RoHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 56 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2110 to 2200 MHz.

2100 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Vdc, $I_{DQA} = 600$ mA, $V_{GSB} = 0.6$ Vdc, $P_{out} = 56$ W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2110 MHz	16.4	52.0	7.7	-29.3
2140 MHz	16.6	51.7	7.6	-30.2
2170 MHz	16.7	50.7	7.3	-30.7
2200 MHz	16.5	49.6	7.2	-31.1

Features

- Advanced high performance in-package Doherty
- Designed for wide instantaneous bandwidth applications
- · Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- Designed for digital predistortion error correction systems

A3T21H360W23SR6

2110–2200 MHz, 56 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR

- 1. Pin connections 4 and 5 are DC coupled and RF independent.
- 2. Device can operate with V_{DD} current supplied through pin 3 and pin 6.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T _C = 25°C when DC current is fed through pin 3 and pin 6 Derate above 25°C	CW	156 0.9	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 77°C, 56 W Avg., W-CDMA, 28 Vdc, I _{DQA} = 600 mA, V _{GSB} = 0.6 Vdc, 2155 MHz	$R_{ heta JC}$	0.21	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Charge Device Model (per JESD22-C101)	C3

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}			5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—		1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 120 μAdc)	V _{GS(th)}	1.4	1.8	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DA} = 600 mAdc, Measured in Functional Test)	V _{GSA(Q)}	2.3	2.7	3.1	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.2 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics - Side B, Peaking					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 240 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.4 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Side A and Side B are tied together for these measurements.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests ^(1,2,3) (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQA} = 600 \text{ mA}$, $V_{GSB} = 0.6 \text{ Vdc}$, $P_{out} = 56 \text{ W Avg.}$, f = 2110 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	15.7	16.4	18.7	dB
Drain Efficiency	η _D	49.0	52.0	—	%
Pout @ 3 dB Compression Point, CW	P3dB	54.7	55.3	—	dBm
Adjacent Channel Power Ratio	ACPR	_	-29.3	-27.0	dBc

Load Mismatch ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) $I_{DQA} = 600$ mA, $V_{GSB} = 0.6$ Vdc, f = 2140 MHz, 12 μ sec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 308 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 206 W Pulsed CW Rated Power)	

Typical Performance ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 600 mA, V_{GSB} = 0.6 Vdc, 2110–2200 MHz Bandwidth

Pout @ 3 dB Compression Point (4)	P3dB	_	348	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2110–2200 MHz bandwidth)	Φ		-32	_	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	125	—	MHz
Gain Flatness in 90 MHz Bandwidth @ P _{out} = 56 W Avg.	G _F	—	0.3	—	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.005	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	—	0.003	—	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
A3T21H360W23SR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	ACP-1230S-4L2S

1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurements made with device in an asymmetrical Doherty configuration.

4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

^{*}C13, C14, C15, and C16 are mounted vertically. Note: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

Figure 2. A3T21H360W23SR6 Test Circuit Component Layout

Part	Description	Part Number	Manufacturer
C1, C9, C10, C12, C18, C20, C21	10 μ F Chip Capacitor	GRM32ER61H106KA12L	Murata
C2, C8	9.1 pF Chip Capacitor	GQM2195C2E9R1BB12D	Murata
C3, C5	27 pF Chip Capacitor	ATC600F270JT250XT	ATC
C4, C17	0.8 pF Chip Capacitor	ATC600F0R8BT250XT	ATC
C6, C7	1 pF Chip Capacitor	ATC600F1R0BT250XT	ATC
C11, C19	12 pF Chip Capacitor	GQM2195C2E120FB12D	Murata
C13, C14	2.2 pF Chip Capacitor	GQM2195C2E2R2BB12D	Murata
C15, C16	2 pF Chip Capacitor	GQM2195C2E2R0BB12D	Murata
C22, C23	220 μ F, 50 V Electrolytic Capacitor	227CKS050M	Illinois Capacitor
R1	50 Ω , 4 W Termination Chip Resistor	ATCCW12010T0050GBK	ATC
R2, R3	2.2 Ω, 1/4 W Chip Resistor	CRCW12062R20JNEA	Vishay
Z1	2000-2300 MHz Band, 90°, 5 dB Directional Coupler	X3C21P1-05S	Anaren
РСВ	Rogers RO4350B, 0.020″, ε _r = 3.66	D90363	MTL

Table 6. A3T21H360W23SR6 Test Circuit Component Designations and Values

TYPICAL CHARACTERISTICS — 2110–2200 MHz

Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 56 Watts Avg.

TWO-TONE SPACING (MHz)

Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS - 2110-2200 MHz

Figure 7. Broadband Frequency Response

Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 604 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.00 – j9.46	3.69 + j8.52	2.65 – j6.39	17.9	51.7	148	59.3	-13	
2140	5.01 – j9.50	4.30 + j8.67	2.62 – j6.38	18.1	51.6	146	59.0	-13	
2170	6.30 – j9.09	5.01 + j8.70	2.52 – j6.21	18.4	51.6	144	58.5	-15	
2200	8.01 – j7.71	6.12 + j8.17	2.38 – j6.20	18.5	51.6	145	58.2	-13	

			Max Output Power						
					P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.00 – j9.46	3.60 + j9.13	2.68 – j6.73	15.7	52.4	174	60.3	-18	
2140	5.01 – j9.50	4.33 + j9.40	2.62 – j6.63	16.0	52.3	172	59.9	-18	
2170	6.30 – j9.09	5.31 + j9.49	2.53 – j6.61	16.1	52.3	169	58.8	-19	
2200	8.01 – j7.71	6.79 + j8.94	2.47 – j6.56	16.3	52.3	170	59.2	-18	

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 8. Carrier Side Load Pull Performance — Maximum Efficiency Tuning

V_{DD} = 28 Vdc, I_{DQA} = 604 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Drain Efficiency					
					P1dB			
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)
2110	4.00 – j9.46	3.57 + j8.75	4.75 – j3.46	20.8	49.7	94	71.0	-23
2140	5.01 – j9.50	4.21 + j8.90	4.49 – j3.31	21.1	49.5	90	70.0	-24
2170	6.30 – j9.09	5.00 + j8.90	4.14 – j3.68	21.1	49.7	94	69.0	-22
2200	8.01 – j7.71	6.22 + j8.35	3.82 – j3.57	21.3	49.6	91	69.0	-22

			Max Drain Efficiency						
					P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.00 – j9.46	3.39 + j9.20	4.66 – j3.64	18.7	50.4	110	71.6	-30	
2140	5.01 – j9.50	4.10 + j9.49	4.23 – j3.73	18.8	50.4	111	70.5	-30	
2170	6.30 – j9.09	5.12 + j9.63	4.02 – j3.88	18.9	50.5	112	69.5	-29	
2200	8.01 – j7.71	6.64 + j9.14	3.57 – j4.50	18.6	51.0	127	69.6	-26	

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning

V_{DD} = 28 Vdc, V_{GSB} = 1.5 Vdc, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Output Power						
					P1dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.10 – j7.99	3.33 + j8.00	2.22 – j5.00	16.9	55.2	328	59.1	-30	
2140	5.10 – j7.80	4.11 + j8.17	2.21 – j4.94	17.2	55.1	327	59.6	-31	
2170	6.30 – j6.90	5.21 + j8.06	2.17 – j4.98	17.3	55.1	321	58.4	-32	
2200	7.30 – j5.00	6.72 + j7.19	2.15 – j4.88	17.5	55.1	323	59.5	-31	

			Max Output Power						
					P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.10 – j7.99	3.65 + j8.53	2.19 – j5.39	14.6	55.8	381	58.7	-36	
2140	5.10 – j7.80	4.67 + j8.73	2.25 – j5.25	15.0	55.8	380	60.1	-38	
2170	6.30 – j6.90	6.15 + j8.47	2.20 – j5.20	15.1	55.7	374	59.2	-39	
2200	7.30 – j5.00	8.03 + j7.02	2.24 – j5.17	15.3	55.7	374	59.9	-39	

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 10. Peaking Side Load Pull Performance — Maximum Efficiency Tuning

V_{DD} = 28 Vdc, V_{GSB} = 1.5 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle

			Max Drain Efficiency						
					P1dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.10 – j7.99	3.08 + j7.95	4.17 – j3.64	18.3	53.9	244	68.3	-36	
2140	5.10 – j7.80	3.75 + j8.13	4.08 – j3.16	18.7	53.6	230	68.8	-38	
2170	6.30 – j6.90	4.71 + j8.12	3.79 – j2.66	18.9	53.3	213	69.1	-41	
2200	7.30 – j5.00	6.12 + j7.45	3.39 – j2.70	19.0	53.4	217	69.4	-40	

			Max Drain Efficiency						
					P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	4.10 – j7.99	3.43 + j8.48	4.18 – j4.58	16.0	54.8	302	67.1	-41	
2140	5.10 – j7.80	4.35 + j8.69	4.17 – j4.07	16.3	54.6	289	67.7	-43	
2170	6.30 – j6.90	5.69 + j8.53	4.06 – j3.60	16.6	54.4	275	67.6	-46	
2200	7.30 – j5.00	7.55 + j7.32	3.56 – j3.70	16.6	54.6	290	68.3	-44	

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 8. P1dB Load Pull Output Power Contours (dBm)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 13. P3dB Load Pull Efficiency Contours (%)

-32

7

30

28

6

-26

-24

5

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

 Gain
 Drain Efficiency
 Linearity

Output Power

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 17. P1dB Load Pull Efficiency Contours (%)

Figure 18. P1dB Load Pull Gain Contours (dB)

Figure 19. P1dB Load Pull AM/PM Contours (°)

Gain Drain Efficiency Linearity Output Power

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 20. P3dB Load Pull Output Power Contours (dBm)

Figure 21. P3dB Load Pull Efficiency Contours (%)

Figure 22. P3dB Load Pull Gain Contours (dB)

Figure 23. P3dB Load Pull AM/PM Contours (°)

 Gain
 Drain Efficiency
 Linearity
-

-1

Imaginary (Q)

Output Power

PACKAGE DIMENSIONS

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE.

- 5. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.

	INC	HES	MIL	LIMETERS		INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	DIM	MIN MAX		MIN	MAX	
AA	1.265	1.275	32.13	32.39	S	.365	.375	9.27	9.53	
BB	.395	.405	10.03	10.29	U	.035	.045	0.89	1.14	
CC	.160	.190	4.06	4.83	V1	.640	.655	16.26	16.64	
D	.455	.465	11.56	11.81	W1	.105	.115	2.67	2.92	
Е	.062	.069	1.57	1.75	W2	.135	.145	3.43	3.68	
F	.004	.007	0.10	0.18	W3	.245	.255	6.22	6.48	
H1	.082	.090	2.08	2.29	W4	.265	.281	6.73	7.14	
H2	.078	.094	1.98	2.39	Y	0.69	0.695 BSC		17.65 BSC	
К	.175	.195	4.45	4.95	Z1	R.000	R.040	R0.00	R1.02	
L	0.27	D BSC	6	.86 BSC	Z2	.060	.100	1.52	2.54	
М	1.219	1.241	30.96	31.52	aaa	.015		0.38		
N	1.218	1.242	30.94	31.55	bbb		010	0.25		
R	.365	.375	9.27	9.53	ccc		020	0.	51	
C	NXP SEMICO ALL RIGH	NDUCTORS N.V. TS RESERVED		MECHANICA	L OUT	LINE	PRINT VEF	RSION NOT	TO SCALE	
TITLE:						DOCUME	NT NO: 98ASA	00974D	REV: A	
	ŀ	ACP-123	0S-4L	2S	Γ	STANDARD: NON-JEDEC				
					Γ	SOT1800-4 21 JUN 2017				

9. DATUM A AND B TO BE DETERMINED AT DATUM T.

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2017	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А