

RCM500/1000 Series 500/1000 W DC-DC Converters

The RCM500 and RCM1000 Series converters are reliable power supplies for railway and transportation systems. They are optimized for 72 or 110 V railway batteries. The output delivers 24 V with 500 or 1000 W. The converters are designed for chassis mounting and exhibit a closed housing with cooling openings.

Many options are available, such as an output ORing FET for redundant operation, output voltage adjustment, interruption time of 10 ms, shutdown input, and a monitoring relay (change-over contact).

Features

- · Optimized for 72 V or 110 V railway batteries
- Output voltage 24 V
- · Closed housing for chassis mounting
- Extremely high efficiency and high power density
- Low inrush current
- 3 connectors: Input, output, auxiliary (option)
- Overtemperature, overvoltage, overcurrent, and short-circuit protection
- · Many options available
- Compliant to EN 50155, EN 50121-3-2, AREMA
- RoHS-compatible for all 6 substances
- Fire and smoke: compliant to EN 45545 and NFPA 130
- 5 year warranty

Safety-approved to the latest edition of IEC/EN 60950-1 and UL/CSA 60950-1

¹ pending

Table of Contents

Description	1
Model Selection	
Functional Description	3
Electrical Input Data	4
Electrical Output Data	6
Description of Options	

belfuse.com/power-solutions

Model Selection

Table 1: Standard models

	Input voltage		Output		Power	Efficiency ²		Model	Options		
V _{i min} ¹ [V]		V _{i cont} [V]		V 1 [V]	V _{o nom} [V]	/ _{o nom} [A]	P _{o nom} [W]	ղ _{min} [%	ղ _{typ} 6]		
43.2	50.4	(70)	90	110	24	21	500	95.5	96	72RCM500-24	
43.2	50.4	(72)	90	110	24	42	1000	95.5	96	72RCM1000-24	
<u> </u>	77	(110)	407 5	454	24	21	500	96	96.4	110RCM500-24	D, M, Q, F, K
66	77	(110)	137.5	154	24	42	1000	96	96.4	110RCM1000-24	

¹ Short time; see table 2 for details.

² Efficiency at T_{A} = 25 °C, $V_{i \text{ nom}}$, $I_{o \text{ nom}}$, only option D fitted.

Part Number Description

Operating input voltage $V_{i \text{ cont}}$ (continuously):

50.4 – 90 VDC 77 – 137.5 VDC	
Series	RCM
Output power: 500 W 1000 W	
Nominal output voltage: 24 V	24
Auxiliary functions and options:	

Out OK, output voltage adjust, shutdown ¹	D
Interruption time	M
ORing FET	Q
Fuse built-in	
Pluggable Connectors	K

¹ Opt. D requires the auxiliary connector.

Note: The sequence of options must follow the order above.

Note: All models are RoHS-compliant for all six substances.

110 RCM 500 -24 D M Q F K

Available combinations of options:
72/110RCMxxx-24 (K)
72/110RCMxxx-24D (K)
72/110RCMxxx-24DF (K)
72/110RCMxxx-24DMQ (K)
72/110RCMxxx-24DMQF (K)

Example: 110RCM500-24DMQ: DC-DC converter, input voltage range 77 to 137.5 V continuously, output providing 24 V /21 A, monitoring relay, output voltage adjust, shutdown input, active current sharing, interruption time 10 ms, integrated ORing FET, RoHS-compliant for all six substances.

Product Marking

Type designation, applicable safety approval and recognition marks, CE mark, pin allocation, and product logo.

Input voltage range and input current, nominal output voltage and current, degree of protection, batch no., serial no., and data code including production site, version (modification status) and date of production.

tech.support@psbel.com belfuse.com/power-solutions

Functional Description

The input voltage is fed via an efficient input filter and a step-up converter (switching with 2×110 kHz) to the high-efficient DC-DC converter operating at a switching frequency of approximately 90 kHz. The built-in overvoltage limiter protects against input voltage surges.

The inrush current is limited by an electronic circuitry. A VDR resistor protects against external surges.

If there is no external circuit breaker, the converter can be ordered with built-in fuse (opt. F). This fuse is not accessible.

The circuitry to provide the interruption time (opt. M) is located after the input filter together with the reverse polarity protection formed by a FET.

The rectification on the secondary side is provided by synchronous rectifiers, in order to keep the losses as low as possible. The output voltage control logic is located on the secondary side and controls the FETs of the DC-DC converter via insulated drivers.

An auxiliary converter supplies all circuits with a stable bias voltage.

An output ORing FET is available (opt. Q) and allows for a redundant power supply system.

Opt. D encompasses an additional signal connector to allow for output voltage adjustment, active current sharing, primary shutdown, and an output voltage monitor activating a relay with change-over contact.

The converter is mounted onto a base plate which acts as cooling plate. An additional heatsink for natural convection cooling is available as accessory. A thermal protection on the input and output side prevents from overheating.

tech.support@psbel.com belfuse.com/power-solutions

Electrical Input Data

General conditions:

- T_{A} = 25 °C, unless specified.

Table 2a: Input data of RCM500 models

Mode	əl		72	2RCM500	-24	11	0RCM500)-24	Unit
Char	acteristics	Conditions	min	typ	max	min	typ	max	
V	Operating input voltage	$I_{o} = 0 - I_{o}_{max}$ $T_{A \min} - T_{A \max}$	50.4	(72)	90	77	(110)	137.5	
V _{i2s}	for ≤ 2 s	without shutdown	43.2		100.8	66		154	V
V _{i nom}	Nominal input voltage			72			110		
$V_{_{\rm iabs}}$	Input voltage limits	3 s without damage	0		108	0		165	
I _i	Typical input current	V _{i nom,} I _{o nom}		7.3			4.8		A
P _{i0}	No-load input power	$V_{i \min} - V_{i \max} I_o = 0$		2.5	4		2.5	4	W
P _{iSD}	Idle input power	$V_{i \min} - V_{i \max}, V_{SD} = 0 V$		2	3		2	3	vv
C	Input capacitance ¹			7			7		μF
R _i	Input resistance			14			14		mΩ
I _{inr p}	Peak inrush current				20			20	A
t _{inr d}	Duration of inrush current	$V_{i} = V_{i \max} P_{o nom}$			0.5			0.5	
	Start-up time	$0 \rightarrow V_{i \min} P_{o nom}$			1000			1000	
t _{on}	Start-up time after removal of shutdown	$V_{\rm i min,} P_{\rm o nom}$ $V_{\rm SD} = 0 \rightarrow 5 \rm V$		300	500		300	500	ms

Table 2b: Input data of RCM1000 models

Mod	el		72	RCM100	0-24	11	0RCM100	0-24	Unit
Char	acteristics	Conditions	min	typ	max	min	typ	max	
V _i	Operating input voltage	$I_{o} = 0 - I_{o \max}$ $T_{A\min} - T_{A\max}$	50.4	(72)	90	77	(110)	137.5	
V _{i2s}	for ≤ 2 s	without shutdown	43.2		100.8	66		154	V
V _{i nom}	Nominal input voltage			72			110		
$V_{_{\rm iabs}}$	Input voltage limits	3 s without damage	0		108	0		165	
I _i	Typical input current	V _{i nom,} I _{o nom}		15			9.5		A
<i>P</i> _{i0}	No-load input power	$V_{i \min} - V_{i \max} I_o = 0$		3	4		3	4	w
P _{iSD}	Idle input power	$V_{i \min} - V_{i \max}, V_{SD} = 0 V$		2.5	3		2.5	3	vv
C _i	Input capacitance ¹			7			7		μF
R _i	Input resistance			14			14		mΩ
I _{inr p}	Peak inrush current				40			40	A
t _{inr d}	Duration of inrush current	$V_{i} = V_{i \max} P_{o nom}$			0.5			0.5	
	Start-up time	$0 \rightarrow V_{\rm i min,} P_{\rm o nom}$			1000			1000	
t _{on}	Start-up time after removal of shutdown	$V_{\rm i min,} P_{\rm o nom}$ $V_{\rm SD} = 0 \rightarrow 5 \rm V$		300	500		300	500	ms

¹ Not smoothed by the inrush current limiter at start-up (for inrush current calculation)

tech.support@psbel.com belfuse.com/power-solutions

Input Transient and Reverse Polarity Protection

A VDR resistor and a symmetrical input filter form an effective protection against input transients, which typically occur in many installations, but especially in battery-driven mobile applications.

If the input voltage has the wrong polarity, the incorporated reverse diode will cause the external input circuit breaker or fuse to trip. With option M or F (incorporated fuse), an active reverse-polarity protection circuit prevents from any damage.

Input Under-/Overvoltage Lockout

If the input voltage is out of range, an internally generated signal disables the converter to avoid any damage.

Efficiency

See fig. 2 for efficiency curves of selected models.

tech.support@psbel.com belfuse.com/power-solutions

Electrical Output Data

General conditions:

- $T_{\rm A}$ = 25 °C, unless $T_{\rm C}$ is specified
- R input not connected

Table 3: Output data

Mode	Model				10RCM5	00-24	72/11	IORCM10	000-24	Unit	
Chara	acteristics	Conditions	min	typ	max	min	typ	max			
V _o	Output voltage ¹		V _{i nom} , 0.5 <i>I</i> _{o nom}	23.76	24	24.24	23.76	24	24.24		
V _{ow}	Worst case output	voltage	$V_{i \min} - V_{i \max}$ $T_{C\min} - T_{C\max}, 0 - I_{o \min}$	23.28		24.72	23.28		24.72	V	
V _{o droop}	Output voltage droop				- 10			- 5		mV/A	
V _{oL}	Overvoltage shutd	own ⁶			28			28		V	
V _{oP}	Overvoltage protection ²			28.5	30	31.5	28.5	30	31.5	V	
I _{o nom}	Nominal output cu	rrent	<i>т т</i>		21			42		•	
I.	Output current limi	t	T _{C min} - T _{C max}			23			45	A	
	Quitaut aciac 3	Switching frequency	V _{i nom} , I _{o nom}			240			240		
V _o	Output noise ³	Total incl. spikes	BW = 20 MHz			480			480	mV _{pp}	
V _{od}	Dynamic load	Voltage deviation 5	V _{i nom} ,			1000			1000		
t 4	regulation	Recovery time	0.1 ↔ 0.9 <i>I</i> _{o nom}			5			5	ms	
ανο	Temperature coeffi	cient of v_{o} (NTC)	$0 - I_{o \text{ nom}}, T_{C \text{ min}} - T_{C \text{ max}}$	- 0.02		0	- 0.02		0	%/K	

¹ If the output voltage is increased above $V_{o nom}$ through R-input control, the output power should be reduced accordingly, so that $P_{o max}$ and $T_{C max}$ are not exceeded.

² Breakdown voltage of the incorporated suppressor diode at 1 mA. Exceeding this value might damage the suppressor diode.

³ Measured according to IEC/EN 61204 with a probe described in annex A

⁴ Recovery time until V_0 returns to ±1% of V_0 ; see fig. 3.

⁵ No overshoot at switch on.

⁶ Output overvoltage shutdown by an electronic circuitry, with automatic recovery.

Output Voltage Regulation

Fig. 3 Typical dynamic load regulation of output voltage

tech.support@psbel.com belfuse.com/power-solutions

Output Current Limitation

The output is continuously protected against open-circuit (no load) and short-circuit by an electronic current limitation with rectangular characteristic; see fig. 4.

Fig. 4 Rectangular current limitation

Series, Parallel Connection, Redundancy

The outputs of several RCM Series converters may be connected in series.

Note: If the sum of the output voltages is greater than 60 V, it cannot be considered being SELV (Safety Extra Low Voltage) according to the safety standards. but the voltage may exceed the SELV level.

The outputs RCM Series converters may be connected in parallel. In order to ensures proper current sharing, the load lines should have equal length and section. The output voltage exhibits a slight droop characteristic, which facilitates current sharing. In addition, the output voltage tends to be lowered with increasing temperature.

Converters with option D exhibit an additional pin T to provide active current sharing by simply interconnecting all T- pins. For redundant systems, we recommend option Q, which exhibits ORing diodes built by FETs, in order to keep the losses to a minimum. Figure 5 shows a system with 3 parallel-connected converters forming a redundant system. The output voltage is increased by the resistor R_{ext2} (as an example). The OK signals, connected in series, allow for monitoring all 3 converters.

tech.support@psbel.com belfuse.com/power-solutions

Thermal Considerations and Protection

A temperature protection is incorporated in the primary and secondary control logic each. It generates an internal inhibit signal, which disables the converter in case of overtemperature. The converter automatically recovers, when the temperature drops below the limit; see fig. 6. The relationship between T_A and T_c depends heavily upon the conditions of operation and the integration into a system.

Caution: The installer must ensure that under all operating conditions T_c remains within the limits stated in table 7.

Fig. 6

LED Indicator

Each converter exhibits a green LED "Out OK", signaling that the output voltage is inside the specified range.

tech.support@psbel.com belfuse.com/power-solutions

Typical output power derating versus temperature; vertical mounting position, free convection cooling.

Description of Options

Option D: Output Monitor, Output Adjust, Shutdown

Option D consists of several auxiliary functions (R, OK, SD, T) and encompasses an additional auxiliary connector.

Output Voltage Adjust (R)

Note: With open R-input, $V_{o} = V_{o nom}$.

The converter allows for adjusting the output voltage in the range of 80 to 105% of $V_{o nom}$. The adjust is accomplished by an external resistor R_{ext2} , connected to input R; see fig. 7.

Depending on the value of the required output voltage, the resistor shall be connected:

either: Between the pins R and R- to adjust the output voltage to a value below $V_{a norm}$:

$$R_{\text{ext1}} \approx 4 \text{ k}\Omega \cdot \frac{V_{\text{o}}}{V_{\text{o nom}} - V_{\text{o}}} - 15.8 \text{ k}\Omega$$

Note: $R_{\text{ext1}} = 0 \Omega$ reduces V_{o} to 80%.

or: Between the pins R and R+ to adjust the output voltage to a value greater than $V_{o nom}$:

$$R_{\text{ext2}} \approx 4 \text{ k}\Omega \cdot \frac{(V_{o} - 2.5 \text{ V})}{2.5 \text{ V} \cdot (V_{o}/V_{o \text{ nom}} - 1)} - 682 \text{ k}\Omega$$

Note: $R_{ext2} = 0 \Omega$ increases V_0 to 105%.

Fig. 7

Output voltage control via R-input

Output Voltage Monitor (OK)

The output voltage V_{o} is monitored. When V_{o} is in range, a relay with a changeover contact connected to the auxiliary connector is activated, and OK0 is connected with OK2.

Note: The trigger levels are typ. ± 5 % of V_{onom} (with open R-input).

Data of relay contacts: 0.4 A / 150 VDC.

Primary Shutdown (SD)

The output of the converter may be enabled or disabled by a logic signal (e.g. CMOS) applied between the shutdown pin SD and SD0 (= Vi–). If the shutdown function is not required, pin SD can be left open-circuit. Voltage on pin SD:

Converter operating: $12 \text{ V to } V_{\text{imax}}$ or open-circuit Converter disabled: -2 to + 2 V

The output response is shown in fig.8

Note: In systems consisting of several converters, this feature may be used to control the activation sequence by logic signals or to enable the power source to start up, before full load is applied.

tech.support@psbel.com belfuse.com/power-solutions

Current Share Function in Parallel Operation (T)

Just interconnect the T-pins of all converters to balance their output currents. Only a single-wire connection is needed.

Fig. 8

Typical output response to the SD-signal. If option M is not fitted, $t_{\rm bu} = 0$ ms.

Option Q: ORing FET for Redundant Systems

Two parallel connected converters are separated with ORing diodes (built by FETs). If one converter fails, the remaining one still delivers the full power to the loads. If more power is needed, the system may be extended to more parallel converters (n+1 redundancy).

Current sharing must be ensured by load lines of equal section and length. In addition, a slight droop characteristic of the outputs and a negative temperature coefficient are helpful as well.

To keep the losses as small as possible, the ORing diode is replaced by a FET.

Note: In the case of a failing converter, the output voltage is maintained by the redundant converters. However, the failing item should be identified and replaced. We recommend the Out OK function (option D).

Option M: Interruption Time

The interruption time t_{hu} is specified in the railway standard EN 50155:2017 clause 5.1.1.4: Class S2 is 10 ms. It is measured at $V_{B \text{ nom}}$ (nominal battery voltage) for interruption and short-circuit of the input. After such an event, the system is ready for the next event after 10 s. Fig. 6 shows the output voltage V_{o} , if option M is fitted. Option M encompasses a backrush protection formed by a FET device.

For less critical applications, option M is not required (class S1). Such units have a slightly better efficiency.

Option F: Incorporated Fuse

The railway standard EN 50155 does not recommend fuses in converters. Consequently, the installer should preview an external fuse or circuit breaker.

However, when this is not possible, we offer an incorporated fuse (option F) with active reverse polarity protection formed by a FET device. The fuse is not accessible and will not trip, unless the converter is really defect. The type of the incorporated fuses is specified in table 4. Such fuses are also recommended for external fuses.

Converter	Specification	Ordering number
72RCM500-24	15 A fast acting	Littlefuse 0505015.MX52 LEP
110RCM500-24	15 A fast acting	Littlefuse 0505015.MX52 LEP
72RCM1000-24	2x 25 A fast acting	Littlefuse 0505025.MX52 LEP
110RCM1000-24	25 A fast acting	Littlefuse 0505025.MX52 LEP

Table 4: Recommended external fuses (same as with option F)

Option K: Pluggable Connectors

This option allows the use of preassembled pluggabale connectors; for details see Accessories.

Note: Female connectors must be ordered separately.

tech.support@psbel.com belfuse.com/power-solutions

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

Table 5: Electromagnetic immunity (type tests). Corresponds or Exceeds EN50121-3-2:2016 and AREMA.

Phenomenon	Standard	Level	Coupling mode ¹	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ²		
Electrostatic	IEC/EN	4	contact discharge	6000 V _p	1/50 ns	330 Ω	10 pos. & 10 neg.		Α		
discharge (to case)	61000-4-2	4	air discharge	8000 V _p	1/50 115	150 pF	discharges	yes	A		
Electromagnetic	IEC/EN	х	antenna	20 V/m	AM 80% / 1 kHz	N/A	80 – 800 MHz	yes	Α		
field	61000-4-3			20 V/m			800 – 1000 MHz				
				antenna	20 V/m	AM 80% / 1 kHz	N/A	1400 – 2000 MHz			
			antenna	5 V/m		N/A	N/A	IN/A	2000 – 2700 MHz	yes	A
				3 V/m			5100 – 6000 MHz				
Electrical fast transients/burst	IEC/EN 61000-4-4	3	capacitive, o/c	+2000.1/	bursts of 5/50 ns; 2.5/5 kHz over 15 ms;	50 Ω	60 s positive 60 s negative		Α		
		3	i/c, +i/–i direct	±2000 V _p	burst period: 300 ms	50 12	transients per coupling mode	yes			
Surges	IEC/EN		i/c	±2000 V _p		42 Ω	_				
	61000-4-5	3	+i/_i	±1000 V _p	1.2 / 50 µs	0.5 µF	5 pos. & 5 neg. surges per	yes	A		
			i/c, +i/—i	±2000 V _p	1.2700 μο	12 Ω 9 μF	coupling mode	yes	В		
Conducted disturbances	IEC/EN 61000-4-6	3	i, o, signal wires	10 VAC (140 dBµV)	AM 80% / 1 kHz	150 Ω	0.15 – 80 MHz	yes	A		
Power frequency magnetic field	IEC/EN 61000-4-8	3		300 A/m			60 s in all 3 axis	yes	A		

¹ i = input, o = output, c = case

² A = normal operation, no deviation from specs.; B = normal operation, temporary loss of function or deviation from specs possible

tech.support@psbel.com belfuse.com/power-solutions

Electromagnetic Emissions

The conducted emissions (fig. 9) have been tested according to EN 55011, group 1, class A (similar to EN 55032), much better values than requested by EN 50121-3-2:2016, table 2.1. The limits in fig. 9 apply to quasipeak values, which are always lower then peak values.

Radiated emissions have been tested as per EN 55011, group 1, class A, similar to EN 61000-6-4+A1:2011, table 1. The test was executed with horizontal and vertical polarization; the worse result is shown in fig. 10.

Note: The highest frequency of the internal sources of EUT is less than 108 MHz. Hence, Radiated Measurement was made up to 1 GHz. Non-accredited measurement up to 6 GHz are available on request.

Fig. 9a

110RCM500-24: Typ. conducted disturbances at the input (V_i =110 V, $I_{i nom}$, resistive load, quasi peak and average).

Fig. 10a

110RCM500-24: Typ. radiated disturbances in 3 m distance ($V_i = 110 \text{ V}$, $I_{i \text{ nom}}$, resistive load, quasi peak).

Fig. 9b

110RCM1000-24: Typ. conducted disturbances at the input $(V_i = 110 \text{ V}, I_{i \text{ nom}}, \text{ resistive load, quasi peak and average}).$

Fig. 10b 110RCM1000-24: Typ. radiated disturbances in 3 m distance (V_i = 110 V, I_{i nom}, resistive load, quasi peak).

tech.support@psbel.com belfuse.com/power-solutions

Immunity to Environmental Conditions

Table 6: Mechanical and climatic stress. Air pressure 800 – 1200 hPa

Test method		Standard	Test Conditions	Status			
Ad	Low temperature	EN 50155:2017, clause 13.4.4	Temperature, duration:	- 40 °C, 2 h			
	start-up test	IEC/EN 60068-2-1	Performance test:	+25 °C	Not operating		
Be	Dry heat test,	EN 50155:2017, clause 13.4.5			Operating		
	cycle A	IEC/EN 60068-2-2	Duration:	6 h	perf. crit. A		
Db 2	Cyclic damp heat	EN 50155:2017, clause 13.4.7	Temperature:	55 °C and 25 °C			
	test	IEC/EN 60068-2-30	Cycles (respiration effect):	2	Not operating		
			Duration:	2x 24 h			
Ka	Salt mist test	EN 50155:2017, clause 13.4.10	Temperature:	35 ±2 °C	Converter not		
	sodium chloride (NaCl) solution	IEC/EN 60068-2-11	Duration:	48 h	operating		
	Functional random	EN 50155:2017 clause 13.4.11.4	Acceleration amplitude:	0.1 g _n = 1.01 m/s ²			
	vibration test	EN 61373:2010 clause 8,	Frequency band:	5 – 150 Hz	Operating perf. crit. A		
		class B, body mounted ¹	Test duration:	30 min (10 min in each axis)			
	Simulated long life	EN 50155:2017 clause 13.4.11.2	Acceleration amplitude:	0.58 g _n = 5.72 m/s ²			
	testing	EN 61373:2010 clause 9, class B, body mounted ¹	Frequency band:	5 – 150 Hz	Not operating		
		class b, body mounted	Test duration:	15 h (5 h in each axis)			
	Shock test	EN 50155:2017 clause 13.4.11.3	Acceleration amplitude:	5.1 g _n			
		EN 61373:2010 clause 10, class B, body mounted ¹	Bump duration:	30 ms	Operating perf. crit. A		
		line D, body mounted	Number of bumps:	18 (3 in each direction)	point onder t		
	Vibration sinusoidal	AREMA Part. 11.5.1 class C, D, E, I, J	Displacement amplitude:	0.3" (5 – 10 Hz) 0.07" (5 – 20 Hz)			
			Acceleration amplitude:	1.5 g _n = 14.7 m/s ² (10 – 200 Hz)	Operating		
			Frequency:	5 – 200 Hz	perf. crit. A		
			Test duration:	12 h (4 h in each axis)			
	Mechanical shock	AREMA Part. 11.5.1	Acceleration amplitude:	10 g _n = 98 m/s ²	0 "		
		class C, D, E, I, J	Bump duration:	11 ms	Operating perf. crit. A		
			Number of bumps:	18 (3 in each direction)			

¹ Body mounted = chassis of a railway coach

Temperatures

Table 7: Temperature specifications, valid for an air pressure of 800 – 1200 hPa (800 – 1200 mbar)

Model		RCM500					Unit			
			EN 50155:2017 Class OT4			EN 501	55:2017 CI	ass OT2		
Characteristics		Conditions	min max 10 min			min	max	10 min		
T _A	Ambient temperature	Converter operating	- 40	70	85	- 40	55 ²	70		
T _c	Case temperature ¹		- 40	90			90		°C	
T _s	Storage temperature	Not operational	- 55	85		- 55	85			

¹ Measured at the measurement point T_{c} ; see Mechanical Data.

² RCM1000 can be operated at higher temperature with reduced output power.

Reliability

Table 8: MTBF

Calculation method	Model	MTBF	
According to IEC 61709 / SN-29500	110RCM500-24DMQF	1 040 000 h	
	110RCM1000-24DMQF	822 000 h	

tech.support@psbel.com belfuse.com/power-solutions

Mechanical Data

Dimensions in mm.

Case for RCM500 (RCM03), Aluminum, EP powder-coated; 1160 g.

Fig. 13 Case detail for RCM500/1000 with option K

tech.support@psbel.com belfuse.com/power-solutions

Đ

European

Projection

Safety and Installation Instruction

Connectors and Pin Allocation

- Input connector, 3 pins: Wago 745-353: Vi+, Vi–, PE; wire sections: RCM500/1000: 0.2 – 6 mm², 24 – 10 AWG; with option K: Weidmüller 1048500000
- Output connector, 2 pins: Wago 745-652/006-000: Vo+, Vo; wire sections:
 RCM500/1000: 0.2 16 mm², 24 06 AWG
 RCM500 with option K: Weidmüller 1048390000
 RCM1000 with option K: Weidmüller 1156650000
- Auxiliary connector: Phoenix Contact 1874043, pin allocation see fig. 14.

4	Å	Т	n.c.	OK1	OK2	n.c.	ß
Я	Я	Т	n.c.	OKO	0K0	n.c.	SD0

Fig. 14 Auxiliary connector pin allocation

Installation Instruction

These converters are components, intended exclusively for inclusion by an industrial assembly process or by a professionally competent person. Installation must strictly follow the national safety regulations in respect of the enclosure, mounting, creepage distances, clearances, markings and segregation requirements of the end-use application.

Connection to the system shall only be effected with cables with suitable section (primary and secondary connector in cage clamp technique).

The auxiliary connector shall be connected via the suitable female connector; see Accessories.

Other installation methods may not meet the safety requirements. Check that PE is safely connected to protective earth.

No fuse is incorporated in the converter (except for option F). An external circuit breaker or a fuse in the wiring to one or both input pins.

Do not open the converters, or the warranty will be invalidated. Make sure that there is sufficient airflow available for convection cooling and that the temperature of the bottom plate is within the specified range. This should be verified by measuring the case temperature at the specified measuring point, when the converter is operated in the end-use application. $T_{C max}$ should not be exceeded. Ensure that a failure of the converter does not result in a hazardous condition.

Standards and Approvals

The RCM Series converters are approved according to the last edition of IEC/EN 60950-1 and UL/CSA 60950-1.

They have been evaluated for:

- · Class I equipment
- Building in
- Double or reinforced insulation based on 250 VAC or 240 VDC between input and output, and between input and OK signals (relay contacts)
- Pollution degree 2 environment

The converters are subject to manufacturing surveillance in accordance with the above mentioned safety standards and with ISO 9001:2015, IRIS ISO/TS 22163:2017 certified quality and business management system.

Cleaning Liquids and Protection Degree

The converters are not hermetically sealed. In order to avoid possible damage, any penetration of liquids shall be avoided.

The converters correspond to protection degree IP 30.

tech.support@psbel.com belfuse.com/power-solutions

Railway Applications

The RCM Series converters have been designed observing the railway standards EN 50155:2017, EN 50121-3-2:2016, EN 50124-1:2017 and AREMA. All boards are coated with a protective lacquer. The converters comply with the fire & smoke standard EN 45545-2, HL1 to HL3.

Insulation Test

The electric strength test is performed in the factory as routine test in accordance with EN 50514 and IEC/EN 60950 and AREMA. It should not be repeated in the field. The Company will not honor warranty claims resulting from incorrectly executed electric strength tests.

Table 9: Isolation

Characteristics		Input to		Output to Case	OK contacts to			Unit
		Output ¹	Case + Output		Input	Case	Outputs	
Electric strength test	Factory test 10 s	4.2	2.86	2.86	2.86	2.86	2.86	kVDC
	AC test voltage equivalent to factory test	3.0	2.0	2.0	2.0	2.0	2.0	kVAC
Insulation resistance		>300 2	>300 2	>300	>300	>300	>300	MΩ
Creepage distances		5.0	3.5	3.5	3.5	3.5	3.5	mm

¹ Pretest of subassemblies in accordance with IEC/EN 60950

² Tested at 500 VDC

tech.support@psbel.com belfuse.com/power-solutions

Accessories

Female Connector

A suitable 16 pin female connector is available; see fig. 15.

For converters RCM500/1000 with option K, use (see fig. 16):

• HZZ00303-G (3 poles, Weidmüller 1060580000) for RCM500/1000

• HZZ00302-G (2 poles, Weidmüller 1060550000) for RCM500 • HZZ00304-G (2 poles, Weidmüller 1156600000) for RCM1000

Wire section: $0.5 - 10 \text{ mm}^2$, 24 - 8 AWG

Fig. 16 Female connectors for RCM500/1000 with option K

Fig. 15 Female connector 16 pins, HZZ00146-G (Phoenix Contact 1790357)

Additional Heatsink

A suitable heat sink (HZZ00149-G) for free air cooling is available, if cooling by wall or a chassis mounting is not possible; see fig. 17.

Fig. 17 Additional heatsink for RCM500 and RCM1000 (HZZ00149-G) Weight 530 g Content: Heatsink + 2 screws (M3 x 6 mm)

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

tech.support@psbel.com belfuse.com/power-solutions

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А