Reference – LONG

Propeller Manual v1.0 · Page 237

accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 25_000_000 'Set Temp to 25,000,000
 List[0] := 500_000 'Set first element of List to 500,000
 List[1] := 9_000 'Set second element of List to 9,000
 List[24] := 60 'Set last element of List to 60

For more information about using LONG in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 315, and keep in mind that LONG is used for the Size field in
that description.

Long Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of LONG is used to declare long-aligned, and/or long-sized data that is
compiled as constant values in main memory. DAT blocks allow this declaration to have an
optional symbol preceding it which can be used for later reference (see DAT, page 208). For
example:

DAT
 MyData long 640_000, $BB50 'Long-aligned/sized data
 MyList byte long $FF995544, long 1_000 'Byte-aligned/long-sized

The above example declares two data symbols, MyData and MyList. MyData points to the start
of long-aligned and long-sized data in main memory. MyData’s values, in main memory, are
640,000 and $0000BB50, respectively. MyList uses a special DAT block syntax of LONG that
creates a byte-aligned but long-sized set of data in main memory. MyList’s values, in main
memory, are $FF995544 and 1,000, respectively. When accessed a byte at a time, MyList
contains $44, $55, $99, $FF, 232 and 3, 0 and 0 since the data is stored in little-endian
format.

Note: MyList could have been defined as word-aligned, long-sized data if the “byte”
reference were replaced with “word”.

This data is compiled into the object and resulting application as part of the executable code
section and may be accessed using the read/write form, syntax 3, of LONG (see below). For
more information about using LONG in this way, refer to the DAT section’s Declaring Data
(Syntax 1) on page 208, and keep in mind that LONG is used for the Size field in that
description.

LONG – Spin Language Reference

Page 238 · Propeller Manual v1.0

Reading/Writing Longs of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of LONG is used to read or write long-sized values of main
memory. In the following two examples, we’ll assume our object contained the DAT block
from the example above, and we will demonstrate two different ways to access that data.

First, let’s try accessing the data directly using the labels we provided in our data block.

PUB GetData | Index, Temp
 Temp := MyData 'Read first long of MyData into Temp
 <do something with Temp> 'Perform task with Temp

 repeat Index from 0 to 1 'Repeat two times
 Temp := MyList[Index] 'Read data into Temp 1 long at a time
 <do something with Temp> 'Perform task with value in Temp

The first line inside of the GetData method, Temp := MyData, reads the first value in the
MyData list (the long-sized value 640,000) and stores it in Temp. Further down, in the REPEAT
loop, the Temp := MyList[Index] line reads a byte of main memory from the location of
MyList + Index. The first time through the loop (Index = 0) the value $44 ($FF995544’s
byte 0) is read from MyList and the second time through the loop (Index = 1) the next byte is
read, $55 ($FF995544’s byte 1). Why were bytes read instead of longs? MyList points at the
start of our desired data and our data was specified as long-sized data but the symbol MyList
is treated as a byte pointer since that data was specified to be byte-aligned.

Perhaps you intended to read long-sized data from MyList just like we did from MyData.
Coincidentally, even though MyList is declared as byte-aligned long data, it is also happens
to be long-aligned as well because the previous declaration finished on a long boundary. This
fact allows us to use the LONG declaration to achieve our goal.

PUB GetData | Index, Temp
 Temp := LONG[@MyData] 'Read first long of MyData into Temp
 <do something with Temp> 'Perform task with Temp

 repeat Index from 0 to 1 'Repeat two times
 Temp := LONG[@MyList][Index] 'Read data to Temp 1 long at a time
 <do something with Temp> 'Perform task with value in Temp

In this example, the first line inside of the GetData method uses the LONG declaration to read a
long of main memory from the address of MyData and stores it in Temp, in this case, the value
640,000. Further down, in the REPEAT loop, the LONG declaration reads a long of main
memory from the address of MyList + Index and stores it in Temp. Since the first iteration of

4: Spin Language Reference – LONG

Propeller Manual v1.0 · Page 239

the loop has Index set to 0, the first long of MyList is read, $FF995544. The next time
through the loop it reads the next long, effectively @MyList + 1 (the 1,000).

Note that if the data was not long-aligned, either intentionally or coincidentally, we’d have
different results from the REPEAT loop just described. For example, if MyList happened to be
shifted forward by one byte, the first value read by the loop would be $995544xx; where xx is
an unknown byte-sized value. Similarly, the second value read would be 256255; made up of
the $FF from the upper byte of MyList’s first value, and the 3 and 232 from the lower two
bytes of MyList’s second value. Make sure to pay close attention to data value alignments in
memory to avoid this likely unintentional result.

Using a similar syntax, longs of main memory can be written to as well, as long as they are
RAM locations. For example:

 LONG[@MyList][0] := 2_000_000_000 'Write 2 billion to first word
 'of MyList

This line writes the value 2,000,000,000 to the first long of data at MyList.

LONGFILL – Spin Language Reference

Page 240 · Propeller Manual v1.0

LONGFILL
Fill longs of main memory with a value.

((PUB ┆ PRI))
 LONGFILL(StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first long of memory to fill
with Value.

• Value is an expression indicating the value to fill longs with.
• Count is an expression indicating the number of longs to fill, starting with

StartAddress.

Explanation
LONGFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. WORDFILL fills Count longs of main memory with Value,
starting at location StartAddress.

Using LONGFILL
LONGFILL is a great way to clear large blocks of long-sized memory. For example:

VAR
 long Buff[100]

PUB Main
 longfill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-long (400-byte) Buff array to
all zeros. LONGFILL is faster at this task than a dedicated REPEAT loop is.

4: Spin Language Reference – LONGMOVE

Propeller Manual v1.0 · Page 241

LONGMOVE
Copy longs from one region to another in main memory.

((PUB ┆ PRI))
 LONGMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
long of source to.

• SrcAddress is an expression specifying the main memory location of the first long of
source to copy.

• Count is an expression indicating the number of longs of the source to copy to the
destination.

Explanation
LONGMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. LONGMOVE copies Count longs of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using LONGMOVE
LONGMOVE is a great way to copy large blocks of long-sized memory. For example:

VAR
 long Buff1[100]
 long Buff2[100]

PUB Main
 longmove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-long (400-byte) Buff1 array to
the Buff2 array. LONGMOVE is faster at this task than a dedicated REPEAT loop is.

LOOKDOWN, LOOKDOWNZ – Spin Language Reference

Page 242 · Propeller Manual v1.0

LOOKDOWN, LOOKDOWNZ
Get the index of a value in a list.

((PUB ┆ PRI))
 LOOKDOWN (Value : ExpressionList)
((PUB ┆ PRI))
 LOOKDOWNZ (Value : ExpressionList)
Returns: One-based index position (LOOKDOWN) or a zero-based index position (LOOKDOWNZ) of
Value in ExpressionList, or 0 if Value not found.

• Value is an expression indicating the value to find in ExpressionList.
• ExpressionList is a comma-separated list of expressions. Quoted strings of characters

are also allowed; they are treated as a comma-separated list of characters.

Explanation
LOOKDOWN and LOOKDOWNZ are commands that retrieve indexes of values from a list of values.
LOOKDOWN returns the one-based index position (1..N) of Value from ExpressionList.
LOOKDOWNZ is just like LOOKDOWN except it returns the zero-based index position (0..N−1). For
both commands, if Value is not found in ExpressionList then 0 is returned.

Using LOOKDOWN or LOOKDOWNZ
LOOKDOWN and LOOKDOWNZ are useful for mapping a set of non-contiguous numbers (25, -103,
18, etc.) to a set of contiguous numbers (1, 2, 3, etc. –or– 0, 1, 2, etc.) where no algebraic
expression can be found to do so concisely. The following example assumes Print is a
method created elsewhere.

PUB ShowList | Index
 Print(GetIndex(25))
 Print(GetIndex(300))
 Print(GetIndex(2510))
 Print(GetIndex(163))
 Print(GetIndex(17))
 Print(GetIndex(8000))
 Print(GetIndex(3))

PUB GetIndex(Value): Index
 Index := lookdown(Value: 25, 300, 2_510, 163, 17, 8_000, 3)

4: Spin Language Reference – LOOKDOWN, LOOKDOWNZ

Propeller Manual v1.0 · Page 243

The GetIndex method in this example uses LOOKDOWN to find Value and returns the index
where it was found in the ExpressionList, or 0 if not found. The ShowList method calls
GetIndex repeatedly with different values and prints the resulting index on a display.
Assuming Print is a method that displays a value, this example will print 1, 2, 3, 4, 5, 6 and 7
on a display.

If LOOKDOWNZ were used instead of LOOKDOWN this example would print 0, 1, 2, 3, 4, 5, and 6 on
a display.

If Value is not found, LOOKDOWN, or LOOKDOWNZ, returns 0. So if one of the lines of the ShowList
method was, Print(GetIndex(50)), the display would show 0 at the time it was executed.

If using LOOKDOWNZ, keep in mind that it may return 0 if either Value was not found or Value is
at index 0. Make sure this will not cause an error in your code or use LOOKDOWN instead.

LOOKUP, LOOKUPZ – Spin Language Reference

Page 244 · Propeller Manual v1.0

LOOKUP, LOOKUPZ
Get value from an indexed position within a list.

((PUB ┆ PRI))
 LOOKUP (Index : ExpressionList)
((PUB ┆ PRI))
 LOOKUPZ (Index : ExpressionList)
Returns: Value at the one-based Index position (LOOKUP) or zero-based Index position
(LOOKUPZ) of ExpressionList, or 0 if out-of-range.

• Index is an expression indicating the position of the desired value in ExpressionList.
For LOOKUP, Index is one-based (1..N). For LOOKUPZ, Index is zero-based (0..N-1).

• ExpressionList is a comma-separated list of expressions. Quoted strings of characters
are also allowed; they are treated as a comma-separated list of characters.

Explanation
LOOKUP and LOOKUPZ are commands that retrieve entries from a list of values. LOOKUP returns
the value from ExpressionList that is located in the one-based position (1..N) given by Index.
LOOKUPZ is just like LOOKUP except it uses a zero-based Index (0..N-1). For both commands, if
Index is out of range then 0 is returned.

Using LOOKUP or LOOKUPZ
LOOKUP and LOOKUPZ are useful for mapping a contiguous set of numbers (1, 2, 3, etc. –or– 0,
1, 2, etc.) to a set of non-contiguous numbers (45, -103, 18, etc.) where no algebraic
expression can be found to do so concisely. The following example assumes Print is a
method created elsewhere.

PUB ShowList | Index, Temp
 repeat Index from 1 to 7
 Temp := lookup(Index: 25, 300, 2_510, 163, 17, 8_000, 3)
 Print(Temp)

This example looks up all the values in LOOKUP’s ExpressionList and displays them. The
REPEAT loop counts with Index from 1 to 7. Each iteration of the loop, LOOKUP uses Index to
retrieve a value from its list. If Index equals 1, the value 25 is returned. If Index equals 2, the
value 300 is returned. Assuming Print is a method that displays the value of Temp, this
example will print 25, 300, 2510, 163, 17, 8000 and 3 on a display.

4: Spin Language Reference – LOOKUP, LOOKUPZ

Propeller Manual v1.0 · Page 245

If LOOKUPZ is used, the list is zero-based (0..N-1) instead of one-based; an Index of 0 returns
25, Index of 1 returns 300, etc.

If Index is out of range 0 is returned. So, for LOOKUP, if the REPEAT statement went from 0 to
8, instead of 1 to 7, this example would print 0, 25, 300, 2510, 163, 17, 8000, 3 and 0 on a
display.

NEXT – Spin Language Reference

Page 246 · Propeller Manual v1.0

NEXT
Skip remaining statements of REPEAT loop and continue with the next loop iteration.

((PUB ┆ PRI))
 NEXT

Explanation
NEXT is one of two commands (NEXT and QUIT) that affect REPEAT loops. NEXT causes any
further statements in the REPEAT loop to be skipped and the next iteration of the loop to be
started thereafter.

Using NEXT
NEXT is typically used as an exception case, in a conditional statement, in REPEAT loops to
move immediately to the next iteration of the loop. For example, assume that X is a variable
created earlier and Print() is a method created elsewhere that prints a value on a display:

 repeat X from 0 to 9 'Repeat 10 times
 if X == 4
 next 'Skip if X = 4
 byte[$7000][X] := 0 'Clear RAM locations
 Print(X) 'Print X on screen

The above code iteratively clears RAM locations and prints the value of X on a display, but
with one exception. If X equals 4, the IF statement executes the NEXT command which causes
the loop to skip remaining lines and go right to the next iteration. This has the effect of
clearing RAM locations $7000 through $7003 and locations $7005 through $7009 and
printing 0, 1, 2, 3, 5, 6, 7, 8, 9 on the display.

The NEXT command can only be used within a REPEAT loop; an error will occur otherwise.

4: Spin Language Reference – OBJ

Propeller Manual v1.0 · Page 247

OBJ
Declare an Object Block.

OBJ
 Symbol 〈[Count]〉: "ObjectName" 〈 Symbol 〈[Count]〉: "ObjectName"〉…

• Symbol is the desired name for the object symbol.
• Count is an optional expression, enclosed in brackets, that indicates this is an array of

objects, with Count number of elements. When later referencing these elements, they
begin with element 0 and end with element Count-1.

• ObjectName is the filename, without extension, of the desired object. Upon compile,
an object with this filename is searched for in the editor tabs, the working directory
and the library directory. The object name can contain any valid filename characters;
disallowed characters are \, /, :, *, ?, ", <, >, and |.

Explanation
The Object Block is a section of source code that declares which objects are used and the
object symbols that represent them. This is one of six special declarations (CON, VAR, OBJ, PUB,
PRI, and DAT) that provide inherent structure to the Spin language.

Object declarations begin with OBJ on a line by itself followed by one or more declarations.
OBJ must start in column 1 (the leftmost column) of the line it is on and we recommend the
lines following be indented by at least one space. For example:

OBJ
 Num : "Numbers"
 Term : "TV_Terminal"

This example defines Num as an object symbol of type "Numbers" and Term as an object
symbol of type "TV_Terminal". Public and Private methods can then refer to these objects
using the object symbols as in the following example.

PUB Print | S
 S := Num.ToStr(LongVal, Num#DEC)
 Term.Str(@S)

This public method, Print, calls the Numbers’ ToStr method and also the TV_Terminal’s Str
method. It does this by using the Num and Term object symbols followed by the Object-

OBJ – Spin Language Reference

Page 248 · Propeller Manual v1.0

Method reference symbol (a period ‘.’) and finally the name of the method to call.
Num.ToStr, for instance, calls the Numbers object’s public ToStr method. Term.Str calls the
TV_Terminal’s public Str method. In this case the Num.ToStr has two parameters, in
parentheses, and Term.Str has one parameter.

Also notice that the second parameter of the Num.ToStr call is Num#DEC. The # symbol is the
Object-Constant reference symbol; it gives access to an object’s constants. In this case,
Num#DEC refers to the DEC (decimal format) constant in the Numbers object.

See Object-Method Reference ‘.’ and Object-Constant Reference ‘#’> in Table 4-16:
Symbols on page 312 for more information.

Multiple instances of an object can be declared with the same object symbol using array
syntax and can be accessed similar to arrays as well. For example:

OBJ
 PWM[2] : "PWM"
PUB GenPWM
 PWM[0].Start
 PWM[1].Start

This example declares PWM as an array of two objects (two instances of the same object). The
object itself just happens to be called “PWM” as well. The public method, GenPWM, calls the
Start method of each instance using indexes 0 and 1 with the object symbol array, PWM.

Both instances of the PWM object are compiled into the application such that there is one copy
of its program code (PUBs, PRIs, and DATs) and two copies of its variable blocks (VARs). This
is because, for each instance, the code is the same but each instance needs its own variable
space so it can operate independent of the other.

An important point to consider with multiple instances of an object is that there is only one
copy of its DAT block because it may contain Propeller Assembly code. DAT blocks can also
contain initialized data and regions set aside for workspace purposes, all with symbolic
names. Since there is only one copy of it for multiple instances of an object, that area is
shared among all instances. This provides a convenient way to create shared memory
between multiple instances of a particular object.

Scope of Object Symbols
Object symbols defined in Object Blocks are global to the object in which they are defined
but are not available outside of that object. This means that these object symbols can be
accessed directly from anywhere within the object but their name will not conflict with
symbols defined in other parent or child objects.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 249

Operators
The Propeller chip features a powerful set of math and logic operators. A subset of these
operators is supported by the Propeller Assembly language; however, since the Spin language
has a use for every form of operator supported by the Propeller, this section describes every
operator in detail. Please see the Operators section on page 390 for a list of operators
available in Propeller Assembly.

Expression Workspace
The Propeller is a 32-bit device and, unless otherwise noted, expressions are always evaluated
using 32-bit, signed integer math. This includes intermediate results as well. If any
intermediate result overflows or underflows a 32-bit signed integer (above 2,147,483,647 or
below -2,147,483,648), the final result of the expression will not be as expected. A
workspace of 32 bits provides lots of room for intermediate results but it is still wise to keep
overflow/underflow possibilities in mind.

If fractional underflow is an issue, or if real numbers rather than integers are desired in an
expression, floating-point support can help. The compiler supports 32-bit floating-point
values and constant expressions with many of the same math operators as it does for integer
constant expressions. Note that this is for constant expressions only, not run time variable
expressions. For floating-point run-time expressions, the Propeller chip provides support
through the FloatMath object supplied with the software installation. See Constant
Assignment ‘=’, page 254; FLOAT, page 216; ROUND, page 303; and TRUNC, page 314, as well
as the FloatMath and FloatString objects for more information

Operator Attributes
The operators have the following important attributes, each of which is shown in the
following two tables and further explained afterwards:

• Unary / Binary
• Normal / Assignment
• Constant and/or Variable Expression
• Level of Precedence

Operators – Spin Language Reference

Page 250 · Propeller Manual v1.0

Table 4-9: Math and Logic Operators
Constant Expressions1 Normal

Operator
Assignment

Operator Integer Float
Is

Unary Description, Page Number

= always n/a1 n/a1 Constant assignment (CON blocks), 254
:= always n/a1 n/a1 Variable assignment (PUB/PRI blocks), 255
+ += Add, 255
+ never Positive (+X); unary form of Add, 256
- -= Subtract, 256
- if solo Negate (-X); unary form of Subtract, 256
-- always Pre-decrement (--X) or post-decrement (X--), 257
++ always Pre-increment (++X) or post-increment (X++), 257
* *= Multiply and return lower 32 bits (signed), 258
** **= Multiply and return upper 32 bits (signed), 259
/ /= Divide (signed), 259
// //= Modulus (signed), 260
#> #>= Limit minimum (signed), 260
<# <#= Limit maximum (signed), 261
^^ if solo Square root, 261
|| if solo Absolute value, 261
~ always Sign-extend from bit 7 (~X) or post-clear to 0 (X~); all bits low, 262
~~ always Sign-extend from bit 15 (~~X) or post-set to -1 (X~~); all bits high, 263
~> ~>= Shift arithmetic right, 264
? always Random number forward (?X) or reverse (X?), 264
|< if solo Bitwise: Decode value (0 - 31) into single-high-bit long, 265
>| if solo Bitwise: Encode long into value (0 - 32) as high-bit priority, 266
<< <<= Bitwise: Shift left, 266
>> >>= Bitwise: Shift right, 267
<- <-= Bitwise: Rotate left, 267
-> ->= Bitwise: Rotate right, 268
>< ><= Bitwise: Reverse, 268
& &= Bitwise: AND, 269
| |= Bitwise: OR, 270
^ ^= Bitwise: XOR, 271
! if solo Bitwise: NOT, 272

AND AND= Boolean: AND (promotes non-0 to -1), 272
OR OR= Boolean: OR (promotes non-0 to -1), 273
NOT if solo Boolean: NOT (promotes non-0 to -1), 274
== === Boolean: Is equal, 275
<> <>= Boolean: Is not equal, 275
< <= Boolean: Is less than (signed), 276
> >= Boolean: Is greater than (signed), 277
=< =<= Boolean: Is equal or less (signed), 277
=> =>= Boolean: Is equal or greater (signed), 277
@ never Symbol address, 278
@@ never Object address plus symbol, 278

1 Assignment forms of operators are not allowed in constant expressions.
.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 251

Table 4-10: Operator Precedence Levels

Level Notes Operators Operator Names

Highest (0) Unary --, ++, ~, ~~, ?, @, @@ Inc/Decrement, Clear, Set, Random, Symbol/Object Address
1 Unary +, -, ^^, ||, |<, >|, ! Positive, Negate, Square Root, Absolute, Decode, Encode, Bitwise NOT
2 ->, <-, >>, <<, ~>, >< Rotate Right/Left, Shift Right/Left, Shift Arithmetic Right, Reverse
3 & Bitwise AND
4 |, ^ Bitwise OR, Bitwise XOR
5 *, **, /, // Multiply-Low, Multiply-High, Divide, Modulus
6 +, - Add, Subtract
7 #>, <# Limit Minimum/Maximum
8 <, >, <>, ==, =<, => Boolean: Less/Greater Than, Not Equal, Equal, Equal or Less/Greater
9 Unary NOT Boolean NOT

10 AND Boolean AND
11 OR Boolean OR

Lowest (12) =, :=, all other assignments Constant/Variable Assignment, assignment forms of Binary Operators

Unary / Binary
Each operator is either unary or binary in nature. Unary operators are those that operate on
only one operand. For example:

!Flag ' bitwise NOT of Flag
^^Total ' square root of Total

Binary operators are those that operate on two operands. For example:

X + Y ' add X and Y
Num << 4 ' shift Num left 4 bits

Note that the term “binary operator” means “two operands,” and has nothing to do with
binary digits. To distinguish operators whose function relates to binary digits, we’ll use the
term “bitwise” instead.

Normal / Assignment
Normal operators, like Add ‘+’ and Shift Left ‘<<’, operate on their operand(s) and provide
the result for use by the rest of the expression, without affecting the operand or operands
themselves. Those that are assignment operators, however, write their result to either the
variable they operated on (unary), or to the variable to their immediate left (binary), in
addition to providing the result for use by the rest of the expression.

Operators – Spin Language Reference

Page 252 · Propeller Manual v1.0

Here are assignment operator examples:

Count++ ' (Unary) evaluate Count + 1
' and write result to Count

Data >>= 3 ' (Binary) shift Data right 3 bits
' and write result to Data

Binary operators have special forms that end in equal ‘=’ to make them assignment operators.
Unary operators do not have a special assignment form; some always assign while others
assign only in special situations. See Table 4-9 below and the operator’s explanation, for
more information.

Constant and/or Variable Expression
Operators which have the integer-constant-expression attribute can be used both at run time
in variable expressions, and at compile time in constant expressions. Operators which have
the float-constant-expression attribute can be used in compile-time constant expressions.
Operators without either of the constant-expression attributes can only be used at run time in
variable expressions. Most operators have a normal, non-assignment form that allows them
to be used in both constant and variable expressions.

Level of Precedence
Each operator has an assigned level of precedence that determines when it will take action in
relation to other operators within the same expression. For example, it is commonly known
that Algebraic rules require multiply and divide operations to be performed before add and
subtract operations. The multiply and divide operators are said to have a “higher level of
precedence” than add and subtract. Additionally, multiply and divide are commutable; both
are on the same precedence level, so their operations result in the same value regardless of the
order it is performed (multiply first, then divide, or vice versa). Commutative operators are
always evaluated left to right except where parentheses override that rule.

The Propeller chip applies the order-of-operations rules as does Algebra: expressions are
evaluated left-to-right, except where parentheses and differing levels of precedence exist.

Following these rules, the Propeller will evaluate:

X = 20 + 8 * 4 – 6 / 2

...to be equal to 49; that is, 8 * 4 = 32, 6 / 2 = 3, and 20 + 32 – 3 = 49. If you wish the
expression to be evaluated differently, use parentheses to enclose the necessary portions of
the expression.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 253

For example:

X = (20 + 8) * 4 – 6 / 2

This will evaluate the expression in parentheses first, the 20 + 8, causing the expression to
now result in 109, instead of 49.

Table 4-10 indicates each operator’s level of precedence from highest (level 0) to lowest
(level 12). Operators with a higher precedence are performed before operators of a lower
precedence; multiply before add, absolute before multiply, etc. The only exception is if
parentheses are included; they override every precedence level.

Intermediate Assignments
The Propeller chip’s expression engine allows for, and processes, assignment operators at
intermediate stages. This is called “intermediate assignments” and it can be used to perform
complex calculations in less code. For example, the following equation relies heavily on X,
and X + 1.

X := X - 3 * (X + 1) / ||(X + 1)

The same statement could be rewritten, taking advantage of the intermediate assignment
property of the increment operator:

X := X++ - 3 * X / ||X

Assuming X started out at -5, both of these statements evaluate to -2, and both store that value
in X when done. The second statement, however, does it by relying on an intermediate
assignment (the X++ part) in order to simplify the rest of the statement. The Increment
operator ‘++’ is evaluated first (highest precedence) and increments X’s -5 to -4. Since this is
a “post increment” (see Increment, pre- or post- ‘+ +’, page 257) it first returns X’s original
value, -5, to the expression and then writes the new value, -4, to X. So, the “X++ - 3…” part
of the expression becomes “-5 – 3…” Then the absolute, multiply, and divide operators are
evaluated, but the value of X has been changed, so they use the new value, -4, for their
operations:

-5 – 3 * -4 / ||-4 → -5 – 3 * -4 / 4 → -5 – 3 * -1 → -5 – -3 = -2

Occasionally, the use of intermediate assignments can compress multiple lines of expressions
into a single expression, resulting in slightly smaller code size and slighter faster execution.

The remaining pages of this section further explain each math and logic operator shown in
Table 4-9 in the same order shown.

Operators – Spin Language Reference

Page 254 · Propeller Manual v1.0

Constant Assignment ‘=’
The Constant Assignment operator is used within CON blocks to declare compile-time
constants. For example,

CON
 _xinfreq = 4096000
 WakeUp = %00110000

This code sets the symbol _xinfreq to 4,096,000 and the symbol WakeUp to %00110000.
Throughout the rest of the program the compiler will use these numbers in place of their
respective symbols. See CON, page 194.

These declarations are constant expressions, so many of the normal operators can be used to
calculate a final constant value at compile time. For example, it may be clearer to rewrite the
above example as follows:

CON
 _xinfreq = 4096000
 Reset = %00100000
 Initialize = %00010000
 WakeUp = Reset & Initialize

Here, WakeUp is still set to %00110000 at compile time, but it is now more obvious to future
readers that the WakeUp symbol contains the binary codes for a Reset and an Initialize
sequence for that particular application.

The above examples create 32-bit signed integer constants; however, it is also possible to
create 32-bit floating-point constants. To do so, the expression must be expressed as a
floating-point value in one of three ways: 1) as an integer value followed by a decimal point
and at least one digit, 2) as an integer with an E followed by an exponent value, or 3) both 1
and 2 For example:

CON
 OneHalf = 0.5
 Ratio = 2.0 / 5.0
 Miles = 10e5

The above code creates three floating-point constants. OneHalf is equal to 0.5, Ratio is equal
to 0.4 and Miles is equal to 1,000,000. Note that if Ratio were defined as 2 / 5 instead of 2.0
/ 5.0, the expression would be treated as an integer constant and the result would be an integer
constant equal to 0. For floating-point constant expressions, every value within the

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 255

expression must be a floating-point value; you cannot mix integer and floating-point values
like Ratio = 2 / 5.0. You can, however, use the FLOAT declaration to convert an integer value
to a floating-point value, such as Ratio = FLOAT(2) / 5.0.

The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

For run-time floating-point operations, the FloatMath and FloatString objects provide math
functions compatible with single-precision numbers.

See FLOAT, page 216; ROUND, page 303; TRUNC, page 314, as well as the FloatMath and
FloatString objects for more information.

Variable Assignment ‘:=’
The Variable Assignment operator is used within methods (PUB and PRI blocks) to assign a
value to a variable. For example,

Temp := 21
Triple := Temp * 3

At run time this code would set the Temp variable equal to 21 and set Triple to 21 * 3, which
is 63.

As with other assignment operators, the Variable Assignment operator can be used within
expressions to assign intermediate results, such as:

Triple := 1 + (Temp := 21) * 3

This example first sets Temp to 21, then multiplies Temp by 3 and adds 1, finally assigning the
result, 64, to Triple.

Add ‘+’, ‘+=’
The Add operator adds two values together. Add can be used in both variable and constant
expressions. Example:

X := Y + 5

Add has an assignment form, +=, that uses the variable to its left as both the first operand and
the result destination.

For example,

Operators – Spin Language Reference

Page 256 · Propeller Manual v1.0

X += 10 'Short form of X := X + 10

Here, the value of X is added to 10 and the result is stored back in X. The assignment form of
Add may also be used within expressions for intermediate results; see Intermediate
Assignments, page 253.

Positive ‘+’ (unary form of Add)
Positive is the unary form of Add and can be used similar to Negate except that it is never an
assignment operator. Positive is essentially ignored by the compiler, but is handy when the
sign of operands is important to emphasize. For example:

Val := +2 - A

Subtract ‘-’, ‘-=’
The Subtract operator subtracts two values. Subtract can be used in both variable and
constant expressions. Example:

X := Y - 5

Subtract has an assignment form, -=, that uses the variable to its left as both the first operand
and the result destination. For example,

X -= 10 'Short form of X := X - 10

Here, 10 is subtracted from the value of X and the result is stored back in X. The assignment
form of subtract may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Negate ‘-’ (unary form of Subtract)
Negate is the unary form of Subtract. Negate toggles the sign of the value on its right; a
positive value becomes negative and a negative value becomes positive. For example:

Val := -2 + A

Negate becomes an assignment operator when it is the sole operator to the left of a variable
on a line by itself. For example:

-A

This would negate the value of A and store the result back to A.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 257

Decrement, pre- or post- ‘- -’
The Decrement operator is a special, immediate operator that decrements a variable by one
and assigns the new value to that same variable. It can only be used in run-time variable
expressions. Decrement has two forms, pre-decrement and post-decrement, depending on
which side of the variable it appears on. The pre-decrement form appears to the left of a
variable and the post-decrement form appears to the right of a variable. This is extremely
useful in programming since there are many situations that call for the decrementing of a
variable right before or right after the use of that variable’s value. For example:

Y := --X + 2

The above shows the pre-decrement form; it means “decrement before providing the value for
the next operation”. It decrements the value of X by one, writes that result to X and provides
that result to the rest of the expression. If X started out as 5 in this example, --X would store 4
in X, then the expression, 4 + 2 is evaluated, finally writing the result, 6, into Y. After this
statement, X equals 4 and Y equals 6.

Y := X-- + 2

The above shows the post-decrement form; it means “decrement after providing the value for
the next operation”. It provides the current value of X for the next operation in the
expression, then decrements the value of X by one and writes that result to X. If X began as 5
in this example, X-- would provide the current value for the expression (5 + 2) to be
evaluated later, then would store 4 in X. The expression 5 + 2 is then evaluated and the result,
7, is stored into Y. After this statement, X equals 4 and Y equals 7.

Since Decrement is always an assignment operator, the rules of Intermediate Assignments
(see page 253) apply here. Assume X started out as 5 for the following examples.

Y := --X + X

Here, X would first be set to 4, then 4 + 4 is evaluated and Y is set to 8.

Y := X-- + X

Here, X’s current value, 5, is saved for the next operation (the Add) and X itself is
decremented to 4, then 5 + 4 is evaluated and Y is set to 9.

Increment, pre- or post- ‘+ +’
The Increment operator is a special, immediate operator that increments a variable by one and
assigns the new value to that same variable. It can only be used in run-time variable

Operators – Spin Language Reference

Page 258 · Propeller Manual v1.0

expressions. Increment has two forms, pre-increment and post-increment, depending on
which side of the variable it appears on. The pre-increment form appears to the left of a
variable and the post-increment form appears to the right of a variable. This is extremely
useful in programming since there are many situations that call for the incrementing of a
variable right before or right after the use of that variable’s value. For example:

Y := ++X - 4

The above shows the pre-increment form; it means “increment before providing the value for
the next operation”. It increments the value of X by one, writes that result to X and provides
that result to the rest of the expression. If X started out as 5 in this example, ++X would store
6 in X, then the expression, 6 - 4 is evaluated, finally writing the result, 2, into Y. After this
statement, X equals 6 and Y equals 2.

Y := X++ - 4

The above shows the post-increment form; it means “increment after providing the value for
the next operation”. It provides the current value of X for the next operation in the
expression, then increments the value of X by one and writes that result to X. If X started out
as 5 in this example, X++ would provide the current value for the expression (5 - 4) to be
evaluated later, then would store 6 in X. The expression 5 - 4 is then evaluated and the result,
1, is stored into Y. After this statement, X equals 6 and Y equals 1.

Since Increment is always an assignment operator, the rules of Intermediate Assignments (see
page 253) apply here. Assume X started out as 5 for the following examples.

Y := ++X + X

Here, X would first be set to 6, then 6 + 6 is evaluated and Y is set to 12.

Y := X++ + X

Here, X’s current value, 5, is saved for the next operation (the Add) and X itself is incremented
to 6, then 5 + 6 is evaluated and Y is set to 11.

Multiply, Return Low ‘*’, ‘*=’
This operator is also called Multiply-Low, or simply Multiply. It can be used in both variable
and constant expressions. When used with variable expressions or integer constant
expressions, Multiply Low multiplies two values together and returns the lower 32 bits of the
64-bit result. When used with floating-point constant expressions, Multiply Low multiplies
two values together and returns the 32-bit single-precision floating-point result. Example:

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 259

X := Y * 8

Multiply-Low has an assignment form, *=, that uses the variable to its left as both the first
operand and the result destination. For example,

X *= 20 'Short form of X := X * 20

Here, the value of X is multiplied by 20 and the lowest 32 bits of the result is stored back in X.
The assignment form of Multiply-Low may also be used within expressions for intermediate
results; see Intermediate Assignments, page 253.

Multiply, Return High‘**’, ‘**=’
This operator is also called Multiply-High. It can be used in both variable and integer
constant expressions, but not in floating-point constant expressions. Multiply High multiplies
two values together and returns the upper 32 bits of the 64-bit result. Example:

X := Y ** 8

If Y started out as 536,870,912 (229) then Y ** 8 equals 1; the value in the upper 32 bits of the
result.

Multiply-High has an assignment form, **=, that uses the variable to its left as both the first
operand and the result destination. For example,

X **= 20 'Short form of X := X ** 20

Here, the value of X is multiplied by 20 and the upper 32 bits of the result is stored back in X.
The assignment form of Multiply-High may also be used within expressions for intermediate
results; see Intermediate Assignments, page 253.

Divide ‘/’, ‘/=’
Divide can be used in both variable and constant expressions. When used with variable
expressions or integer constant expressions, it divides one value by another and returns the
32-bit integer result. When used with floating-point constant expressions, it divides one
value by another and returns the 32-bit single-precision floating-point result. Example:

X := Y / 4

Divide has an assignment form, /=, that uses the variable to its left as both the first operand
and the result destination. For example,

X /= 20 'Short form of X := X / 20

Operators – Spin Language Reference

Page 260 · Propeller Manual v1.0

Here, the value of X is divided by 20 and the integer result is stored back in X. The
assignment form of Divide may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Modulus ‘//’, ‘//=’
Modulus can be used in both variable and integer constant expressions, but not in floating-
point constant expressions. Modulus divides one value by another and returns the 32-bit
integer remainder. Example:

X := Y // 4

If Y started out as 5 then Y // 4 equals 1, meaning the division of 5 by 4 results in a real
number whose fractional component equals ¼, or .25.

Modulus has an assignment form, //=, that uses the variable to its left as both the first
operand and the result destination. For example,

X //= 20 'Short form of X := X // 20

Here, the value of X is divided by 20 and the 32-bit integer remainder is stored back in X. The
assignment form of Modulus may also be used within expressions for intermediate results;
see Intermediate Assignments, page 253.

Limit Minimum ‘#>’, ‘#>=’
The Limit Minimum operator compares two values and returns the highest value. Limit
Minimum can be used in both variable and constant expressions. Example:

X := Y - 5 #> 100

The above example subtracts 5 from Y and limits the result to a minimum value to 100. If Y is
120 then 120 – 5 = 115; it is greater than 100 so X is set to 115. If Y is 102 then 102 – 5 = 97;
it is less than 100 so X is set to 100 instead.

Limit Minimum has an assignment form, #>=, that uses the variable to its left as both the first
operand and the result destination. For example,

X #>= 50 'Short form of X := X #> 50

Here, the value of X is limited to a minimum value of 50 and the result is stored back in X.
The assignment form of Limit Minimum may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 261

Limit Maximum ‘<#’, ‘<#=’
The Limit Maximum operator compares two values and returns the lowest value. Limit
Maximum can be used in both variable and constant expressions. Example:

X := Y + 21 <# 250

The above example adds 21 to Y and limits the result to a maximum value to 250. If Y is 200
then 200 + 21 = 221; it is less than 250 so X is set to 221. If Y is 240 then 240 + 21 = 261; it is
greater than 250 so X is set to 250 instead.

Limit Maximum has an assignment form, <#=, that uses the variable to its left as both the first
operand and the result destination. For example,

X <#= 50 'Short form of X := X <# 50

Here, the value of X is limited to a maximum value of 50 and the result is stored back in X.
The assignment form of Limit Minimum may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Square Root ‘^^’
The Square Root operator returns the square root of a value. Square Root can be used in both
variable and constant expressions. When used with variable expressions or integer constant
expressions, Square Root returns the 32-bit truncated integer result. When used with
floating-point constant expressions, Square Root returns the 32-bit single-precision floating-
point result. Example:

X := ^^Y

Square Root becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

^^Y

This would store the square root of the value of Y back into Y.

Absolute Value ‘||’
The Absolute Value operator, also called Absolute, returns the absolute value (the positive
form) of a number. Absolute Value can be used in both variable and constant expressions.
When used with variable expressions or integer constant expressions, Absolute Value returns
the 32-bit integer result. When used with floating-point constant expressions, Absolute Value
returns the 32-bit single-precision floating-point result. Example:

Operators – Spin Language Reference

Page 262 · Propeller Manual v1.0

X := ||Y

If Y is -15, the absolute value, 15, would be stored into X.

Absolute Value becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

||Y

This would store the absolute value of Y back into Y.

Sign-Extend 7 or Post-Clear ‘~’
This operator is a special, immediate operator that has a dual purpose depending on which
side of the variable it appears on. It can only be used in run-time variable expressions. The
Sign-Extend 7 form of the operator appears to the left of a variable and the Post-Clear form
appears to the right of a variable.

The following is an example of the Sign-Extend 7 operator form:

Y := ~X + 25

The Sign-Extend 7 operator in this example extends the sign of the value, X in this case, from
bit 7 up to bit 31. A 32-bit signed integer is stored in twos-complement form and the most
significant bit (31) indicates the sign of the value (positive or negative). There may be times
where calculations on simple data result in byte-sized values that should be treated as a
signed integer in the range of -128 to +127. When you need to perform further calculations
with those byte-sized values, use the Sign-Extend 7 operator to convert the number into the
proper 32-bit signed integer form. In the above example, assume X represents the value -20,
which in 8-bit twos-complement form is actually the value 236 (%11101100). The ~X portion
of the expression extends the sign bit from bit 7 all the way up to bit 31, converting the
number to the proper 32-bit twos-complement form of -20 (%11111111 11111111 11111111
11101100). Adding that sign-extended value to 25 results in 5, the intended result, whereas it
would have resulted in 261 without the proper sign extension.

The following is an example of the Post-Clear operator form.

Y := X~ + 2

The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing
its current value for the next operation. In this example if X started out as 5, X~ would provide
the current value for the expression (5 + 2) to be evaluated later, then would store 0 in X. The

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 263

expression 5 + 2 is then evaluated and the result, 7, is stored into Y. After this statement, X
equals 0 and Y equals 7.

Since Sign-Extend 7 and Post-Clear are always assignment operators, the rules of
Intermediate Assignments apply to them (see page 253).

Sign-Extend 15 or Post-Set ‘~~’
This operator is a special, immediate operator that has a dual purpose depending on which
side of the variable it appears on. It can only be used in run-time variable expressions. The
Sign-Extend 15 form of the operator appears to the left of a variable and the Post-Set form
appears to the right of a variable.

The following is an example of the Sign-Extend 15 operator form:

Y := ~~X + 50

The Sign-Extend 15 operator in this example extends the sign of the value, X in this case,
from bit 15 up to bit 31. A 32-bit signed integer is stored in twos-complement form and the
most significant bit (31) indicates the sign of the value (positive or negative). There may be
times where calculations on simple data result in word-sized values that should be treated as a
signed integer in the range of -32768 to +32767. When you need to perform further
calculations with those word-sized values, use the Sign-Extend 15 operator to convert the
number into the proper 32-bit signed integer form. In the above example, assume X
represents the value -300, which in 16-bit twos-complement form is actually the value 65,236
(%11111110 11010100). The ~~X portion of the expression extends the sign bit from bit 15
all the way up to bit 31, converting the number to the proper 32-bit twos-complement form of
-300 (%11111111 11111111 11111110 11010100). Adding that sign-extended value to 50
results in -250, the intended result, whereas it would have resulted in 65,286 without the
proper sign extension.

The following is an example of the Post-Set operator form.

Y := X~~ + 2

The Post-Set operator in this example sets the variable to -1 (all bits high) after providing its
current value for the next operation. In this example if X started out as 6, X~~ would provide
the current value for the expression (6 + 2) to be evaluated later, then would store -1 in X.
The expression 6 + 2 is then evaluated and the result, 8, is stored into Y. After this statement,
X equals -1 and Y equals 8.

Since Sign-Extend 15 and Post-Set are always assignment operators, the rules of Intermediate
Assignments apply to them (see page 253).

Operators – Spin Language Reference

Page 264 · Propeller Manual v1.0

Shift Arithmetic Right ‘~>’, ‘~>=’
The Shift Arithmetic Right operator is just like the Shift Right operator except that it
maintains the sign, like a divide by 2, 4, 8, etc on a signed value. Shift Arithmetic Right can
be used in variable and integer constant expressions, but not in floating-point constant
expressions. Example:

X := Y ~> 4

The above example shifts Y right by 4 bits, maintaining the sign. If Y is -3200 (%11111111
11111111 11110011 10000000) then -3200 ~> 4 = -200 (%11111111 11111111 11111111
00111000). If the same operation had been done with the Shift Right operator instead, the
result would have been 268,435,256 (%00001111 11111111 11111111 00111000).

Shift Arithmetic Right has an assignment form, ~>=, that uses the variable to its left as both
the first operand and the result destination. For example,

X ~>= 2 'Short form of X := X ~> 2

Here, the value of X is shifted right 2 bits, maintaining the sign, and the result is stored back
in X. The assignment form of Shift Arithmetic Right may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Random ‘?’
The Random operator is a special, immediate operator that uses a variable’s value as a seed to
create a pseudo random number and assigns that number to the same variable. It can only be
used in run-time variable expressions. Random has two forms, forward and reverse,
depending on which side of the variable it appears on. The forward form appears to the left
of a variable and the reverse form appears to the right of a variable.

Random generates pseudo-random numbers ranging from -2,147,483,648 to +2,147,483,647.
It’s called “pseudo-random” because the numbers appear random, but are really generated by
a logic operation that uses a “seed” value as a tap into a sequence of over 4 billion essentially
random numbers. If the same seed value is used again, the same sequence of numbers is
generated. The Propeller chip’s Random output is reversible; in fact, specifically it is a 32-bit
maximum-length, four-tap LFSR (Linear Feedback Shift Register) with taps in both the LSB
(Least Significant Bit, rightmost bit) and the MSB (Most Significant Bit, leftmost bit)
allowing for bi-directional operation.

Think of the pseudo-random sequence it generates as simply a static list of over 4 billion
numbers. Starting with a particular seed value and moving forward results in a list of a
specific set of numbers. If, however, you took that last number generated and used it as the

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 265

first seed value moving backward, you would end up with a list of the same numbers as
before, but in the reverse order. This is handy in many applications.

Here’s an example:

?X

The above shows the Random forward form; it uses X’s current value to retrieve the next
pseudo-random number in the forward direction and stores that number back in X. Executing
?X again results in yet a different number, again stored back into X.

X?

The above shows the Random reverse form; it uses X’s current value to retrieve the next
pseudo-random number in the reverse direction and stores that number back in X. Executing
X? again results in yet a different number, again stored back into X.

Since Random is always an assignment operator, the rules of Intermediate Assignments apply
to it (see page 253).

Bitwise Decode ‘|<’
The Bitwise Decode operator decodes a value (0 – 31) into a 32-bit long value with a single
bit set high corresponding to the bit position of the original value. Bitwise Decode can be
used in variable and integer constant expressions, but not in floating-point constant
expressions. Example:

Pin := |<PinNum

The above example sets Pin equal to the 32-bit value whose single high-bit corresponds to the
position indicated by PinNum.

If PinNum is 3, Pin is set equal to %00000000 00000000 00000000 00001000.

If PinNum is 31, Pin is set equal to %10000000 00000000 00000000 00000000.

There are many uses for Bitwise Decode, but one of the most useful is to convert from an I/O
pin number to the 32-bit pattern that describes that pin number in relation to the I/O registers.
For example, Bitwise Decode is very handy for the mask parameter of the WAITPEQ and
WAITPNE commands.

Bitwise Decode becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

|<PinNum

Operators – Spin Language Reference

Page 266 · Propeller Manual v1.0

This would store the decoded value of PinNum back into PinNum.

Bitwise Encode ‘>|’
The Bitwise Encode operator encodes a 32-bit long value into the value (0 – 32) that
represents the highest bit set, plus 1. Bitwise Encode can be used in variable and integer
constant expressions, but not in floating-point constant expressions. Example:

PinNum := >|Pin

The above example sets PinNum equal to the number of the highest bit set in Pin, plus 1.

If Pin is %00000000 00000000 00000000 00000000, PinNum is set equal to 0; no bits are set.

If Pin is %00000000 00000000 00000000 10000000, PinNum is set equal to 8; bit 7 is set.

If Pin is %10000000 00000000 00000000 00000000, PinNum is set equal to 32; bit 31 is set.

If Pin is %00000000 00010011 00010010 00100000, PinNum is set equal to 21; bit 20 is the
highest bit set.

Bitwise Shift Left ‘<<’, ‘<<=’
The Bitwise Shift Left operator shifts the bits of the first operand left by the number of bits
indicated in the second operand. The original MSBs (leftmost bits) drop off and the new
LSBs (rightmost bits) are set to zero. Bitwise Shift Left can be used in both variable and
integer constant expressions, but not in floating-point constant expressions. Example:

X := Y << 2

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Shift Left operator would shift that value left by two bits, setting X to:

%00000001 11000011 11111100 11010100

Since the nature of binary is base-2, shifting a value left is like multiplying that value by
powers of two, 2b, where b is the number of bits shifted.

Bitwise Shift Left has an assignment form, <<=, that uses the variable to its left as both the
first operand and the result destination. For example,

X <<= 4 'Short form of X := X << 4

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 267

Here, the value of X is shifted left four bits and is stored back in X. The assignment form of
Bitwise Shift Left may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Bitwise Shift Right ‘>>’, ‘>>=’
The Bitwise Shift Right operator shifts the bits of the first operand right by the number of bits
indicated in the second operand. The original LSBs (rightmost bits) drop off and the new
MSBs (leftmost bits) are set to zero. Bitwise Shift Right can be used in both variable and
integer constant expressions, but not in floating-point constant expressions. Example:

X := Y >> 3

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Shift Right operator would shift that value right by three bits, setting X to:

%00010000 00001110 00011111 11100110

Since the nature of binary is base-2, shifting a value right is like performing an integer divide
of that value by powers of two, 2b, where b is the number of bits shifted.

Bitwise Shift Right has an assignment form, >>=, that uses the variable to its left as both the
first operand and the result destination. For example,

X >>= 2 'Short form of X := X >> 2

Here, the value of X is shifted right two bits and is stored back in X. The assignment form of
Bitwise Shift Right may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Bitwise Rotate Left ‘<-’, ‘<-=’
The Bitwise Rotate Left operator is similar to the Bitwise Shift Left operator, except that the
MSBs (leftmost bits) are rotated back around to the LSBs (rightmost bits). Bitwise Rotate
Left can be used in both variable and integer constant expressions, but not in floating-point
constant expressions. Example:

X := Y <- 4

If Y started out as:

%10000000 01110000 11111111 00110101

Operators – Spin Language Reference

Page 268 · Propeller Manual v1.0

the Bitwise Rotate Left operator would rotate that value left by four bits, moving the original
four MSBs to the four new LSBs, and setting X to:

%00000111 00001111 11110011 01011000

Bitwise Rotate Left has an assignment form, <-=, that uses the variable to its left as both the
first operand and the result destination. For example,

X <-= 1 'Short form of X := X <- 1

Here, the value of X is rotated left one bit and is stored back in X. The assignment form of
Bitwise Rotate Left may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Bitwise Rotate Right ‘->’, ‘->=’
The Bitwise Rotate Right operator is similar to the Bitwise Shift Right operator, except that
the LSBs (rightmost bits) are rotated back around to the MSBs (leftmost bits). Bitwise Rotate
Right can be used in both variable and integer constant expressions, but not in floating-point
constant expressions. Example:

X := Y -> 5

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Rotate Right operator would rotate that value right by five bits, moving the
original five LSBs to the five new MSBs, and setting X to:

%10101100 00000011 10000111 11111001

Bitwise Rotate Right has an assignment form, ->=, that uses the variable to its left as both the
first operand and the result destination. For example,

X ->= 3 'Short form of X := X -> 3

Here, the value of X is rotated right three bits and is stored back in X. The assignment form of
Bitwise Rotate Right may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Bitwise Reverse ‘><’, ‘><=’
The Bitwise Reverse operator returns bits from the first operand in their reverse order, the
total number of which is indicated by the second operand. All other bits to the left of the

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 269

reversed bits are zeros in the result. Bitwise Reverse can be used in both variable and integer
constant expressions, but not in floating-point constant expressions. Example:

X := Y >< 6

If Y started out as:

%10000000 01110000 11111111 00110101

...the Bitwise Reverse operator would return the six LSBs in reverse order with all other bits
zero, setting X to:

%00000000 00000000 00000000 00101011

Bitwise Reverse has an assignment form, ><=, that uses the variable to its left as both the first
operand and the result destination. For example,

X ><= 8 'Short form of X := X >< 8

Here, the eight LSBs of the value of X are reversed, all other bits are set to zero and the result
is stored back in X. The assignment form of Bitwise Reverse may also be used within
expressions for intermediate results; see Intermediate Assignments, page 253.

Bitwise AND ‘&’, ‘&=’
The Bitwise AND operator performs a bitwise AND of the bits of the first operand with the
bits of the second operand. Bitwise AND can be used in both variable and integer constant
expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 4-11: Bitwise AND Truth Table
Bit States Result

0 0 0

0 1 0

1 0 0

1 1 1

Example:

X := %00101100 & %00001111

Operators – Spin Language Reference

Page 270 · Propeller Manual v1.0

The above example ANDs %00101100 with %00001111 and writes the result, %00001100,
to X.

Bitwise AND has an assignment form, &=, that uses the variable to its left as both the first
operand and the result destination. For example,

X &= $F 'Short form of X := X & $F

Here, the value of X is ANDed with $F and the result is stored back in X. The assignment
form of Bitwise AND may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Be careful not to get Bitwise AND ‘&’ confused with Boolean AND ‘AND’. Bitwise AND is
for bit manipulation while Boolean AND is for comparison purposes (see page 272).

Bitwise OR ‘|’, ‘|=’
The Bitwise OR operator performs a bitwise OR of the bits of the first operand with the bits
of the second operand. Bitwise OR can be used in both variable and integer constant
expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 4-12: Bitwise OR Truth Table
Bit States Result

0 0 0

0 1 1

1 0 1

1 1 1

Example:

X := %00101100 | %00001111

The above example ORs %00101100 with %00001111 and writes the result, %00101111, to
X.

Bitwise OR has an assignment form, |=, that uses the variable to its left as both the first
operand and the result destination. For example,

X |= $F 'Short form of X := X | $F

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 271

Here, the value of X is ORed with $F and the result is stored back in X. The assignment form
of Bitwise OR may also be used within expressions for intermediate results; see Intermediate
Assignments, page 253.

Be careful not to get Bitwise OR ‘|’confused with Boolean OR ‘OR’. Bitwise OR is for bit
manipulation while Boolean OR is for comparison purposes (see page 273).

Bitwise XOR ‘^’, ‘^=’
The Bitwise XOR operator performs a bitwise XOR of the bits of the first operand with the
bits of the second operand. Bitwise XOR can be used in both variable and integer constant
expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 4-13: Bitwise XOR Truth Table
Bit States Result

0 0 0

0 1 1

1 0 1

1 1 0

Example:

X := %00101100 | %00001111

The above example XORs %00101100 with %00001111 and writes the result, %00100011,
to X.

Bitwise XOR has an assignment form, ^=, that uses the variable to its left as both the first
operand and the result destination. For example,

X ^= $F 'Short form of X := X ^ $F

Here, the value of X is XORed with $F and the result is stored back in X. The assignment
form of Bitwise XOR may also be used within expressions for intermediate results; see
Intermediate Assignments, page 253.

Operators – Spin Language Reference

Page 272 · Propeller Manual v1.0

Bitwise NOT ‘!’
The Bitwise NOT ‘!’ operator performs a bitwise NOT (inverse, or one’s-complement) of the
bits of the operand that follows it. Bitwise NOT can be used in both variable and integer
constant expressions, but not in floating-point constant expressions.

Each bit of the two operands is subject to the following logic:

Table 4-14: Bitwise NOT Truth Table
Bit State Result

0 1

1 0

Example:

X := !%00101100

The above example NOTs %00101100 and writes the result, %11010011, to X.

Bitwise NOT becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

!Flag

This would store the inverted value Flag back into Flag.

Be careful not to get Bitwise NOT ‘!’confused with Boolean NOT ‘NOT’. Bitwise NOT is for
bit manipulation while Boolean NOT is for comparison purposes (see page 274).

Boolean AND ‘AND’, ‘AND=’
The Boolean AND ‘AND’ operator compares two operands and returns TRUE (-1) if both values
are TRUE (non-zero), or returns FALSE (0) if one or both operands are FALSE (0). Boolean AND
can be used in both variable and constant expressions. Example:

X := Y AND Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if both Y and Z are non-zero, or FALSE (0) if either Y or Z are zero. During the comparison, it
promotes each of the two values to -1 if they are non-zero, making any value, other than 0, a -
1, so that the comparison becomes: “If Y is true and Z is true…”

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 273

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF (Y == 20) AND (Z == 100)

This example evaluates the result of Y == 20 against that of Z == 100, and if both are true, the
Boolean AND operator returns TRUE (-1).

Boolean AND has an assignment form, AND=, that uses the variable to its left as both the first
operand and the result destination. For example,

X AND= True 'Short form of X := X AND True

Here, the value of X is promoted to TRUE if it is non-zero, then is compared with TRUE and the
Boolean result (TRUE / FALSE, -1 / 0) is stored back in X. The assignment form of Boolean
AND may also be used within expressions for intermediate results; see Intermediate
Assignments, page 253.

Be careful not to get Boolean AND ‘AND’ confused with Bitwise AND ‘&’. Boolean AND is
for comparison purposes while Bitwise AND is for bit manipulation (see page 269).

Boolean OR ‘OR’, ‘OR=’
The Boolean OR ‘OR’ operator compares two operands and returns TRUE (-1) if either value is
TRUE (non-zero), or returns FALSE (0) if both operands are FALSE (0). Boolean OR can be used
in both variable and constant expressions. Example:

X := Y OR Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if either Y or Z are non-zero, or FALSE (0) if both Y and Z are zero. During the comparison, it
promotes each of the two values to -1 if they are non-zero, making any value, other than 0, a -
1, so that the comparison becomes: “If Y is true or Z is true…”

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF (Y == 1) OR (Z > 50)

This example evaluates the result of Y == 1 against that of Z > 50, and if either are true, the
Boolean OR operator returns TRUE (-1).

Boolean OR has an assignment form, OR=, that uses the variable to its left as both the first
operand and the result destination. For example,

Operators – Spin Language Reference

Page 274 · Propeller Manual v1.0

X OR= Y 'Short form of X := X OR Y

Here, the value of X is promoted to TRUE if it is non-zero, then is compared with Y (also
promoted to TRUE if non-zero) and the Boolean result (TRUE / FALSE, -1 / 0) is stored back in X.
The assignment form of Boolean OR may also be used within expressions for intermediate
results; see Intermediate Assignments, page 253.

Be careful not to get Boolean OR ‘OR’ confused with Bitwise OR‘|’. Boolean OR is for
comparison purposes while Bitwise OR is for bit manipulation (see page 270).

Boolean NOT ‘NOT’
The Boolean NOT ‘NOT’ operator returns TRUE (-1) if the operand is FALSE (0), or returns
FALSE (0) if the operand is TRUE (non-zero). Boolean NOT can be used in both variable and
constant expressions. Example:

X := NOT Y

The above example returns the Boolean opposite of Y; TRUE (-1) if Y is zero, or FALSE (0) if Y
is non-zero. During the comparison, it promotes the value of Y to -1 if it is non-zero, making
any value, other than 0, a -1, so that the comparison becomes: “If NOT true” or “If NOT
false”

Quite often this operator is used in combination with other comparison operators, such as in
the following example.

IF NOT ((Y > 9) AND (Y < 21))

This example evaluates the result of (Y > 9 AND Y < 21), and returns the Boolean opposite of
the result; TRUE (-1) if Y is in the range 10 to 20, in this case.

Boolean NOT becomes an assignment operator when it is the sole operator to the left of a
variable on a line by itself. For example:

NOT Flag

This would store the Boolean opposite of Flag back into Flag.

Be careful not to get Boolean NOT ‘NOT’ confused with Bitwise NOT‘!’. Boolean NOT is
for comparison purposes while Bitwise NOT is for bit manipulation (see page 272).

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 275

Boolean Is Equal ‘==’, ‘===’
The Boolean operator Is Equal compares two operands and returns TRUE (-1) if both values
are the same, or returns FALSE (0), otherwise. Is Equal can be used in both variable and
constant expressions. Example:

X := Y == Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is the same value as Z, or FALSE (0) if Y is not the same value as Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y == 1)

Here, the Is Equal operator returns TRUE if Y equals 1.

Is Equal has an assignment form, ===, that uses the variable to its left as both the first operand
and the result destination. For example,

X === Y 'Short form of X := X == Y

Here, X is compared with Y, and if they are equal, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Equal may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Boolean Is Not Equal ‘<>’, ‘<>=’
The Boolean operator Is Not Equal compares two operands and returns True (-1) if the values
are not the same, or returns FALSE (0), otherwise. Is Not Equal can be used in both variable
and constant expressions. Example:

X := Y <> Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is not the same value as Z, or FALSE (0) if Y is the same value as Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y <> 25)

Here, the Is Not Equal operator returns TRUE if Y is not 25.

Is Not Equal has an assignment form, <>=, that uses the variable to its left as both the first
operand and the result destination. For example,

Operators – Spin Language Reference

Page 276 · Propeller Manual v1.0

X <>= Y 'Short form of X := X <> Y

Here, X is compared with Y, and if they are not equal, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Not Equal may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Boolean Is Less Than ‘<’, ‘<=’
The Boolean operator Is Less Than compares two operands and returns TRUE (-1) if the first
value is less than the second value, or returns FALSE (0), otherwise. Is Less Than can be used
in both variable and constant expressions. Example:

X := Y < Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is less than the value of Z, or FALSE (0) if Y is equal to or greater than the value of Z.

 This operator is often used in conditional expressions, such as in the following example.

IF (Y < 32)

Here, the Is Less Than operator returns TRUE if Y is less than 32.

Is Less Than has an assignment form, <=, that uses the variable to its left as both the first
operand and the result destination. For example,

X <= Y 'Short form of X := X < Y

Here, X is compared with Y, and if X is less than Y, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Less Than may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Boolean Is Greater Than ‘>’, ‘>=’
The Boolean operator Is Greater Than compares two operands and returns TRUE (-1) if the
first value is greater than the second value, or returns FALSE (0), otherwise. Is Greater Than
can be used in both variable and constant expressions. Example:

X := Y > Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is greater than the value of Z, or FALSE (0) if Y is equal to or less than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 277

IF (Y > 50)

Here, the Is Greater Than operator returns TRUE if Y is greater than 50.

Is Greater Than has an assignment form, >=, that uses the variable to its left as both the first
operand and the result destination. For example,

X >= Y 'Short form of X := X > Y

Here, X is compared with Y, and if X is greater than Y, X is set to TRUE (-1), otherwise X is set to
FALSE (0). The assignment form of Is Greater Than may also be used within expressions for
intermediate results; see Intermediate Assignments, page 253.

Boolean Is Equal or Less ‘=<’, ‘=<=’
The Boolean operator Is Equal or Less compares two operands and returns TRUE (-1) if the
first value is equal to or less than the second value, or returns FALSE (0), otherwise. Is Equal
or Less can be used in both variable and constant expressions. Example:

X := Y =< Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is equal to or less than the value of Z, or FALSE (0) if Y is greater than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y =< 75)

Here, the Is Equal or Less operator returns TRUE if Y is equal to or less than 75.

Is Equal or Less has an assignment form, =<=, that uses the variable to its left as both the first
operand and the result destination. For example,

X =<= Y 'Short form of X := X =< Y

Here, X is compared with Y, and if X is equal to or less than Y, X is set to TRUE (-1), otherwise X
is set to FALSE (0). The assignment form of Is Equal or Less may also be used within
expressions for intermediate results; see Intermediate Assignments, page 253.

Boolean Is Equal or Greater ‘=>’, ‘=>=’
The Boolean operator Is Equal or Greater compares two operands and returns TRUE (-1) if the
first value is equal to greater than the second value, or returns FALSE (0), otherwise. Is Equal
or Greater can be used in both variable and constant expressions. Example:

Operators – Spin Language Reference

Page 278 · Propeller Manual v1.0

X := Y => Z

The above example compares the value of Y with the value of Z and sets X to either: TRUE (-1)
if Y is equal to or greater than the value of Z, or FALSE (0) if Y is less than the value of Z.

This operator is often used in conditional expressions, such as in the following example.

IF (Y => 100)

Here, the Is Equal or Greater operator returns TRUE if Y is equal to or greater than 100.

Is Equal or Greater has an assignment form, =>=, that uses the variable to its left as both the
first operand and the result destination. For example,

X =>= Y 'Short form of X := X => Y

Here, X is compared with Y, and if X is equal to or greater than Y, X is set to TRUE (-1),
otherwise X is set to FALSE (0). The assignment form of Is Equal or Greater may also be used
within expressions for intermediate results; see Intermediate Assignments, page 253.

Symbol Address ‘@’
The Symbol Address operator returns the address of the symbol following it. Symbol
Address can be used in variable and integer constant expressions, but not in floating-point
constant expressions. Example:

BYTE[@Str] := "A"

In the above example, the Symbol Address operator returns the address of the Str symbol,
which is then used by the BYTE memory array reference to store the character "A" at that
address.

Symbol Address is often used to pass the address of strings and data structures, defined in a
DAT block, to methods that operate on them.

It is important to note that this is a special operator that behaves differently in variable
expressions than it does in constant expressions. At run time, like our example above shows,
it returns the absolute address of the symbol following it. This run-time, absolute address
consists of the object’s program base address plus the symbol’s offset address.

In constant expressions, it only returns the symbol’s offset within the object. It can not return
the absolute address, effective at run time, because that address changes depending on the
object’s actual address at run time. To properly use the Symbol Address in a constant, such
as a table of data, see the Object Address Plus Symbol operator, below.

4: Spin Language Reference – Operators

Propeller Manual v1.0 · Page 279

Object Address Plus Symbol ‘@@’
The Object Address Plus Symbol operator returns the value of the symbol following it plus
the current object’s program base address. Object Address Plus Symbol can only be used in
variable expressions.

This operator is useful when creating a table of offset addresses, then at run time, using those
offsets to reference the absolute run-time addresses they represent. For example, a DAT block
may contain a number of strings to which you want both direct and indirect access. Here’s an
example DAT block containing strings.

DAT
 Str1 byte "Hello.", 0
 Str2 byte "This is an example", 0
 Str3 byte "of strings in a DAT block.",0

At run time we can access those strings directly, using @Str1, @Str2, and @Str3, but accessing
them indirectly is troublesome because each string is of a different length; making it difficult
to use any of them as a base for indirect address calculations.

The solution might seem to be within reach by simply making another table of the addresses
themselves, as in:

DAT
 StrAddr word @Str1, @Str2, @Str3

This creates a table of words, starting at StrAddr, where each word contains the address of a
unique string. Unfortunately, for compile-time constants (like those of the StrAddr table), the
address returned by @ is only the compile-time offset address, rather than the run-time
absolute address, of the symbol. To get the true, run-time address, we need to add the
object’s program base address to the symbol’s offset address. That is what the Object
Address Plus Symbol operator does. Example:

REPEAT Idx FROM 0 TO 2
 PrintStr(@@StrAddr[Idx])

The above example increments Idx from 0 through 2. The StrAddr[Idx] statement retrieves
the compile-time offset of the string stored in element Idx of the StrAddr table. The @@
operator in front of the StrAddr[Idx] statement adds the object’s base address to the
compile-time offset value that was retrieved, resulting in a valid run-time address of the
string. The PrintStr method, whose code is not shown in this example, can use that address
to process each character of the string.

OUTA, OUTB – Spin Language Reference

Page 280 · Propeller Manual v1.0

OUTA, OUTB
Output registers for 32-bit Ports A and B.

((PUB ┆ PRI))
 OUTA 〈[Pin(s)]〉
((PUB ┆ PRI))
 OUTB 〈[Pin(s)]〉 (Reserved for future use)
Returns: Current value of output Pin(s) for Port A or B, if used as a source variable.

• Pin(s) is an optional expression, or a range-expression, that specifies the I/O pin, or
pins, to access in Port A (0-31) or Port B (32-63). If given as a single expression,
only the pin specified is accessed. If given as a range-expression (two expressions in
a range format; x..y) the contiguous pins from the start to end expressions are
accessed.

Explanation
OUTA and OUTB are two of six registers (DIRA, DIRB, INA, INB, OUTA and OUTB) that directly affect
the I/O pins. The OUTA register holds the output states for each of the 32 I/O pins in Port A;
bits 0 through 31 correspond to P0 through P31. The OUTB register holds the output states for
each of the 32 I/O pins in Port B; bits 0 through 31 correspond to P32 through P63.

NOTE: OUTB is reserved for future use; the Propeller P8X32A does not include Port B I/O
pins so only OUTA is discussed below.

OUTA is used to both set and get the current output states of one or more I/O pins in Port A. A
low (0) bit sets the corresponding I/O pin to ground. A high (1) bit sets the corresponding I/O
pin VDD (3.3 volts). The OUTA register defaults zero, all 0 bits, upon cog startup.

Each cog has access to all I/O pins at any given time. Essentially, all I/O pins are directly
connected to each cog so that there is no hub-related mutually-exclusive access involved.
Each cog maintains its own OUTA register that gives it the ability to set any I/O pin’s output
state (low or high). Each cog’s output states is OR’d with that of the other cogs’ output states
and the resulting 32-bit value becomes the output states of Port A pins P0 through P31. The
result is that each I/O pin’s output state is the “wired-OR” of the entire cog collective. See
I/O Pins on page 26 for more information.

4: Spin Language Reference – OUTA, OUTB

Propeller Manual v1.0 · Page 281

Note that each cog’s output states are made up of the OR’d states of its internal I/O hardware
(Output Register, Video Generator, etc.) and that is all AND’d with its Direction Register’s
states.

An I/O pin actually outputs low or high, as specified by the cog’s output states, if, and only if,
that pin’s bit in that same cog’s direction register (DIRA) is high (1). Otherwise, that cog
specifies the pin to be an input and its output state is ignored.

This configuration can easily be described in the following simple rules:

A. A pin outputs low only if all active cogs that set it to output also set it to low.
B. A pin outputs high if any active cog sets it to an output and also sets it high.

If a cog is disabled, its direction register is treated as if were cleared to 0, causing it to exert
no influence on I/O pin directions and states.

Note because of the “wired-OR” nature of the I/O pins, no electrical contention between cogs
is possible, yet they can all still access I/O pins simultaneously. It is up to the application
developer to ensure that no two cogs cause logical contention on the same I/O pin during run
time.

Using OUTA
Set or clear bits in OUTA to affect the output state of I/O pins as desired. Make sure to also set
the corresponding bits of DIRA to make that pin an output. For example:

 DIRA := %00000100_00110000_00000001_11110000
 OUTA := %01000100_00110000_00000001_10010000

The DIRA line above sets the I/O pins 25, 21, 20, 8, 7, 6, 5 and 4 to outputs and the rest to
inputs. The OUTA line sets I/O pins 30, 25, 21, 20, 8, 7, and 4 to high, the rest to low. The
result is that I/O pins 25, 21, 20, 8, 7, and 4 output high and I/O pins 6 and 5 output low. I/O
pin 30 is set to an input direction (according to DIRA) so the high in bit 30 of OUTA is ignored
and the pin remains an input according to this cog.

Using the optional Pin(s) field, and the post-clear (~) and post-set (~~) unary operators, the
cog can affect one I/O pin (one bit) at a time. The Pin(s) field treats the I/O pin registers as
an array of 32 bits. For example:

 DIRA[10]~~ 'Set P10 to output
 OUTA[10]~ 'Make P10 low
 OUTA[10]~~ 'Make P10 high

OUTA, OUTB – Spin Language Reference

Page 282 · Propeller Manual v1.0

The first line in the code above sets I/O pin 10 to output. The second line clears P10’s output
latch bit, making P10 output low (ground). The third line sets P10’s output latch bit, making
P10 output high (VDD).

In Spin, the OUTA register supports a special form of expression, called a range-expression,
which allows you to affect a group of I/O pins at once, without affecting others outside the
specified range. To affect multiple, contiguous I/O pins at once, use a range expression (like
x..y) in the Pin(s) field.

 DIRA[12..8]~~ 'Set DIRA12:8 (P12-P8 to output)
 OUTA[12..8] := %11001 'Set P12:8 to 1, 1, 0, 0, and 1

The first line, “DIRA…,” sets P12, P11, P10, P9 and P8 to outputs; all other pins remain in
their previous state. The second line, “OUTA…,” sets P12, P11, and P8 to output high, and P10
and P9 to output low.

IMPORTANT: The order of the values in a range-expression affects how it is used. For
example, the following swaps the order of the range from the previous example.

 DIRA[8..12]~~ 'Set DIRA8:12 (P8-P12 to output)
 OUTA[8..12] := %11001 'Set OUTA8:12 to 1, 1, 0, 0, and 1

Here, DIRA bits 8 through 12 are set to high (like before) but OUTA bits 8, 9, 10, 11 and 12 are
set equal to 1, 1, 0, 0, and 1, respectively, making P8, P9 and P12 output high and P10 and
P11 output low.

This is a powerful feature of range-expressions, but if care is not taken it can also cause
strange, unintentional results.

Normally OUTA is only written to but it can also be read from to retrieve the current I/O pin
output latch states. This is ONLY the cog’s output latch states, not necessarily the actual
output states of the Propeller chip’s I/O pins, as they can be further affected by other cogs or
even this cog’s other I/O hardware (Video Generator, Count A, etc.). The following assumes
Temp is a variable created elsewhere:

 Temp := OUTA[15..13] 'Get output latch state of P15 to P13

The above sets Temp equal to OUTA bits 15, 14, and 13; i.e.: the lower 3 bits of Temp are now
equal to OUTA15:13 and the other bits of Temp are cleared to zero.

4: Spin Language Reference – PAR

Propeller Manual v1.0 · Page 283

PAR
Cog Boot Parameter register.

((PUB ┆ PRI))
 PAR
Returns: Address value passed during boot-up with COGINIT or COGNEW.

Explanation
The PAR register contains the address value passed into the Parameter field of a COGINIT or
COGNEW command; see COGINIT, page 187 and COGNEW, page 189. The PAR register’s contents
are used by Propeller Assembly code to locate and operate on memory shared between Spin
code and assembly code.

Since the PAR register is intended to contain an address upon cog boot-up, the value stored
into it via COGINIT and COGNEW is limited to 14-bits; a 16-bit word with lower two bits cleared
to zero.

Using PAR
PAR is affected by Spin code and is used by assembly code as a memory pointer mechanism to
point to shared main memory between the two. Either the COGINIT or COGNEW command, when
launching Propeller Assembly into a cog, affects the PAR register. For example:

VAR
 long Shared 'Shared variable (Spin & Assy)

PUB Main | Temp
 cognew(@Process, @Shared) 'Launch assy, pass Shared addr
 repeat
 <do something with Shared vars>

DAT
 org 0
Process mov Mem, PAR 'Retrieve shared memory addr
:loop <do something>
 wrlong ValReg, Mem 'Move ValReg value to Shared
 jmp :loop
 jmp :loop

PAR – Spin Language Reference

Page 284 · Propeller Manual v1.0

Mem res 1
ValReg res 1

In the example above, the Main method launches the Process assembly routine into a new cog
with COGNEW. The second parameter of COGNEW is used by Main to pass the address of a
variable, Shared. The assembly routine, Process, retrieves that address value from its PAR
register and stores it locally in Mem. Then it performs some task, updating its local ValReg
register (created at the end of the DAT block) and finally updates the Shared variable via
wrlong ValReg, Mem.

4: Spin Language Reference – PHSA, PHSB

Propeller Manual v1.0 · Page 285

PHSA, PHSB
Counter A and Counter B Phase-Locked Loop (PLL) Registers.

((PUB ┆ PRI))
 PHSA
((PUB ┆ PRI))
 PHSB
Returns: Current value of Counter A or Counter B Phase Lock Loop Register, if used as a
source variable.

Explanation
PHSA and PHSB are two of six registers (CTRA, CTRB, FRQA, FRQB, PHSA, and PHSB) that affect the
behavior of a cog’s Counter Modules. Each cog has two identical counter modules (A and B)
that can perform many repetitive tasks. The PHSA and PHSB registers contain values that can
be directly read or written by the cog, but may also be accumulating with the value of FRQA
and FRQB, respectively, on potentially every System Clock cycle. See CTRA on page 204 for
more information.

Using PHSA and PHSB
PHSA and PHSB can be read/written like other registers or pre-defined variables. For example:

 PHSA := $1FFFFFFF

The above code sets PHSA to $1FFFFFFF. Depending on the CTRMODE field of the CTRA
register, this value may remain the same, or may automatically increment by the value in FRQA
at a frequency determined by the System Clock and the primary and/or secondary I/O pins.
See CTRA, CTRB on page 204 for more information.

Keep in mind that writing to PHSA or PHSB directly overrides both the current accumulated
value and any potential accumulation scheduled for the same moment the write is performed.

PRI – Spin Language Reference

Page 286 · Propeller Manual v1.0

PRI
Declare a Private Method Block.

((PUB ┆ PRI))
 PRI Name 〈(Param 〈, Param〉…)〉 〈:RValue〉 〈| LocalVar 〈[Count]〉〉 〈,LocalVar 〈[Count]〉〉…
 SourceCodeStatements

• Name is the desired name for the private method.
• Param is a parameter name (optional). Methods can contain zero or more comma-

delimited parameters, enclosed in parentheses. Param must be globally unique, but
other methods may also use the same symbol name. Each parameter is essentially a
long variable and can be treated as such.

• RValue is a name for the return value of the method (optional). This becomes an alias
to the method’s built-in RESULT variable. RValue must be globally unique, but other
methods may also use the same symbol name. The RValue (and/or RESULT variable)
is initialized to zero (0) upon each call to the method.

• LocalVar is a name for a local variable (optional). LocalVar must be globally unique,
but other methods may also use the same symbol name. All local variables are of
size long (four bytes) and are left uninitialized upon each call to the method.
Methods can contain zero or more comma-delimited local variables.

• Count is an optional expression, enclosed in brackets, that indicates this is a local
array variable, with Count number of elements; each being a long in size. When later
referencing these elements, they begin with element 0 and end with element Count-1.

• SourceCodeStatements is one or more lines of executable source code, indented by at
least one space, that perform the function of the method.

Explanation
PRI is the Private Method Block declaration. A Private Method is a section of source code
that performs a specific function then returns a result value. This is one of six special
declarations (CON, VAR, OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin
language.

Every object can contain a number of private (PRI) and public (PUB) methods. Private
methods can only be accessed from inside of the object and serve to perform vital, protected
functions, for the object. Private methods are like Public methods in every way except that
they are declared with PRI, instead of PUB, and are not accessible from outside the object.
Please see PUB, Page 287, for more information.

4: Spin Language Reference – PUB

Propeller Manual v1.0 · Page 287

PUB
Declare a Public Method Block.

((PUB ┆ PRI))
 PUB Name 〈(Param 〈,Param〉…)〉 〈:RValue〉 〈| LocalVar 〈[Count]〉〉 〈,LocalVar 〈[Count]〉〉…
 SourceCodeStatements

• Name is the desired name for the public method.
• Param is a parameter name (optional). Methods can contain zero or more comma-

delimited parameters, enclosed in parentheses. Param must be globally unique, but
other methods may also use the same symbol name. Each parameter is essentially a
long variable and can be treated as such.

• RValue is a name for the return value of the method (optional). This becomes an alias
to the method’s built-in RESULT variable. RValue must be globally unique, but other
methods may also use the same symbol name. The RValue (and/or RESULT variable)
is initialized to zero (0) upon each call to the method.

• LocalVar is a name for a local variable (optional). LocalVar must be globally unique,
but other methods may also use the same symbol name. All local variables are of
size long (four bytes) and are left uninitialized upon each call to the method.
Methods can contain zero or more comma-delimited local variables.

• Count is an optional expression, enclosed in brackets, that indicates this is a local
array variable, with Count number of elements; each being a long in size. When later
referencing these elements, they begin with element 0 and end with element Count-1.

• SourceCodeStatements is one or more lines of executable source code, indented by at
least one space, that perform the function of the method.

Explanation
PUB is the Public Method Block declaration. A Public Method is a section of source code that
performs a specific function then returns a result value. This is one of six special declarations
(CON, VAR, OBJ, PUB, PRI, and DAT) that provide inherent structure to the Spin language.

Every object can contain a number of public (PUB) and private (PRI) methods. Public methods
can be accessed outside of the object itself and serve to make up the interface to the object.

The PUB and PRI declarations don’t return a value themselves, but the public and private
methods they represent always return a value when called from elsewhere in the code.

PUB – Spin Language Reference

Page 288 · Propeller Manual v1.0

Public Method Declaration
Public Method declarations begin with PUB, in column 1 of a line, followed a unique name
and an optional set of parameters, a result variable, and local variables.

Example:

PUB Init
 <initialization code>

PUB MotorPos : Position
 Position := <code to retrieve motor position>

PUB MoveMotor(Position, Speed) : Success | PosIndex
 <code that moves motor to Position at Speed and returns True/False>

This example contains three public methods, Init, MotorPos and MoveMotor. The Init
method has no parameters and declares no return value or local variables. The MotorPos
method has no parameters but declares a return value called Position. The MoveMotor
method has two parameters, Position and Speed, a return value, Success, and a local variable,
PosIndex.

All executable statements that belong to a PUB method appear underneath its declaration,
indented by at least one space.

The Return Value
Whether or not a PUB declaration specifies a RValue , there is always an implied return value
that defaults to zero (0). There is a pre-defined name for this return value within every PUB
method, called RESULT. At any time within a method, RESULT can be updated like any other
variable and, upon exiting the method, the current value of RESULT will be passed back to the
caller. In addition, if a RESULT is declared for the method, that name can be used
interchangeably with the built-in RESULT variable. For instance, the MotorPos method above
sets “Position := …” and could also have used “Result := …” for the same effect. Despite
this, it is considered good practice to give a descriptive name to the return value (in the PUB
declaration) for any method whose return value is significant. Likewise, it is good practice to
leave the return value unnamed (in the PUB declaration) for any method whose return value is
unimportant and unused.

4: Spin Language Reference – PUB

Propeller Manual v1.0 · Page 289

Parameters and Local Variables
Parameters and local variables are all longs (four bytes). In fact, parameters are really just
variables that are initialized to the corresponding values specified by the caller of the method.
Local variables, however, are not initialized; they contain random data whenever the method
is called.

All parameters are passed into a method by value, not by reference, so any changes to the
parameters themselves are not reflected outside of the method. For example, if we called
MoveMotor using a variable called Pos for the first parameter, it may look something like this:

Pos := 250
MoveMotor(Pos, 100)

When the MoveMotor method is executed, it receives the value of Pos in its Position
parameter, and the value 100 in its Speed parameter. Inside the MoveMotor method, it can
change Position and Speed at any time, but the value of Pos (the caller’s variable) remains at
250.

If a variable must be altered by a routine, the caller must pass the variable by reference;
meaning it must pass the address of the variable instead of the value of the variable, and the
routine must treat that parameter as the address of a memory location in which to operate on.
The address of a variable, or other register-based symbol, can be retrieved by using the
Symbol Address operator, ‘@’. For example,

Pos := 250
MoveMotor(@Pos, 100)

The caller passed the address of Pos for the first parameter to MoveMotor. What MoveMotor
receives in its Position parameter is the address of the caller’s Pos variable. The address is
just a number, like any other, so the MoveMotor method must be designed to treat it as an
address, rather than a value. The MoveMotor method then must use something like:

PosIndex := LONG[Position]

...to retrieve the value of the caller’s Pos variable, and something like:

LONG[Position] := <some expression>

...to modify the caller’s Pos variable, if necessary.

Passing a value by reference with the Symbol Address operator is commonly used when
providing a string variable to a method. Since string variables are really just byte arrays,

PUB – Spin Language Reference

Page 290 · Propeller Manual v1.0

there is no way to pass them to a method by value; doing so would result in the method
receiving only the first character. Even if a method does not need to modify a string, or other
logical array, the array in question still needs to be passed by reference because there are
multiple elements to be accessed.

Exiting a Method
A method is exited either when execution reaches the last statement within the method or
when it reaches a RETURN or ABORT command. A method may have only one exit point (the
last executable statement), or may have many exit points (any number of RETURN or ABORT
commands in addition to the last executable statement). The RETURN and ABORT commands
can also be used to set the RESULT variable upon exit; see RETURN, page 301, and ABORT, page
161.

4: Spin Language Reference – QUIT

Propeller Manual v1.0 · Page 291

QUIT
Exit from REPEAT loop immediately.

((PUB ┆ PRI))
 QUIT

Explanation
QUIT is one of two commands (NEXT and QUIT) that affect REPEAT loops. QUIT causes a REPEAT
loop to terminate immediately.

Using QUIT
QUIT is typically used as an exception case, in a conditional statement, in REPEAT loops to
terminate the loop prematurely. For example, assume that DoMore and SystemOkay are
methods created elsewhere that each return Boolean values:

 repeat while DoMore 'Repeat while more to do
 !outa[0] 'Toggle status light
 <do something> 'Perform some task
 if !SystemOkay
 quit 'If system failure, exit
 <more code here> 'Perform other tasks

The above code toggles a status light on P0 and performs other tasks while the DoMore method
returns TRUE. However, if the SystemOkay method returns FALSE part-way through the loop,
the IF statement executes the QUIT command which causes the loop to terminate immediately.

The QUIT command can only be used within a REPEAT loop; an error will occur otherwise.

REBOOT – Spin Language Reference

Page 292 · Propeller Manual v1.0

REBOOT
Reset the Propeller chip.

((PUB ┆ PRI))
 REBOOT

Explanation
This is a software controlled reset, but acts like just like a hardware reset via the RESn pin.

Use REBOOT if you want to reset the Propeller chip to its power-up state. All the same
hardware-based, power-up/reset delays, as well as the boot-up processes, are applied as if the
Propeller had been reset via the RESn pin or a power cycle.

4: Spin Language Reference – REPEAT

Propeller Manual v1.0 · Page 293

REPEAT
Execute code block repetitively.

((PUB ┆ PRI))
 REPEAT 〈Count〉
 Statement(s)
((PUB ┆ PRI))
 REPEAT Variable FROM Start TO Finish 〈STEP Delta〉
 Statement(s)
((PUB ┆ PRI))
 REPEAT ((UNTIL┆ WHILE)) Condition(s)
 Statement(s)
((PUB ┆ PRI))
 REPEAT
 Statement(s)
 ((UNTIL┆ WHILE)) Condition(s)

• Count is an optional expression indicating the finite number of times to execute
Statement(s). If Count is omitted, syntax 1 creates an infinite loop made up of
Statement(s).

• Statement(s) is an optional block of one or more lines of code to execute repeatedly.
Omitting Statement(s) is rare, but may be useful in syntax 3 and 4 if Condition(s)
achieves the needed effects.

• Variable is a variable, usually user-defined, that will be iterated from Start to Finish,
optionally by Delta units per iteration. Variable can be used in Statement(s) to
determine or utilize the iteration count.

• Start is an expression that determines the starting value of Variable in syntax 2. If
Start is less than Finish, Variable will be incremented each iteration; it will be
decremented otherwise.

• Finish is an expression that determines the ending value of Variable in syntax 2. If
Finish is greater than Start, Variable will be incremented each iteration; it will be
decremented otherwise.

• Delta is an optional expression that determines the units in which to
increment/decrement Variable each iteration (syntax 2). If omitted, Variable is
incremented/decremented by 1 each iteration.

REPEAT – Spin Language Reference

Page 294 · Propeller Manual v1.0

• Condition(s) is one or more Boolean expression(s) used by syntax 3 and 4 to continue
or terminate the loop. When preceded by UNTIL, Condition(s) terminates the loop
when true. When preceded by WHILE, Conditions(s) terminates the loop when FALSE.

Explanation
REPEAT is the very flexible looping structure for Spin code. It can be used to create any type
of loop, including: infinite, finite, with/without loop counter, and conditional zero-to-
many/one-to-many loops.

Indention is Critical
IMPORTANT: Indention is critical. The Spin language relies on indention (of one space or
more) on lines following conditional commands to determine if they belong to that command
or not. To have the Propeller Tool indicate these logically grouped blocks of code on-screen,
you can press Ctrl + I to turn on block-group indicators. Pressing Ctrl + I again will disable
that feature. See Indenting and Outdenting, page 69, and Block-Group Indicators, page 74.

Infinite Loops (Syntax 1)
Truthfully, any of the four forms of REPEAT can be made into infinite loops, but the form used
most often for this purpose is syntax 1 without the Count field. For example:

 repeat 'Repeat endlessly
 !outa[25] 'Toggle P25
 waitcnt(2_000 + cnt) 'Pause for 2,000 cycles

This code repeats the !outa[25] and waitcnt(2_000 + cnt) lines endlessly. Both lines are
indented from the REPEAT so they belong to the REPEAT loop.

Since Statement(s) is really an optional part of REPEAT, the REPEAT command by itself can be
used as an endless loop that does nothing but keep the cog active. This can be intentional, but
sometimes is unintentional due to improper indention. For example:

 repeat 'Repeat endlessly
 !outa[25] 'Toggle P25 <-- This is never run

The above example is erroneous; the last line is never executed because the REPEAT above it is
an endless loop that has no Statement(s); there is nothing indented immediately below it, so
the cog simply sits in an endless loop at the REPEAT line that does nothing but keep the cog
active and consuming power.

4: Spin Language Reference – REPEAT

Propeller Manual v1.0 · Page 295

Simple Finite Loops (Syntax 1)
Most loops are finite in nature; they execute a limited number of iterations only. The
simplest form is syntax 1 with the Count field included.

For example:

 repeat 10 'Repeat 10 times
 !outa[25] 'Toggle P25
 byte[$7000]++ 'Increment RAM location $7000

The above code toggles P25 ten times, then increments the value in RAM location $7000.

Counted Finite Loops (Syntax 2)
Quite often it is necessary to count the loop iterations so the loop’s code can perform
differently based on that count. The REPEAT command makes it easy to do this with syntax 2.
The next example assumes the variable Index was created previously.

 repeat Index from 0 to 9 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM locations $7000 to $7009

Like the previous example, the code above loops 10 times, but each time it adjusts the
variable Index. The first time through the loop, Index will be 0 (as indicated by the “from 0”)
and each upon each iteration afterwards Index will be 1 higher than the previous (as indicated
by the “to 9”): ..1, 2, 3…9. After the tenth iteration, Index will be incremented to 10 and the
loop will terminate, causing the next code following the REPEAT loop structure to execute, if
any exists. The code in the loop uses Index as an offset to affect memory,
byte[$7000][Index]++; in this case it is incrementing each of the byte-sized values in RAM
locations $7000 to $7009 by 1, one at a time.

The REPEAT command automatically determines whether the range suggested by Start and
Finish is increasing or decreasing. Since the above example used 0 to 9, the range is an
increasing range; adjusting Index by +1 every time. To get the count to go backwards,
simply reverse the Start and Finish values, as in:

 repeat Index from 9 to 0 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM $7009 down through $7000

This example also loops 10 times, but counts with Index from 9 down to 0; adjusting Index
by -1 each time. The contents of the loop still increments the values in RAM, but from
locations $7009 down to $7000. After the tenth iteration, Index will equal -1.

REPEAT – Spin Language Reference

Page 296 · Propeller Manual v1.0

Since the Start and Finish fields can be expressions, they can contain variables. The next
example assumes that S and F are variables created previously.

 S := 0
 F := 9
 repeat 2 'Repeat twice
 repeat Index from S to F 'Repeat 10 times
 byte[$7000][Index]++ 'Increment RAM locations 7000..$7009
 S := 9
 F := 0

The above example uses a nested loop. The outer loop (the first one) repeats 2 times. The
inner loop repeats with Index from S to F, which were previously set to 0 and 9, respectively.
The inner loop increments the values in RAM locations $7000 to $7009, in that order,
because the inner loop is counting iterations from 0 to 9. Then, the inner loop terminates
(with Index being set to 10) and the last two lines set S to 9 and F to 0, effectively swapping
the Start and Finish values. Since this is still inside the outer loop, the outer loop then
executes its contents again (for the second time) causing the inner loop to repeat with Index
from 9 down to 0. The inner loop increments the values in RAM locations $7009 to $7000,
in that order (reverse of the previous time) and terminates with Index equaling -1. The last
two lines set S and F again, but the outer loop does not repeat a third time.

REPEAT loops don’t have to be limited to incrementing or decrementing by 1 either. If the
REPEAT command uses the optional STEP Delta syntax, it will increment or decrement the
Variable by the Delta amount. In the syntax 2 form, REPEAT is actually always using a Delta
value, but when the “STEP Delta” component is omitted, it uses either +1 or -1 by default,
depending on the range of Start and Finish. The following example includes the optional
Delta value to increment by 2.

 repeat Index from 0 to 8 step 2 'Repeat 5 times
 byte[$7000][Index]++ 'Increment even RAM $7000 to $7008

Here, REPEAT loops five times, with Index set to 0, 2, 4, 6, and 8, respectively. This code
effectively increments every other RAM location (the even numbered locations) from $7000
to $7008 and terminates with Index equaling 10.

The Delta field can be positive or negative, regardless of the natural ascending/descending
range of the Start and Finish values, and can even be adjusted within the loop to achieve
interesting effects. For example, assuming Index and D are previously defined variables, the
following code sets Index to the following sequence: 5, 6, 6, 5, 3.

4: Spin Language Reference – REPEAT

Propeller Manual v1.0 · Page 297

 D := 2
 repeat Index from 5 to 10 step D
 --D

This loop started out with Index at 5 and a Delta (D) of +2. But each iteration of the loop
decrements D by one, so at the end of iteration 1, Index = 5 and D = +1. Iteration 2 has Index
= 6 and D = 0. Iteration 3 has Index = 6 and D = -1. Iteration 4 has Index = 5 and D = -2.
Iteration 5 has Index = 3 and D = -3. The loop then terminates because Index plus Delta (3 + -
3) is outside the range of Start to Finish (5 to 10).

Conditional Loops (Syntax 3 and 4)
The final forms of REPEAT, syntax 3 and 4, are finite loops with conditional exits and have
flexible options allowing for the use of either positive or negative logic and the creation of
zero-to-many or one-to-many iteration loops. These two forms of REPEAT are usually referred
to as “repeat while” or “repeat until” loops.

Let’s look at the REPEAT form described by syntax 3. It consists of the REPEAT command
followed immediately by either WHILE or UNTIL then Condition(s) and finally, on the lines
below it, optional Statement(s). Since this form tests Condition(s) at the start of every
iteration, it creates a zero-to-many loop; the Statement(s) block will execute zero or more
times, depending on the Condition(s). For example, assume that X is a variable created
earlier:

 X := 0
 repeat while X < 10 'Repeat while X is less than 10
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X

This example first sets X to 0, then repeats the loop while X is less than 10. The code inside
the loop clears RAM locations based on X (starting at location $7000) and increments X.
After the 10th iteration of the loop, X equals 10, making the condition while X < 10 false and
the loop terminates.

This loop is said to use “positive” logic because it continues “WHILE” a condition is true. It
could also be written with “negative” logic using UNTIL, instead. Such as:

 X := 0
 repeat until X > 9 'Repeat until X is greater than 9
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X

REPEAT – Spin Language Reference

Page 298 · Propeller Manual v1.0

The above example performs the same way as the previous, but the repeat loop uses negative
logic because it continues “UNTIL” a condition is true; i.e: it continues while a condition is
false.

In either example, if X was equal to 10 or higher before the first iteration of the REPEAT loop,
the condition would cause the loop to never execute at all, which is why we call it a zero-to-
many loop.

The REPEAT form described by syntax 4 is very similar to syntax 3, but the condition is tested
at the end of every iteration, making it a one-to-many loop. For example:

 X := 0
 repeat
 byte[$7000][X] := 0 'Increment RAM value
 X++ 'Increment X
 while X < 10 'Repeat while X is less than 10

This works the same as the previous examples, looping 10 times, except that the condition is
not tested until the end of each iteration. However, unlike the previous examples, even if X
was equal to 10 or higher before the first iteration, the loop would run once then terminate,
which is why we call it a one-to-many loop.

Other REPEAT Options
There are two other commands that affect the behavior or REPEAT loops: NEXT and QUIT. See
the NEXT (page 246) and QUIT (page 291) commands for more information.

4: Spin Language Reference – RESULT

Propeller Manual v1.0 · Page 299

RESULT
The return value variable for methods.

((PUB ┆ PRI))
 RESULT

Explanation
The RESULT variable is a pre-defined local variable for each PUB and PRI method. RESULT
holds the method’s return value; the value passed back to the caller of the method, when the
method is terminated.

When a public or private method is called, its built-in RESULT variable is cleared to zero (0).
If that method does not alter RESULT, or does not call RETURN or ABORT with a value specified,
then zero will be the return value upon that method’s termination.

Using RESULT
In the example below, the DoSomething method sets RESULT equal to 100 at its end. The Main
method calls DoSomething and sets its local variable, Temp, equal to the result; so that when
DoSomething exits, Temp will be set to 100

PUB Main | Temp
 Temp := DoSomething 'Call DoSomething, set Temp to return value

PUB DoSomething
 <do something here>
 result := 100 'Set result to 100

You can also provide an alias name for a method’s RESULT variable in order to make it more
clear what the method returns. This is highly recommended since it makes a method’s intent
more easily discerned. For example:

PUB GetChar : Char
 <do something>
 Char := <retrieved character> 'Set Char (result) to the character

The above method, GetChar, declares Char as an alias for its built-in RESULT variable; see PUB,
page 287 or PRI, page 286, for more information. The GetChar method then performs some
task to get a character then it sets Char to the value of the retrieved character. It could have

RESULT – Spin Language Reference

Page 300 · Propeller Manual v1.0

also used “result := …” to set the return value since either statement affects the method’s
return value.

Either the RESULT variable, or the alias provided for it, may be modified multiple times within
the method before exiting since they both affect RESULT and only the last value of RESULT will
be used upon exiting.

4: Spin Language Reference – RETURN

Propeller Manual v1.0 · Page 301

RETURN
Exit from PUB/PRI method with optional return Value.

((PUB ┆ PRI))
 RETURN 〈Value〉
Returns: Either the current RESULT value, or Value if provided.

• Value is an optional expression whose value is to be returned from the PUB or PRI
method.

Explanation
RETURN is one of two commands (ABORT and RETURN) that terminate a PUB or PRI method’s
execution. RETURN causes a return from a PUB or PRI method with normal status; meaning it
pops the call stack once and returns to the caller of this method, delivering a value in the
process.

Every PUB or PRI method has an implied RETURN at its end, but RETURN can also be manually
entered in one or more places within the method to create multiple exit points.

When RETURN appears without the optional Value, it returns the current value of the PUB/PRI’s
built-in RESULT variable. If the Value field was entered, however, the PUB or PRI returns with
that Value instead.

About the Call Stack
When methods are called, simply by referring to them from other methods, there must be
some mechanism in place to store where to return to once the called method is completed.
This mechanism is a called a “stack” but we’ll use the term “call stack” here. It is simply
RAM memory used to store return addresses, return values, parameters and intermediate
results. As more and more methods are called, the call stack logically gets longer. As more
and more methods are returned from (via RETURN or by reaching the end of the method) the
call stack gets shorter. This is called “pushing” onto the stack and “popping” off of the stack,
respectively.

The RETURN command pops the most recent data off the call stack to facilitate returning to the
immediate caller; the one who directly called the method that just returned.

RETURN – Spin Language Reference

Page 302 · Propeller Manual v1.0

Using RETURN
The following example demonstrates two uses of RETURN. Assume that
DisplayDivByZeroError is a method defined elsewhere.

PUB Add(Num1, Num2)
 Result := Num1 + Num2 'Add Num1 + Num2
 return

PUB Divide(Dividend, Divisor)
 if Divisor == 0 'Check if Divisor = 0
 DisplayDivByZeroError 'If so, display error
 return 0 'and return with 0
 return Dividend / Divisor 'Otherwise return quotient

The Add method sets its built-in RESULT variable equal to Num1 plus Num2, then executes
RETURN. The RETURN causes Add to return the value of RESULT to the caller. Note that this
RETURN was not really required because the Propeller Tool Compiler will automatically put it
in at the end of any methods that don’t have one.

The Divide method checks the Divisor value. If Divisor equals zero, it calls a
DisplayDivByZeroError method and then executes return 0, which immediately causes the
method to return with the value 0. If, however, the Divisor was not equal to zero, it executes
return Dividend / Divisor, which causes the method to return with the result of the
division. This is an example where the last RETURN was used to perform the calculation and
return the result all in one step rather than separately affecting the built-in RESULT variable
beforehand.

4: Spin Language Reference – ROUND

Propeller Manual v1.0 · Page 303

ROUND
Round a floating-point constant to the nearest integer.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 ROUND (FloatConstant)
Returns: Nearest integer to original floating-point constant value.

• FloatConstant is the floating-point constant expression to be rounded to the nearest
integer.

Explanation
ROUND is one of three directives (FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. ROUND returns an integer constant that is the closest integer value to the given
floating-point constant expression. Fractional values of ½ (.5) or higher are rounded up to the
nearest whole number while lower fractions are rounded down.

Using ROUND
ROUND can be used to round floating-point constants up or down to the nearest integer value.
Note that this is for compile-time constant expressions only, not run-time variable
expressions. For example:

 CON
 OneHalf = 0.5
 Smaller = 0.4999
 Rnd1 = round(OneHalf)
 Rnd2 = round(Smaller)
 Rnd3 = round(Smaller * 10.0) + 4

The above code creates two floating-point constants, OneHalf and Smaller, equal to 0.5 and
0.4999, respectively. The next three constants, Rnd1, Rnd2 and Rnd3, are integer constants
that are based on OneHalf and Smaller using the ROUND directive. Rnd1 = 1, Rnd2 = 0, and
Rnd3 = 9.

About Floating-Point Constants
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with

ROUND – Spin Language Reference

Page 304 · Propeller Manual v1.0

a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath and FloatString objects provide
math functions compatible with single-precision numbers.

See the Constant Assignment ‘=’ in the Operators section on page 254, FLOAT on page 216,
and TRUNC on page 314, as well as the FloatMath and FloatString objects for more
information.

4: Spin Language Reference – SPR

Propeller Manual v1.0 · Page 305

SPR
Special Purpose Register array; provides indirect access to cog’s special registers.

((PUB ┆ PRI))
 SPR [Index]
Returns: Value in special purpose register at Index.

• Index is an expression that specifies the index (0-15) of the special purpose register to
access (PAR through VSCL).

Explanation
SPRis an array of the 16 special purpose registers in the cog. Element 0 is the PAR register and
element 15 is the VSCL register. See Table 4-15 below. SPR provides an indirect method of
accessing the cog’s special purpose registers.

Table 4-15: Cog RAM Special Purpose Registers

Name Index Type Description
PAR 0 Read-Only Boot Parameter
CNT 1 Read-Only System Counter
INA 2 Read-Only Input States for P31 - P0
INB 3 Read-Only Input States for P63- P321
OUTA 4 Read/Write Output States for P31 - P0
OUTB 5 Read/Write Output States for P63 – P321
DIRA 6 Read/Write Direction States for P31 - P0
DIRB 7 Read/Write Direction States for P63 - P321
CTRA 8 Read/Write Counter A Control
CTRB 9 Read/Write Counter B Control
FRQA 10 Read/Write Counter A Frequency
FRQB 11 Read/Write Counter B Frequency
PHSA 12 Read/Write Counter A Phase
PHSB 13 Read/Write Counter B Phase
VCFG 14 Read/Write Video Configuration
VSCL 15 Read/Write Video Scale

Note 1: Reserved for future use

SPR – Spin Language Reference

Page 306 · Propeller Manual v1.0

Using SPR
SPR can be used like any other long-sized array. The following assumes Temp is a variable
defined elsewhere.

 spr[4] := %11001010 'Set outa register
 Temp := spr[2] 'Get ina value

This example sets the OUTA register (index 4 of SPR) to %11001010 and then sets Temp equal to
the INA register (index 2 of SPR).

4: Spin Language Reference – _STACK

Propeller Manual v1.0 · Page 307

_STACK
Pre-defined, one-time settable constant for specifying the size of an application’s stack space.

CON
 _STACK = Expression

• Expression is an integer expression that indicates the number of longs to reserve for
stack space.

Explanation
_STACK is a pre-defined, one-time settable optional constant that specifies the required stack
space of an application. This value is added to _FREE if specified, to determine the total
amount of stack/free memory space to reserve for a Propeller application. Use _STACK if an
application requires a minimum amount of stack space in order to run properly. If the
resulting compiled application is too large to allow the specified stack space, an error
message will be displayed. For example:

CON
 _STACK = 3000

The _STACK declaration in the above CON block indicates that the application needs to have at
least 3,000 longs of stack space left over after compilation. If the resulting compiled
application does not have that much room left over, an error message will indicate by how
much it was exceeded. This is a good way to prevent successful compiles of an application
that will fail to run properly due to lack of memory.

Note that only the top object file can set the value of _STACK. Any child object’s _STACK
declarations will be ignored. The stack space reserved by this constant is used by the
application’s main cog to store temporary data such as call stacks, parameters, and
intermediate expression results.

STRCOMP – Spin Language Reference

Page 308 · Propeller Manual v1.0

STRCOMP
Compare two strings for equality.

((PUB ┆ PRI))
 STRCOMP (StringAddress1, StringAddress2)
Returns: TRUE if both strings are equal, FALSE otherwise.

• StringAddress1 is an expression specifying the starting address of the first string to
compare.

• StringAddress2 is an expression specifying the starting address of the second string to
compare.

Explanation
STRCOMP is one of two commands (STRCOMP and STRSIZE) that retrieve information about a
string. STRCOMP compares the contents of the string at StringAddress1 to the contents of the
string at StringAddress2, up to the zero-terminator of each string, and returns TRUE if both
strings are equivalent, FALSE otherwise. This comparison is case-sensitive.

Using STRCOMP
The following example assumes PrintStr is a method created elsewhere.

PUB Main
 if strcomp(@Str1, @Str2)
 PrintStr(string("Str1 and Str2 are equal"))
 else
 PrintStr(string("Str1 and Str2 are different"))

DAT
 Str1 byte "Hello World", 0
 Str2 byte "Testing.", 0

The above example has two zero-terminated strings in the DAT block, Str1 and Str2. The
Main method calls STRCOMP to compare the contents of each string. Assuming PrintStr is a
method that displays a string, this example prints “Str1 and Str2 are different” on the display.

4: Spin Language Reference – STRCOMP

Propeller Manual v1.0 · Page 309

Zero-Terminated Strings
The STRCOMP command requires the strings being compared to be zero-terminated; a byte
equal to 0 must immediately follow each string. This practice is quite common and is
recommended since most string-handling methods rely on zero terminators.

STRING – Spin Language Reference

Page 310 · Propeller Manual v1.0

STRING
Declare in-line string constant and get its address.

((PUB ┆ PRI))
 STRING (StringExpression)
Returns: Address of in-line string constant.

• StringExpression is the desired string expression to be used for temporary, in-line
purposes.

Explanation
The DAT block is used often to create strings or string buffers that are reusable for various
purposes, but there are occasions when a string is needed for temporary purposes like
debugging or one-time uses in an object. The STRING directive is meant for those one-time
uses; it compiles an in-line, zero-terminated string into memory and returns the address of
that string.

Using STRING
The STRING directive is very good for creating one-time-use strings and passing the address of
that string to other methods. For example, assuming PrintStr is a method created elsewhere.

PrintStr(string("This is a test string."))

The above example uses the STRING directive to compile a string, “This is a test string.”, into
memory and return the address of that string as the parameter for the fictitious PrintStr
method.

If a string needs to be used in more than one place in code, it is better to define it in the DAT
block so the address can be used multiple times.

4: Spin Language Reference – STRSIZE

Propeller Manual v1.0 · Page 311

STRSIZE
Get size of string.

((PUB ┆ PRI))
 STRSIZE (StringAddress)
Returns: Size (in bytes) of zero-terminated string.

• StringAddress is an expression specifying the starting address of the string to measure.

Explanation
STRSIZE is one of two commands (STRCOMP and STRSIZE) that retrieve information about a
string. STRSIZE measures the length of a string at StringAddress, in bytes, up to, but not
including, a zero-termination byte.

Using STRSIZE
The following example assumes Print is a method created elsewhere.

PUB Main
 Print(strsize(@Str1))
 Print(strsize(@Str2))

DAT
 Str1 byte "Hello World", 0
 Str2 byte "Testing.", 0

The above example has two zero-terminated strings in the DAT block, Str1 and Str2. The
Main method calls STRSIZE to get the length of each string. Assuming Print is a method that
displays a value, this example prints 11 and 8 on the display.

Zero-Terminated Strings
The STRSIZE command requires the string being measured to be zero-terminated; a byte equal
to 0 must immediately follow the string. This practice is quite common and is recommended
since most string-handling methods rely on zero terminators.

Symbols – Spin Language Reference

Page 312 · Propeller Manual v1.0

Symbols
The symbols in Table 4-16 below serve one or more special purposes in Spin code. Each
symbol’s purpose is described briefly with references to other sections that describe it directly
or use it in examples.

Table 4-16: Symbols

Symbol Purpose(s)

% Binary indicator: used to indicate that a value is being expressed in binary (base-2). See
Value Representations on page 159.

%% Quaternary indicator: used to indicate a value is being expressed in quaternary (base-4).
See Value Representations on page 159.

$ Hexadecimal indicator: used to indicate a value is being expressed in hexadecimal
(base-16). See Value Representations on page 159.

"
String designator: used to begin and end a string of text characters. Usually used in Object
blocks (page 247), Data blocks (page 208), or in Public/Private blocks with the STRING
directive (page 310).

_
1) Delimiter: used as a group delimiter in constant values (where a comma ‘,’ or period ‘.’

may normally be used as a number group delimiter). See See Value Representations
on page 159.

2) Underscore: used as part of a symbol. See Symbol Rules on page 159.

1) Object-Constant reference: used to reference a sub-object’s constants. See the CON
section’s Scope of Constants, page 199, and OBJ, page 247.

2) Enumeration Set: used in a CON block to set the start of an enumerated set of
symbols. See the CON section’s Enumerations (Syntax 2 and 3) on page 197.

3) Assembly Literal: used to indicate an expression or symbol is a literal value rather
than a register address.

.
1) Object-Method reference: used to reference a sub-object’s methods. See OBJ, page

247.
2) Decimal point: used in floating-point constant expressions. See CON, page 194.

..
Range indicator: indicates a range from one expression to another for CASE
statements or an I/O register index. See OUTA, OUTB on page 280, INA, INB on page
226, and DIRA, DIRB on page 212.

4: Spin Language Reference – Symbols

Propeller Manual v1.0 · Page 313

Table 4-16: Symbols (continued)

Symbol Purpose(s)

:

1) Return value separator: appears immediately before a symbolic return value on a PUB
or PRI declaration. See PUB on page 287, PRI on page 286, and RESULT on page
299.

2) Object assignment: appears in an object reference declaration in an OBJ block. See
OBJ, page 247.

3) Case statement separator: appears immediately after the match expressions in a CASE
structure. See CASE, page 171.

|
1) Local variable separator: appears immediately before a list of local variables on a PUB

or PRI declaration. See PUB, page 287 and PRI, page 286.
2) Bitwise OR: used in expressions. See Bitwise OR ‘|’, ‘|=’ on page 270.

\
Abort trap: appears immediately before a method call that could potentially abort. See
ABORT on page 161.

,
List delimiter: used to separate items in lists. See LOOKUP, LOOKUPZ on page 244,
LOOKDOWN, LOOKDOWNZ on page 242, and the DAT section’s Declaring Data (Syntax 1) on
page 208.

()
Parameter list designators: used to surround method parameters. See PUB, page 287 and
PRI, page 286.

[]
Array index designators: used to surround indexes on variable arrays or main memory
references. See VAR, page 315; BYTE, page 165; WORD, page 331; and LONG, page 236.

' Code comment designator: used to enter single-line code comments (non-compiled text) for
code viewing purposes. See Exercise 3: Output.spin - Comments on page 100.

''
Document comment designator: used to enter single-line document comments (non-
compiled text) for documentation viewing purposes. See Exercise 3: Output.spin -
Comments on page 100.

{ } In-line/multi-line code comment designators: used to enter multi-line code comments (non-
compiled text) for code viewing purposes.

{{ }}
In-line/multi-line document comment designators: used to enter multi-line document
comments (non-compiled text) for documentation viewing purposes. See Exercise 3:
Output.spin - Comments on page 100.

TRUNC – Spin Language Reference

Page 314 · Propeller Manual v1.0

TRUNC
Remove, “truncate,” the fractional portion from a floating-point constant.

((CON ┆ VAR ┆ OBJ ┆ PUB ┆ PRI ┆ DAT))
 TRUNC (FloatConstant)
Returns: Integer that is the given floating-point constant value truncated at the decimal point.

• FloatConstant is the floating-point constant expression to be truncated to an integer.

Explanation
TRUNC is one of three directives (FLOAT, ROUND and TRUNC) used for floating-point constant
expressions. TRUNC returns an integer constant that is the given floating-point constant
expression with the fractional portion removed.

Using TRUNC
TRUNC can be used to retrieve the integer portion of a floating-point constant. For example:

 CON
 OneHalf = 0.5
 Bigger = 1.4999
 Int1 = trunc(OneHalf)
 Int2 = trunc(Bigger)
 Int3 = trunc(Bigger * 10.0) + 4

The above code creates two floating-point constants, OneHalf and Bigger, equal to 0.5 and
1.4999, respectively. The next three constants, Int1, Int2 and Int3, are integer constants that
are based on OneHalf and Bigger using the TRUNC directive. Int1 = 0, Int2 = 1, and Int3 = 18.

About Floating-Point Constants
The Propeller compiler handles floating-point constants as a single-precision real number as
described by the IEEE-754 standard. Single-precision real numbers are stored in 32 bits, with
a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa (the fractional part). This provides
approximately 7.2 significant decimal digits.

Floating-point constant expressions can be defined and used for many compile-time purposes,
but for run-time floating-point operations, the FloatMath and FloatString objects provide
math functions compatible with single-precision numbers. See the Constant Assignment ‘=’
in the Operators section on page 254, FLOAT on page 216, and ROUND on page 303, as well the
FloatMath and FloatString objects for more information.

4: Spin Language Reference – VAR

Propeller Manual v1.0 · Page 315

VAR
Declare a Variable Block.

VAR
 Size Symbol 〈[Count]〉 〈 Size Symbol 〈 [Count]〉〉...
VAR
 Size Symbol 〈[Count]〉 〈 , Symbol 〈 [Count]〉〉...

• Size is the desired size of the variable, BYTE, WORD or LONG.
• Symbol is the desired name for the variable.
• Count is an optional expression, enclosed in brackets, that indicates this is an array

variable, with Count number of elements; each being of size byte, word or long.
When later referencing these elements, they begin with element 0 and end with
element Count-1.

Explanation
VAR is the Variable Block declaration. The Variable Block is a section of source code that
declares global variable symbols. This is one of six special declarations (CON, VAR, OBJ, PUB,
PRI, and DAT) that provide inherent structure to the Spin language.

Variable Declarations (Syntax 1)
The most common form of variable declarations begins with VAR on a line by itself followed
by one or more declarations. VAR must start in column 1 (the leftmost column) of the line it is
on and the lines following it must be indented by at least one space.

VAR
 byte Str[10]
 word Code
 long LargeNumber

This example defines Str as a byte array of 10 elements, Code as a word (two bytes) and
LargeNumber as a long (four bytes). Public and Private methods can refer to these variables in
ways similar to the following:

VAR – Spin Language Reference

Page 316 · Propeller Manual v1.0

PUB SomeMethod
 Code := 60000
 LargeNumber := Code * 250
 GetString(@Str)
 if Str[0] == "A"
 <more code here>

Notice that Code and LargeNumber are used directly by expressions. The Str reference in the
GetString method’s parameter list looks different; it has an @, the Symbol Address operator,
preceding it. This is because our fictitious GetString method needs to write back to the Str
variable. If we had said GetString(Str), then the first byte of Str, element 0, would have
been passed to GetString. By using the Symbol Address operator, @, we caused the address of
Str to be passed to GetString instead; GetString can use that address to write to Str’s
elements. Lastly, we use Str[0] in the condition of an IF statement to see if the first byte is
equal to the character "A". Remember, the first element of an array is always zero (0).

Variable Declarations (Syntax 2)
A variation on Syntax 1 allows for comma delimited variables of the same size. The
following is, similar to the above example, but we declare two words, Code and Index.

VAR
 byte Str[10]
 word Code, Index
 long LargeNumber

Scope of Variables
Symbolic variables defined in Variable Blocks are global to the object in which they are
defined but not outside of that object. This means that these variables can be accessed
directly from anywhere within the object but their name will not conflict with symbols
defined in other parent or child objects.

Public and Private methods have the ability to declare their own local variables. See PUB,
page 287, and PRI, page 286.

Global variables are not accessible outside of an object unless the address of that variable is
passed into, or back to, another object through a method call.

4: Spin Language Reference – VCFG

Propeller Manual v1.0 · Page 317

VCFG
Video Configuration Register.

((PUB ┆ PRI))
 VCFG
Returns: Current value of cog’s Video Configuration Register, if used as a source variable.

Explanation
VCFG is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VCFG register contains the configuration settings of the video
generator, as shown in Table 4-17.

Table 4-17: VCFG Register
VCFG Bits

31 30..29 28 27 26 25..23 22..12 11..9 8 7..0
- VMode CMode Chroma1 Chroma0 AuralSub - VGroup - VPins

In Propeller Assembly, the VMode field through AuralSub fields can conveniently be written
using the MOVI instruction, the VGroup field can be written with the MOVD instruction, and the
VPins field can be written with the MOVS instruction.

VMode
The 2-bit VMode (video mode) field selects the type and orientation of video output, if any,
according to Table 4-18.

Table 4-18: The Video Mode Field
VMode Video Mode

00 Disabled, no video generated.
01 VGA mode; 8-bit parallel output on VPins7:0
10 Composite Mode 1; broadcast on VPins 7:4, baseband on VPins 3:0
11 Composite Mode 2; baseband on VPins 7:4, broadcast on VPins 3:0

VCFG – Spin Language Reference

Page 318 · Propeller Manual v1.0

CMode
The CMode (color mode) field selects two or four color mode. 0 = two-color mode; pixel
data is 32 bits by 1 bit and only colors 0 or 1 are used. 1 = four-color mode; pixel data is 16
bits by 2 bits, and colors 0 through 3 are used.

Chroma1
The Chroma1 (broadcast chroma) bit enables or disables chroma (color) on the broadcast
signal. 0 = disabled, 1 = enabled.

Chroma0
The Chroma0 (baseband chroma) bit enables or disables chroma (color) on the baseband
signal. 0 = disabled, 1 = enabled.

AuralSub
The AuralSub (aural sub-carrier) field selects the source of the FM aural (audio) sub-carrier
frequency to be modulated on. The source is the PLLA of one of the cogs, identified by
AuralSub’s value.

Table 4-19: The AuralSub Field
AuralSub Sub-Carrier Frequency Source

000 Cog 0’s PLLA
001 Cog 1’s PLLA
010 Cog 2’s PLLA
011 Cog 3’s PLLA
100 Cog 4’s PLLA
101 Cog 5’s PLLA
110 Cog 6’s PLLA
111 Cog 7’s PLLA

4: Spin Language Reference – VCFG

Propeller Manual v1.0 · Page 319

VGroup
The VGroup (video output pin group) field selects which group of 8 I/O pins to output video
on.

Table 4-20: The VGroup Field
VGroup Pin Group

000 Group 0: P7..P0
001 Group 1: P15..P8
010 Group 2: P23..P16
011 Group 3: P31..P24

100-111 <reserved for future use>

VPins
The VPins (video output pins) field is a mask applied to the pins of VGroup that indicates
which pins to output video signals on.

Table 4-21: The VPins Field
VPins Effect

00001111 Drive Video on lower 4 pins only; composite
11110000 Drive Video on upper 4 pins only; composite
11111111 Drive video on all 8 pins; VGA

Using VCFG
VCFG can be read/written like other registers or pre-defined variables. For example:

 VCFG := %0_10_1_0_1_000_00000000000_001_0_00001111

This sets the video configuration register to enable video in composite mode 1 with 4 colors,
baseband chroma (color) enabled, on pin group 1, lower 4 pins (which is pins P11:8).

VCSL – Spin Language Reference

Page 320 · Propeller Manual v1.0

VSCL
Video Scale Register.

((PUB ┆ PRI))
 VSCL
Returns: Current value of cog’s Video Scale Register, if used as a source variable.

Explanation
VSCL is one of two registers (VCFG and VSCL) that affect the behavior of a cog’s Video
Generator. Each cog has a video generator module that facilitates transmitting video image
data at a constant rate. The VSCL register sets the rate at which video data is generated.

Table 4-22: VSCL Register
VSCL Bits

31..20 19..12 11..0
− PixelClocks FrameClocks

PixelClocks
The 8-bit PixelClocks field indicates the number of clocks per pixel; the number of clocks
that should elapse before each pixel is shifted out by the video generator module. These
clocks are the PLLA clocks, not the System Clock.

FrameClocks
The 12-bit FrameClocks field indicates the number of clocks per frame; the number of clocks
that should elapse before each frame is shifted out by the video generator module. These
clocks are the PLLA clocks, not the System Clock. A frame is one long of pixel data
(delivered via the WAITVID command). Since the pixel data is either 16 bits by 2 bits, or 32
bits by 1 bit (meaning 16 pixels wide with 4 colors, or 32 pixels wide with 2 colors,
respectively), the FrameClocks is typically 16 or 32 times that of the PixelClocks value.

Using VSCL
VSCL can be read/written like other registers or pre-defined variables. For example:

 VSCL := %000000000000_10100000_101000000000

4: Spin Language Reference – VSCL

Propeller Manual v1.0 · Page 321

This sets the video scale register for 160 PixelClocks and 2,560 FrameClocks (for a 16-pixel
by 2-bit color frame). Of course, the actual rate at which pixels clock out depends on the
frequency of PLLA in combination with this scale factor.

WAITCNT – Spin Language Reference

Page 322 · Propeller Manual v1.0

WAITCNT
Pause a cog’s execution temporarily.

((PUB ┆ PRI))
 WAITCNT (Value)

• Value is the desired 32-bit System Counter value to wait for.

Explanation
WAITCNT, “Wait for System Counter,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITCNT
pauses the cog until the global System Counter equals Value.

When executed, WAITCNT activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
System Counter equals Value. The wait hardware checks the System Counter every System
Clock cycle and the cog’s power consumption is reduced by approximately 7/8ths during this
time. In normal applications, WAITCNT may be used strategically to reduce power
consumption anywhere in the program where time is wasted waiting for low-bandwidth
events.

There are two types of delays WAITCNT can be used for: fixed delays and synchronized delays.
Both are explained below.

Fixed Delays
Fixed delays are those that are all unrelated to one specific point in time and only serve the
purpose of pausing execution for a fixed amount of time. A fixed delay, for example, may be
used to wait for 10 milliseconds after an event occurs, before proceeding with another action.
For example:

CON
 _clkfreq = xtal1 'Set for slow crystal
 _xinfreq = 5_000_000 'Use 5 MHz accurate crystal

 repeat
 !outa[0] 'Toggle pin 0
 waitcnt(50_000 + cnt) 'Wait for 10 ms

4: Spin Language Reference – WAITCNT

Propeller Manual v1.0 · Page 323

This code toggles the state of I/O pin P0 and waits for 50,000 system clock cycles before
repeating the loop again. Remember, the Value parameter must be the desired 32-bit value to
match against the System Clock’s value. Since the System Clock is a global resource that
changes every clock cycle, to delay for a certain number of cycles from “now” we need a
value that is added to the current System Counter value. The cnt in “50_000 + cnt” is the
System Counter Register variable; it returns the value of the System Counter at that moment
in time. So our code says to wait for 50,000 cycles plus the current value of the System
Counter; i.e: wait 50,000 cycles from now. Assuming that an external 5 MHz crystal is being
used, 50,000 cycles is about 10 ms (1/100th second) of time.

IMPORTANT: Since WAITCNT pauses the cog until the System Counter matches the given
value, care must be taken to ensure that the given value was not already surpassed by the
System Counter. If the System Counter already passed the given value before the wait
hardware activated then the cog will appear to have halted permanently when, in fact, it is
waiting for the counter to exceed 32 bits and wrap around to the given value. Even at 80
MHz, it takes over 53 seconds for the 32-bit System Counter to wrap around!

Related to this, when using WAITCNT in Spin code as shown above, make sure to write the
Value expression the same way we did: in the form “offset + cnt” as opposed to
“cnt + offset.” This is because the Spin interpreter will evaluate this expression from left
to right, and each intermediate evaluation within an expression takes time to perform. If cnt
were at the start of the expression, the System Counter would be read first then the rest of the
expression would be evaluated, taking an unknown amount of cycles and making our cnt
value quite old by the time the final result is calculated. However, having cnt as the last
value in the WAITCNT expression ensures a fixed amount of overhead (cycles) between reading
the System Counter and activating the wait hardware. In fact, the interpreter takes 381 cycles
of final overhead when the command is written in the form waitcnt(offset + cnt). This
means the value of offset must always be at least 381 to avoid unexpectedly long delays.

Synchronized Delays
Synchronized delays are those that are all directly related to one specific point in time, a
“base” time, and serve the purpose of “time-aligning” future events relative to that point. A
synchronized delay, for example, may be used to output or input a signal at a specific
interval, despite the unknown amounts of overhead associated with the code itself. To
understand how this is different than the Fixed Delay example, let’s look at that example’s
timing diagram.

WAITCNT – Spin Language Reference

Page 324 · Propeller Manual v1.0

Figure 4-1: Fixed Delay Timing

Figure 4-1 shows the output of our previous example, the fixed delay example. Notice how
the I/O pin P0 toggles roughly every 10 milliseconds, but not exactly? In fact, there’s a
cumulative error that makes successive state changes further and further out-of-sync in
relation to our start time, 0 ms. The delay is 10 ms in length, but the error occurs because that
delay doesn’t compensate for the length of the rest of the loop. The repeat, !outa[0] and
WAITCNT statements each take a little time to execute, and all that extra time is in addition to
the 10 ms delay that WAITCNT specified.

Using WAITCNT a slightly different way, for a synchronized delay, will eliminate this timing
error. The following example assumes we’re using a 5 MHz external crystal.

CON
 _clkfreq = xtal1 'Set for slow crystal
 _xinfreq = 5_000_000 'Use 5 MHz accurate crystal

PUB Toggle | Time
 Time := cnt 'Get current system counter value
 repeat
 waitcnt(Time += 50_000) 'Wait for 10 ms
 !outa[0] 'Toggle pin 0

This code first retrieves the value of the System Counter, Time := cnt, then starts the repeat
loop where it waits for the System Counter to reach Time + 50,000, toggles the state of I/O
pin P0 and repeats the loop again. The statement Time += 50_000 is actually an assignment
statement; it adds the value of Time to 50,000, stores that result back into Time and then
executes the WAITCNT command using that result. Notice that we retrieved the System
Counter’s value only once, at the start of the example; that is our base time. Then we wait for
the System Counter to equal that original base time plus 50,000 and perform the actions in the
loop. Each successive iteration through the loop, we wait for the System Counter to equal
another multiple of 50,000 from the base time. This method automatically compensates for

4: Spin Language Reference – WAITCNT

Propeller Manual v1.0 · Page 325

the overhead time consumed by the loop statements: repeat, !outa[0] and waitcnt. The
resulting output looks like Figure 4-2.

Figure 4-2: Synchronized Delay Timing

Using the synchronized delay method, our output signal is always perfectly aligned to the
time base plus a multiple of our interval. This will work as long as the time base (an external
crystal) is accurate and the overhead in the loop does not exceed the time interval itself. Note
that we waited, with WAITCNT, before the first toggle so that the time between the very first
toggle and the second matches that of all the rest.

Calculating Time
An object can delay a specific amount of time even if the application changes the System
Clock frequency occasionally. To do this, use WAITCNT combined with an expression that
includes the current System Clock frequency (CLKFREQ). For example, without you knowing
what the actual clock frequency will be for applications using your object, the following line
can be used to delay the cog for 1 millisecond; as long as the clock frequency is fast enough.

 waitcnt(clkfreq / 1000 + cnt) 'delay cog 1 millisecond

For more information, see CLKFREQ on page 175.

WAITPEQ – Spin Language Reference

Page 326 · Propeller Manual v1.0

WAITPEQ
Pause a cog’s execution until I/O pin(s) match designated state(s).

((PUB ┆ PRI))
 WAITPEQ (State, Mask, Port)

• State is the logic state(s) to compare the pin(s) against. It is a 32-bit value that

indicates the high or low states of up to 32 I/O pins. State is compared against either
(INA & Mask), or (INB & Mask), depending on Port.

• Mask is the desired pin(s) to monitor. Mask is a 32-bit value that contains high (1)
bits for every I/O pin that should be monitored; low (0) bits indicate pins that should
be ignored. Mask is bitwised-ANDed with the 32-bit port’s input states and the
resulting value is compared against the entire State value.

• Port is a 1-bit value indicating the I/O port to monitor; 0 = Port A, 1 = Port B. Only
Port A exists on current (P8X32A) Propeller chips.

Explanation
WAITPEQ, “Wait for Pin(s) to Equal,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITPEQ
pauses the cog until the value of Port’s I/O pin states, bitwised-ANDed with Mask, matches
that of State.

When executed, WAITPEQ activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
designated pin, or group of pins, equals the indicated state(s). The wait hardware checks the
I/O pins every System Clock cycle and the cog’s power consumption is reduced by
approximately 7/8ths during this time.

Using WAITPEQ
WAITPEQ is a great way to synchronize code to external events. For example:

 waitpeq(%0100, %1100, 0) 'Wait for P3 & P2 to be low & high
 outa[0] := 1 'Set P0 high

The above code pauses the cog until I/O pin 3 is low and I/O pin 2 is high, then sets I/O pin 0
high.

4: Spin Language Reference – WAITPEQ

Propeller Manual v1.0 · Page 327

Using Variable Pin Numbers
For Propeller objects, quite often it is necessary to monitor a single pin whose pin number is
specified outside the object itself. An easy way to translate that pin number into the proper
32-bit State and Mask value is by using the Bitwise Decode operator “|<” (See 265 for more
information). For example, if the pin number was specified by the variable Pin, and we
needed to wait until that pin is high, we could use the following code:

 waitpeq(|< Pin, |< Pin, 0) 'Wait for Pin to go high

The Mask parameter, |< Pin, evaluates to a long value where only one bit is high; the bit that
corresponds to the pin number given by Pin.

Waiting for Transitions
If we needed to wait for a transition from one state to another (high-to-low, for example) we
could use the following code:

 waitpeq(%100000, 5, 0) 'Wait for Pin 5 to go high
 waitpeq(%000000, 5, 0) 'Then wait for Pin 5 to go low

This example first waits for P5 to go high, then waits for it to go low; a high-to-low
transition. If we had used the second line of code without the first, the cog would not have
paused at all if P5 had been low to start with.

WAITPNE – Spin Language Reference

Page 328 · Propeller Manual v1.0

WAITPNE
Pause a cog’s execution until I/O pin(s) do not match designated state(s).

((PUB ┆ PRI))
 WAITPNE (State, Mask, Port)

• State is the logic state(s) to compare the pins against. It is a 32-bit value that
indicates the high or low states of up to 32 I/O pins. State is compared against either
(INA & Mask), or (INB & Mask), depending on Port.

• Mask is the desired pin(s) to monitor. Mask is a 32-bit value that contains high (1)
bits for every I/O pin that should be monitored; low (0) bits indicate pins that should
be ignored. Mask is bitwised-ANDed with the 32-bit port’s input states and the
resulting value is compared against the entire State value.

• Port is a 1-bit value indicating the I/O port to monitor; 0 = Port A, 1 = Port B. Only
Port A exists on current (P8X32A) Propeller chips.

Explanation
WAITPNE, “Wait for Pin(s) to Not Equal,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITPNE is
the complimentary form of WAITPEQ; it pauses the cog until the value of Port’s I/O pin states,
bitwised-ANDed with Mask, does not match that of State.

When executed, WAITPNE activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the
designated pin, or group of pins, does not equal the designated state(s). The wait hardware
checks the I/O pins every System Clock cycle and the cog’s power consumption is reduced
by approximately 7/8ths during this time.

Using WAITPNE
WAITPNE is a great way to synchronize code to external events. For example:

 waitpeq(%0100, %1100, 0) 'Wait for P3 & P2 to be low & and high
 waitpne(%0100, %1100, 0) 'Wait for P3 & P2 to not match prev. state
 outa[0] := 1 'Set P0 high

The above code pauses the cog until P3 is low and P2 is high, then pauses the cog again until
one or both of those pins changes states, then it sets P0 high.

4: Spin Language Reference – WAITVID

Propeller Manual v1.0 · Page 329

WAITVID
Pause a cog’s execution until its Video Generator is available to take pixel data.

((PUB ┆ PRI))
 WAITVID (Colors, Pixels)

• Colors is a long containing four byte-sized color values, each describing the four
possible colors of the pixel patterns in Pixels.

• Pixels is the next 16-pixel by 2-bit (or 32-pixel by 1-bit) pixel pattern to display.

Explanation
WAITVID, “Wait for Video Generator,” is one of four wait commands (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. WAITVID
pauses the cog until its Video Generator hardware is ready for the next pixel data, then the
Video Generator accepts that data and the cog continues execution with the next line of code.

When executed, WAITVID activates special “wait” hardware in the cog that prevents the
System Clock from causing further code execution within the cog until the moment the Video
Generator is ready. The wait hardware checks the Video Generator’s status every System
Clock cycle and the cog’s power consumption is reduced significantly during this time.

Using WAITVID
WAITVID is simply a delivery mechanism for data to the cog’s Video Generator hardware.
Since the Video Generator works independently from the cog itself, the two must synchronize
each time data is needed for the display device. The frequency at which this occurs depends
on the display device and the corresponding settings for the Video Generator, but in every
case, the cog must have new data available the moment the Video Generator is ready for it.
The cog uses the WAITVID command to wait for the right time and then “hand off” this data to
the Video Generator.

The Colors parameter is a 32-bit value containing either four 8-bit color values (for 4-color
mode) or two 8-bit color values in the lower 16 bits (for 2-color mode). For VGA, each color
value’s upper 6-bits is the 2-bit red, 2-bit green, and 2-bit blue color components describing
the desired color; the lower 2-bits are “don’t care” bits. Each of the color values corresponds
to one of the four possible colors per 2-bit pixel (when Pixels is used as a 16x2 bit pixel
pattern) or as one of the two possible colors per 1-bit pixel (when Pixels is used at a 32x1 bit
pixel pattern).

WAITVID – Spin Language Reference

Page 330 · Propeller Manual v1.0

Pixels describes the pixel pattern to display, either 16 pixels or 32 pixels depending on the
color-depth configuration of the Video Generator.

Review the TV and VGA objects for examples of how WAITVID is used.

Make sure to start the cog’s Video Generator and Counter A before executing the WAITVID
command or it will wait forever.

4: Spin Language Reference – WORD

Propeller Manual v1.0 · Page 331

WORD
Declare word-sized symbol, word aligned/sized data, or read/write a word of main memory.

VAR

 WORD Symbol 〈[Count]〉
DAT
 WORD Data
((PUB ┆ PRI))
 WORD [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.WORD 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or the existing name of the
variable (Syntax 4).

• Count is an optional expression indicating the number of word-sized elements for
Symbol, arranged in an array from element 0 to element Count-1.

• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the address of main memory to read or write.

If Offset is omitted, BaseAddress is the actual address to operate on. If Offset is
specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate on,
or the offset from word 0 of Symbol.

Explanation
WORD is one of three multi-purpose declarations (BYTE, WORD, and LONG) that declare or operate
on memory. WORD can be used to:

1) declare a word-sized (16-bit) symbol or a multi-word symbolic array in a VAR block, or
2) declare word-aligned, and/or word-sized, data in a DAT block, or
3) read or write a word of main memory at a base address with an optional offset, or
4) access a word within a long-sized variable.

Word Variable Declaration (Syntax 1)
In VAR blocks, syntax 1 of WORD is used to declare global, symbolic variables that are either
word-sized, or are any array of words. For example:

WORD – Spin Language Reference

Page 332 · Propeller Manual v1.0

VAR
 word Temp 'Temp is a word (2 bytes)
 word List[25] 'List is a word array

The above example declares two variables (symbols), Temp and List. Temp is simply a single,
word-sized variable. The line under the Temp declaration uses the optional Count field to
create an array of 25 word-sized variable elements called List. Both Temp and List can be
accessed from any PUB or PRI method within the same object that this VAR block was declared;
they are global to the object. An example of this is below.

PUB SomeMethod
 Temp := 25_000 'Set Temp to 25,000
 List[0] := 500 'Set first element of List to 500
 List[1] := 9_000 'Set second element of List to 9,000
 List[24] := 60_000 'Set last element of List to 60,000

For more information about using WORD in this way, refer to the VAR section’s Variable
Declarations (Syntax 1) on page 315, and keep in mind that WORD is used for the Size field in
that description.

Word Data Declaration (Syntax 2)
In DAT blocks, syntax 2 of WORD is used to declare word-aligned, and/or word-sized data that is
compiled as constant values in main memory. DAT blocks allow this declaration to have an
optional symbol preceding it, which can be used for later reference. See DAT, page 208. For
example:

DAT
 MyData word 640, $AAAA, 5_500 'Word-aligned/word-sized data
 MyList byte word $FF99, word 1_000 'Byte-aligned/word-sized data

The above example declares two data symbols, MyData and MyList. MyData points to the start
of word-aligned and word-sized data in main memory. MyData’s values, in main memory, are
640, $AAAA and 5,500, respectively. MyList uses a special DAT block syntax of WORD that
creates a byte-aligned but word-sized set of data in main memory. MyList’s values, in main
memory, are $FF99 and 1,000, respectively. When accessed a byte at a time, MyList contains
$99, $FF, 232 and 3 since the data is stored in little-endian format.

This data is compiled into the object and resulting application as part of the executable code
section and may be accessed using the read/write form, syntax 3, of WORD (see below). For
more information about using WORD in this way, refer to the DAT section’s Declaring Data

4: Spin Language Reference – WORD

Propeller Manual v1.0 · Page 333

(Syntax 1) on page 208 and keep in mind that WORD is used for the Size field in that
description.

Reading/Writing Words of Main Memory (Syntax 3)
In PUB and PRI blocks, syntax 3 of WORD is used to read or write word-sized values of main
memory. In the following two examples, we’ll assume our object contained the DAT block
from the example above, and we will demonstrate two different ways to access that data.

First, let’s try accessing the data directly using the labels we provided in our data block.

PUB GetData | Index, Temp
 Temp := MyData 'Read first word of MyData into Temp
 <do something with Temp> 'Perform task with Temp

 repeat Index from 0 to 1 'Repeat two times
 Temp := MyList[Index] 'Read data to Temp, 1 byte at a time
 <do something with Temp> 'Perform task with value in Temp

The first line inside of the GetData method, Temp := MyData, reads the first value in the
MyData list (the word-sized value 640) and stores it in Temp. Further down, in the REPEAT loop,
the Temp := MyList[Index] line reads a byte of main memory from the location of MyList +
Index. The first time through the loop (Index = 0) the value $99 ($FF99’s low-byte) is read
from MyList and the second time through the loop (Index = 1) the next byte is read, $FF
($FF99’s high-byte). Why were bytes read instead of words? MyList points at the start of our
desired data and our data was specified as word-sized data but the symbol MyList is treated as
a byte pointer since that data was specified to be byte-aligned.

Perhaps you intended to read word-sized data from MyList just like we did from MyData.
Coincidentally, even though MyList is declared as byte-aligned word data, it is also happens
to be word-aligned as well because the previous declaration finished on a word boundary.
This fact allows us to use the WORD declaration to achieve our goal.

PUB GetData | Index, Temp
 Temp := WORD[@MyData] 'Read first word of MyData into Temp
 <do something with Temp> 'Perform task with Temp

 repeat Index from 0 to 1 'Repeat two times
 Temp := WORD[@MyList][Index] 'Read data to Temp 1 word at a time
 <do something with Temp> 'Perform task with value in Temp

WORD – Spin Language Reference

Page 334 · Propeller Manual v1.0

In this example, the first line inside of the GetData method uses the WORD declaration to read a
word of main memory from the address of MyData and stores it in Temp, in this case, the value
640. Further down, in the REPEAT loop, the WORD declaration reads a word of main memory
from the address of MyList + Index and stores it in Temp. Since the first iteration of the loop
has Index set to 0, the first word of MyList is read, $FF99. The next time through the loop it
reads the next word, effectively @MyList + 1 (the 1,000).

Note that if the data was not word-aligned, either intentionally or coincidentally, we’d have
different results from the REPEAT loop just described. For example, if MyList happened to be
shifted forward by one byte, the first value read by the loop would be $99xx; where xx is an
unknown byte-sized value. Similarly, the second value read would be 59647; made up of the
$FF from the upper byte of MyList’s first value, and the 232 from the lower byte of MyList’s
second value. Make sure to pay close attention to data value alignments in memory to avoid
this likely unintentional result.

Using a similar syntax, words of main memory can be written to as well, as long as they are
RAM locations. For example:

 WORD[@MyList][0] := 8_192 'Write 8,192 to first word of MyList

This line writes the value 8,192 to the first word of data at MyList.

Accessing Words of Long-Sized Variables (Syntax 4)
In PUB and PRI blocks, syntax 4 of WORD is used to read or write word-sized components of
long-sized variables. For example:

VAR
 long LongVar

PUB Main
 LongVar.word := 65000 'Set first word of LongVar to 65000
 LongVar.word[0] := 65000 'Same as above
 LongVar.word[1] := 1 'Set second word of LongVar to 1

This example accesses the word-sized components of LongVar, individually. The comments
indicate what each line is doing. At the end of the Main method LongVar will equal 130,536.

4: Spin Language Reference – WORDFILL

Propeller Manual v1.0 · Page 335

WORDFILL
Fill words of main memory with a value.

((PUB ┆ PRI))
 WORDFILL (StartAddress, Value, Count)

• StartAddress is an expression indicating the location of the first word of memory to fill
with Value.

• Value is an expression indicating the value to fill words with.
• Count is an expression indicating the number of words to fill, starting with

StartAddress.

Explanation
WORDFILL is one of three commands (BYTEFILL, WORDFILL, and LONGFILL) used to fill blocks of
main memory with a specific value. WORDFILL fills Count words of main memory with Value,
starting at location StartAddress.

Using WORDFILL
WORDFILL is a great way to clear large blocks of word-sized memory. For example:

VAR
 word Buff[100]

PUB Main
 wordfill(@Buff, 0, 100) 'Clear Buff to 0

The first line of the Main method, above, clears the entire 100-word (200-byte) Buff array to
all zeros. WORDFILL is faster at this task than a dedicated REPEAT loop is.

WORDMOVE – Spin Language Reference

Page 336 · Propeller Manual v1.0

WORDMOVE
Copy words from one region to another in main memory.

((PUB ┆ PRI))
 WORDMOVE (DestAddress, SrcAddress, Count)

• DestAddress is an expression specifying the main memory location to copy the first
word of source to.

• SrcAddress is an expression specifying the main memory location of the first word of
source to copy.

• Count is an expression indicating the number of words of the source to copy to the
destination.

Explanation
WORDMOVE is one of three commands (BYTEMOVE, WORDMOVE, and LONGMOVE) used to copy blocks
of main memory from one area to another. WORDMOVE copies Count words of main memory
starting from SrcAddress to main memory starting at DestAddress.

Using WORDMOVE
WORDMOVE is a great way to copy large blocks of word-sized memory. For example:

VAR
 word Buff1[100]
 word Buff2[100]

PUB Main
 wordmove(@Buff2, @Buff1, 100) 'Copy Buff1 to Buff2

The first line of the Main method, above, copies the entire 100-word (200-byte) Buff1 array to
the Buff2 array. WORDMOVE is faster at this task than a dedicated REPEAT loop.

4: Spin Language Reference – _XINFREQ

Propeller Manual v1.0 · Page 337

_XINFREQ
Pre-defined, one-time settable constant for specifying the external crystal frequency.

CON
 _XINFREQ = Expression

• Expression is an integer expression that indicates the external crystal frequency; the
frequency on the XI pin. This value is used for application start-up.

Explanation
_XINFREQ specifies the external crystal frequency, which is used along with the clock mode to
determine the System Clock frequency at start-up. It is a pre-defined constant symbol whose
value is determined by the top object file of an application. _XINFREQ is either set directly by
the application itself, or is set indirectly as the result of the _CLKMODE and _CLKFREQ settings.

The top object file in an application (the one where compilation starts from) can specify a
setting for _XINFREQ in its CON block. This, along with the clock mode, defines the frequency
that the System Clock will switch to as soon as the application is booted up and execution
begins.

The application can specify either _XINFREQ or _CLKFREQ in the CON block; they are mutually
exclusive and the non-specified one is automatically calculated and set as a result of
specifying the other.

The following examples assume that they are contained within the top object file. Any
_XINFREQ settings in child objects are simply ignored by the compiler.

For example:

CON
 _CLKMODE = XTAL1 + PLL8X
 _XINFREQ = 4_000_000

The first declaration in the above CON block sets the clock mode for an external low-speed
crystal and a Clock PLL multiplier of 8. The second declaration indicates the external crystal
frequency is 4 MHz, which means the System Clock’s frequency will be 32 MHz because 4
MHz * 8 = 32 MHz. The _CLKFREQ value is automatically set to 32 MHz because of these
declarations.

_XINFREQ – Spin Language Reference

Page 338 · Propeller Manual v1.0

CON
 _CLKMODE = XTAL2
 _XINFREQ = 10_000_000

These two declarations set the clock mode for an external medium-speed crystal, no Clock
PLL multiplier, and an external crystal frequency of 10 MHz. The _CLKFREQ value, and thus
the System Clock frequency, is automatically set to 10 MHz, as well, because of these
declarations.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 339

Chapter 5: Assembly Language Reference
This chapter describes all elements of the Propeller chip’s Assembly language and is best
used as a reference for individual elements of the assembly language. Many instructions have
corresponding Spin commands so referring to the Spin Language Reference is recommended
for further information.

The Assembly Language Reference is divided into two main sections:

1) The Structure of Propeller Assembly. Propeller Assembly code is an optional part of
Propeller Objects. This section describes the general structure of Propeller Assembly
code and how it fits within objects.

2) The Categorical Listing of the Propeller Assembly Language. All elements, including
operators, are grouped by related function. This is a great way to quickly realize the
breadth of the language and what features are available for specific uses. Each listed
element has a page reference for more information. Some elements are marked with a
superscript “s” indicating that they are also available in Propeller Spin, though syntax
may vary. Such marked elements are also included in Chapter 4: Spin Language
Reference.

3) The Assembly Language Elements. All instructions are listed in a Master Table at the
start, and most elements have their own dedicated sub-section, alphabetically arranged to
ease searching for them. Those individual elements without a dedicated sub-section, such
as Operators, are grouped within other related sub-sections but can be easily located by
following their page references from the Categorical Listing.

The Structure of Propeller Assembly
Every Propeller Object consists of Spin code plus optional assembly code and data. An
object’s Spin code provides it with structure, consisting of special-purpose blocks. Data and
Propeller Assembly code, if included, are located in the special-purpose block called DAT
(data block). See DAT, page 208.

Spin code is executed by a cog running the Spin Interpreter, however, Propeller Assembly
code is executed by a cog in its pure form. Because of this nature, Propeller Assembly code
and any data belonging to it must be loaded (in its entirety) into a cog in order to execute it.
In this way, both Propeller Assembly code and data are treated the same during the cog

Assembly Language Reference

Page 340 · Propeller Manual v1.0

loading process. The following example shows an object whose Spin code in the Main
method launches another cog to run the Propeller Assembly routine Toggle.

{{ AssemblyToggle.spin }}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB Main
{Launch cog to toggle P16 endlessly}

 cognew(@Toggle, 0) 'Launch new cog

DAT
{Toggle P16}
 ORG 0 'Begin at Cog RAM addr 0
Toggle mov dira, Pin 'Set Pin to output
 mov Time, cnt 'Calculate delay time
 add Time, #9 'Set minimum delay here
:loop waitcnt Time, Delay 'Wait
 xor outa, Pin 'Toggle Pin
 jmp #:loop 'Loop endlessly

Pin long |< 16 'Pin number
Delay long 6_000_000 'Clock cycles to delay
Time res 1 'System Counter Workspace

Both assembly and data may be intermixed within the DAT block but care should be taken to
arrange it such that all critical elements are loaded into the cog in the proper order for
execution. The COGNEW and COGINIT commands, when used to launch Propeller Assembly
code, cause the cog to be loaded with 496 consecutive long values starting from the specified
address. Whether or not it is required by the code, any data intermixed with this 496 longs of
space will be loaded as well.

Each Propeller assembly instruction has common syntax elements consisting of an optional
label, optional condition, instruction, and optional effects. See Common Syntax Elements,
page 348, for more information.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 341

Categorical Listing of Propeller Assembly Language

Directives
ORG Adjust compile-time cog address pointer; p 392.
FIT Validate that previous instructions/data fit entirely in cog; p 372.
RES Reserve next long(s) for symbol; p 397.

Configuration
CLKSETs Set clock mode at run time; p 361.

Cog Control
COGIDs Get current cog’s ID; p 365.
COGINITs Start, or restart, a cog by ID; p 366.
COGSTOPs Stop a cog by ID; p 367.

Process Control
LOCKNEWs Check out a new lock; p 376.
LOCKRETs Return a lock; p 376.
LOCKCLRs Clear a lock by ID; p 375.
LOCKSETs Set a lock by ID; p 377.
WAITCNTs Pause execution temporarily; p 411.
WAITPEQs Pause execution until pin(s) match designated state(s); p 412.
WAITPNEs Pause execution until pin(s) do not match designated state(s); p 413.
WAITVIDs Pause execution until Video Generator is available for pixel data; p 414.

Conditions
IF_ALWAYS Always; p 369.
IF_NEVER Never; p 369.
IF_E If equal (Z = 1); p 369.
IF_NE If not equal (Z = 0); p 369.
IF_A If above (!C & !Z = 1); p 369.

Assembly Language Reference

Page 342 · Propeller Manual v1.0

IF_B If below (C = 1); p 369.
IF_AE If above or equal (C = 0); p 369.
IF_BE If below or equal (C | Z = 1); p 369.
IF_C If C set; p 369.
IF_NC If C clear; p 369.
IF_Z If Z set; p369.
IF_NZ If Z clear; p 369.
IF_C_EQ_Z If C equal to Z; p 369.
IF_C_NE_Z If C not equal to Z; p 369.
IF_C_AND_Z If C set and Z set; p 369.
IF_C_AND_NZ If C set and Z clear; p 369.
IF_NC_AND_Z If C clear and Z set; p 369.
IF_NC_AND_NZ If C clear and Z clear; p 369.
IF_C_OR_Z If C set or Z set; p 369.
IF_C_OR_NZ If C set or Z clear; p 369.
IF_NC_OR_Z If C clear or Z set; p 369.
IF_NC_OR_NZ If C clear or Z clear; p 369.
IF_Z_EQ_C If Z equal to C; p 369.
IF_Z_NE_C If Z not equal to C; p 369.
IF_Z_AND_C If Z set and C set; p 369.
IF_Z_AND_NC If Z set and C clear; p 369.
IF_NZ_AND_C If Z clear and C set; p 369.
IF_NZ_AND_NC If Z clear and C clear; p 369.
IF_Z_OR_C If Z set or C set; p 369.
IF_Z_OR_NC If Z set or C clear; p 369.
IF_NZ_OR_C If Z clear or C set; p 369.
IF_NZ_OR_NC If Z clear or C clear; p 369.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 343

Flow Control
CALL Jump to address with intention to return to next instruction; p 360.
DJNZ Decrement value and jump to address if not zero; p 370.
JMP Jump to address unconditionally; p 374.
JMPRET Jump to address with intention to “return” to another address; p 374.
TJNZ Test value and jump to address if not zero; p 409.
TJZ Test value and jump to address if zero; p 410.
RET Return to stored address; p 399.

Effects
NR No result (don’t write result); p 371.
WR Write result; p 371.
WC Write C status; p 371.
WZ Write Z status; p 371.

Main Memory Access
RDBYTE Read byte of main memory; p 394.
RDWORD Read word of main memory; p 396.
RDLONG Read long of main memory; p 395.
WRBYTE Write a byte to main memory; p 414.
WRWORD Write a word to main memory; p 416.
WRLONG Write a long to main memory; p 415.

Common Operations
ABS Get absolute value of a number; p 353.
ABSNEG Get negative of number’s absolute value; p 354.
NEG Get negative of a number; p 386.
NEGC Get a value, or its additive inverse, based on C; p 386.
NEGNC Get a value or its additive inverse, based on !C; p 387.
NEGZ Get a value, or its additive inverse, based on Z; p 389.

Assembly Language Reference

Page 344 · Propeller Manual v1.0

NEGNZ Get a value, or its additive inverse, based on !Z; p 388.
MIN Limit minimum of unsigned value to another unsigned value; p 379.
MINS Limit minimum of signed value to another signed value; p 380.
MAX Limit maximum of unsigned value to another unsigned value; p 378.
MAXS Limit maximum of signed value to another signed value; p 378.
ADD Add two unsigned values; p 354.
ADDABS Add absolute value to another value; p 355.
ADDS Add two signed values; p 356.
ADDX Add two unsigned values plus C; p 357.
ADDSX Add two signed values plus C; p 356.
SUB Subtract two unsigned values; p 403.
SUBABS Subtract an absolute value from another value; p 404.
SUBS Subtract two signed values; p 404.
SUBX Subtract unsigned value plus C from another unsigned value; p 406.
SUBSX Subtract signed value plus C from another signed value; p 405.
SUMC Sum signed value with another of C-affected sign; p 406.
SUMNC Sum signed vaule with another of !C-affected sign; p 407.
SUMZ Sum signed value with another Z-affected sign; p 408.
SUMNZ Sum signed value with another of !Z-afected sign; p 408.
MUL <reserved for future use>
MULS <reserved for future use>
AND Bitwise AND two values; p 358.
ANDN Bitwise AND value with NOT of another; p 359.
OR Bitwise OR two values; p 392.
XOR Bitwise XOR two values; p 417.
ONES <reserved for future use>
ENC <reserved for future use>
RCL Rotate C left into value by specified number of bits; p 393.
RCR Rotate C right into value by specified number of bits; p 394.
REV Reverse LSBs of value and zero-extend; p 399.
ROL Rotate value left by specified number of bits; p 400.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 345

ROR Rotate value right by specified number of bits; p 400.
SHL Shift value left by specified number of bits; p 402.
SHR Shift value right by specified number of bits; p 402.
SAR Shift value arithmetically right by specified number of bits; p 401.
CMP Compare two unsigned values; p 362.
CMPS Compare two signed values; p 362.
CMPX Compare two unsigned values plus C; p 364.
CMPSX Compare two signed values plus C; p 364.
CMPSUB Compare unsigned values, subtract second if lesser or equal; p 363.
TEST Bitwise AND two values to affect flags only; p 409.
MOV Set a register to a value; p 380.
MOVS Set a register’s source field to a value; p 382.
MOVD Set a register’s destination field to a value; p 381.
MOVI Set a register’s instruction field to a value; p 381.
MUXC Set discrete bits of a value to the state of C; p 383.
MUXNC Set discrete bits of a value to the state of !C; p 384.
MUXZ Set discrete bits of a value to the state of Z; p 385.
MUXNZ Set discrete bits of a value to the state of !Z; p 384.
HUBOP Perform a hub operation; p 373.
NOP No operation, just elapse four cycles; p 389.

Registers
DIRAs Direction Register for 32-bit port A; p 397.
DIRBs Direction Register for 32-bit port B (future use); p 397.
INAs Input Register for 32-bit port A (read only); p 397.
INBs Input Register for 32-bit port B (read only) (future use); p 397.
OUTAs Output Register for 32-bit port A; p 397.
OUTBs Output Register for 32-bit port B (future use); p 397.
CNTs 32-bit System Counter Register (read only); p 397.
CTRAs Counter A Control Register; p 397.
CTRBs Counter B Control Register; p 397.

Assembly Language Reference

Page 346 · Propeller Manual v1.0

FRQAs Counter A Frequency Register; p 397.
FRQBs Counter B Frequency Register; p 397.
PHSAs Counter A Phase Lock Loop (PLL) Register; p 397.
PHSBs Counter B Phase Lock Loop (PLL) Register; p 397.
VCFGs Video Configuration Register; p 397.
VSCLs Video Scale Register; p 397.
PARs Cog Boot Parameter Register (read only); p 397.

Constants
NOTE: Refer to Constants (pre-defined) in Chapter 4: Spin Language Reference.
TRUEs Logical true: -1 ($FFFFFFFF); p 202.
FALSEs Logical false: 0 ($00000000); p 202.
POSXs Maximum positive integer: 2,147,483,647 ($7FFFFFFF); p 203.
NEGXs Maximum negative integer: -2,147,483,648 ($80000000); p 203.
PIs Floating-point value for PI: ~3.141593 ($40490FDB); p 203.

Unary Operators
NOTE: All operators shown are constant-expression operators.
+ Positive (+X) unary form of Add; p 391.
- Negate (−X); unary form of Subtract; p 391.
^^ Square root; p 391.
|| Absolute Value; p 391.
|< Decode value (0-31) into single-high-bit long; p 391.
>| Encode long into value (0 - 32) as high-bit priority; p 391.
! Bitwise: NOT; p 391.
@ Address of symbol; p 391.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 347

Binary Operators
NOTE: All operators shown are constant expression operators.
+ Add; p 391.
- Subtract; p 391.
* Multiply and return lower 32 bits (signed); p 391.
** Multiply and return upper 32 bits (signed); p 391.
/ Divide and return quotient (signed); p 391.
// Divide and return remainder (signed); p 391.
#> Limit minimum (signed); p 391.
<# Limit maximum (signed); p 391.
~> Shift arithmetic right; p 391.
<< Bitwise: Shift left; p 391.
>> Bitwise: Shift right; p 391.
<- Bitwise: Rotate left; p 391.
-> Bitwise: Rotate right; p 391.
>< Bitwise: Reverse; p 391.
& Bitwise: AND; p 391.
| Bitwise: OR; p 391.
^ Bitwise: XOR; p 391.
AND Boolean: AND (promotes non-0 to -1); p 391.
OR Boolean: OR (promotes non-0 to -1); p 391.
= = Boolean: Is equal; p 391.
<> Boolean: Is not equal; p 391.
< Boolean: Is less than (signed); p 391.
> Boolean: Is greater than (signed); p 391.
=< Boolean: Is equal or less (signed); p 391.
=> Boolean: Is equal or greater (signed); p 391.

Assembly Language Reference

Page 348 · Propeller Manual v1.0

Assembly Language Elements

Syntax Definitions
In addition to detailed descriptions, the following pages contain syntax definitions for many
elements that describe, in short terms, all the options of that element. The syntax definitions
use special symbols to indicate when and how certain element features are to be used.

BOLDCAPS Items in bold uppercase should be typed in exactly as shown.

Bold Italics Items in bold italics should be replaced by user text; symbols,
operators, expressions, etc.

. : , # Periods, colons, commas, and pound signs should be typed in where
shown.

〈 〉 Angle bracket symbols enclose optional items. Enter the enclosed
item if desired. Do not enter the angle brackets.

Double line Separates instruction from the result value.

Common Syntax Elements
When reading the syntax definitions in this chapter, keep in mind that all Propeller Assembly
instructions have three common, optional elements; a label, a condition, and effects. Each
Propeller Assembly instruction has the following basic syntax:

〈Label〉 〈Condition〉 Instruction 〈Effects〉

• Label is an optional statement label. Label can be global (starting with an underscore
‘_’ or a letter) or can be local (starting with a colon ‘:’). Local Labels must be
separated from other same-named local labels by at least one global label. Label is
used by instructions like JMP, CALL and COGINIT to designate the target destination.

• Condition is an optional execution condition (IF_C, IF_Z, etc.) that causes Instruction
to be executed or not. See Conditions on page 368 for more information.

• Instruction is a Propeller Assembly instruction (MOV, ADD, COGINIT, etc.) and its
operands.

• Effects is an optional list of one to three execution effects (WZ, WC, WR, and NR) to apply
to the instruction, if executed. They cause the Instruction to modify the Z flag, C
flag, and to write, or not write, the instruction’s result value to the destination
register, respectively. See Effects on page 371 for more information.

5: Assembly Language Reference

Propeller Manual v1.0 · Page 349

Since every instruction can include these three optional fields (Label, Condition, and Effects),
for simplicity those common fields are intentionally left out of the instruction’s syntax
description.

So, when you read a syntax description such as this:

WAITCNT Target, 〈#〉 Delta

...remember that the true syntax is this:

〈Label〉 〈Condition〉 WAITCNT Target, 〈#〉 Delta 〈Effects〉

This rule applies only to Propeller Assembly instructions; it does not apply to Propeller
Assembly directives.

Many syntax definitions end with a table similar to the one below. This table lists the
instruction’s 32-bit opcode, outputs and number of clock cycles. The opcode consists of the
instruction bits (–INSTR–), the “effect” status for the Z flag, C flag, result and
indirect/immediate status (ZCRI), the conditional execution bits (–CON–), and the destination
and source bits (–DEST- and –SRC–). The meaning of the Z and C flags, if any, is shown in the
Z Result and C Result fields; indicating the meaning of a 1 in those flags. The Result field shows
the instruction’s default behavior for writing or not writing the instruction’s result value. The
Clocks field shows the number of clocks the instruction requires for execution.

0 1 Zeros (0) and ones (1) mean binary 0 and 1.
i Lower case “i” denotes a bit that is affected by immediate status.
d s Lower case “d” and “s” indicate destination and source bits.
? Question marks denote bits that are dynamically set by the compiler.
--- Hyphens indicate items that are not applicable or not important.
.. Double-periods represent a range of contiguous values.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22

Propeller Assembly Instruction Master Table
A master table for all Propeller Assembly instructions is provided on the next two pages. In
this table, D and S refer to the instructions’ destination and source fields, also known as
d-field and s-field, respectively. For entries with asterisks in the Clocks column, be sure to
read the Notes for Master Table on page 352.

Assembly Language Reference

Page 350 · Propeller Manual v1.0

 Instruction -INSTR- ZCRI -CON- -DEST- -SRC- Z Result C Result Result Clocks
ABS D, S 101010 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
ABSNEG D, S 101011 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
ADD D, S 100000 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 4
ADDABS D, S 100010 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 4
ADDS D, S 110100 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4
ADDSX D, S 110110 001i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Overflow Written 4
ADDX D, S 110010 001i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Carry Written 4
AND D, S 011000 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
ANDN D, S 011001 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
CALL #S 010111 0011 1111 ????????? sssssssss Result = 0 --- Written 4
CLKSET D 000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22 *
CMP D, S 100001 000i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Not Written 4
CMPS D, S 110000 000i 1111 ddddddddd sssssssss Result = 0 Signed Borrow Not Written 4
CMPSUB D, S 111000 000i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Not Written 4
CMPSX D, S 110001 000i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Borrow Not Written 4
CMPX D, S 110011 000i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Borrow Not Written 4
COGID D 000011 0011 1111 ddddddddd ------001 Result = 0 --- Written 7..22 *
COGINIT D 000011 0001 1111 ddddddddd ------010 Result = 0 No Cog Free Not Written 7..22 *
COGSTOP D 000011 0001 1111 ddddddddd ------011 --- --- Not Written 7..22 *
DJNZ D, S 111001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4 or 8 **
HUBOP D, S 000011 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 7..22 *
JMP S 010111 000i 1111 --------- sssssssss Result = 0 --- Not Written 4
JMPRET D, S 010111 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
LOCKCLR D 000011 0001 1111 ddddddddd ------111 --- Prior Lock State Not Written 7..22 *
LOCKNEW D 000011 0011 1111 ddddddddd ------100 Result = 0 No Lock Free Written 7..22 *
LOCKRET D 000011 0001 1111 ddddddddd ------101 --- --- Not Written 7..22 *
LOCKSET D 000011 0001 1111 ddddddddd ------110 --- Prior Lock State Not Written 7..22 *
MAX D, S 010011 001i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Written 4
MAXS D, S 010001 001i 1111 ddddddddd sssssssss D = S Signed (D < S) Written 4
MIN D, S 010010 001i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Written 4
MINS D, S 010000 001i 1111 ddddddddd sssssssss D = S Signed (D < S) Written 4
MOV D, S 101000 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
MOVD D, S 010101 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MOVI D, S 010110 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MOVS D, S 010100 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4
MUXC D, S 011100 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXNC D, S 011101 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXNZ D, S 011111 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
MUXZ D, S 011110 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

5: Assembly Language Reference

Propeller Manual v1.0 · Page 351

 Instruction -INSTR- ZCRI -CON- -DEST- -SRC- Z Result C Result Result Clocks
NEG D, S 101001 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGC D, S 101100 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGNC D, S 101101 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGNZ D, S 101111 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NEGZ D, S 101110 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4
NOP ------ ---- 0000 --------- --------- --- --- --- 4
OR D, S 011010 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4
RDBYTE D, S 000000 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 *
RDLONG D, S 000010 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 *
RDWORD D, S 000001 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22 *
RCL D, S 001101 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
RCR D, S 001100 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
RET 010111 0001 1111 --------- --------- Result = 0 --- Not Written 4
REV D, S 001111 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
ROL D, S 001001 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
ROR D, S 001000 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SAR D, S 001110 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SHL D, S 001011 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4
SHR D, S 001010 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4
SUB D, S 100001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4
SUBABS D, S 100011 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4
SUBS D, S 110101 001i 1111 ddddddddd sssssssss Result = 0 Signed Underflow Written 4
SUBSX D, S 110111 001i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Underflow Written 4
SUBX D, S 110011 001i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Borrow Written 4
SUMC D, S 100100 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4
SUMNC D, S 100101 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4
SUMNZ D, S 100111 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4
SUMZ D, S 100110 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4
TEST D, S 011000 000i 1111 ddddddddd sssssssss Result = 0 Parity of Result Not Written 4
TJNZ D, S 111010 000i 1111 ddddddddd sssssssss Result = 0 0 Not Written 4 or 8 **
TJZ D, S 111011 000i 1111 ddddddddd sssssssss Result = 0 0 Not Written 4 or 8 **
WAITCNT D, S 111110 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 5+
WAITPEQ D, S 111100 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WAITPNE D, S 111101 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WAITVID D, S 111111 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+
WRBYTE D, S 000000 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 *
WRLONG D, S 000010 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 *
WRWORD D, S 000001 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22 *
XOR D, S 011011 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Assembly Language Reference

Page 352 · Propeller Manual v1.0

Notes for Master Table

*Clock Cycles for Hub Instructions
Hub instructions require 7 to 22 clock cycles to execute depending on the relation between
the cog’s hub access window and the instruction’s moment of execution. The Hub provides a
“hub access window” to each cog every 16 clocks. Because each cog runs independently of
the hub, it must sync to the hub when executing a hub instruction. The first hub instruction in
a sequence will take from 0 to 15 clocks to sync up to the hub access window, and 7 clocks
afterwards to execute; thus the 7 to 22 (15 + 7) clock cycles to execute. After the first hub
instruction, there will be 9 (16 – 7) free clocks before a subsequent hub access window
arrives for that cog; enough time to execute two 4-clock instructions without missing the next
hub access window. To minimize clock waste, you can insert two normal instructions
between any two otherwise-contiguous hub instructions without any increase in execution
time. Beware that hub instructions can cause execution timing to appear indeterminate;
particularly the first hub instruction in a sequence.

** Clock Cycles for Modify-Branch Instructions
Instructions that modify a value and possibly jump, based on the result, require a different
amount of clock cycles depending on whether or not a jump is required. These instructions
take 4 clock cycles if a jump is required and 8 clock cycles if no jump is required. Since
loops utilizing these instructions typically need to be fast, they are optimized in this way for
speed.

5: Assembly Language Reference – ABS

Propeller Manual v1.0 · Page 353

ABS
Instruction: Get the absolute value of a number.

ABS AValue, 〈#〉 SValue
Result: Absolute SValue is stored in AValue.

• AValue (d-field) is the register in which to write the absolute of SValue.
• SValue (s-field) is a register or a 9-bit literal whose absolute value will be written to

AValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101010 001i 1111 ddddddddd sssssssss Result = 0 SValue[31] Written 4

Explanation
ABS takes the absolute value of SValue and writes the result into AValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative, or cleared (0) if SValue is positive. The result is
written to AValue unless the NR effect is specified.

Literal SValues are zero-extended, so ABS is really best used with register SValues.

ABSNEG, ADD – Assembly Language Reference

Page 354 · Propeller Manual v1.0

ABSNEG
Instruction: Get the negative of a number’s absolute value.

ABSNEG NValue, 〈#〉 SValue
Result: Absolute negative of SValue is stored in NValue.

• NValue (d-field) is the register in which to write the negative of SValue’s absolute
value.

• SValue (s-field) is a register or a 9-bit literal whose absolute negative value will be
written to NValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101011 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Explanation
ABSNEG negates the absolute value of SValue and writes the result into NValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative, or cleared (0) if SValue is positive. The result is
written to NValue unless the NR effect is specified.

Literal SValues are zero-extended, so ABS is really best used with register SValues.

ADD
Instruction: Add two unsigned values.

ADD Value1, 〈#〉 Value2
Result: Sum of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to add to Value2 and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is added into Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100000 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 4

5: Assembly Language Reference – ADDABS

Propeller Manual v1.0 · Page 355

Explanation
ADD sums the two unsigned values of Value1 and Value2 together and stores the result into the
Value1 register.

If the WZ effect is specified, the Z flag is set (1) if Value1 + Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value1 unless the NR effect is specified.

ADDABS
Instruction: Add an absolute value to another value.

ADDABS Value, 〈#〉 SValue
Result: Sum of Value and absolute of signed SValue is stored in Value.

• Value (d-field) is the register containing the value to add to the absolute of SValue and
is the destination in which to write the result.

• SValue (s-field) is a register or a 9-bit literal whose absolute value is added into Value.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100010 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 4

Explanation
ADDABS sums Value and the absolute of SValue together and stores the result into the Value
register.

If the WZ effect is specified, the Z flag is set (1) if Value + |SValue| equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value unless the NR effect is specified.

ADDS, ADDSX – Assembly Language Reference

Page 356 · Propeller Manual v1.0

ADDS
Instruction: Add two signed values.

ADDS SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to add to SValue2 and is the
destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is added into SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110100 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4

Explanation
ADDS sums the two signed values of SValue1 and SValue2 together and stores the result into
the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 + SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

ADDSX
Instruction: Add two signed values plus C.

ADDSX SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and signed SValue2 plus C flag is stored in SValue1.

• SValue1 (d-field) is the register containing the value to add to SValue2 plus C, and is
the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value plus C is added into
SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110110 001i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Overflow Written 4

5: Assembly Language Reference – ADDX

Propeller Manual v1.0 · Page 357

Explanation
ADDSX (Add Signed, Extended) sums the two signed values of SValue1 and SValue2 plus C,
and stores the result into the SValue1 register. Use the ADDSX instruction after an ADD or ADDX
(with the WC, and optionally WZ, effect) to perform multi-long, signed additions; 64-bit
additions, for example.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and SValue1 +
SValue2 + C equals zero (use WC and WZ on preceding ADD or ADDX instruction). If the WC effect
is specified, the C flag is set (1) if the summation resulted in a signed overflow. The result is
written to SValue1 unless the NR effect is specified.

Note that in a multi-long signed operation, the first instruction is unsigned (ex: ADD), any
middle instructions are unsigned, extended (ex: ADDX), and the last instruction is signed,
extended (ex: ADDSX).

ADDX
Instruction: Add two unsigned values plus C.

ADDX Value1, 〈#〉 Value2
Result: Sum of unsigned Value1 and unsigned Value2 plus C flag is stored in Value1.

• Value1 (d-field) is the register containing the value to add to Value2 plus C, and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value plus C is added into Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110010 001i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Carry Written 4

Explanation
ADDX (Add Extended) sums the two unsigned values of Value1 and Value2 plus C, and stores
the result into the Value1 register. Use the ADDX instruction after an ADD or ADDX (with the WC,
and optionally WZ, effect) to perform multi-long additions; 64-bit additions, for example.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and Value1 + Value2 +
C equals zero (use WC and WZ on preceding ADD or ADDX instruction). If the WC effect is
specified, the C flag is set (1) if the summation resulted in an unsigned carry (32-bit
overflow). The result is written to Value1 unless the NR effect is specified.

AND – Assembly Language Reference

Page 358 · Propeller Manual v1.0

AND
Instruction: Bitwise AND two values.

AND Value1, 〈#〉 Value2
Result: Value1 AND Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise AND with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with
Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011000 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
AND (bitwise AND) performs a bitwise AND of the value in Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

5: Assembly Language Reference – ANDN

Propeller Manual v1.0 · Page 359

ANDN
Instruction: Bitwise AND a value with the NOT of another.

ANDN Value1, 〈#〉 Value2
Result: Value1 AND !Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise AND with !Value2 and
is the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is inverted (bitwise NOT)
and bitwise ANDed with Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011001 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
ANDN (bitwise AND NOT) performs a bitwise AND of the inverted value (bitwise NOT) of
Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND !Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

CALL – Assembly Language Reference

Page 360 · Propeller Manual v1.0

CALL
Instruction: Jump to address with intention to return to next instruction.

CALL #Address
Result: PC + 1 is written to the s-field of the register indicated by the d-field.

• Address (s-field) is the register or 9-bit literal whose value is the address to jump to.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 0011 1111 ????????? sssssssss Result = 0 --- Written 4

Explanation
CALL records the address of the next instruction (PC + 1) then jumps to Address. The routine
at Address should eventually execute a RET instruction to return to the recorded address (the
instruction following the CALL).

The Propeller does not use a call stack, so the return address is stored in a different manner; it
is recorded at the location of the routine’s RET command itself. For the CALL instruction, the
assembler searches for a label that is Address with “_ret” appended to it. It then encodes the
address of the label Address_ret into the CALL instruction as well as the Address you specified
to jump to. At run time, when executing the CALL instruction, the cog first stores the return
address (PC + 1) into the source field of the “RET” instruction at Address_ret and then jumps
to Address. See the example below:

 call Routine
 <other code here>

Routine <more code>
 .
 .
 .
Routine_ret ret

In this example, the first instruction is a call to Routine. The assembler searches for another
label called Routine_ret and encodes its address as well as Routine’s address into the CALL
instruction. At run time, when executing the CALL instruction, the cog first writes the address
of <other code here> into the source field of the instruction at Routine_ret, then jumps to

5: Assembly Language Reference – CLKSET

Propeller Manual v1.0 · Page 361

Routine. The RET instruction at Routine_ret essentially becomes a JMP instruction with a
destination of the <other code here> line.

CALL is a really a subset of the JMPRET instruction; in fact, it is the same opcode as JMPRET but
with the i-field set (since CALL uses an immediate value only) and the d-field set to the address
of a label named Address_ret.

The return address is written to the Address_ret register unless the NR effect is specified.

CLKSET
Instruction: Set the clock mode at run time.

CLKSET Mode

• Mode (d-field) is the register containing the 8-bit pattern to write to the CLK register.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------000 --- --- Not Written 7..22

Explanation
CLKSET changes the System Clock mode during run time. The CLKSET instruction behaves
similar to the Spin command of the same name (see CLKSET on page 183) except that it only
sets the clock mode, not the frequency.

After issuing a CLKSET instruction, it is important to update the System Clock Frequency
value by writing to its location in Main RAM (long 0): WRLONG freqaddr, #0. If the System
Clock Frequency value is not updated, other objects will misbehave due to invalid clock
frequency data.

CLKSET is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

CMP, CMPS – Assembly Language Reference

Page 362 · Propeller Manual v1.0

CMP
Instruction: Compare two unsigned values.

CMP Value1, 〈#〉 Value2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to compare with that of Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is compared with Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100001 000i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Not Written 4

Explanation
CMP (Compare Unsigned) compares the unsigned values of Value1 and Value2. The Z and C
flags, if written, indicate the relative equal, and greater or lesser relationship between the two.

If the WZ effect is specified, the Z flag is set (1) if Value1 equals Value2. If the WC effect is
specified, the C flag is set (1) if Value1 is less than Value2.

CMPS
Instruction: Compare two signed values.

CMPS SValue1, 〈#〉 SValue2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• SValue1 (d-field) is the register containing the value to compare with that of SValue2.
• SValue2 (s-field) is a register or a 9-bit literal whose value is compared with SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110000 000i 1111 ddddddddd sssssssss Result = 0 Signed Borrow Not Written 4

Explanation
CMPS (Compare Signed) compares the signed values of SValue1 and SValue2. The Z and C
flags, if written, indicate the relative equal, and greater or lesser relationship between the two.

5: Assembly Language Reference – CMPSUB

Propeller Manual v1.0 · Page 363

If the WZ effect is specified, the Z flag is set (1) if SValue1 equals SValue2. If the WC effect is
specified, the C flag is set (1) if SValue1 is less than or equal to SValue2.

CMPSUB
Instruction: Compare two unsigned values and subtract the second if it is lesser or equal.

CMPSUB Value1, 〈#〉 Value2
Result: Optionally, Value1 = Value1 – Value2, and Z and C flags = comparison results.

• Value1 (d-field) is the register containing the value to compare with that of Value2 and
is the destination in which to write the result if a subtraction is performed.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared with and
possibly subtracted from Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111000 000i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Not Written 4

Explanation
CMPSUB compares the unsigned values of Value1 and Value2, and if Value2 is equal to or
greater than Value1 then it is subtracted from Value1 (if the WR effect is specified). The Z and
C flags, if written, indicate the relative equal, and greater or lesser relationship between the
two.

If the WZ effect is specified, the Z flag is set (1) if Value1 equals Value2. If the WC effect is
specified, the C flag is set (1) if Value1 is equal to or greater than Value2. If the WR effect is
specified, the result, if any, is written to Value1.

CMPSX, CMPX – Assembly Language Reference

Page 364 · Propeller Manual v1.0

CMPSX
Instruction: Compare two signed values plus C.

CMPSX SValue1, 〈#〉 SValue2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• SValue1 (d-field) is the register containing the value to compare with that of SValue2.
• SValue2 (s-field) is a register or a 9-bit literal whose value is compared with SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110001 000i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Borrow Not Written 4

Explanation
CMPSX (Compare Signed, Extended) compares the signed values of SValue1 and SValue2 plus
C. Use the CMPSX instruction after a CMP or CMPX (with the WC, and optionally WZ, effect) to
perform multi-long, signed comparisons; 64-bit signed comparisons, for example. The Z and
C flags, if written, indicate the relative equal, and greater or lesser relationship between the
two.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and SValue1 equals
SValue2 + C (use WC and WZ on preceding CMP or CMPX instruction). If the WC effect is
specified, the C flag is set (1) if SValue1 is less than SValue2 (as multi-long values).

Note that in a multi-long signed operation, the first instruction is unsigned (ex: CMP), any
middle instructions are unsigned, extended (ex: CMPX), and the last instruction is signed,
extended (ex: CMPSX).

CMPX
Instruction: Compare two unsigned values plus C.

CMPX Value1, 〈#〉 Value2
Result: Optionally, equality and greater/lesser status is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to compare with that of Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is compared with Value1.

5: Assembly Language Reference – COGID

Propeller Manual v1.0 · Page 365

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110011 000i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Borrow Not Written 4

Explanation
CMPX (Compare Extended) compares the unsigned values of Value1 and Value2 plus C. Use
the CMPX instruction after a CMP or CMPX (with the WC, and optionally WZ, effect) to perform
multi-long comparisons; 64-bit unsigned comparisons, for example. The Z and C flags, if
written, indicate the relative equal, and greater or lesser relationship between the two.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and Value1 equals
Value2 + C (use WC and WZ on preceding CMP or CMPX instruction). If the WC effect is specified,
the C flag is set (1) if Value1 is less than Value2 (as multi-long values).

COGID
Instruction: Get current cog’s ID.

COGID Destination
Result: The current cog’s ID (0-7) is written to Destination.

• Destination (d-field) is the register to write the cog’s ID into.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0011 1111 ddddddddd ------001 Result = 0 --- Written 7..22

Explanation
COGID returns the ID of the cog that executed the command. The COGID instruction behaves
similar to the Spin command of the same name; see COGID on page 186.

If the WZ effect is specified, the Z flag is set if the cog ID is zero. The result is written to
Destination unless the NR effect is specified.

COGID is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

COGINIT – Assembly Language Reference

Page 366 · Propeller Manual v1.0

COGINIT
Instruction: Start or restart a cog, optionally by ID, to run Propeller Assembly or Spin code.

COGINIT Destination
Result: Optionally, the started/restarted cog’s ID (0-7) is written to Destination.

• Destination (d-field) is the register containing startup information for the target cog
and optionally becomes the destination of the started cog’s ID if a new cog is started.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------010 Result = 0 No Cog Free Not Written 7..22

Explanation
The COGINIT instruction behaves similar to two Spin commands, COGNEW and COGINIT, put
together. Propeller Assembly’s COGINIT instruction can be used to start a new cog or restart
an active cog. The Destination register has four fields that determine which cog is started,
where its program begins in main memory, and what its PAR register will contain. The table
below describes these fields.

Table 5-1: Destination Register Fields
31:18 17:4 3 2:0

14-bit Long address for PAR Register 14-bit Long address of code to load New Cog ID

The first field, bits 31:18, will be written to the started cog’s PAR register bits 15:2. This is
14-bits total that are intended to be the upper bits of a 16-bit long address. Similar to the
Parameter field of Spin’s version of COGINIT, this first field of Destination is used to pass the
14-bit address of an agreed-upon memory location or structure to the started cog.

The second field, bits 17:4, holds the upper 14-bits of a 16-bit long address pointing to the
desired assembly program to load into the cog. Cog registers $000 through $1EF will be
loaded sequentially starting at this address, the special purpose registers will be cleared to
zero (0), and the cog will start executing the code at register $000.

The third field, bit 3, should be set (1) if a new cog should be started, or cleared (0) if a
specific cog should be started or restarted.

5: Assembly Language Reference – COGSTOP

Propeller Manual v1.0 · Page 367

If the third field bit is set (1), the Hub will start the next available (lowest-numbered inactive)
cog and return that cog’s ID in Destination (if the WR effect is specified).

If the third field bit is clear (0), the Hub will start or restart the cog identified by Destination’s
fourth field, bits 2:0.

If the WZ effect is specified, the Z flag will be set (1) if the cog ID returned is 0. If the WC
effect is specified, the C flag will be set (1) if no cog was available. If the WR effect is
specified, Destination is written with the ID of the cog that the hub started, or would have
started, if you let it pick one.

Make sure to follow the COGINIT instruction with WC, WZ, and/or WR if you wish the flags or
Destination to be updated with the results.

It is not practical to launch Spin code from user’s Propeller Assembly code; we recommend
launching only assembly code with this instruction.

COGINIT is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

COGSTOP
Instruction: Start a cog by its ID.

COGSTOP CogID

• CogID (d-field) is the register containing the ID (0 – 7) of the cog to stop.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------011 --- --- Not Written 7..22

Explanation
The COGSTOP instruction stops a cog whose ID is in the register CogID; placing that cog into a
dormant state. In the dormant state, the cog ceases to receive System Clock pulses so that
power consumption is greatly reduced.

COGSTOP is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

Conditions – Assembly Language Reference

Page 368 · Propeller Manual v1.0

Conditions (IF_x)
Every Propeller Assembly instruction has an optional “condition” field that is used to
dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

〈Label〉 〈Condition〉 Instruction 〈Effects〉

The optional Condition field can contain one of 32 conditions (see Table 5-2) and defaults to
IF_ALWAYS when no condition is specified. The 4-bit Value shown for each condition is the
value used for the –CON– field in the instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field, makes Propeller
Assembly very powerful. Flags can be affected at will and later instructions can be
conditionally executed based on the results. Here’s an example:

 test _pins, #$20 wc
 and _pins, #$38
 shl t1, _pins
 shr _pins, #3
 movd vcfg, _pins
 if_nc mov dira, t1
 if_nc mov dirb, #0
 if_c mov dira, #0
 if_c mov dirb, t1

The first instruction, test _pins, #$20 wc, performs its operation and adjusts the state of
the C flag because the WC effect was specified. The next four instructions perform operations
that could affect the C flag, but they do not affect it because no WC effect was specified. This
means that the state of the C flag is preserved since it was last modified by the first
instruction. The last four instructions are conditionally executed based on the state of the C
flag that was set five instructions prior. Among the last for instructions, the first two mov
instructions have if_nc conditions, causing them to execute only “if not C” (if C = 0). The
last two mov instructions have if_c conditions, causing them to execute only “if C” (if C = 1).
In this case, the two pairs of mov instructions are executed in a mutually-exclusive fashion.

When an instruction’s condition evaluates to FALSE, the instruction dynamically becomes a
NOP, elapsing 4 clock cycles but affecting no flags or registers. This makes multi-decision
code such as this example very deterministically timed.

5: Assembly Language Reference – Conditions

Propeller Manual v1.0 · Page 369

Table 5-2: Conditions
Condition Instruction Executes Value Synonyms

IF_ALWAYS always 1111

IF_NEVER never 0000

IF_E if equal (Z = 1) 1010 IF_Z

IF_NE if not equal (Z = 0) 0101 IF_NZ

IF_A if above (!C & !Z = 1) 0001 IF_NC_AND_NZ –and– IF_NZ_AND_NC
IF_B if below (C = 1) 1100 IF_C

IF_AE if above or equal (C = 0) 0011 IF_NC

IF_BE if below or equal (C | Z = 1) 1110 IF_C_OR_Z –and– IF_Z_OR_C
IF_C if C set 1100 IF_B

IF_NC if C clear 0011 IF_AE

IF_Z if Z set 1010 IF_E

IF_NZ if Z clear 0101 IF_NE

IF_C_EQ_Z if C equal to Z 1001 IF_Z_EQ_C

IF_C_NE_Z if C not equal to Z 0110 IF_Z_NE_C

IF_C_AND_Z if C set and Z set 1000 IF_Z_AND_C

IF_C_AND_NZ if C set and Z clear 0100 IF_NZ_AND_C

IF_NC_AND_Z if C clear and Z set 0010 IF_Z_AND_NC

IF_NC_AND_NZ if C clear and Z clear 0001 IF_A –and– IF_NZ_AND_NC
IF_C_OR_Z if C set or Z set 1110 IF_BE –and– IF_Z_OR_C
IF_C_OR_NZ if C set or Z clear 1101 IF_NZ_OR_C

IF_NC_OR_Z if C clear or Z set 1011 IF_Z_OR_NC

IF_NC_OR_NZ if C clear or Z clear 0111 IF_NZ_OR_NC

IF_Z_EQ_C if Z equal to C 1001 IF_C_EQ_Z

IF_Z_NE_C if Z not equal to C 0110 IF_C_NE_Z

IF_Z_AND_C if Z set and C set 1000 IF_C_AND_Z

IF_Z_AND_NC if Z set and C clear 0010 IF_NC_AND_Z

IF_NZ_AND_C if Z clear and C set 0100 IF_C_AND_NZ

IF_NZ_AND_NC if Z clear and C clear 0001 IF_A –and– IF_NC_AND_NZ
IF_Z_OR_C if Z set or C set 1110 IF_BE –and– IF_C_OR_Z
IF_Z_OR_NC if Z set or C clear 1011 IF_NC_OR_Z

IF_NZ_OR_C if Z clear or C set 1101 IF_C_OR_NZ

IF_NZ_OR_NC if Z clear or C clear 0111 IF_NC_OR_NZ

DJNZ – Assembly Language Reference

Page 370 · Propeller Manual v1.0

DJNZ
Instruction: Decrement value and jump to address if not zero.

DJNZ Value, 〈#〉 Address
Result: Value-1 is written to Value.

• Value (d-field) is the register to decrement and test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when the decremented Value is not zero.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4 or 8

Explanation
DJNZ decrements the Value register and jumps to Address if the result is not zero.

When the WZ effect is specified, the Z flag is set (1) if the decremented Value is zero. When
the WC effect is specified, the C flag is set (1) if the decrement results in an underflow. The
decremented result is written to Value unless the NR effect is specified.

DJNZ requires a different amount of clock cycles depending on whether or not it has to jump.
If it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles. Since loops
utilizing DJNZ need to be fast, it is optimized in this way for speed.

5: Assembly Language Reference – Effects

Propeller Manual v1.0 · Page 371

Effects
Every Propeller Assembly instruction has an optional “effects” field that causes it to modify a
flag or register when it executes. The basic syntax for Propeller Assembly instructions is:

〈Label〉 〈Condition〉 Instruction 〈Effects〉

The optional Effects field can contain one of four conditions, shown below. For any effect
not specified, the default behavior remains as indicated by the corresponding bit (Z, C, or R)
in the ZCRI field of the instruction’s opcode.

Table 5-3: Effects

Effect Results In
WC C Flag modified

WZ Z Flag modified

WR Destination Register modified

NR Destination Register not modified

Follow an instruction with one to three space-delimited Effects to cause that instruction to
affect the indicated item. For example:

 and temp1, #$20 wc
 andn temp2, #$38 wz, nr

The first instruction performs a bitwise AND of the value in the temp1 register with $20,
stores the result in temp1 and modifies with C flag with the parity of the result. The second
instruction performs a bitwise AND NOT of the value in the temp2 register with $38,
modifies the Z flag according to whether or not the result is zero, and does not write the result
to temp2. During the execution of the first instruction, the Z flag is not altered. During the
execution of the second instruction, the C flag is not altered. If these instructions did not
include the WC and WZ effects, those flags would not be altered at all.

Using Effects on instructions, along with Conditions on later instructions, enables code to be
much more powerful than what is possible with typical assembly languages. See Conditions
on page 368 for more information.

FIT – Assembly Language Reference

Page 372 · Propeller Manual v1.0

FIT
Directive: Validate that previous instructions/data fit entirely below a specific address.

FIT 〈Address〉
Result: Compile-time error if previous instructions/data exceed Address-1.

• Address is an optional Cog RAM address (0-$1F0) for which prior assembly code
should not reach. If Address is not given, the value $1F0 is used (the address of the
first special purpose register).

Explanation
The FIT directive checks the current compile-time cog address pointer and generates an error
if it is beyond Address-1 or if it is beyond $1EF (the end of general purpose Cog RAM). This
directive can be used to ensure that the previous instructions and data fit within Cog RAM, or
a limited region of Cog RAM. Note: any instructions that do not fit in Cog RAM will be left
out when the assembly code is launched into the cog. Consider the following example:

DAT
 ORG 492
Toggle mov dira, Pin
:Loop mov outa, Pin
 mov outa, #0
 jmp #:Loop

Pin long $1000

 FIT

This code was artificially pushed into upper Cog RAM space by the ORG statement, causing
the code to overlap the first special purpose register ($1F0) and causing the FIT directive to
cause a compile-time error when the code is compiled.

5: Assembly Language Reference – HUBOP

Propeller Manual v1.0 · Page 373

HUBOP
Instruction: Perform a hub operation.

HUBOP Destination, 〈#〉 Operation
Result: Varies depending on the operation performed.

• Destination (d-field) is the register containing a value to use in the Operation.
• Operation (s-field) is a register or a 3-bit literal that indicates the hub operation to

perform.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 7..22

Explanation
HUBOP is the template for every hub operation instruction in the Propeller chip: CLKSET, COGID,
COGINIT, COGSTOP, LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR. The instructions that perform hub
operations set the Operation field (s-field of the opcode) to the 3-bit immediate value that
represents the desired operation (see the opcode of the hub instruction’s syntax description
for more information). The HUBOP instruction itself should rarely be used, but may be handy
for special situations.

HUBOP is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

IF_x
See Conditions on page 368.

JMP – Assembly Language Reference

Page 374 · Propeller Manual v1.0

JMP
Instruction: Jump to address unconditionally.

JMP 〈#〉 Address

• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 000i 1111 --------- sssssssss Result = 0 --- Not Written 4

Explanation
JMP sets the Program Counter (PC) to Address causing execution to jump that location in Cog
RAM.

JMPRET
Instruction: Jump to address with intention to “return” to another address.

JMPRET RetInstAddr, 〈#〉 DestAddress
Result: PC + 1 is written to the s-field of the register indicated by the d-field.

• RetInstAddr (d-field) is the register in which to store the return address (PC + 1); it
should be the address of an appropriate RET or JMP instruction for DestAddress.

• DestAddress (s-field) is the register or 9-bit literal whose value is the address to jump
to.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Explanation
JMPRET stores the address of the next instruction (PC + 1) into the source field of the
instruction at RetInstAddr, then jumps to DestAddress. The routine at DestAddress should
eventually execute the RET or JMP instruction at the RetInstAddr to return to the stored address
(the instruction following the JMPRET).

5: Assembly Language Reference – LOCKCLR

Propeller Manual v1.0 · Page 375

The Propeller does not use a call stack, so the return address must be stored at the location of
the routine’s RET, or returning JMP, command itself. JMPRET is a superset of the CALL
instruction; in fact, it is the same opcode as CALL but the i-field and d-field configured by the
developer, rather than the assembler. See CALL on page 360 for more information.

The return address is written to the RetInstAddr register unless the NR effect is specified.

LOCKCLR
Instruction: Clear lock to false and get its previous state.

LOCKCLR ID
Result: Optionally, previous state of lock is written to C flag.

• ID (d-field) is the register containing the ID (0 – 7) of the lock to clear.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------111 --- Prior Lock State Not Written 7..22

Explanation
LOCKCLR is one of four lock instructions (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKCLR clears the
lock described by the register ID to zero (0) and returns the previous state of that lock in the
C flag; if the WC effect is specified. The LOCKCLR instruction behaves similar to Spin’s LOCKCLR
command; see LOCKCLR on page 228.

LOCKCLR is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

LOCKNEW, LOCKRET – Assembly Language Reference

Page 376 · Propeller Manual v1.0

LOCKNEW
Instruction: Check out a new lock and get its ID.

LOCKNEW NewID
Result: The new lock’s ID (0-7) is written to NewID.

• NewID (d-field) is the register where the newly checked-out lock’s ID is written.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0011 1111 ddddddddd ------100 Result = 0 No Lock Free Written 7..22

Explanation
LOCKNEW is one of four lock instructions (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKNEW checks out
a unique lock, from the hub, and retrieves the ID of that lock. The LOCKNEW instruction
behaves similar to Spin’s LOCKNEW command; see LOCKNEW on page 230.

If the WZ effect is specified, the Z flag is set (1) if the returned ID is zero (0). If the WC effect
is specified, the C flag is set if no lock was available for checking out. The ID of the newly
checked-out lock is written to NewID unless the NR effect is specified.

LOCKNEW is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

LOCKRET
Instruction: Release lock back for future “new lock” requests.

LOCKRET ID

• ID (d-field) is the register containing the ID (0 – 7) of the lock to return to the lock
pool.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------101 --- --- Not Written 7..22

5: Assembly Language Reference – LOCKSET

Propeller Manual v1.0 · Page 377

Explanation
LOCKRET is one of four lock instructions (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKRET returns a
lock, by ID, back to the Hub’s lock pool so that it may be reused by other cogs at a later time.
The LOCKRET instruction behaves similar to Spin’s LOCKRET command; see LOCKRET on page
233.

LOCKRET is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

LOCKSET
Instruction: Set lock to true and get its previous state.

LOCKSET ID
Result: Optionally, previous state of lock is written to C flag.

• ID (d-field) is the register containing the ID (0 – 7) of the lock to set.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000011 0001 1111 ddddddddd ------110 --- Prior Lock State Not Written 7..22

Explanation
LOCKSET is one of four lock instructions (LOCKNEW, LOCKRET, LOCKSET, and LOCKCLR) used to
manage resources that are user-defined and deemed mutually-exclusive. LOCKSET sets the
lock described by the register ID to one (1) and returns the previous state of that lock in the C
flag; if the WC effect is specified. The LOCKSET instruction behaves similar to Spin’s LOCKSET
command; see LOCKSET on page 234.

LOCKSET is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

MAX, MAXS – Assembly Language Reference

Page 378 · Propeller Manual v1.0

MAX
Instruction: Limit maximum of unsigned value to another unsigned value.

MAX Value1, 〈#〉 Value2
Result: Lesser of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to compare against Value2 and is
the destination in which to write the lesser of the two.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared against Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010011 001i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Written 4

Explanation
MAX compares the unsigned values of Value1 and Value2 and stores the lesser of the two into
the Value1 register, effectively limiting Value1 to a maximum of Value2.

If the WZ effect is specified, the Z flag is set (1) if Value1 and Value2 are equal. If the WC
effect is specified, the C flag is set (1) if the unsigned Value1 is less than the unsigned
Value2. The lesser of the two values is written to Value1 unless the NR effect is specified.

MAXS
Instruction: Limit maximum of signed value to another signed value.

MAXS SValue1, 〈#〉 SValue2
Result: Lesser of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to compare against SValue2 and
is the destination in which to write the lesser of the two.

• SValue2 (s-field) is a register or a 9-bit literal whose value is compared against
SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010001 001i 1111 ddddddddd sssssssss D = S Signed (D < S) Written 4

5: Assembly Language Reference – MIN

Propeller Manual v1.0 · Page 379

Explanation
MAXS compares the signed values of SValue1 and SValue2 and stores the lesser of the two into
the SValue1 register, effectively limiting SValue1 to a maximum of SValue2.

If the WZ effect is specified, the Z flag is set (1) if SValue1 and SValue2 are equal. If the WC
effect is specified, the C flag is set (1) if the signed SValue1 is less than the signed SValue2.
The lesser of the two values is written to SValue1 unless the NR effect is specified.

MIN
Instruction: Limit minimum of unsigned value to another unsigned value.

MIN Value1, 〈#〉 Value2
Result: Greater of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to compare against Value2 and is
the destination in which to write the greater of the two.

• Value2 (s-field) is a register or a 9-bit literal whose value is compared against Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010010 001i 1111 ddddddddd sssssssss D = S Unsigned (D < S) Written 4

Explanation
MIN compares the unsigned values of Value1 and Value2 and stores the greater of the two into
the Value1 register, effectively limiting Value1 to a minimum of Value2.

If the WZ effect is specified, the Z flag is set (1) if Value1 and Value2 are equal. If the WC
effect is specified, the C flag is set (1) if the unsigned Value1 is less than the unsigned
Value2. The greater of the two values is written to Value1 unless the NR effect is specified.

MINS, MOV – Assembly Language Reference

Page 380 · Propeller Manual v1.0

MINS
Instruction: Limit minimum of signed value to another signed value.

MINS SValue1, 〈#〉 SValue2
Result: Greater of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to compare against SValue2 and
is the destination in which to write the greater of the two.

• SValue2 (s-field) is a register or a 9-bit literal whose value is compared against
SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010000 001i 1111 ddddddddd sssssssss D = S Signed (D < S) Written 4

Explanation
MINS compares the signed values of SValue1 and SValue2 and stores the greater of the two
into the SValue1 register, effectively limiting SValue1 to a minimum of SValue2.

If the WZ effect is specified, the Z flag is set (1) if SValue1 and SValue2 are equal. If the WC
effect is specified, the C flag is set (1) if the signed SValue1 is less than the signed SValue2.
The greater of the two values is written to SValue1 unless the NR effect is specified.

MOV
Instruction: Set a register to a value.

MOV Destination, 〈#〉 Value
Result: Value is stored in Destination.

• Destination (d-field) is the register in which to store Value.
• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101000 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

5: Assembly Language Reference – MOVD

Propeller Manual v1.0 · Page 381

Explanation
MOV copies, or stores, the number in Value into Destination.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is
specified, the C flag is set to Value’s MSB. The result is written to Destination unless the NR
effect is specified.

MOVD
Instruction: Set a register’s destination field to a value.

MOVD Destination, 〈#〉 Value
Result: Value is stored in Destination’s d-field (bits 17..9).

• Destination (d-field) is the register whose destination field (bits 17..9) is set to Value’s
value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s d-
field.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010101 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Explanation
MOVD copies the 9-bit value of Value into Destination’s d-field (destination field) bits 17..9.
Destination’s other bits are left unchanged. This instruction is handy for setting certain
registers like CTRA and VCFG, and for updating the destination field of instructions in self-
modifying code.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

MOVI, MOVS – Assembly Language Reference

Page 382 · Propeller Manual v1.0

MOVI
Instruction: Set a register’s instruction field to a value.

MOVI Destination, 〈#〉 Value
Result: Value is stored in Destination’s i-field and effects-field (bits 31..23).

• Destination (d-field) is the register whose instruction and effects fields (bits 31..23) are
set to Value’s value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s
instruction and effects field.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010110 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Explanation
MOVI copies the 9-bit value of Value into Destination’s instruction and effects fields bits
31..23. Destination’s other bits are left unchanged. This instruction is handy for setting
certain registers like CTRA and VCFG, and for updating the instruction and effects fields of
instructions in self-modifying code.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

MOVS
Instruction: Set a register’s source field to a value.

MOVS Destination, 〈#〉 Value
Result: Value is stored in Destination’ s-field (bits 8..0).

• Destination (d-field) is the register whose source field (bits 8..0) is set to Value’s
value.

• Value (s-field) is a register or a 9-bit literal whose value is stored into Destination’s
source field.

5: Assembly Language Reference – MUXC

Propeller Manual v1.0 · Page 383

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010100 001i 1111 ddddddddd sssssssss Result = 0 --- Written 4

Explanation
MOVS copies the 9-bit value of Value into Destination’s source field (s-field) bits 8..0.
Destination’s other bits are left unchanged. This instruction is handy for setting certain
registers like CTRA and VCFG, and for updating the source field of instructions in self-
modifying code.

If the WZ effect is specified, the Z flag is set (1) if Value equals zero. The result is written to
Destination unless the NR effect is specified.

MUXC
Instruction: Set discrete bits of a value to the state of C.

MUXC Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of C.

• Destination (d-field) is the register whose bits described by Mask are affected by C.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the C flag’s state.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011100 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
MUXC sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the C state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

MUXNC, MUXNZ – Assembly Language Reference

Page 384 · Propeller Manual v1.0

MUXNC
Instruction: Set discrete bits of a value to the state of !C.

MUXNC Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of !C.

• Destination (d-field) is the register whose bits described by Mask are affected by !C.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the inverse of the C flag’s state.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011101 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
MUXNC sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the !C state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

MUXNZ
Instruction: Set discrete bits of a value to the state of !Z.

MUXNZ Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of !Z.

• Destination (d-field) is the register whose bits described by Mask are affected by !Z.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the inverse of the Z flag’s state.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011111 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

5: Assembly Language Reference – MUXZ

Propeller Manual v1.0 · Page 385

Explanation
MUXNZ sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the !Z state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

MUXZ
Instruction: Set discrete bits of a value to the state of Z.

MUXZ Destination, 〈#〉 Mask
Result: Destination’s bits, indicated by Mask, are set to the state of Z.

• Destination (d-field) is the register whose bits described by Mask are affected by Z.
• Mask (s-field) is a register or a 9-bit literal whose value contains high (1) bits for

every bit in Destination to set to the Z flag’s state.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011110 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
MUXZ sets each bit of the value in Destination, which corresponds to Mask’s high (1) bits, to
the Z state. All bits of Destination that are not targeted by high (1) bits of Mask are
unaffected. This instruction is handy for setting or clearing discrete bits, or groups of bits, in
an existing value.

If the WZ effect is specified, the Z flag is set (1) if Destination’s final value is 0. If the WC
effect is specified, the C flag is set (1) if the resulting Destination contains an odd number of
high (1) bits. The result is written to Destination unless the NR effect is specified.

NEG, NEGC – Assembly Language Reference

Page 386 · Propeller Manual v1.0

NEG
Instruction: Get the negative of a number.

NEG NValue, 〈#〉 SValue
Result: –SValue is stored in NValue.

• NValue (d-field) is the register in which to write the negative of SValue.
• SValue (s-field) is a register or a 9-bit literal whose negative value will be written to

NValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101001 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Explanation
NEG stores negative SValue into NValue.

If the WZ effect is specified, the Z flag is set (1) if SValue is zero. If the WC effect is specified,
the C flag is set (1) if SValue is negative or cleared (0) if SValue is positive. The result is
written to NValue unless the NR effect is specified.

NEGC
Instruction: Get a value, or its additive inverse, based on C.

NEGC RValue, 〈#〉 Value
Result: Value or –Value is stored in RValue.

• RValue (d-field) is the register in which to write Value or –Value.
• Value (s-field) is a register or a 9-bit literal whose value (if C = 0) or additive inverse

value (if C = 1) will be written to RValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101100 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

5: Assembly Language Reference – NEGNC

Propeller Manual v1.0 · Page 387

Explanation
NEGC stores Value (if C = 0) or –Value (if C = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

NEGNC
Instruction: Get a value, or its additive inverse, based on !C.

NEGNC RValue, 〈#〉 Value
Result: –Value or Value is stored in RValue.

• RValue (d-field) is the register in which to write –Value or Value.
• Value (s-field) is a register or a 9-bit literal whose additive inverse value (if C = 0) or

value (if C = 1) will be written to RValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101101 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Explanation
NEGNC stores –Value (if C = 0) or Value (if C = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

NEGNZ – Assembly Language Reference

Page 388 · Propeller Manual v1.0

NEGNZ
Instruction: Get a value, or its additive inverse, based on !Z.

NEGNZ RValue, 〈#〉 Value
Result: –Value or Value is stored in RValue.

• RValue (d-field) is the register in which to write –Value or Value.
• Value (s-field) is a register or a 9-bit literal whose additive inverse value (if Z = 0) or

value (if Z = 1) will be written to RValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101111 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Explanation
NEGNZ stores –Value (if Z = 0) or Value (if Z = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

5: Assembly Language Reference – NEGZ, NOP

Propeller Manual v1.0 · Page 389

NEGZ
Instruction: Get a value, or its additive inverse, based on Z.

NEGZ RValue, 〈#〉 Value
Result: Value or –Value is stored in RValue.

• RValue (d-field) is the register in which to write Value or –Value.
• Value (s-field) is a register or a 9-bit literal whose value (if Z = 0) or additive inverse

value (if Z = 1) will be written to RValue.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101110 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Explanation
NEGZ stores Value (if Z = 0) or –Value (if Z = 1) into RValue.

If the WZ effect is specified, the Z flag is set (1) if Value is zero. If the WC effect is specified,
the C flag is set (1) if Value is negative or cleared (0) if Value is positive. The result is
written to RValue unless the NR effect is specified.

NOP
Instruction: No operation, just elapse four clock cycles.

NOP

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
------ ---- 0000 --------- --------- --- --- --- 4

Explanation
NOP performs no operation but consumes 4 clock cycles. NOP has its –CON– field set to all
zeros, the NEVER condition; effectively, every instruction with a NEVER condition is a NOP
instruction.

Operators – Assembly Language Reference

Page 390 · Propeller Manual v1.0

Operators
Propeller Assembly code can contain constant expressions, and those expressions may use
any operators that are allowed in constant expressions. Table 5-4 summarizes all the
operators allowed in Propeller Assembly code (all those allowed in constant expressions).
Please refer to the Spin Language Reference Operators section for detailed descriptions of
their functions; page numbers for each operator are given in Table 5-4

5: Assembly Language Reference – Operators

Propeller Manual v1.0 · Page 391

Table 5-4: Constant Expression Math/Logic Operators
Normal Operator Is Unary Description, Page Number

+ Add, 255
+ Positive (+X); unary form of Add, 256
- Subtract, 256
- Negate (-X); unary form of Subtract, 256
* Multiply and return lower 32 bits (signed), 258
** Multiply and return upper 32 bits (signed), 259
/ Divide (signed), 259
// Modulus (signed), 260
#> Limit minimum (signed), 260
<# Limit maximum (signed), 261
^^ Square root, 261
|| Absolute value, 261
~> Shift arithmetic right, 264
|< Bitwise: Decode value (0-31) into single-high-bit long, 265
>| Bitwise: Encode long into value (0 - 32) as high-bit priority, 266
<< Bitwise: Shift left, 266
>> Bitwise: Shift right, 267
<- Bitwise: Rotate left, 267
-> Bitwise: Rotate right, 268
>< Bitwise: Reverse, 268
& Bitwise: AND, 269
| Bitwise: OR, 270
^ Bitwise: XOR, 271
! Bitwise: NOT, 272

AND Boolean: AND (promotes non-0 to -1), 272
OR Boolean: OR (promotes non-0 to -1), 273
NOT Boolean: NOT (promotes non-0 to -1), 274
== Boolean: Is equal, 275
<> Boolean: Is not equal, 275
< Boolean: Is less than (signed), 276
> Boolean: Is greater than (signed), 276
=< Boolean: Is equal or less (signed), 277
=> Boolean: Is equal or greater (signed), 277
@ Symbol address, 278

OR, ORG – Assembly Language Reference

Page 392 · Propeller Manual v1.0

OR
Instruction: Bitwise OR two values.

OR Value1, 〈#〉 Value2
Result: Value1 OR Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise OR with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ORed with
Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011010 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
OR (bitwise inclusive OR) performs a bitwise OR of the value in Value2 into that of Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 OR Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

ORG
Directive: Adjust compile-time cog address pointer.

ORG 〈Address〉

• Address is an optional Cog RAM address (0-495) to assemble the following assembly
code into. If Address is not given, the value 0 is used.

Explanation
The ORG (origin) directive sets the Propeller Tool’s assembly pointer to a new value
representing the Cog RAM position to use for the following assembly code. ORG typically
appears at the start of any new assembly code intended for a cog.

5: Assembly Language Reference – RCL

Propeller Manual v1.0 · Page 393

When assembly code is launched into a cog, the cog begins execution at Cog RAM address 0
so it is critical to assemble at least one instruction for that position. Usually an entire
assembly program begins at location 0. For example:

DAT
 ORG 0
Toggle mov dira, Pin
:Loop mov outa, Pin
 mov outa, #0
 jmp #:Loop

The ORG statement in this example sets the assembly pointer to zero (0), so the next
instruction, mov dira, Pin, is assembled into Cog RAM location 0, the instruction after that
is assembled into Cog RAM location 1, etc.

RCL
Instruction: Rotate C left into value by specified number of bits.

RCL Value, 〈#〉 Bits
Result: Value has Bits copies of C rotated left into it.

• Value (d-field) is the register in which to rotate C leftwards.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value

to rotate C leftwards into.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001101 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Explanation
RCL (Rotate Carry Left) performs a rotate left of Value, Bits times, using the C flag’s original
value for each of the LSBs affected.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit
31. The result is written to Value unless the NR effect is specified.

RCR, RDBYTE – Assembly Language Reference

Page 394 · Propeller Manual v1.0

RCR
Instruction: Rotate C right into value by specified number of bits.

RCR Value, 〈#〉 Bits
Result: Value has Bits copies of C rotated right into it.

• Value (d-field) is the register in which to rotate C rightwards.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value

to rotate C rightwards into.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001100 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Explanation
RCR (Rotate Carry Right) performs a rotate right of Value, Bits times, using the C flag’s
original value for each of the MSBs affected.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit 0.
The result is written to Value unless the NR effect is specified.

RDBYTE
Instruction: Read byte of main memory.

RDBYTE Value, 〈#〉 Address
Result: Zero-extended byte is stored in Value.

• Value (d-field) is the register to store the zero-extended byte value into.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to read from.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000000 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

5: Assembly Language Reference – RDLONG

Propeller Manual v1.0 · Page 395

Explanation
RDBYTE syncs to the Hub, reads the byte of main memory at Address, zero-extends it, and
stores it into the Value register.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The value from main memory will be written to Value unless the NR effect is specified.

RDBYTE is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

RDLONG
Instruction: Read long of main memory.

RDLONG Value, 〈#〉 Address
Result: Long is stored in Value.

• Value (d-field) is the register to store the long value into.
• Address (s-field) is a register or a 9-bit literalwhose value is the main memory address

to read from.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000010 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

Explanation
RDLONG syncs to the Hub, reads the long of main memory at Address, and stores it into the
Value register.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The value from main memory will be written to Value unless the NR effect is specified.

RDLONG is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

RDWORD – Assembly Language Reference

Page 396 · Propeller Manual v1.0

RDWORD
Instruction: Read word of main memory.

RDWORD Value, 〈#〉 Address
Result: Zero-extended word is stored in Value.

• Value (d-field) is the register to store the zero-extended word value into.
• Address (s-field) is a register or a 9-bit literalwhose value is the main memory address

to read from.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000001 001i 1111 ddddddddd sssssssss Result = 0 --- Written 7..22

Explanation
RDWORD syncs to the Hub, reads the word of main memory at Address, zero-extends it, and
stores it into the Value register.

If the WZ effect is specified, the Z flag will be set (1) if the value read from main memory is
zero. The value from main memory will be written to Value unless the NR effect is specified.

RDWORD is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

5: Assembly Language Reference – Registers

Propeller Manual v1.0 · Page 397

Registers
Each cog contains 16 special purpose registers for accessing I/O pins, the built-in counters
and video generator, and the parameter passed at the moment the cog is launched. All of
these registers are explained in the Spin Language Reference and most of the information
applies to both Spin and Propeller Assembly. The following table illustrates the 16 special
purpose registers, indicates where to find information and what details, if any, do not apply to
Propeller Assembly.

Each of these registers can be accessed just like any other register in the Destination or
Source fields of instructions, except for those that are designated “(Read-Only).” Read-only
registers can only be used in the Source field of an instruction.

Table 5-5: Registers

Register(s) Description

DIRA, DIRB

Direction Registers for 32-bit port A and 32-bit port B. See the Explanation section of
DIRA, DIRB on page 212. The optional “[Pin(s)]” parameter does not apply to
Propeller Assembly; all bits of the entire register are read/written at once, unless using
the MUXx instructions.

INA, INB
Input Registers for 32-bit port A and 32-bit port B. (Read-Only). See the Explanation
section of INA, INB on page 226. The optional “[Pin(s)]” parameter does not apply
to Propeller Assembly; all bits of the entire register are read at once.

OUTA, OUTB

Output Registers for 32-bit port A and 32-bit port B. See the Explanation section of
OUTA, OUTB on page 280. The optional “[Pin(s)]” parameter does not apply to
Propeller Assembly; all bits of the entire register are read/written at once, unless using
the MUXx instructions.

CNT
32-bit System Counter Register. (Read-Only). See the Explanation section of CNT on
page 184.

CTRA, CTRB Counter A and Counter B Control Registers. See CTRA, CTRB on page 204.

FRQA, FRQB Counter A and Counter B Frequency Registers. See FRQA, FRQB on page 219.

PHSA, PHSB Counter A and Counter B Phase Lock Loop Registers. See PHSA, PHSB on page 285.

VCFG Video Configuration Register. See VCFG on page 317.

VSCL Video Scale Register. See VSCL on page 320.

PAR Cog Boot Parameter Register. See PAR on page 283.

RES – Assembly Language Reference

Page 398 · Propeller Manual v1.0

RES
Directive: Reserve next long(s) for symbol.

〈Symbol〉 RES 〈Count〉

• Symbol is an optional name for the reserved long in Cog RAM.
• Count is the optional number of longs to reserve for Symbol. If not specified, RES

reserves one long.

Explanation
The RES (reserve) directive reserves one or more longs of Cog RAM by incrementing the
compile-time cog address pointer by Count. Normally this is used to reserve memory for an
assembly symbol. For example:

DAT
 ORG 0
 <some code here>
 mov Time, cnt
 add Time, Delay
 waitcnt Time, Delay
 <some code here>

Delay long 6_000_000
Time RES 1

The last line of the above example reserves one long of Cog RAM for the symbol Time. The
assembly code uses that symbol as a long variable; to create a delay of 6 million clock cycles,
in this case.

5: Assembly Language Reference – RET, REV

Propeller Manual v1.0 · Page 399

RET
Instruction: Return to address.

RET

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
010111 0001 1111 --------- --------- Result = 0 --- Not Written 4

Explanation
RET is a subset of the JMP instruction but with the i-field set and the s-field unspecified. The
RET instruction is meant to be used along with a label in the form “label_ret” and a CALL
instruction that targets RET’s routine, “label.” See CALL on page 360 for more information.

REV
Instruction: Reverse LSBs of value and zero-extend.

REV Value, 〈#〉 Bits
Result: Value has lower 32 - Bits of its LSBs reversed and upper bits cleared.

• Value (d-field) is the register containing the value whose bits are reversed.
• Bits (s-field) is a register or a 5-bit literal whose value subtracted from 32, (32 - Bits),

is the number of Value’s LSBs to reverse. The upper Bits MSBs of Value are
cleared.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001111 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Explanation
REV (Reverse) reverses the lower (32 - Bits) of Value’s LSB and clears the upper Bits of
Value’s MSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

ROL, ROR – Assembly Language Reference

Page 400 · Propeller Manual v1.0

ROL
Instruction: Rotate value left by specified number of bits.

ROL Value, 〈#〉 Bits
Result: Value is rotated left by Bits.

• Value (d-field) is the register to rotate left.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to rotate

left.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001001 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Explanation
ROL (Rotate Left) rotates Value left, Bits times. The MSBs rotated out of Value are rotated
into its LSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit
31. The result is written to Value unless the NR effect is specified.

ROR
Instruction: Rotate value right by specified number of bits.

ROR Value, 〈#〉 Bits
Result: Value is rotated right by Bits.

• Value (d-field) is the register to rotate right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to rotate

right.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001000 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

5: Assembly Language Reference – SAR

Propeller Manual v1.0 · Page 401

Explanation
ROR (Rotate Right) rotates Value right, Bits times. The LSBs rotated out of Value are rotated
into its MSBs.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, at the end of the operation, the C flag is set equal to Value’s original bit 0.
The result is written to Value unless the NR effect is specified.

SAR
Instruction: Shift value arithmetically right by specified number of bits.

SHR Value, 〈#〉 Bits
Result: Value is shifted arithmetically right by Bits.

• Value (d-field) is the register to shift arithmetically right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

arithmetically right.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001110 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

Explanation
SAR (Shift Arithmetic Right) shifts Value right by Bits places, extending the MSB along the
way. This has the effect of preserving the sign in a signed value.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

SHL, SHR – Assembly Language Reference

Page 402 · Propeller Manual v1.0

SHL
Instruction: Shift value left by specified number of bits.

SHL Value, 〈#〉 Bits
Result: Value is shifted left by Bits.

• Value (d-field) is the register to shift left.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

left.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001011 001i 1111 ddddddddd sssssssss Result = 0 D[31] Written 4

Explanation
SHL (Shift Left) shifts Value left by Bits places.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 31. The result is written to
Value unless the NR effect is specified.

SHR
Instruction: Shift value right by specified number of bits.

SHR Value, 〈#〉 Bits
Result: Value is shifted right by Bits.

• Value (d-field) is the register to shift right.
• Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift

right.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
001010 001i 1111 ddddddddd sssssssss Result = 0 D[0] Written 4

5: Assembly Language Reference – SUB

Propeller Manual v1.0 · Page 403

Explanation
SHR (Shift Right) shifts Value right by Bits places.

If the WZ effect is specified, the Z flag is set (1) if the resulting Value equals zero. If the WC
effect is specified, the C flag is set equal to Value’s original bit 0. The result is written to
Value unless the NR effect is specified.

SUB
Instruction: Subtract two unsigned values.

SUB Value1, 〈#〉 Value2
Result: Difference of unsigned Value1 and unsigned Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to subtract Value2 from, and is the
destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is subtracted from Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100001 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4

Explanation
SUB subtracts the unsigned Value2 from the unsigned Value1 and stores the result into the
Value1 register.

If the WZ effect is specified, the Z flag is set (1) if Value1 − Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow (32-
bit underflow). The result is written to Value1 unless the NR effect is specified.

SUBABS, SUBS – Assembly Language Reference

Page 404 · Propeller Manual v1.0

SUBABS
Instruction: Subtract an absolute value from another value.

SUBABS Value, 〈#〉 SValue
Result: Difference of Value and absolute of signed SValue is stored in Value.

• Value (d-field) is the register containing the value to subtract the absolute of SValue
from, and is the destination in which to write the result.

• SValue (s-field) is a register or a 9-bit literal whose absolute value is subtracted from
Value.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100011 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow Written 4

Explanation
SUBABS subtracts the absolute of SValue from Value and stores the result into the Value
register.

If the WZ effect is specified, the Z flag is set (1) if Value − |SValue| equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow (32-
bit underflow). The result is written to Value unless the NR effect is specified.

SUBS
Instruction: Subtract two signed values.

SUBS SValue1, 〈#〉 SValue2
Result: Difference of signed SValue1 and signed SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to subtract SValue2 from, and is
the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is subtracted from SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110101 001i 1111 ddddddddd sssssssss Result = 0 Signed Underflow Written 4

5: Assembly Language Reference – SUBSX

Propeller Manual v1.0 · Page 405

Explanation
SUBS subtracts the signed SValue2 from the signed SValue1 and stores the result into the
SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 − SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in a signed underflow. The
result is written to SValue1 unless the NR effect is specified.

SUBSX
Instruction: Subtract signed value plus C from another signed value.

SUBSX SValue1, 〈#〉 SValue2
Result: Difference of signed SValue1, and signed SValue2 plus C flag, is stored in SValue1.

• SValue1 (d-field) is the register containing the value to subtract SValue2 plus C from,
and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value plus C is subtracted from
SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110111 001i 1111 ddddddddd sssssssss Z & (Result = 0) Signed Underflow Written 4

Explanation
SUBSX (Subtract Signed, Extended) subtracts the signed value of SValue2 plus C from
SValue1, and stores the result into the SValue1 register. Use the SUBSX instruction after a SUB
or SUBX (with the WC, and optionally WZ, effect) to perform multi-long, signed subtractions; 64-
bit subtractions, for example.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and SValue1 −
(SValue2 + C) equals zero (use WC and WZ on preceding SUB or SUBX instruction). If the WC
effect is specified, the C flag is set (1) if the subtraction resulted in a signed underflow. The
result is written to SValue1 unless the NR effect is specified.

Note that in a multi-long signed operation, the first instruction is unsigned (ex: SUB), any
middle instructions are unsigned, extended (ex: SUBX), and the last instruction is signed,
extended (ex: SUBSX).

SUBX, SUMC – Assembly Language Reference

Page 406 · Propeller Manual v1.0

SUBX
Instruction: Subtract unsigned value plus C from another unsigned value.

SUBX Value1, 〈#〉 Value2
Result: Difference of unsigned Value1, and unsigned Value2 plus C flag, is stored in Value1.

• Value1 (d-field) is the register containing the value to subtract Value2 plus C from,
and is the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value plus C is subtracted from
Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
110011 001i 1111 ddddddddd sssssssss Z & (Result = 0) Unsigned Borrow Written 4

Explanation
SUBX (Subtract Extended) subtracts the unsigned value of Value2 plus C from the unsigned
Value1 and stores the result into the Value1 register. Use the SUBX instruction after a SUB or
SUBX (with the WC, and optionally WZ, effect) to perform multi-long subtractions; 64-bit
subtractions, for example.

If the WZ effect is specified, the Z flag is set (1) if Z was previously set and Value1 − (Value2
+ C) equals zero (use WC and WZ on preceding SUB or SUBX instruction). If the WC effect is
specified, the C flag is set (1) if the subtraction resulted in an unsigned borrow (32-bit
underflow). The result is written to Value1 unless the NR effect is specified.

SUMC
Instruction: Sum a signed value with another whose sign is inverted depending on C.

SUMC SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either –SValue2 or
SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by C and
summed into SValue1.

5: Assembly Language Reference – SUMNC

Propeller Manual v1.0 · Page 407

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100100 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4

Explanation
SUMC (Sum with C-affected sign) adds the signed value of SValue1 to –SValue2 (if C = 1) or
to SValue2 (if C = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

SUMNC
Instruction: Sum a signed value with another whose sign is inverted depending on !C.

SUMNC SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either SValue2 or
-SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by !C and
summed into SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100101 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4

Explanation
SUMNC (Sum with !C-affected sign) adds the signed value of SValue1 to SValue2 (if C = 1) or
to –SValue2 (if C = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

SUMNZ, SUMZ – Assembly Language Reference

Page 408 · Propeller Manual v1.0

SUMNZ
Instruction: Sum a signed value with another whose sign is inverted depending on !Z.

SUMNZ SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either SValue2 or
-SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by !Z and
summed into SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100111 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4

Explanation
SUMNZ (Sum with !Z-affected sign) adds the signed value of SValue1 to SValue2 (if Z = 1) or
to –SValue2 (if Z = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

SUMZ
Instruction: Sum a signed value with another whose sign is inverted depending on Z.

SUMZ SValue1, 〈#〉 SValue2
Result: Sum of signed SValue1 and ±SValue2 is stored in SValue1.

• SValue1 (d-field) is the register containing the value to sum with either –SValue2 or
SValue2, and is the destination in which to write the result.

• SValue2 (s-field) is a register or a 9-bit literal whose value is sign-affected by Z and
summed into SValue1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100110 001i 1111 ddddddddd sssssssss Result = 0 Signed Overflow Written 4

5: Assembly Language Reference – TEST

Propeller Manual v1.0 · Page 409

Explanation
SUMZ (Sum with Z-affected sign) adds the signed value of SValue1 to –SValue2 (if Z = 1) or to
SValue2 (if Z = 0) and stores the result into the SValue1 register.

If the WZ effect is specified, the Z flag is set (1) if SValue1 ± SValue2 equals zero. If the WC
effect is specified, the C flag is set (1) if the summation resulted in a signed overflow. The
result is written to SValue1 unless the NR effect is specified.

TEST
Instruction: Bitwise AND two values to affect flags only.

TEST Value1, 〈#〉 Value2
Result: Optionally, zero-result and parity of result is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to bitwise AND with Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with

Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011000 000i 1111 ddddddddd sssssssss Result = 0 Parity of Result Not Written 4

Explanation
TEST is similar to AND except it doesn’t write a result to Value1; it performs a bitwise AND of
the values in Value1 and Value2 and optionally stores the zero-result and parity of the result
in the Z and C flags.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.

TJNZ, TJZ – Assembly Language Reference

Page 410 · Propeller Manual v1.0

TJNZ
Instruction: Test value and jump to address if not zero.

TJNZ Value, 〈#〉 Address

• Value (d-field) is the register to test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when Value contains a non-zero number.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111010 000i 1111 ddddddddd sssssssss Result = 0 0 Not Written 4 or 8

Explanation
TJNZ tests the Value register and jumps to Address if it contains a non-zero number.

When the WZ effect is specified, the Z flag is set (1) if the Value register contains zero.

TJNZ requires a different amount of clock cycles depending on whether or not it has to jump.
If it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles. Since loops
utilizing TJNZ need to be fast, it is optimized in this way for speed.

TJZ
Instruction: Test value and jump to address if zero.

TJZ Value, 〈#〉 Address

• Value (d-field) is the register to test.
• Address (s-field) is the register or a 9-bit literal whose value is the address to jump to

when Value contains zero.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111011 000i 1111 ddddddddd sssssssss Result = 0 0 Not Written 4 or 8

Explanation
TJZ tests the Value register and jumps to Address if it contains zero.

5: Assembly Language Reference – WAITCNT

Propeller Manual v1.0 · Page 411

When the WZ effect is specified, the Z flag is set (1) if the Value register contains zero.

TJZ requires a different amount of clock cycles depending on whether or not it has to jump. If
it must jump it takes 4 clock cycles, if no jump occurs it takes 8 clock cycles.

WAITCNT
Instruction: Pause a cog’s execution temporarily.

WAITCNT Target, 〈#〉 Delta
Result: Target + Delta is stored in Target.

• Target (d-field) is the register with the target value to compare against the System
Counter (CNT). When the System Counter has reached Target’s value, Delta is added
to Target.

• Delta (s-field) is the register or a 9-bit literal whose value is added to Target’s value in
preparation for the next WAITCNT instruction. This creates a synchronized delay
window.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111110 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry Written 5+

Explanation
WAITCNT, “Wait for System Counter,” is one of four wait instructions (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITCNT
instruction pauses the cog until the global System Counter equals the value in the Target
register, then it adds Delta to Target and execution continues at the next instruction. The
WAITCNT instruction behaves similar to Spin’s WAITCNT command for Synchronized Delays;
see WAITCNT on page 322.

If the WZ effect is specified, the Z flag will be set (1) if the sum of Target and Delta is zero. If
the WC effect is specified, the C flag will set (1) if the sum of Target and Delta resulted in a
32-bit carry (overflow). The result will be written to Target unless the NR effect is specified.

WAITPEQ – Assembly Language Reference

Page 412 · Propeller Manual v1.0

WAITPEQ
Instruction: Pause a cog’s execution until I/O pin(s) match designated state(s).

WAITPEQ State, 〈#〉 Mask

• State (d-field) is the register with the target state(s) to compare against INx ANDed
with Mask.

• Mask (s-field) is the register or a 9-bit literal whose value is bitwise ANDed with INx
before the comparison with State.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111100 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+

Explanation
WAITPEQ, “Wait for Pin(s) to Equal,” is one of four wait instructions (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITPEQ
instruction pauses the cog until the result of INx ANDed with Mask equals the value in the
State register. INx is either INA or INB depending on the value of the C flag upon execution;
INA if C = 0, INB if C = 1 (the P8X32A is an exception to this rule; it always tests INA).

The WAITPEQ instruction behaves similar to Spin’s WAITPEQ command; see WAITPEQ on page
326.

If the WZ effect is specified, the Z flag will be set (1) if the result of INx ANDed with Mask is
zero.

5: Assembly Language Reference – WAITPNE

Propeller Manual v1.0 · Page 413

WAITPNE
Instruction: Pause a cog’s execution until I/O pin(s) do not match designated state(s).

WAITPNE State, 〈#〉 Mask

• State (d-field) is the register with the target state(s) to compare against INx ANDed
with Mask.

• Mask (s-field) is the register or a 9-bit literal whose value is bitwise ANDed with INx
before the comparison with State.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111101 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+

Explanation
WAITPNE, “Wait for Pin(s) to Not Equal,” is one of four wait instructions (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITPNE
instruction pauses the cog until the result of INx ANDed with Mask does not match the value
in the State register. INx is either INA or INB depending on the value of the C flag upon
execution; INA if C = 0, INB if C = 1 (the P8X32A is an exception to this rule; it always tests
INA). The WAITPNE instruction behaves similar to Spin’s WAITPNE command; see WAITPNE on
page 328.

If the WZ effect is specified, the Z flag will be set (1) if the result of INx ANDed with Mask is
zero.

WAITVID, WRBYTE – Assembly Language Reference

Page 414 · Propeller Manual v1.0

WAITVID
Instruction: Pause a cog’s execution until its Video Generator is available to take pixel data.

WAITVID Colors, 〈#〉 Pixels

• Colors (d-field) is the register with four byte-sized color values, each describing the
four possible colors of the pixel patterns in Pixels.

• Pixels (s-field) is the register or a 9-bit literal whose value is the next 16-pixel by 2-bit
(or 32-pixel by 1-bit) pixel pattern to display.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111111 000i 1111 ddddddddd sssssssss Result = 0 --- Not Written 5+

Explanation
WAITVID, “Wait for Video Generator,” is one of four wait instructions (WAITCNT, WAITPEQ,
WAITPNE, and WAITVID) used to pause execution of a cog until a condition is met. The WAITVID
instruction pauses the cog until its Video Generator hardware is ready for the next pixel data,
then the Video Generator accepts that data (Colors and Pixels) and the cog continues
execution with the next instruction. The WAITVID instruction behaves similar to Spin’s
WAITVID command; see WAITVID on page 329.

If the WZ effect is specified, the Z flag will be set (1) if the Colors and Pixels are equal.

Make sure the cog’s Video Generator module is running before executing a WAITVID,
otherwise the WAITVID instruction will wait forever.

WRBYTE
Instruction: Write a byte to main memory.

WRBYTE Value, 〈#〉 Address

• Value (d-field) is the register containing the 8-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

5: Assembly Language Reference – WRLONG

Propeller Manual v1.0 · Page 415

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000000 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Explanation
WRBYTE synchronizes to the Hub and writes the lowest byte in Value to main memory at
Address.

WRBYTE is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

WRLONG
Instruction: Write a long to main memory.

WRLONG Value, 〈#〉 Address

• Value (d-field) is the register containing the 32-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000010 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Explanation
WRLONG synchronizes to the Hub and writes the long in Value to main memory at Address.

WRLONG is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. Hub on page 24 for more information.

WRWORD – Assembly Language Reference

Page 416 · Propeller Manual v1.0

WRWORD
Instruction: Write a word to main memory.

WRWORD Value, 〈#〉 Address

• Value (d-field) is the register containing the 16-bit value to write to main memory.
• Address (s-field) is a register or a 9-bit literal whose value is the main memory

address to write to.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
000001 000i 1111 ddddddddd sssssssss --- --- Not Written 7..22

Explanation
WRWORD synchronizes to the Hub and writes the lowest word in Value to main memory at
Address.

WRWORD is a Hub instruction. Hub instructions require 7 to 22 clock cycles to execute
depending on the relation between the cog’s hub access window and the instruction’s moment
of execution. See Hub on page 24 for more information.

5: Assembly Language Reference – XOR

Propeller Manual v1.0 · Page 417

XOR
Instruction: Bitwise XOR two values.

XOR Value1, 〈#〉 Value2
Result: Value1 XOR Value2 is stored in Value1.

• Value1 (d-field) is the register containing the value to bitwise XOR with Value2 and is
the destination in which to write the result.

• Value2 (s-field) is a register or a 9-bit literal whose value is bitwise XORed with
Value1.

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011011 001i 1111 ddddddddd sssssssss Result = 0 Parity of Result Written 4

Explanation
XOR (bitwise exclusive OR) performs a bitwise XOR of the value in Value2 into that of
Value1.

If the WZ effect is specified, the Z flag is set (1) if Value1 XOR Value2 equals zero. If the WC
effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits.
The result is written to Value1 unless the NR effect is specified.

Assembly Language Reference

Page 418 · Propeller Manual v1.0

Appendix A: Reserved Word List

Propeller Manual v1.0 · Page 419

Appendix A: Reserved Word List
These words are always reserved, whether programming in Spin or Propeller Assembly.

Table A-0-1: Propeller Reserved Word List
_CLKFREQs
_CLKMODEs
_FREEs
_STACKs
_XINFREQs
ABORTs
ABSa
ABSNEGa
ADDa
ADDABSa
ADDSa
ADDSXa
ADDXa
ANDd
ANDNa
BYTEs
BYTEFILLs
BYTEMOVEs
CALLa
CASEs
CHIPVERs
CLKFREQs
CLKMODEs
CLKSETd
CMPa
CMPSa
CMPSUBa
CMPSXa
CMPXa
CNTd
COGIDd
COGINITd
COGNEWs
COGSTOPd

CONs

CONSTANTs
CTRAd
CTRBd
DATs
DIRAd
DIRBd
DJNZa
ELSEs
ELSEIFs
ELSEIFNOTs
ENCa
FALSEd
FILEs
FITa
FLOATs
FROMs
FRQAd
FRQBd
HUBOPa
IFs
IFNOTs
IF_Aa
IF_AEa
IF_ALWAYSa
IF_Ba
IF_BEa
IF_Ca
IF_C_AND_NZa
IF_C_AND_Za
IF_C_EQ_Za
IF_C_NE_Za
IF_C_OR_NZa
IF_C_OR_Za
IF_Ea
IF_NCa

IF_NC_AND_NZa

IF_NC_AND_Za
IF_NC_OR_NZa
IF_NC_OR_Za
IF_NEa
IF_NEVERa
IF_NZa
IF_NZ_AND_Ca
IF_NZ_AND_NCa
IF_NZ_OR_Ca
IF_NZ_OR_NCa
IF_Za
IF_Z_AND_Ca
IF_Z_AND_NCa
IF_Z_EQ_Ca
IF_Z_NE_Ca
IF_Z_OR_Ca
IF_Z_OR_NCa
INAd
INBd
JMPa
JMPRETa
LOCKCLRd
LOCKNEWd
LOCKRETd
LOCKSETd
LONGs
LONGFILLs
LONGMOVEs
LOOKDOWNs
LOOKDOWNZs
LOOKUPs
LOOKUPZs
MAXa
MAXSa

MINa

MINSa
MOVa
MOVDa
MOVIa
MOVSa
MULa
MULSa
MUXCa
MUXNCa
MUXNZa
MUXZa
NEGa
NEGCa
NEGNCa
NEGNZa
NEGXd
NEGZa
NEXTs
NOPa
NOTs
NRa
OBJs
ONESa
ORd
ORGa
OTHERs
OUTAd
OUTBd
PARd
PHSAd
PHSBd
PId
PLL1Xs

PLL2Xs

PLL4Xs
PLL8Xs
PLL16Xs
POSXd
PRIs
PUBs
QUITs
RCFASTs
RCLa
RCRa
RCSLOWs
RDBYTEa
RDLONGa
RDWORDa
REBOOTs
REPEATs
RESa
RESULTs
RETa
RETURNs
REVa
ROLa
RORa
ROUNDs
SARa
SHLa
SHRa
SPRs
STEPs
STRCOMPs
STRINGs
STRSIZEs
SUBa
SUBABSa
SUBSa

SUBSXa
SUBXa
SUMCa
SUMNCa
SUMNZa
SUMZa
TESTa
TJNZa
TJZa
TOs
TRUEd
TRUNCs
UNTILs
VARs
VCFGd
VSCLd
WAITCNTd
WAITPEQd
WAITPNEd
WAITVIDd
WCa
WHILEs
WORDs
WORDFILLs
WORDMOVEs
WRa
WRBYTEa
WRLONGa
WRWORDa
WZa
XINPUTs
XORa
XTAL1s
XTAL2s
XTAL3s

a = Assembly element; s = Spin element; d = dual (available in both languages)

Appendix B: Accessing Math Function Tables

Page 420 · Propeller Manual v1.0

Appendix B: Accessing Math Function Tables

Log and Anti-Log Tables ($C000-DFFF)
The log and anti-log tables are useful for converting values between their number form and
exponent form.

When numbers are encoded into exponent form, simple math operations take on more
complex effects. For example ‘add’ and ‘subtract’ become ‘multiply’ and ‘divide,’ ‘shift-left’
becomes ‘square’ and ‘shift-right’ becomes ‘square-root,’ and ‘divide by 3’ will produce
‘cube root.’ Once the exponent is converted back to a number, the result will be apparent.
This process is imperfect, but quite fast.

For applications where many multiplies and divides must be performed in the absence of
many additions and subtractions, exponential encoding can greatly speed things up.
Exponential encoding is also useful for compressing numbers into fewer bits – sacrificing
resolution at higher magnitude. In many applications, such as audio synthesis, the nature of
signals is logarithmic in both frequency and magnitude. Processing such data in exponent
form is quite natural and efficient, as it lends a ‘linear’ simplicity to what is actually
logarithmic.

The code examples given below use each tables’ samples verbatim. Higher resolution could
be achieved by linearly interpolating between table samples, since the slope change is very
slight from sample to sample. The cost, though, would be larger code and lower execution
speed.

Log Table ($C000-$CFFF)
The log table contains data used to convert unsigned numbers into base-2 exponents.

The log table is comprised of 2,048 unsigned words which make up the base-2 fractional
exponents of numbers. To use this table, you must first determine the integer portion of the
exponent of the number you are converting. This is simply the leading bit position. For
$60000000 this would be 30 ($1E). This integer portion will always fit within 5 bits. Isolate
these 5 bits into the result so that they occupy bit positions 20..16. In our case of $60000000,
we would now have a partial result of $001E0000. Next, top-justify and isolate the first 11
bits below the leading bit into positions 11..1. This would be $0800 for our example. Add
$C000 for the log table base and you now have the actual word address of the fractional

Appendix B: Accessing Math Function Tables

Propeller Manual v1.0 · Page 421

exponent. By reading the word at $C800, we get the value $95C0. Adding this into the partial
result yields $001E95C0 – that's $60000000 in exponent form. Note that bits 20..16 make up
the integer portion of the exponent, while bits 15..0 make up the fractional portion, with bit
15 being the ½, bit 14 being the ¼, and so on, down to bit 0. The exponent can now be
manipulated by adding, subtracting, and shifting. Always insure that your math operations
will never drive the exponent below 0 or cause it to overflow bit 20. Otherwise, it may not
convert back to a number correctly.

Here is a routine that will convert an unsigned number into its base-2 exponent using the log
table:
' Convert number to exponent
'
' on entry: num holds 32-bit unsigned value
' on exit: exp holds 21-bit exponent with 5 integer bits and 16 fractional bits
'
numexp mov exp,#0 'clear exponent

 test num,num4 wz 'get integer portion of exponent
 muxnz exp,exp4 'while top-justifying number
 if_z shl num,#16
 test num,num3 wz
 muxnz exp,exp3
 if_z shl num,#8
 test num,num2 wz
 muxnz exp,exp2
 if_z shl num,#4
 test num,num1 wz
 muxnz exp,exp1
 if_z shl num,#2
 test num,num0 wz
 muxnz exp,exp0
 if_z shl num,#1

 shr num,#30-11 'justify sub-leading bits as word
offset
 and num,table_mask 'isolate table offset bits
 add num,table_log 'add log table address
 rdword num,num 'read fractional portion of exponent
 or exp,num 'combine fractional & integer portions

numexp_ret ret '91..106 clocks
 '(variance due to HUB sync on RDWORD)

num4 long $FFFF0000
num3 long $FF000000
num2 long $F0000000

Appendix B: Accessing Math Function Tables

Page 422 · Propeller Manual v1.0

num1 long $C0000000
num0 long $80000000
exp4 long $00100000
exp3 long $00080000
exp2 long $00040000
exp1 long $00020000
exp0 long $00010000
table_mask long $0FFE 'table offset mask
table_log long $C000 'log table base

num long 0 'input
exp long 0 'output

Anti-Log Table ($D000-$DFFF)
The anti-log table contains data used to convert base-2 exponents into unsigned numbers.

The anti-log table is comprised of 2,048 unsigned words which are each the lower 16-bits of a
17-bit mantissa (the 17th bit is implied and must be set separately). To use this table, shift the
top 11 bits of the exponent fraction (bits 15..5) into bits 11..1 and isolate. Add $D000 for the
anti-log table base. Read the word at that location into the result – this is the mantissa. Next,
shift the mantissa left to bits 30..15 and set bit 31 – the missing 17th bit of the mantissa. The
last step is to shift the result right by 31 minus the exponent integer in bits 20..16. The
exponent is now converted to an unsigned number.

Here is a routine that will convert a base-2 exponent into an unsigned number using the anti-
log table:
' Convert exponent to number
'
' on entry: exp holds 21-bit exponent with 5 integer bits and 16 fraction bits
' on exit: num holds 32-bit unsigned value
'
expnum mov num,exp 'get exponent into number
 shr num,#15-11 'justify exponent fraction as word
offset
 and num,table_mask 'isolate table offset bits
 or num,table_antilog 'add anti-log table address
 rdword num,num 'read mantissa word into number
 shl num,#15 'shift mantissa into bits 30..15
 or num,num0 'set top bit (17th bit of mantissa)
 shr exp,#20-4 'shift exponent integer into bits 4..0
 xor exp,#$1F 'inverse bits to get shift count
 shr num,exp 'shift number into final position

Appendix B: Accessing Math Function Tables

Propeller Manual v1.0 · Page 423

expnum_ret ret '47..62 clocks
 '(variance is due to HUB sync on
RDWORD)

num0 long $80000000 '17th bit of the mantissa
table_mask long $0FFE 'table offset mask
table_antilog long $C000 'anti-log table base

exp long 0 'input
num long 0 'output

Sine Table ($E000-$F001)
The sine table provides 2,049 unsigned 16-bit sine samples spanning from 0° to 90°,
inclusively (0.0439° resolution).

A small amount of assembly code can mirror and flip the sine table samples to create a full-
cycle sine/cosine lookup routine which has 13-bit angle resolution and 17-bit sample
resolution:
' Get sine/cosine
'
' quadrant: 1 2 3 4
' angle: $0000..$07FF $0800..$0FFF $1000..$17FF $1800..$1FFF
' table index: $0000..$07FF $0800..$0001 $0000..$07FF $0800..$0001
' mirror: +offset -offset +offset -offset
' flip: +sample +sample -sample -sample
'
' on entry: sin[12..0] holds angle (0° to just under 360°)
' on exit: sin holds signed value ranging from $0000FFFF ('1') to
' $FFFF0001 ('-1')
'
getcos add sin,sin_90 'for cosine, add 90°
getsin test sin,sin_90 wc 'get quadrant 2|4 into c
 test sin_sin_180 wz 'get quadrant 3|4 into nz
 negc sin,sin 'if quadrant 2|4, negate offset
 or sin,sin_table 'or in sin table address >> 1
 shl sin,#1 'shift left to get final word address
 rdword sin,sin 'read word sample from $E000 to $F000
 negnz sin,sin 'if quadrant 3|4, negate sample
getsin_ret
getcos_ret ret '39..54 clocks
 '(variance due to HUB sync on RDWORD)

sin_90 long $0800

Appendix B: Accessing Math Function Tables

Page 424 · Propeller Manual v1.0

sin_180 long $1000
sin_table long $E000 >> 1 'sine table base shifted right

sin long 0

As with the log and anti-log tables, linear interpolation could be applied to the sine table to
achieve higher resolution.

Index

Propeller Manual v1.0 · Page 425

Index
_

_CLKFREQ, 131, 132
_CLKFREQ (spin), 177–78
_CLKMODE, 131
_CLKMODE (spin), 180–82
_FREE (spin), 218
_STACK (spin), 307
_XINFREQ, 131, 132
_XINFREQ (spin), 337–38

A
Abort

Status, 161
Trap, 162, 313

ABORT (spin), 161–64
ABS (asm), 353
ABSNEG (asm), 354
Absolute Value ‘||’, 261
Access collisions, 230
ADC, 204
ADD (asm), 354–55
Add ‘+’, ‘+=’, 255
ADDABS (asm), 355
Address ‘@’, 278
Address Plus Symbol ‘@@’, 279
ADDS (asm), 356
ADDSX (asm), 356–57
ADDX (asm), 357
Align

Edit mode, 65, 66
Text, 66
Values, 209

Analog-to-digital conversion, 204
AND (asm), 358
AND (spin), 221
AND, Bitwise ‘&’, ‘&=’, 269
AND, Boolean ‘AND’, ‘AND=’, 272
ANDN (asm), 359
ANSI-encoded, 35
Anti-log table, 420
Anti-Log Table, 422
Application

Defined, 18, 87, 88, 129
Initial clock mode, 180
Initial frequency, 177
Starting point, 100

Applications and objects, 87
Architecture, 13–34
Archive (menu), 45
Arranging multiple objects, 41
Array, 107, 165
Array index designators, [], 313
Assembly language, 339

ABS, 353
ABSNEG, 354
ADD, 354–55
ADDABS, 355
ADDS, 356
ADDSX, 356–57
ADDX, 357
AND, 358
ANDN, 359
Binary operators, 347
CALL, 360–61
CLKSET, 361
CMP, 362
CMPS, 362–63
CMPSUB, 363
CMPSX, 364
CMPX, 364–65
CNT, 397
COGID, 365
COGINIT, 366–67
COGSTOP, 367
Common syntax elements, 348
Conditions, 341, 368–69
Conditions (table), 369
Configuration, 341
CTRA, CTRB, 397
DIRA, DIRB, 397
Directives, 341
DJNZ, 370
Effects, 343, 371
Effects (table), 371
FIT, 372
Flow control, 343
FRQA, FRQB, 397

Index

Page 426 · Propeller Manual v1.0

HUBOP, 373
IF_x (conditions), 368–69
INA, INB, 397
JMP, 374
JMPRET, 374–75
Literal, #, 312
LOCKCLR, 375
LOCKNEW, 376
LOCKRET, 376–77
LOCKSET, 377
Main memory access, 343
Master table, 350–51
MAX, 378
MAXS, 378–79
MIN, 379
MINS, 380
MOV, 380–81
MOVD, 381
MOVI, 382
MOVS, 382–83
MUXC, 383
MUXNC, 384
MUXNZ, 384–85
MUXZ, 385
NEG, 386
NEGC, 386–87
NEGNC, 387
NEGNZ, 388
NEGZ, 389
NOP, 389
NR, 371
Operators, 390–91
OR, 392
ORG, 392–93
OUTA, OUTB, 397
PAR, 397
PHSA, PHSB, 397
Process control, 341
RCL, 393
RCR, 394
RDBYTE, 394–95
RDLONG, 395
RDWORD, 396
Registers, 397
RES, 398
RET, 399
REV, 399
ROL, 400

ROR, 400–401
SAR, 401
SHL, 402
SHR, 402–3
Structure, 339
SUB, 403
SUBABS, 404
SUBS, 404–5
SUBSX, 405
SUBX, 406
SUMC, 406–7
SUMNC, 407
SUMNZ, 408
SUMZ, 408–9
Syntax definitions, 348
TEST, 409
TJNZ, 410
TJZ, 410–11
Unary operators, 346
VCFG, 397
VSCL, 397
WAITCNT, 411
WAITPEQ, 412
WAITPNE, 413
WAITVID, 414
WC, 371
WR, 371
WRBYTE, 414–15
WRLONG, 415
WRWORD, 416
WZ, 371
XOR, 417

Assignment
Constant ‘=’, 254
Variable ‘:=’, 255

B
Bases, numerical, 159
Binary indicator, %, 312
Binary operators (asm), 347
Binary operators (spin), 157
Bitwise operators

AND ‘&’, ‘&=’, 269
AND Truth Table (table), 269
Decode ‘|<’, 265
Encode ‘>|’, 266

Index

Propeller Manual v1.0 · Page 427

NOT ‘!’, 94, 272
NOT Truth Table (table), 272
OR ‘|’, ‘|=’, 270
OR Truth Table (table), 270
Reverse ‘><’, ‘><=’, 268
Rotate Left ‘<-’, ‘<-=’, 267
Rotate Right ‘->’, ‘->=’, 268
Shift Left ‘<<’, ‘<<=’, 266
Shift Right ‘>>’, ‘>>=’, 267
XOR ‘^’, ‘^=’, 271
XOR Truth Table (table), 271

Block designators, 99, 152
Block Diagram (figure), 20–21
Block selection and moving, 68–69
Block Selection and Moving (figure), 69
Block-group indicators, 74, 95
Block-Group Indicators (figure), 74
BOEn (pin), 15
Bookmark Gutter, 63
Bookmarks, 41, 61, 63
Bookmarks (figure), 63
Boolean operators

AND ‘AND’, ‘AND=’, 272
Is Equal ‘= =’, ‘= = =’, 275
Is Equal or Greater ‘=>’, ‘=>=’, 277
Is Equal or Less ‘=<’, ‘=<=’, 277
Is Greater Than ‘>’, ‘>=’, 276
Is Less Than ‘<’, ‘<=’, 276
Is Not Equal ‘<>’, ‘<>=’, 275
NOT ‘NOT’, 274
OR ‘OR’, ‘OR=’, 273

Boot Loader, 18, 34
Boot parameter, 23
Boot up, 26
Boot up procedure, 18
Boot-up time, 93
Brown Out Enable (pin), 15
Byte

Data declaration, 166
Memory type, 16, 165
Reading/writing, 167, 394, 414
Variable declaration, 166

BYTE (spin), 165–68
Byte-aligned, 209
BYTEFILL (spin), 169
BYTEMOVE (spin), 170

C
Calculating time, 325
CALL (asm), 360–61
Call Stack, 161, 301, 360
Calls, 104
Case (find), 50
CASE (spin), 171–73
Case statement separator, :, 313
Categorical listing

Propeller Assembly language, 341
Spin language, 150, 152

Character
Chart, 58–60
Chart (figure), 60
Definitions, 32
Interleaving, 33
Interleaving (figure), 33

CHIPVER (spin), 174
Clear, Post ‘~’, 262
CLK register, 28
CLK Register Structure (table), 28
CLKFREQ (spin), 135, 175–76
CLKMODE (spin), 179
CLKSELx (table), 30
CLKSET (asm), 361
CLKSET (spin), 135, 183
Clock

Configuring, 28
Frequency, 175, 177, 183
Frequency range, 29
Mode, 28, 31, 179, 180
Mode Setting Constants (table), 180, 181
Panel, 56
PLL, 22, 28, 177
Related timing, 133
Settings, 131

Close (menu), 45
Close All (menu), 45
Close button, 51
CMP (asm), 362
CMPS (asm), 362–63
CMPSUB (asm), 363
CMPSX (asm), 364
CMPX (asm), 364–65
CNT, 23, 94, 305
CNT (asm), 397

Index

Page 428 · Propeller Manual v1.0

CNT (spin), 184–85
Code Block Indenting (figure), 72
Code comments, 100
Cog

RAM, 23
RAM (spec), 16
RAM Map (figure), 23
Registers (table), 397

Cog address pointer, 392
Cog Boot Parameter register, 283
Cog control (spin), 153
Cog ID, 186, 365
Cog-Hub interaction, 21
Cog-Hub Interaction (figure), 25
COGID (asm), 365
COGID (spin), 186
COGINIT (asm), 366–67
COGINIT (spin), 187–88
COGNEW (spin), 189–92
Cogs (processors), 22, 97
COGSTOP (asm), 367
COGSTOP (spin), 193
Combining conditions, 221
Comments, 36, 100
Common resources, 26, 27
Common syntax elements (asm), 348
Compile Current (menu), 47, 113
Compile information, 147
Compile Information (figure), 147
Compile Menus (figure), 114
Compile Top (menu), 47, 113
Compiled status, 44
Compound expression, 119
CON (spin), 194–99
Condensed view mode, 41, 61
Conditional loops, 297
Conditional statement, 126
Conditions (asm), 341, 368–69
Conditions, Assembly (table), 369
Configuration (asm), 341
Configuration (spin), 152
CONSTANT (spin), 200–201
Constant Assignment ‘=’, 254
Constant block, 98, 99, 194
Constant Expression Math/Logic Oper. (table), 391
Constants, 98
Constants (pre-defined), 202–3
Context-sensitive compile information, 147

Copy (menu), 46
Counted finite loops, 295
Counter

Control, 23
Frequency, 23
Modes (table), 207
Phase, 23
Registers, 204

Crystal Input (pin), 15
Crystal oscillator, 28
Crystal Output (pin), 15
CTRA and CTRB Registers (table), 205
CTRA, CTRB, 23, 305
CTRA, CTRB (asm), 397
CTRA, CTRB (spin), 204–7
Current draw (spec), 16
Current source/sink (spec), 16
Cut (menu), 46

D
DAC, 204
DAT (spin), 208–11
Data block, 99, 208
Data tables, 167, 208, 237, 242, 244, 313, 332
Decimal point, ., 312
Declaring data, 167, 208, 237, 313, 332
Decode, Bitwise ‘|<’, 265
Decrement, pre- or post- ‘- -’, 257
Delay, 94

Fixed, 184, 322
Fixed (figure), 324
Synchronized, 323
Synchronized (figure), 325

Delimiter, _, 312
Digital-to-analog conversion, 204
DIP, 14
DIRA, DIRB, 23, 305
DIRA, DIRB (asm), 397
DIRB, DIRB (spin), 212–14
Direction (find), 50
Direction register, 94, 212
Direction states, 23
Directives (asm), 341
Directives (spin), 155
Discussion forum, 12
Divide ‘/’, ‘/=’, 259

Index

Propeller Manual v1.0 · Page 429

DJNZ (asm), 370
Documentation comments, 100
Documentation view mode, 41, 61, 101
Downloading (figure), 89
Downloading to RAM vs. EEPROM, 93
Duty-cycle measurement, 204

E
Edit modes, 44, 65–68
Edit Modes (figure), 65
Editor pane, 40
EEPROM, 17
EEPROM communication, 18
Effects (asm), 343, 371
Effects, Assembly (table), 371
ELSE (spin), 222
ELSEIF (spin), 222
ELSEIFNOT (spin), 224
Encode, Bitwise ‘>|’, 266
Enumeration Set, #, 312
Enumerations, 197, 312
Example Application (figure), 112
Example Data in Memory (table), 209
Exit (menu), 46
Exiting a method, 290
Expression workspace, 249
External clock speed (spec), 16
External crystal, 132, 183
External crystal frequency, 337
External files, 215

F
FALSE, 202
Figures

Block Diagram, 20–21
Block Selection and Moving, 69
Block-Group Indicators, 74
Bookmarks, 63
Character Chart, 60
Character Interleaving, 33
Code Block Indenting, 72
Compile Information, 147
Compile Menus, 114
Downloading, 89
Edit Modes, 65

Example Application, 112
Find/Replace, 49
Fixed Delay Timing, 324
Hardware Connections, 17
Integrated Explorer, 38
Line Numbers, 64
Main Memory Map, 31
Object Files, 88
Object Hierarchy, 88
Object Info, 55, 57, 128
Object View, 52
Parentheses Matching, 120
Propeller Font Characters, 32
Propeller Library Browsing, 138
Propeller Object, 87
Propeller Tutorial Schematic, 90
Screen Organization, Propeller Tool, 37
Single Cog, Running, 97
Status Bar, 44
Synchronized Delay Timing, 325
Top Object, Setting, 115
Two Cogs, Running, 108
View Modes, 62
Viewing Multiple Objects, 42, 43
Work and Library Folders, 141

FILE (spin), 215
File format, 35
Filter field, 39
Find, 49
Find button, 51
Find Next (menu), 46
Find/Replace (figure), 49
Find/Replace dialog, 49–51
Find/Replace… (menu), 46
Finite loops, 104
FIT (asm), 372
Fixed delay, 184, 322
Fixed Delay Timing (figure), 324
FLOAT (spin), 216–17
Floating-point, 144, 216, 303, 314
Flow control (asm), 343
Flow control (spin), 153
Folder list, 39
Free space, 218
Frequency measurement, 204
Frequency register, 219
Frequency synthesis, 204
FROM (spin), 293, 295

Index

Page 430 · Propeller Manual v1.0

FRQA, FRQB, 23, 305
FRQA, FRQB (asm), 397
FRQA, FRQB (spin), 219
Full Source view mode, 41, 61
Functional Block Diagram (figure), 20

G
Global constant block, 99
Global constants, 98
Global variable block, 99
Go To Bookmark (menu), 46
Guarantee, 2

H
Hardware connections, 17, 90
Hardware Connections (figure), 17
Hex view, 56
Hexadecimal indicator, $, 312
Hide/Show Explorer (menu), 46
Hierarchy, 88
Hollow folders, 53
Host communication, 18
Hub, 21, 24
Hub Access Window, 24
Hub instructions, clock cycles for, 352
HUBOP (asm), 373

I
I/O pin rules, 26, 213
I/O pins, 26
I/O pins (spec), 16
I/O Sharing Examples (table), 27
ID of cog, 186, 365
Identify, 90
Identify Hardware… (menu), 48
IEEE-754, 217
IF (spin), 220–24
IF_x (asm) (conditions), 368–69
IFNOT (spin), 225
Import external file, 215
INA, INB, 23, 305
INA, INB (asm), 397
INA, INB (spin), 225–27
Including an object, 88

Increment, pre- or post- ‘+ +’, 257
Indenting and outdenting, 69–73
Indention, 92, 95, 171, 221, 294
Infinite loops, 294
Info Object View, 56, 129
Init method, the, 117
Input register, 226
Input states, 23
Insert edit mode, 65
Integer and real numbers, 143
Integrated Explorer, 38
Integrated Explorer (figure), 38
Intermediate assignments, 253
Internal RC Oscillator, 131
Internal RC Oscillator (spec), 16
Is Equal or Greater, Boolean ‘=>’, ‘=>=’, 277
Is Equal or Less, Boolean ‘=<’, ‘=<=’, 277
Is Equal, Boolean ‘= =’, ‘= = =’, 275
Is Greater Than, Boolean ‘>’, ‘>=’, 276
Is Less Than, Boolean ‘<’, ‘<=’, 276
Is Not Equal, Boolean ‘<>’, ‘<>=’, 275

J
JMP (asm), 374
JMPRET (asm), 374–75

L
Launching a new cog, 107, 187, 189, 366
Least Significant Bit (LSB), 264
Level of precedence, 249, 252
LFSR, 264
Library folder, 52, 53, 138
Library objects, 138
Limit Maximum ‘<#’, ‘<#=’, 261
Limit Minimum ‘#>’, ‘#>=’, 122, 260
Line numbers, 61, 64
Line Numbers (figure), 64
Linear Feedback Shift Register (LFSR), 264
List delimiter (,), 313
Load EEPROM (menu), 47
Load EEPROM button, 57
Load RAM (menu), 47
Load RAM button, 57
Local variable separator, |, 313
Local variables, 140, 289

Index

Propeller Manual v1.0 · Page 431

Lock, 30, 230, 233, 234, 375, 376, 377
Lock, rules, 231
LOCKCLR (asm), 375
LOCKCLR (spin), 228–29
LOCKNEW (asm), 376
LOCKNEW (spin), 230–32
LOCKRET (asm), 376–77
LOCKRET (spin), 233
LOCKSET (asm), 377
LOCKSET (spin), 234–35
Log and anti-log tables, 34
Log table, 420
Long

Data declaration, 237
Memory type, 16, 236
Reading/writing, 238, 395, 415
Variable declaration, 236

LONG (spin), 236–39
Long-aligned, 209
LONGFILL (spin), 240
LONGMOVE (spin), 241
LOOKDOWN, LOOKDOWNZ (spin), 242–43
LOOKUP, LOOKUPZ (spin), 244–45
Loops

Conditional, 297
Examples, 94, 105, 122, 126, 293
Finite, counted, 295
Finite, simple, 295
Infinite, 294

LQFP, 14
LSB, 264

M
Main memory, 30, 97
Main memory access (asm), 343
Main Memory Map (figure), 31
Main RAM, 23, 31
Main RAM/ROM (spec), 16
Main ROM, 23, 32
Master clock frequency, 28, 31
Match (find), 49
Matching parentheses, 120
Math function tables, 420
Math/Logic Operators (table), 250
MAX (asm), 378
Maximum, Limit ‘<#’, ‘<#=’, 261

MAXS (asm), 378–79
Memory

Copying, 170, 241, 336
Filling, 169, 240, 335

Memory type
Byte, 16, 165
Long, 16, 236
Word, 16, 331

Menu items, 45–48
Method, 94
Method call, 105
MIN (asm), 379
Minimum, Limit ‘#>’, ‘#>=’, 260
MINS (asm), 380
Modulus ‘//’, ‘//=’, 260
Most Significant Bit (MSB), 264
MOV (asm), 380–81
MOVD (asm), 381
MOVI (asm), 382
MOVS (asm), 382–83
MSB, 264
Multi-line code comment, { }, 100, 313
Multi-line doc comment, {{ }}, 100, 313
Multiple line indenting, 71
Multiply, Return High‘**’, ‘**=’, 259
Multiply, Return Low ‘*’, ‘*=’, 258
Mutually-exclusive resource, 24, 231
MUXC (asm), 383
MUXNC (asm), 384
MUXNZ (asm), 384–85
MUXZ (asm), 385

N
NEG (asm), 386
Negate ‘-’, 256
NEGC (asm), 386–87
NEGNC (asm), 387
NEGNZ (asm), 388
NEGX, 202, 203
NEGZ (asm), 389
New (menu), 45
NEXT (spin), 246
NOP (asm), 389
NOT, Bitwise ‘!’, 272
NOT, Boolean ‘NOT’, 274
NR (asm), 371

Index

Page 432 · Propeller Manual v1.0

Numerical bases, 159

O
OBJ (spin), 247–48
Object Address Plus Symbol ‘@@’, 279
Object assignment, :, 313
Object block, 99, 125, 247
Object documentation, 35
Object Files (figure), 88
Object hierarchy, 88
Object Hierarchy (figure), 88
Object Info, 55–57, 128
Object Info (figure), 55, 57, 128
Object interface, 111
Object library, 138
Object lifetime, 129
Object reference, 88, 247
Object View, 39, 52–54, 112
Object View (figure), 52
Object View hints, 54
Object, structure of, 150
Object-Constant Reference, #, 141, 312
Object-Method Reference, ., 111, 312
Objects, 86
Objects and applications, 87
Objects vs. cogs, 117
Objects, multiple copies of, 127
Open File button, 57
Open files, switching between, 40
Open From… (menu), 45
Open... (menu), 45
Operator attributes, 249
Operator Precedence Levels (table), 251
Operators

- - (Decrement, pre- or post-), 257
- (Negate), 256
! (Bitwise NOT), 272
#>, #>= (Limit Minimum), 260
&, &= (Bitwise AND), 269
**, **= (Multiply, Return High), 259
*, *= (Multiply, Return Low), 258
-, -= (Subtract), 256
/, /= (Divide), 259
//, //= (Modulus), 260
:= (Variable Assignment), 255
? (Random), 264

@ (Symbol Address), 278
@@ (Object Address Plus Symbol), 279
^, ^= (Bitwise XOR), 271
^^ (Square Root), 261
|, |= (Bitwise OR), 270
|| (Absolute Value), 261
|< (Bitwise Decode), 265
~ (Sign-Extend 7 or Post-Clear), 262
~~ (Sign-Extend 15 or Post-Set), 263
~>, ~>= (Shift Arithmetic Right), 264
+ (Positive), 256
+ + (Increment, pre- or post-), 257
+, += (Add), 255
<#, <#= (Limit Maximum), 261
<-, <-= (Bitwise Rotate Left), 267
<, <= (Boolean Is Less Than), 276
<<, <<= (Bitwise Shift Left), 266
<>, <>= (Boolean Is Not Equal), 275
= (Constant Assignment), 254
=<, =<= (Boolean Is Equal or Less), 277
= =, = = = (Boolean Is Equal), 275
=>, =>= (Boolean Is Equal or Greater), 277
->, ->= (Bitwise Rotate Right), 268
>, >= (Boolean Is Greater Than), 276
>| (Bitwise Encode), 266
><, ><= (Bitwise Reverse), 268
>>, >>= (Bitwise Shift Right), 267
AND, AND= (Boolean AND), 272
NOT (Boolean), 274
OR, OR= (Boolean OR), 273

Operators (asm), 390–91
Operators (spin), 249–79
OR (asm), 392
OR (spin), 221
OR, Bitwise ‘|’, ‘|=’, 270
OR, Boolean ‘OR’, ‘OR=’, 273
ORG (asm), 392–93
Origin (find), 50
OSCENA (table), 29
Oscillator gain, 175
OSCMx (table), 29
OTHER (spin), 172
OUTA, OUTB, 23, 305
OUTA, OUTB (asm), 397
OUTA, OUTB (spin), 280–82
Output register, 94, 280
Output states, 23
Overwrite edit mode, 65

Index

Propeller Manual v1.0 · Page 433

P
Package types, 14
PAR, 23, 305
PAR (asm), 397
PAR (spin), 283–84, 283–84
Parallax font, 36, 58
Parallel processing, 106, 108
Parameter list, 105
Parameter list designators, (), 313
Parameter register, 283
Parameters, 104, 148, 289
Parentheses Matching (figure), 120
Paste (menu), 46
Phase-Locked Loop (PLL) register, 285
PHSA, PHSB, 23, 305
PHSA, PHSB (asm), 397
PHSA, PHSB (spin), 285
PI, 202, 203
Pin descriptions, 15
Pinout, 14
PLL, 285
PLL16X, 180, 202, 203
PLL1X, 180, 202, 203
PLL2X, 180, 202, 203
PLL4X, 180, 202, 203
PLL8X, 180, 202, 203
PLLDIV Field (table), 205
PLLENA (table), 29
Positive ‘+’, 256
Post-Clear ‘~’, 121, 262
Post-Decrement ‘- -’, 257
Post-Increment ‘+ +’, 257
Post-Set ‘~~’, 94, 263
POSX, 202, 203
Power requirements (spec), 16
Power up, 18
Precedence level, 249, 252
Pre-Decrement ‘- -’, 122, 257
Preferences… (menu), 47
Pre-Increment ‘+ +’, 257
PRI (spin), 286
Print Preview… (menu), 46
Print… (menu), 46
Private method block, 99, 286
Process Control (asm), 341
Process control (spin), 153

Processors (cogs), 22, 97
Program size, 102
Programming connections, 17
Propeller Application

Defined, 18, 88, 89, 129
Downloading, 90

Propeller Assembly, 86, See Assembly Language
Propeller Assembly Instructions (table), 350–51
Propeller Assembly language, categorical, 341
Propeller chip

Architecture, 13–34
Block Diagram (figure), 20
Boot Loader, 18
Boot up procedure, 18
Cogs (processors), 22
Discussion forum, 12
EEPROM, 17
Hardware connections, 17, 90
Identifying, 90
Package types, 14
Pin descriptions, 15
Pinout, 14
Power up, 18
Run-time procedure, 18
Shared resources, 22
Shutdown procedure, 19
Specifications, 16
Warranty, 2

Propeller Clip, 17
Propeller Communication dialog, 92
Propeller Demo Board, 90
Propeller Font Characters (figure), 32
Propeller languages, 86
Propeller Library Browsing (figure), 138
Propeller Library folder, 39, 138
Propeller Object (figure), 87
Propeller objects, 86
Propeller Spin, 86, See Spin Language
Propeller Tool

Arranging multiple objects, 41
Edit mode, 44
Editor Pane, 40
Filter field, 39
Folder list, 39
Integrated Explorer, 38
Menu items, 45–48
Object View, 39
Recent Folders, 39

Index

Page 434 · Propeller Manual v1.0

Screen organization, 37
Status Bar, 44
View modes, 41

Propeller Tutorial Schematic (figure), 90
Pseudo-real numbers, 143
PUB (spin), 287–90
Public method block, 94, 99, 287
Pulse counting, 204
Pulse measurement, 204
Pulse-width modulation (PWM), 204

Q
QFN, 14
Quaternary indicator, %%, 312
QUIT (spin), 291

R
RAM

Cog (spec), 16
Main, 31
Main (spec), 16
Usage, 56

Random ‘?’, 264
Range indicator, .., 312
RC oscillator, 28
RCFAST, 30, 180, 202, 203
RCL (asm), 393
RCR (asm), 394
RCSLOW, 30, 180, 202, 203
RDBYTE (asm), 394–95
RDLONG (asm), 395
RDWORD (asm), 396
Reading/writing

Bytes of main memory, 167, 394, 414
Longs of main memory, 238, 395, 415
Words of main memory, 333, 396, 416

Real numbers, 143
REBOOT (spin), 292
Recent Folders, 39, 138
Redo (menu), 46
Referencing an object, 88
Registers, 397
Registers (spin), 155
Registers, Cog (table), 397
REPEAT (spin), 293–98

Replace, 49
Replace (menu), 46
Replace All button, 51
Replace button, 51
RES (asm), 398
Reserved Words (table), 419
Reserving memory, 218, 398
Reset, 18
Reset (pin), 15
Reset (table), 28
Reset, software, 28
RESn (pin), 15
Resources

Common, 26
Mutually-exclusive, 24
Shared, 22

RESULT (spin), 299–300
RET (asm), 399
RETURN (spin), 301–2
Return value, 288, 299
Return value separator, :, 313
REV (asm), 399
Reverse, Bitwise ‘><’, ‘><=’, 268
ROL (asm), 400
ROM

Bitmap character view, 58, 59
Main (spec), 16

ROR (asm), 400–401
Rotate Left, Bitwise ‘<-’, ‘<-=’, 267
Rotate Right, Bitwise ‘->’, ‘->=’, 268
ROUND (spin), 303–4
Run-time procedure, 18

S
SAR (asm), 401
Save (menu), 45
Save All (menu), 45
Save As... (menu), 45
Save Binary File button, 57
Save EEPROM File button, 57
Save To… (menu), 45
Scope (find), 50
Scope of constants, 199
Scope of object symbols, 248
Scope of variables, 316
Screen Organization, Propeller Tool (figure), 37

Index

Propeller Manual v1.0 · Page 435

Select All (menu), 46
Select Top Object File… (menu), 45
Semaphore, 30, 230, 233, 234, 375, 376, 377
Semaphore, rules, 231
Serial processing, 106
Set, Post ‘~~’, 263
Setting the Top Object File, 114
Shared resources, 22
Shift Arithmetic Right ‘~>’, ‘~>=’, 264
Shift Left, Bitwise ‘<<’, ‘<<=’, 266
Shift Right, Bitwise ‘>>’, ‘>>=’, 267
SHL (asm), 402
Shortcut keys, 75–84

By key, 80–84
Categorical, 75–79

SHR (asm), 402–3
Shutdown procedure, 19
Sign-Extend 15 ‘~~’, 263
Sign-Extend 7 ‘~’, 262
Simple finite loops, 295
Simultaneous processing, 106
Sine table, 34, 423
Single Cog, Running (figure), 97
Single line indenting, 70
Single-line code comment, ', 100, 313
Single-line doc comment, ' ', 100, 313
Software reset, 28
Source comments, 36
Special purpose registers, 23, 305
Special Purpose Registers (table), 305
Specifications, 16
Spin

Operators, 249–79
Spin file, 87
Spin Interpreter, 34, 97, 108
Spin language, 149

_CLKFREQ, 177
_CLKMODE, 180–82
_FREE, 218
_STACK, 307
_XINFREQ, 337–38
ABORT, 161–64
AND, 221
Binary operators, 157
Block designators, 152
BYTE, 165–68
BYTEFILL, 169
BYTEMOVE, 170

CASE, 171–73
CHIPVER, 174
CLKFREQ, 175–76
CLKMODE, 179
CLKSET, 183
CNT, 184–85
Cog control, 153
COGID, 186
COGINIT, 187–88
COGNEW, 189–92
CON, 194–99
Configuration, 152
CONSTANT, 200–201
Constants (pre-defined), 202–3
CTRA, CTRB, 204–7
DAT, 208–11
DIRB, DIRB, 212–14
Directives, 155
ELSE, 222
ELSEIF, 222
ELSEIFNOT, 224
FILE, 215
FLOAT, 216–17
Flow control, 153
FROM, 293, 295
FRQA, FRQB, 219
IF, 220–24
IFNOT, 225
INA, INB, 225–27
LOCKCLR, 228–29
LOCKNEW, 230–32
LOCKRET, 233
LOCKSET, 234–35
LONG, 236–39
LONGFILL, 240
LONGMOVE, 241
LOOKDOWN, LOOKDOWNZ, 242–43
LOOKUP, LOOKUPZ, 244–45
Memory, 154
NEXT, 246
OBJ, 247–48
OR, 221
OUTA, OUTB, 280–82
PHSA, PHSB, 285
PRI, 286
Process control, 153
PUB, 287–90
QUIT, 291

Index

Page 436 · Propeller Manual v1.0

REBOOT, 292
Registers, 155
REPEAT, 293–98
RESULT, 299–300
RETURN, 301–2
ROUND, 303–4
SPR, 305–6
STEP, 293, 296
STRCOMP, 308–9
STRING, 310
STRSIZE, 311
Symbols, 312–13
Syntax definitions, 160
TO, 293, 295
TRUNC, 314
Unary operators, 156
UNTIL, 294, 297
VAR, 315–16
VSCL, 320–21
WAITCNT, 322–25
WAITPEQ, 326–27
WAITPNE, 328
WAITVID, 329–30
WHILE, 294, 297
WORD, 331–34
WORDFILL, 335
WORDMOVE, 336

Spin language, categorical listing, 150, 152
SPR (spin), 305–6
Square Root ‘^^’, 261
Stack space, 107
Standard Order character view, 58
Start method, the, 117
Starting a new cog, 107, 187, 189, 366
Start-up clock frequency, 177
Status Bar, 44, 147
Status Bar (figure), 44
STEP (spin), 293, 296
Stop method, the, 117
Stopping a cog, 193, 367
STRCOMP (spin), 308–9
STRING (spin), 140, 310
String comparison, 308
String constant, 310
String size, 311
Striped folders, 53
STRSIZE (spin), 311
Structure of Propeller Assembly, 339

Structure of Propeller object, 150
SUB (asm), 403
SUBABS (asm), 404
SUBS (asm), 404–5
SUBSX (asm), 405
Subtract ‘-’, ‘-=’, 256
SUBX (asm), 406
SUMC (asm), 406–7
Summary view mode, 41, 61
SUMNC (asm), 407
SUMNZ (asm), 408
SUMZ (asm), 408–9
Symbol Address ‘@’, 278
Symbol rules, 159
Symbolic Order character view, 58, 60
Symbols

- - (Decrement, pre- or post-), 257
' ' (single-line document comment), 313
- (Negate), 256
' (single-line code comment), 313
! (Bitwise NOT), 272
(multipurpose), 312
#>, #>= (Limit Minimum), 260
$ (Hexadecimal indicator), 312
% (Binary indicator), 312
%% (Quaternary indicator), 312
&, &= (Bitwise AND), 269
() (parameter list designators), 313
\ (abort trap), 313
**, **= (Multiply, Return High), 259
*, *= (Multiply, Return Low), 258
, (list delimiter), 313
-, -= (Subtract), 256
. (multipurpose), 312
.. (Range indicator), 312
/, /= (Divide), 259
//, //= (Modulus), 260
: (multipurpose), 313
:= (Variable Assignment), 255
? (Random), 264
@ (Symbol Address), 278
@@ (Object Address Plus Symbol), 279
[] (array-index designators), 313
^, ^= (Bitwise XOR), 271
^^ (Square Root), 261
_ (multipurpose), 312
{ } (In-line, multi-line code comments), 313
{{ }} (In-line, multi-line doc comments), 313

Index

Propeller Manual v1.0 · Page 437

| (local variable separator), 313
|, |= (Bitwise OR), 270
|| (Absolute Value), 261
|< (Bitwise Decode), 265
~ (Sign-Extend 7 or Post-Clear), 262
~~ (Sign-Extend 15 or Post-Set), 263
~>, ~>= (Shift Arithmetic Right), 264
+ (Positive), 256
+ + (Increment, pre- or post-), 257
+, += (Add), 255
<#, <#= (Limit Maximum), 261
<-, <-= (Bitwise Rotate Left), 267
<, <= (Boolean Is Less Than), 276
<<, <<= (Bitwise Shift Left), 266
<>, <>= (Boolean Is Not Equal), 275
= (Constant Assignment), 254
=<, =<= (Boolean Is Equal or Less), 277
= =, = = = (Boolean Is Equal), 275
=>, =>= (Boolean Is Equal or Greater), 277
->, ->= (Bitwise Rotate Right), 268
>, >= (Boolean Is Greater Than), 276
>| (Bitwise Encode), 266
><, ><= (Bitwise Reverse), 268
>>, >>= (Bitwise Shift Right), 267
AND, AND= (Boolean AND), 272
NOT (Boolean), 274
OR, OR= (Boolean OR), 273

Symbols (spin), 312–13
Symbols (table), 312–13
Symbols:, 208, 215, 247, 310, 312
Synchronized delay, 323
Synchronized Delay Timing (figure), 325
Syntax definitions (asm), 348
Syntax definitions (spin), 160
System Clock, 22, 133, 175, 177, 183
System Clock frequency, 175
System Clock speed (spec), 16
System Clock Tick vs. Time (table), 175
System Counter, 23, 27, 94, 184

T
Tables

Bitwise AND Truth Table, 269
Bitwise NOT Truth Table, 272
Bitwise OR Truth Table, 270
Bitwise XOR Truth Table, 271

CLK Register Structure, 28
Clock Mode Setting Constants, 180, 181
Conditions, Assembly, 369
Counter Modes, 207
CTRA and CTRB Registers, 205
Effects, Assembly, 371
Example Data in Memory, 209
Math/Logic Operators, 250
Operator Precedence Levels, 251
Pin Descriptions, 15
PLLDIV Field, 205
Propeller Assembly Instructions, 350–51
Registers, Cog, 397
Reserved Words, 419
Sharing Examples, 27
Shortcut Keys – By Key, 80–84
Shortcut Keys – Categorical, 75–79
Special Purpose Registers, 23, 305
Specifications, 16
Symbols, 312–13
System Clock Ticks vs. Time, 175
VCFG Register, 317
VSCL Register, 320

TEST (asm), 409
Text Bigger (menu), 47
Text Smaller (menu), 47
Time, calculating, 325
Timing, 27
TJNZ (asm), 410
TJZ (asm), 410–11
TO (spin), 293, 295
Toggle, 94
Top Object File, 88, 89, 113, 114
Top Object, Setting (figure), 115
TRUE, 202
TRUNC, 146
TRUNC (spin), 314
Truth tables

Bitwise AND, 269
Bitwise NOT, 272
Bitwise OR, 270
Bitwise XOR, 271

TV, 139
Two Cogs, Running (figure), 108

Index

Page 438 · Propeller Manual v1.0

U
Unary / binary, 251
Unary operators (asm), 346
Unary operators (spin), 156
Underscore, _, 312
Underscores as delimiters, 98
Undo (menu), 46
Unicode-encoded, 35
UNTIL (spin), 294, 297
Update Status (menu), 47

V
Value representations, 159
VAR (spin), 315–16
VAR block, 107
Variable Assignment ‘:=’, 255
Variable block, 99, 315
Variable declarations, 166, 237, 315, 332
Variable scope, 316
Variable type

Byte, 16, 165
Long, 16, 236
Word, 16, 331

VCFG, 23, 305
VCFG (asm), 397
VCFG (spin), 317–19
VCFG Register (table), 317
Version number, 174
Video Configuration register, 23, 317
Video Scale register, 23, 320
View Character Chart… (menu), 48
View Info… (menu), 47
View modes, 41, 61
View Modes (figure), 62
Viewing Multiple Objects (figure), 42, 43
VSCL, 23, 305
VSCL (asm), 397
VSCL (spin), 320–21
VSCL Register (table), 320

W
Wait, 94
WAITCNT (asm), 411

WAITCNT (spin), 322–25
Waiting for transitions, 327
WAITPEQ (asm), 412
WAITPEQ (spin), 326–27
WAITPNE (asm), 413
WAITPNE (spin), 328
WAITVID (asm), 414
WAITVID (spin), 329–30
Warranty, 2
WC (asm), 371
WHILE (spin), 294, 297
Whole Words (find), 50
Word

Aligned, 209
Memory type, 16, 331
Reading/writing, 333, 396, 416
Variable declaration, 331

WORD (spin), 331–34
WORDFILL (spin), 335
WORDMOVE (spin), 336
Work and library folders, 141
Work and Library Folders (figure), 141
Work folder, 52, 53, 141
WR (asm), 371
WRBYTE (asm), 414–15
WRLONG (asm), 415
WRWORD (asm), 416
WZ (asm), 371

X
XI (pin), 15
XI capacitance, 29
XINPUT, 29, 30, 180, 202, 203
XO (pin), 15
XOR (asm), 417
XOR, Bitwise ‘^’, ‘^=’, 271
XOUT resistance, 29
XTAL1, 29, 180, 202, 203
XTAL2, 29, 180, 202, 203
XTAL3, 29, 180, 202, 203

Z
Zero-terminated strings, 309

Океан Электроники
Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при

поставках импортных электронных компонентов на взаимовыгодных условиях!

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным
представителем в России одного из крупнейших производителей разъемов военного и
аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и
эксклюзивным представителем в России производителя высокотехнологичных и надежных
решений для передачи СВЧ сигналов «FORSTAR».

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки,
Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более
30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит
испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества
(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics и др.);

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического
назначения:
(Применяются в военной, авиационной, аэрокосмической,
морской, железнодорожной, горно- и нефтедобывающей
отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели,
кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и
специального назначения, в средствах связи, РЛС, а так же
военной, авиационной и аэрокосмической отраслях
промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

