

ZNEO32! Family of Microcontrollers

Z32F384 MCU

Product Specification

PS034602-0316

PRELIMINARY

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2016 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

ZNEO32! is a trademark or registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

	Revision		
Date	Level	Description	Page
Mar 2016	02	Updated to reflect new part, revision B (0x0002); Added timing information for most of the peripherals; corrected typos.	All
Dec 2015	01	Original issue.	

1. Overview

Introduction

Zilog's Z32F384 MCU, a member of the ZNEO32! Family of microcontrollers, is a cost-effective and high-performance 32-bit microcontroller. The Z32F384 MCU provides 3-phase PWM generator units which are suitable for inverter bridges, including motor drive systems. Two built-in channels of these generators control two inverter bridges simultaneously.

Two 12-bit high speed ADC units with 16-channel analog multiplexed inputs support feedback retrieval from the inverter bridge. The Z32F384 MCU can control up to two inverter motors or one inverter motor and the Power Factor Correction (PFC) function simultaneously.

Figure 1.1 shows a block diagram of the Z32F384 MCU.

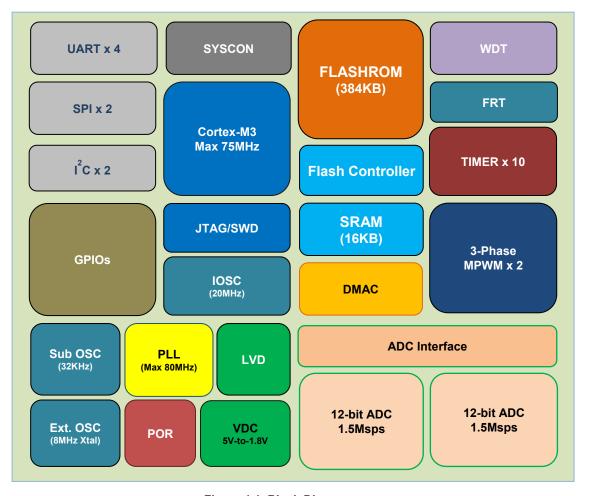


Figure 1.1. Block Diagram

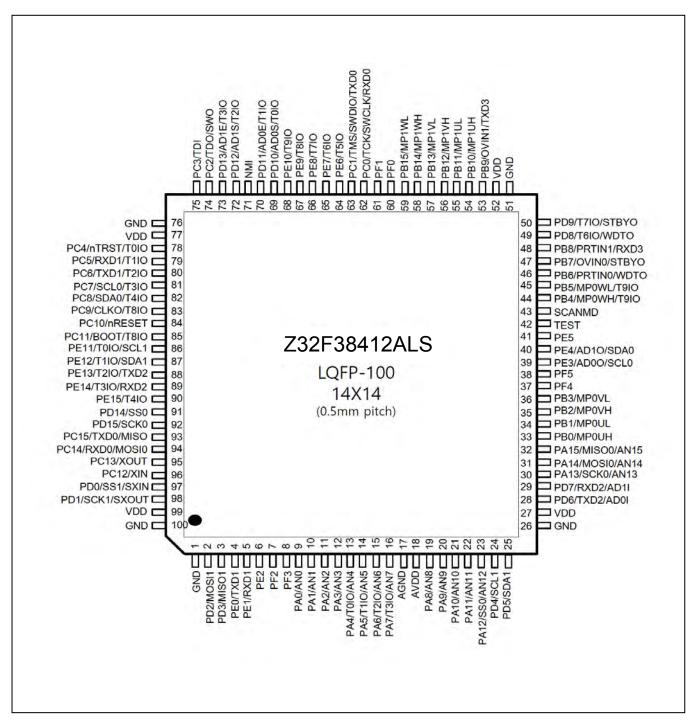


Figure 1.2. Pin Layout (LQFP-100)

Product Features

The Z32F384 MCU includes the following features:

- High performance low-power Cortex-M3 core
- 384KB code Flash memory with cache function
- 16 KB SRAM
- 3-Phase PWM with ADC triggering function
 - o 2 Channels
- 1.5 MSPS high-speed ADC with sequential conversion
 - o 2 units with 16 Channel input
- System fail-safe function by clock monitoring
 - o XTAL OSC fail monitoring function
 - o System clock Fail monitoring function
- Internal clock sources
 - o Internal ring oscillator (1 MHz ±50%)
 - Internal oscillator clock (20 MHz ±3%)
 - o Internal Phase Lock Loop (PLL) up to 80Mhz
- External clock sources
 - External crystal oscillator (4~16 MHz)
 - External sub oscillator (32 kHz)
- Watchdog timer
- 10 general purpose timer channels
 - o Timer/capture/PWM mode
- Free run timer
- Various external communication ports:
 - o 4 UARTs
 - \circ 2 I^2 Cs
 - o 2 SPIs
- High current driving port for UART photo couplers
- Direct Memory Access (DMA) controller with 8 channels
- Debug and emergency stop function
- JTAG and SWD debugger
- Package: LQFP-100 (0.5mm pitch)
- Industrial grade operating temperature (- 40 ~ +85°C)

Architecture

Block Diagram

Figure 1.3 shows the Z32F384 MCU's internal block diagram.

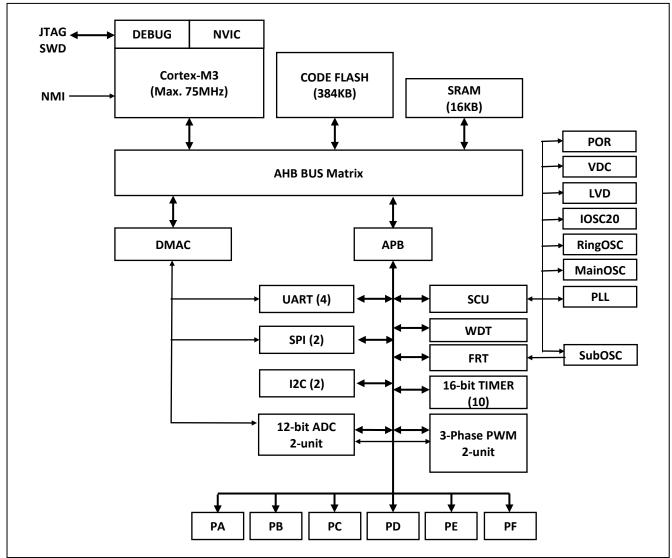


Figure 1.3. Internal Block Diagram

Functional Description

The following section provides an overview of the features of the Z32F384 microcontroller.

ARM Cortex-M3

The ARM-powered Cortex-M3 Core based on v7M architecture is optimized for small size and low power system. An on core system timer (SYSTICK) provides a simple 24-bit timer, that enables easy management of the system operation. The thumb-compatible Thumb-2 only instruction set processor core makes code high-density. Hardware division and single-cycle multiplication is present. Integrated Nested Vectored Interrupt Controller (NVIC) provides deterministic interrupt handling. Full featured debug solutions are provided – JTAG and SWD, FPB, DWT, ITM and TPIU. It includes a maximum 72 MHz operating frequency with zero wait execution.

Nested Vector-Interrupt Controller (NVIC)

The ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core is included, which handles all internal and external exceptions. When an interrupt condition is detected, the processor state is automatically stored to the stack and automatically restored from the stack at the end of the interrupt service routine. The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which allows back-to-back interrupts to be performed without the overhead of state saving and restoring.

384 KB Internal Code Flash Memory

The Z32F384 MCU provides internal 384 KB code Flash memory and its controller. This is enough to program the motor algorithm and generally control the system. Self-programming is available and ISP and JTAG programming is also supported in boot or debugging mode.

Instruction and data cache buffer are present and overcome the low bandwidth Flash memory. The CPU can execute from Flash memory with zero wait state up to 72 MHz bus frequency.

16 KB Zero-wait Internal SRAM

On chip 16 KB zero-wait SRAM can be used for working memory space and program code can be loaded on this SRAM.

Boot Logic

The smart boot logic supports Flash programming. The Z32F384 MCU can be accessed by an external boot pin and UART and SPI programming are available in boot mode.

System Control Unit (SCU)

The SCU block manages internal power, clock, reset, and operation mode. It also controls analog blocks (INTOSC, VDC and BOD).

32-bit Watchdog Timer (WDT)

The watchdog timer performs the system monitoring function. It generates an internal reset or interrupt when it notices abnormal status of the system.

Multi-purpose 16-bit Timer

10 16-bit general purpose timers channels support the following functions:

- Periodic timer mode
- Counter mode
- PWM mode
- Capture mode

Free Run Timer

The 32-bit Free run timer has multiple clock sources (XTAL/16, IOSC/16, SXTAL).

Motor PWM Generator

Two channels of the 3-phase PWM generator are implemented. A 16-bit up/down counter with prescaler

supports both the triangular and saw tooth waveform.

The PWM generates an internal ADC trigger signal to measure the signal on time. Dead time insertion and emergency stop functionality ensure that the chip and system operate under safe conditions.

Serial Peripheral Interface (SPI)

Synchronous serial communication is provided with the SPI block. The Z32F384 MCU has 2-channel SPI modules. It includes a DMA function supported by the DMA controller. Transfer data is moved to/from the memory area without CPU operation. Boot mode uses this SPI block to download the Flash program.

Inter-Integrated Circuit Interface (I²C)

The Z32F384 MCU has a 2-channel I²C block and it supports up to 400 KHz I²C communication. Master and slave modes are supported.

Universal Asynchronous Receiver/Transmitter (UART)

The Z32F384 MCU has a 4-channel UART block. For accurate baud rate control, the fractional baud rate generator is provided. It includes a DMA function supported by the DMA controller. Transfer data is moved to/from the memory area without CPU operation.

General PORT I/Os

16-bit PA, PB, PC, PD, PE ports and 6-bit PF are available and provide multiple functionality:

- General I/O port
- Independent bit set/clear function
- External interrupt input port
- Pull-up/open-drain
- On chip debounce filter

12-bit Analog-to-Digital Converter (ADC)

2 built-in ADCs can convert analog signals up to 1usec conversion rate. A 16-channel analog mux provides various combinations from external analog signals.

Pin Description

The pin configurations are shown in Table 1.1. 16 pins are reserved for power/ground pair and dedicated pins.

Table1.1. Pin Description

Pin No	Pin Name	Туре	Description	Remark
1	GND	P	Ground	
	PD2	IOUS	PORT D Bit 2 Input/Output	
2	MOSI1	I/0	SPI Channel 1 Master Out / Slave In	
	PD3*	IOUS	PORT D Bit 3 Input/Output	
3	MISO1	I/0	SPI Channel 1 Master In / Slave Out	
4	PE0	IOUS	PORT E Bit 0 input/Output	
4	TXD1	Output	UART Channel 1 TXD output	2nd function
5	PE1	IOUS	PORT E Bit 1 input/Output	
<u> </u>	RXD1	Input	UART Channel 1 RXD input	2nd function
	PE2	IOUS	PORT E Bit 2 input/Output	
6	T4I	I/0	Timer 4 Input	2nd function
	T30	I/0	Timer 3 Output	2nd function
7	PF2	IOUS	PORT F Bit 2 input/Output	
7	AN20	IA	Analog Input 20	
	PF3	IOUS	PORT F Bit 3 input/Output	
8	AN21	IA	Analog Input 21	
-	PA0*	IOUS	PORT A Bit 0 Input/Output	
9	AN0	IA	Analog Input 0	
	PA1*	IOUS	PORT A Bit 1 Input/Output	
10	AN1	IA	Analog Input1	
	PA2*	IOUS	PORT A Bit 2 Input/Output	
11	AN2	IA	Analog Input 2	
	PA3*	IOUS	PORT A Bit 3 Input/Output	
12	AN3	IA	Analog Input 3	
	PA4*	IOUS	PORT A Bit 4 Input/Output	
13	TOIO	IO	Timer 0 Input/Output	3rd function
	AN4	IA	Analog Input 4	
	PA5*	IOUS	PORT A Bit 5 Input/Output	
14	T1I0	IO	Timer 1 Input/Output	3rd function
	AN5	IA	Analog Input 5	
	PA6*	IOUS	PORT A Bit 6 Input/Output	
15	T2I0	IO	Timer 2 Input/Output	3rd function
	AN6	IA	Analog Input 6	
16	PA7*	IOUS	PORT A Bit 7 Input/Output	
	T3I0	IO	Timer 3 Input/Output	3rd function
	AN7	IA	Analog Input 7	
17	AGND	P	Analog Ground	
18	AVDD	P	Analog VDD	
19	PA8*	IOUS	PORT A Bit 8 Input/Output	
	AN8	IA	Analog Input 8	
20	PA9*	IOUS	PORT A Bit 9 Input/Output	
	AN9	IA	Analog Input 9	

21	PA10*	IOUS	PORT A Bit 10 Input/Output	
21	AN10	IA	Analog Input 10	
22	PA11*	IOUS	PORT A Bit 10 Input/Output	
	AN11	IA	Analog Input 11	
	PA12*	IOUS	PORT A Bit 12 Input/Output	
23	SS0	I/O	SPI Channel 0 Slave Select signal	
	AN12	IA	Analog Input 12	
	PD4	IOUS	PORT D Bit 4 Input/Output	
24	SCL1	Output	I2C Channel 1 SCL In/Out	Open-drain
	AN16	IA	Analog Input 16	
	PD5	IOUS	PORT D Bit 5 Input/Ouput	
25	SDA1	Output	I2C Channel 1 SDA In/Out	Open-drain
	AN17	IA	Analog Input 17	
26	GND	P	Ground	
27	VDD	P	VDD	
	PD6*	IOUS	PORT D Bit 6 Input/Ouput	
28	TXD2	Output	UART Channel 2 TxD Output	
	AN18	IA	Analog Input 18	
	PD7*	IOUS	PORT D Bit 7 Input/Ouput	
29	RXD2	Input	UART Channel 2 RxD Input	
	AN19	IA	Analog Input 19	
	PA13*	IOUS	PORT A Bit 13 Input/Output	
30	SCK0	I/0	SPI Channel 0 Clock Input/Output	
	AN13	IA	Analog Input 13	
	PA14*	IOUS	PORT A Bit 14 Input/Output	
31	MOSI0	I/0	SPI Channel 0 Output(M)/Input(S) Data signal	
	AN14	IA	Analog Input 14	
	PA15*	IOUS	PORT A Bit 15 Input/Output	
32	MISO0	I/0	SPI Channel 0 Input(M)/Output(S) Data signal	
	AN15	IA	Analog Input 15	
33	PB0	IOUS	PORT B Bit 0 Input/Output	
33	MPOUH	Output	PWM0 UH Output	
0.4	PB1	IOUS	PORT B Bit 1 Input/Output	
34	MPOUL	Output	PWM0 UL Output	
	PB2	IOUS	PORT B Bit 0 Input/Output	
35	MP0VH	Output	PWM0 VH Output	
	PB3	IOUS	PORT B Bit 1 Input/Output	
36	MP0VL	Output	PWM0 VL Output	
37	PF4	IOUS	PORT F Bit 4 Input/Output	
38	PF5	IOUS	PORT F Bit 5 Input/Output	
	PE3	IOUS	PORT E Bit 3 Input/Output	
39		_		Open-drain
	SCL0	Output	I2C Channel 0 SCL In/Out	2nd function
40	PE4	IOUS	PORT E Bit 4 Input/Output	
				Open-drain
	SDA0	Output	I2C Channel 0 SDA In/Out	2nd function
	DEE	IOTIC	DODT E Dit E Input /Output	Zna function
41	PE5	IOUS	PORT E Bit 5 Input/Output	
	T5I0	I/0	Timer 5 Input/Output	Dall 3
42	TEST	Input	Test-mode Input (Always 'L')	Pull-down
43	SCANMD	Input	Scan-mode Input (Always 'L')	Pull-down

MPOWII					
T910	44	PB4	IOUS	PORT B Bit 4 Input/Output	
PBS				·	
MPOWL		T9I0	I/0	Timer 9 Input/Output	
T910		PB5	IOUS	1 , 1	
PB6	45			•	
PRTINO				• • •	2nd function
WDTO					
PB7	46			• •	
OVINO			_		
STBYO					
PBB	47				
PRTIN1					
RXD3					
PD8	48				
WDTO				•	
T610	40			<u> </u>	0.16
PD9	49				2nd function
STBYO			•	• • •	
T710	FO				2nd function
51 GND P Ground 52 VDD P VDD PB9 IOUS PORT B Bit 9 Input/Output 53 OVIN1 Input PWMI Over-Current Input signal 1 TXD3 Output UART Channel 3 TXD Output PB10 IOUS PORT B Bit 10 Input/Output MP1UH Output PWM Channel 1 UH Output MP1UL Output PWM Channel 1 UL Output MP1VH Output PWM Channel 1 VH Output MP1VH Output PWM Channel 1 VH Output MP1VH Output PWM Channel 1 VL Output MP1VL Output PWM Channel 1 VL Output MP1VL Output PWM Channel 1 WH Output MP1WH Output PWM Channel 1 WL Output MP1WH Output PWM Channel 1 WL Output P00 IOUS PORT B Bit 15 Input/Output </td <td>50</td> <td></td> <td></td> <td></td> <td>Ziiu iulicuon</td>	50				Ziiu iulicuon
S2	51		•	• • • • • • • • • • • • • • • • • • • •	
PB9					
TXD3	32		-		
TXD3	53				
PB10					
MP1UH		PB10		-	
MP1UL Output PWM Channel 1 UL Output	54	MP1UH	Output	PWM Channel 1 UH Output	
PB12 IOUS PORT B Bit 12 Input/Output		PB11	IOUS	PORT B Bit 11 Input/Output	
MP1VH Output PWM Channel 1 VH Output 57 PB13 IOUS PORT B Bit 13 Input/Output MP1VL Output PWM Channel 1 VL Output 58 PB14 IOUS PORT B Bit 14 Input/Output MP1WH Output PWM Channel 1 WH Output 59 PB15 IOUS PORT B Bit 15 Input/Output 60 PF0 IOUS PORT F Bit 0 Input/Output 61 PF1 IOUS PORT F Bit 1 Input/Output 62 TCK/SWCLK Input JTAG TCK, SWD Clock Input RXD0 Input UART Channel 0 RXD Input 2nd function 63 TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output 64 PE6 IOUS PORT E Bit 6 Input/Output	55	MP1UL	Output	PWM Channel 1 UL Output	
PB13 IOUS PORT B Bit 13 Input/Output	E.6	PB12	IOUS	PORT B Bit 12 Input/Output	
MP1VL Output PWM Channel 1 VL Output		MP1VH	Output	PWM Channel 1 VH Output	
PB14 IOUS PORT B Bit 14 Input/Output	57	PB13	IOUS	PORT B Bit 13 Input/Output	
MP1WH Output PWM Channel 1 WH Output		MP1VL	Output	PWM Channel 1 VL Output	
MP1WH Output PWM Channel 1 WH Output PB15 IOUS PORT B Bit 15 Input/Output MP1WL Output PWM Channel 1 WL Output Output PWM Channel 1 WL Output PF0 IOUS PORT F Bit 0 Input/Output PC0 IOUS PORT C Bit 1 Input/Output PC0 IOUS PORT C Bit 0 Input/Output RXD0 Input UART Channel 0 RXD Input PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output	58	PB14	IOUS	PORT B Bit 14 Input/Output	
MP1WL Output PWM Channel 1 WL Output 60 PF0 IOUS PORT F Bit 0 Input/Output 61 PF1 IOUS PORT F Bit 1 Input/Output PC0 IOUS PORT C Bit 0 Input/Output 7 TCK/SWCLK Input JTAG TCK, SWD Clock Input RXD0 Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output		MP1WH	Output	PWM Channel 1 WH Output	
MP1WL Output PWM Channel 1 WL Output 60 PF0 IOUS PORT F Bit 0 Input/Output 61 PF1 IOUS PORT F Bit 1 Input/Output PC0 IOUS PORT C Bit 0 Input/Output 62 TCK/SWCLK Input JTAG TCK, SWD Clock Input RXD0 Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output 63 TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output	50	PB15	IOUS	PORT B Bit 15 Input/Output	
61 PF1 IOUS PORT F Bit 1 Input/Output PC0 IOUS PORT C Bit 0 Input/Output 62 TCK/SWCLK Input JTAG TCK, SWD Clock Input RXD0 Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output		MP1WL	Output	PWM Channel 1 WL Output	
PCO IOUS PORT C Bit 0 Input/Output TCK/SWCLK Input JTAG TCK, SWD Clock Input RXDO Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXDO Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output	60	PF0	IOUS	PORT F Bit 0 Input/Output	
62 TCK/SWCLK Input JTAG TCK, SWD Clock Input RXD0 Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output	61	PF1	IOUS	PORT F Bit 1 Input/Output	
RXD0 Input UART Channel 0 RXD Input 2nd function PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output		PC0	IOUS	PORT C Bit 0 Input/Output	
PC1 IOUS PORT C Bit 1 Input/Output TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output	62	TCK/SWCLK	Input	JTAG TCK, SWD Clock Input	
63 TMS/SWDIO I/O JTAG TMS, SWD Data Input/Output TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output		RXD0	Input	UART Channel 0 RXD Input	2nd function
TXD0 Input UART Channel 0 TXD Output 2nd function PE6 IOUS PORT E Bit 6 Input/Output		PC1	IOUS	PORT C Bit 1 Input/Output	
PE6 IOUS PORT E Bit 6 Input/Output	63	TMS/SWDIO	I/0	JTAG TMS, SWD Data Input/Output	
64 —		TXD0	Input	UART Channel 0 TXD Output	2nd function
04	6.4	PE6	IOUS	PORT E Bit 6 Input/Output	
T5IO I/O Timer 5 Input/Output 2nd function	04	T510	I/0	Timer 5 Input/Output	2nd function
65 PE7 IOUS PORT E Bit 7 Input/Output	65	PE7	IOUS	PORT E Bit 7 Input/Output	

	T6I0	I/O	Timer 6 Input/Output	2nd function
-	PE8	IOUS		Ziia iunction
66	-		PORT E Bit 8 Input/Output	0.16
	T7I0	I/0	Timer 7 Input/Output	2nd function
67	PE9	IOUS	PORT E Bit 9 Input/Output	
	T8I0	I/O	Timer 8 Input/Output	3rd function
68	PE10	IOUS	PORT E Bit 10 Input/Output	
	T9I0	I/O	Timer 9 Input/Output	3rd function
	PD10	IOUS	PORT D Bit 10 Input/Output	
69	AD0SOC	Output	ADC0 Start-of-Conversion	
	TOIO	IO	Timer 0 Input/Output	3rd function
	PD11	IOUS	PORT D Bit 10 Input/Output	
70	AD0EOC	Output	ADC0 End-of-Conversion	
	T1I0	IO	Timer 1 Input/Output	3rd function
71	NMI	Input	Non-maskable Interrupt Input	
	PD12	IOUS	PORT D Bit 12 Input/Output	
72	AD1SOC	Output	ADC1 Start-of-Conversion	
	T2I0	IO	Timer 2 Input/Output	3rd function
	PD13	IOUS	PORT D Bit 13 Input/Output	
73	AD1EOC	Output	ADC1 End-of-Conversion	
	T3I0	IO	Timer 3 Input/Output	3rd function
74	PC2	IOUS	PORT C Bit 2 Input/Output	
	TDO/SWO	Output	JTAG TDO, SWO Output	
75	PC3	IOUS	PORT C Bit 3 Input/Output	
	TDI	Input	JTAG TDI Input	
76	GND	Р	Ground	
77	VDD	Р	VDD	
	PC4	IOUS	PORT C Bit 4Input/Output	_
78	nTRST	Input	JTAG nTRST Input	_
	TOIO	IO	Timer 0 Input/Output	2nd function
	PC5	IOUS	PORT C Bit 5Input/Output	
79	RXD1	Input	UART Channel 1 RXD Input	
	T1IO	IO	Timer 1 Input/Output	2nd function
	PC6	IOUS	PORT C Bit 6Input/Output	
80	TXD1	Output	UART Channel 1 TXD Output	
	T2I0	IO	Timer 2 Input/Output	2nd function
	PC7	IOUS	PORT C Bit 7Input/Output	
81	SCL0	IO	I2C Channel 0 SCL In/Out	
	T3I0	IO	Timer 3 Input/Output	2nd function
	PC8	IOUS	PORT C Bit 8 Input/Output	
82	SDA0	IO	I2C Channel 0 SDA In/Out	
	T4IO	IO	Timer 4 Input/Output	
	PC9	IOUS	PORT C Bit 9 Input/Output	
83	CLKO	Output	System Clock Output	
	T8I0	IO	Timer 8 Input/Output	
0.4	PC10	IOUS	PORT C Bit 10 Input/Output	
84	nRESET	Input	External Reset Input	Pull-up
	PC11	IOUS	PORT C Bit 11 Input/Output	•
85	ВООТ	Input	Boot mode Selection Input	
	T8I0	Input	Timer 8 Input/Output	2nd function
86	PE11	IOUS	PORT E Bit 11 Input/Output	
	TOIO	IO	Timer 0 Input/Output/Phase-A Input	4st function
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	SCL1	IO	I2C Channel 1 SCL Input/Output	2nd function
	PE12	IOUS	PORT E Bit 12 Input/Output	
87	T1IO	IO	Timer 1 Input/Output/Phase-B Input	4st function
	SDA1	IO	I2C Channel 1 SDA input/Output	2nd function
	PE13	IOUS	PORT E Bit 13 Input/Output	
88	T2IO	IO	Timer 2 Input/Output/Phase-Z Input	4st function
	TXD2	Output	UART Channel 2 TXD Output	2nd function
	PE14	IOUS	PORT E Bit 14 Input/Output	
89	T3I0	IO	Timer 3 Input/Output	4st function
	RXD2	Input	UART Channel 2 RXD Input	2nd function
0.0	PE15	IOUS	PORT E Bit 15 Input/Output	
90	T4IO	IO	Timer 4 Input/Output	2nd function
01	PD14	IOUS	PORT D Bit 14 Input/Output	
91	SS0	IO	SPI Channel 0 Slave Select signal	2nd function
02	PD15	IOUS	PORT D Bit 15 Input/Output	
92	SCK0	IO	SPI Channel 0 Clock Input/Output	2nd function
	PC15	IOUS	PORT C Bit 14 Input/Output	
93	TXD0	Output	UART Channel 0 TXD Output	
	MISO0	I/O	SPI Channel 0 Input(M)/Output(S)	2nd function
	PC14	IOUS	PORT C Bit 14 Input/Output	
94	RXD0	Input	UARTO RXD Input	
94	MOSI0	I/O	SPI Channel 0 Output(M)/Input(S)	2nd function
	VMARGIN	OA	Not used. (test purpose)	
95	PC13	IOUS	PORT C Bit 13 Input/Output	
95	XOUT	OA	External Crystal Oscillator Output	
0.6	PC12	IOUS	PORT C Bit 12 Input/Output	
96	XIN	IA	External Crystal Oscillator Input	
97	PD0	IOUS	PORT D Bit 0 Input/Output	
	SS1	I/O	SPI Channel 1 Slave Select signal	
	SXIN	IA	Sub Crystal Oscillator Input	
	PD1	IOUS	PORT D Bit 1 Input/Output	
98	SCK1	I/0	SPI Channel 1 Clock Input/Output	
	SXOUT	OA	Sub Crystal Oscillator Output	
99	VDD	P	VDD	
100	GND	P	Ground	

^{*}Notation: I=Input, O=Output, U=Pull-up, D=Pull-down, S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power (*) Selected pin function after reset condition Pin order may be changed with revision notice

Memory Map

ddress	Memory map
0x0000_0000	Code Flash ROM
	(384KB)
0x0005 FFFF	(304KB)
0x0006_0000	
_	Reserved
0x1FFE FFFF	
0x1FFF_0000	Poot DOM
	Boot ROM
0x1FFF_07FF	(2KB)
0x1FFF_0800	
	Reserved
0x1FFF_FFFF	
0x2000_0000	SRAM
	(16K)
0x2000_5FFF	(1011)
0x2000_6000 0x2FFF FFFF	Reserved
0x2200_0000	
0x23FF FFFF	SRAM Bit-banding region
0x2400 0000	D
0x2FFF_FFFF	Reserved
0x3000_0000	Code Flash ROM(Mirrored)
	(384KB)
0x3005_FFFF 0x3008 0000	
0x3008_0000	Boot ROM (Mirrored)
0x3008_07FF	(2KB)
0x3009_0000	OTP ROM (Mirrored)
0x3009_01FF	
0x3009_0200	Reserved
0x3FFF_FFFF	Kesetved
0x4000_0000	
	Periperals
	p
0x4000_FFFF 0x4001 0000	
0x41FF_FFFF	Reserved
0x4200_0000	Paris and a hith it is
0x43FF FFFF	Periperals bit-banding region
0x4400_0000	Reserved
0x5FFF_FFFF	1/6261 660
0x6000_0000	External Memory
00555 7777	(Not supported)
0x9FFF_FFFF 0xA000_0000	
	External Device
0xDFFF FFFF	(Not supported)
0xE000_0000	
_	Private peripheral bus:
0xE003_FFFF	Internal
0xE004_0000	Patrick and 1 2 2
	Private peripheral bus:
0xE00F_FFFF	Debug/External
0xE010_0000	
	Vendor Specific
	Tondor opecitio
0xffff ffff	

Figure 1.4. Main Memory Map

	Core memory map	
Address		
0xE000_0000		
	ITM	
	IIM	
0xE000_0FFF		
0xE000_1000		
	DWT	
0xE000_1FFF 0xE000_2000		
	FPB	
0xE000 2FFF		
0xE000_3000		
	Reserved	
0xE000 DFFF		
0xE000_E000		
	System Control	
0xE000 EFFF		
0xE000_EFFF		
	Reserved	
0xE003_FFFF		
0xE004_0000		
1	TPIU	
0xE004_0FFF		
0xE004_1000	THIN	
	ETM	
0xE004_1FFF 0xE004_2000		
0AD004_2000		
j	External PPB	
0xE00F EFFF		
0xE00F_F000		
- 1	ROM Table	
0xE00F FFFF		

Figure 1.5. Cortex-M3 Private Memory Map

Note: Please see document number DDI337 from ARM for more information about the Cortex-M3 memory map.

Address	Peripheral map
0x4000_0000	SCU
0x4000_0100	FMC
0x4000_0200	WDT
0x4000_0300	Reserved
0x4000_0400	DMAC(8)
0x4000_0500	Reserved
0x4000_0600	FRT
0x4000_1000	PCU
0x4000_2000	GPIO(A,B,C,D,E,F)
0x4000_3000	TIMER
0x4000_4000	MPWM0
0x4000_5000	MPWM1
0x4000_6000	Reserved
0x4000_8000	UARTO
0x4000_8100	UART1
0x4000_8200	UART2
0x4000_8300	UART3
0x4000_8600	Reserved
0x4000_9000	SPI0
0x4000_9100	SPI1
0x4000_9200	Reserved
0x4000_A000	I²C0
0x4000_A100	I²C1
0x4000_A200	Reserved
0z4000_B000	ADC0
0x4000_B100	ADC1
0x4000_B200	Reserved
0x4000_B300	Reserved
0x4000_B400 0x4000_FFFF	Reserved

Figure 1.6. Peripheral Memory Map

2. CPU

Cortex-M3 Core

The CPU core is supported from the ARM Cortex-M3 processor which provides a high-performance, low-cost platform.

Document DDI337 from ARM provides more information about the Cortex-M3.

System Timer

The System Timer (SYSTICK) is a 24-bit timer and is part of the Cortex-M3 core. The system timer can be configured either through the registers (see the Cortex-M3 Technical Reference Manual) or through the provided functions defined in <code>core_cm3.h</code>. There is an interrupt vector for the system timer. To configure the system timer, call <code>SysTickConfig()</code> with the number of system clocks in between Interrupt intervals (up to maximum of 24 bits).

Interrupt Controller

The Nested Vectored Interrupt Controller is part of the core Cortex-M3 MCU. The NVIC controls the system exceptions and peripheral interrupts and is closely coupled with the core to provide low latency and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the nested interrupts to enable tail-chaining of interrupts.

The Z32F128 MCU supports 64 peripheral interrupts (although 25 are not used) and 16 system interrupts. The NVIC also allows for setting software interrupts as well as resetting the system.

Interrupts can be assigned a Priority Group (common interrupts with the same priorities) as well as individual priorities. Eight priority levels are available. For an interrupt to be active, you must enable it in the peripheral and the NVIC registers. For more information on NVIC, see the Cortex M3 Technical Reference Manual.

The system includes functions to set the NVIC registers, which are defined in the core cm3.h.

Table2.1. Interrupt Vector Map

Priority	Vector Address	Interrupt vector map Interrupt Source
-16	0x0000 0000	Stack Pointer
-15	0x0000 0004	Reset Address
-14	0x0000 0008	NMI Handler
-13	0x0000_000C	Hard Fault Handler
-12	0x0000_0010	MPU Fault Handler
-11	0x0000_0014	BUS Fault Handler
-10	0x0000_0018	Usage Fault Handler
-9	0x0000_001C	Reserved
-8	0x0000_0020	Reserved
-7	0x0000_0024	Reserved
-6	0x0000_0028	Reserved
-5	0x0000_002C	SVCall Handler
-4	0x0000_0030	Debug Monitor Handler
-3	0x0000_0034	Reserved
-2	0x0000_0038	PenSV Handler
-1	0x0000_003C	SysTick Handler
0	0x0000_0040	LVDDETECT
1	0x0000_0044	SYSCLKFAIL
2	0x0000_0048	XOSCFAIL
3	0x0000_004C	WDT
4	0x0000_0050	FRT
5	0x0000_0054	TIMER0
6	0x0000_0058	TIMER1
7	0x0000_005C	TIMER2
8	0x0000_0060	TIMER3
9	0x0000_0064	TIMER4
10	0x0000_0068	TIMER5
11	0x0000_006C	TIMER6
12	0x0000_0070	TIMER7
13	0x0000_0074	TIMER8
14	0x0000_0078	TIMER9
15	0x0000_007C	Reserved
16	0x0000_0080	GPIOAE
17	0x0000_0084	GPIOAO
18	0x0000_0088	GPIOBE
19	0x0000_008C	GPIOBO
20	0x0000_0090	GPIOCE
21	0x0000_0094	GPIOCO
22	0x0000_0098	GPIODE
23	0x0000_009C	GPIODO
24	0x0000_00A0	MPWM0
25	0x0000_00A4	MPWM0PROT

26	0x0000_00A8	MPWM0OVV
27	0x0000_00AC	MPWM1
28	0x0000_00B0	MPWM1PROT
29	0x0000_00B4	MPWM10VV
30	0x0000_00B8	Reserved
31	0x0000_00BC	Reserved
32	0x0000_00C0	SPI0
33	0x0000_00C4	SPI1
34	0x0000_00C8	Reserved
35	0x0000_00CC	Reserved
36	0x0000_00D0	I2C0
37	0x0000_00D4	I2C1
38	0x0000_00D8	UART0
39	0x0000_00DC	UART1
40	0x0000_00E0	UART2
41	0x0000_00E4	UART3
42	0x0000_00E8	Reserved
43	0x0000_00EC	ADC0
44	0x0000_00F0	ADC1
45	0x0000_00F4	Reserved
46	0x0000_00F8	Reserved
47	0x0000_00FC	Reserved
48	0x0000_0100	Reserved
49	0x0000_0104	Reserved
50	0x0000_0108	GPIOEE
51	0x0000_010C	GPIOEO
52	0x0000_0110	GPIOFE
53	0x0000_0114	GPIOFO
54	0x0000_0118	Reserved
55	0x0000_011C	Reserved
56	0x0000_0120	Reserved
57	0x0000_0124	Reserved
58	0x0000_0128	Reserved
59	0x0000_012C	Reserved
60	0x0000_0130	Reserved
61	0x0000_0134	Reserved
62	0x0000_0138	Reserved
63	0x0000_013C	Reserved

3. Boot Mode

Boot Mode Pins

The Z32F384 MCU has a boot mode option to program internal Flash memory. When the BOOT pin is pulled low, the system starts up in the BOOT area $(0 \times 1 \text{FFF}_0000)$ instead of the default Flash area $(0 \times 0000_0000)$. This provides the ability to flash the part using either UART or SPI interfaces. The BOOT pin has an internal pull up resistor; therefore, when the BOOT pin is not connected, it rides high (normal state).

The boot mode uses the UART0 port and the SPI0 ports for the interface. JTAG and SW interfaces can also be used, which provides the ability to recover from a bad flash update that prevents the JTAG or SW debugger from attaching.

The pins for boot mode are listed in Table 3.1.

Tables. 1. Boot Mode Pin List						
Block	Pin Name	Dir	Description			
			·			
SYSTEM	nRESET/PC10	I	Reset Input signal			
SISIEW	BOOT/PC11	I	'0' to enter Boot mode			
UART0	RXD0/PC14	I	UART Boot Receive Data			
UARTU	TXD0/PC15	0	UART Boot Transmit Data			
	SS0/PA12	ı	SPI Boot Slave Select			
SPI0	SCK0/PA13	I	SPI Boot Clock Input			
3710	MOSI0/PA14	I	SPI Boot Data Input			
	MISO0/PA15	0	SPI Boot Data Output			

Table3.1. Boot Mode Pin List

Boot Mode Connections

Users can design the target board using either of the boot mode ports – UART or SPI.

Figures 3.1 and 3.2 show sample boot mode connection diagrams.

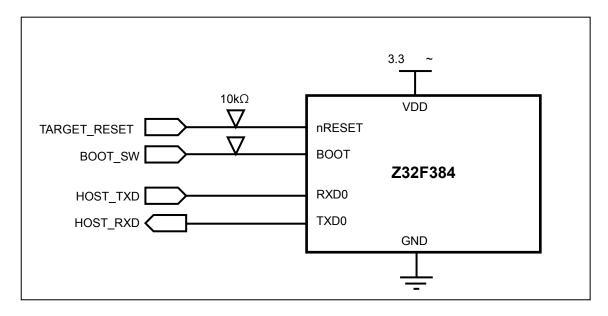


Figure 3.1. UART Boot Connection Diagram

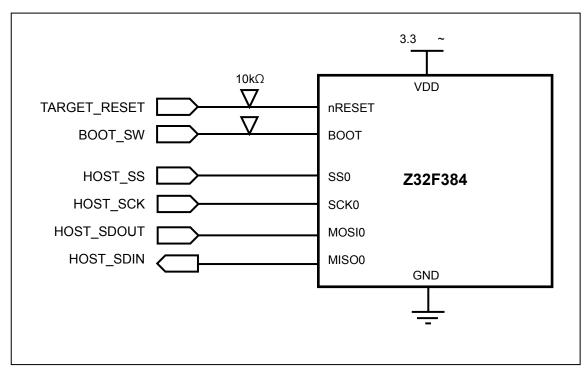


Figure 3.2. SPI Boot Connection Diagram

4. System Control Unit

Overview

The Z32F384 MCU has a built-in intelligent power control block which manages system analog blocks and operating modes. Internal reset and clock signals are controlled by SCU block to maintain optimize system performance and power dissipation.

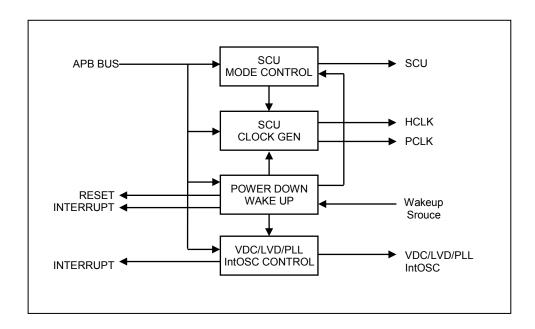


Figure 4.1. SCU Block Diagram

Clock System

The Z32F384 MCU has two main clock systems. One is MCLK which supplies the clock to the HCLK_Free, CPU and AHB bus system. The PCLK clock is for the Peripheral clock and is supplied from MCLK. Some peripherals have the option to derive their clock from other clocks or the PCLK. User can control the clock system variation by software. Figure 4.2 shows the clock system of the chip, Table 4.1 lists the clock source descriptions.

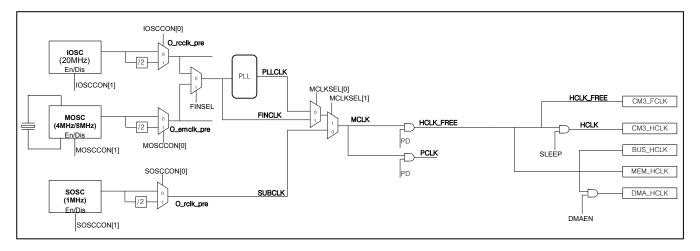


Figure 4.2. System Clock Configuration

Each of the mux to switch clock sources has a glitch-free circuit; therefore, the clock can be switched without a risk of glitches.

	Table 4.1.	Clock Sources
Clock name	Frequency	Description
IOSC20	20MHz	Internal OSC
Sub OSC	Sub X-TAL (32.768KHz)	Sub External Crystal OSC
MainOSC	X-TAL(4MHz~16MHz)	External Crystal OSC
PLL Clock	8MHz ~ 80MHz	On Chip PLL
ROSC	1MHz	Internal RING OSC

Table 4.1. Clock Sources

The PLL can synthesize the PLLCLK clock up to 80 MHz with either the Internal Oscillator or the External Crystal Oscillator reference clocks. It also has an internal pre-divider and post-divider.

HCLK Clock Domain

The HCLK clock feeds the clock to the CPU and AHB bus. The Cortex-M3 CPU requires two clocks related to the HCLK clock, FCLK and HCLK. FCLK is a free running clock and is always running except in power down mode. HCLK can be stopped in idle mode.

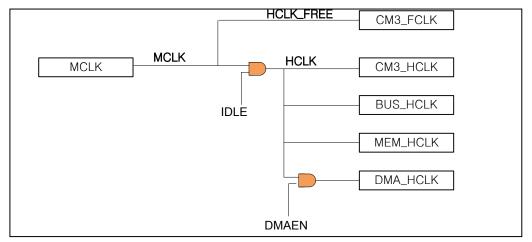


Figure 4.3. System Clock Configuration

Miscellaneous Clock Domain for Cortex-M3

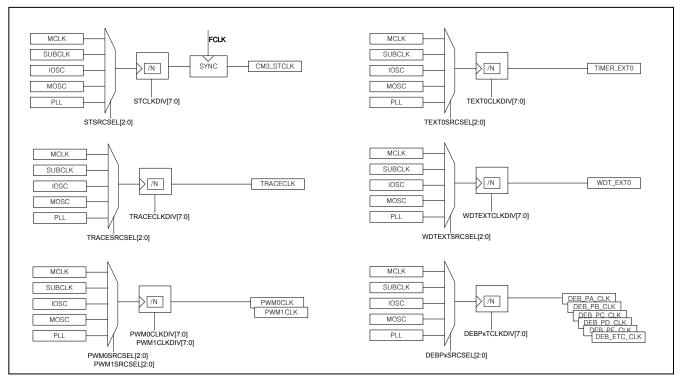
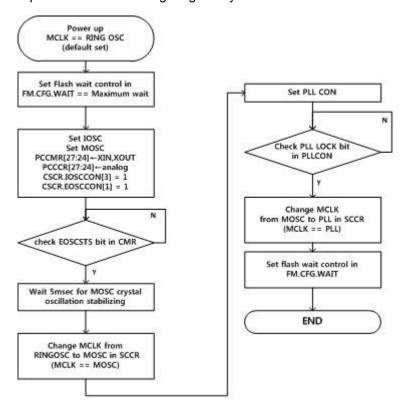


Figure 4.4. Miscellaneous Clock Configuration

PCLK Clock Domain

PCLK is the master clock of all the peripherals. It can be stopped in power down mode. Each peripheral clock is generated by the PCER register set.


Clock Configuration Procedure

After power up, the default system clock is fed by the RINGOSC (1 MHz) clock. RINGOSC is enabled by default during the power up sequence. The other clock sources are enabled by user controls with the RINGOSC system clock.

The MOSC clock can be enabled by the CSCR register. Prior to enabling the MOSC block, the pin mux configuration should be set for the XIN, XOUT function. PC12 and PC13 pins are shared with the MOSC's XIN and XOUT function; the PCCMR and PCCCR registers should be correctly configured. After enabling the MOSC block, you must wait for more than 1 msec to ensure stable crystal oscillation operation.

The PLL clock can be enabled by the PLLCON register. After enabling the PLL block, you must wait for the PLL lock, before you can select the PLL clock as the MCLK. Before changing the system clock, Flash access wait should be set to the maximum value. After the system clock is changed, you can set the desired Flash access wait value.

Figure 4.5 shows a sample flow chart for configuring the system clock.

Figure 4.5 Clock Configuration Flow Chart

When you speed up the system clock to the maximum operating frequency, check the Flash wait control configuration. Flash read access time is a limiting factor for optimum performance. The wait control recommendation is provided in Table 4.1.

FM.CFG.WAIT Flash Access Wait **Available Max System Clock Frequency** 000 ~25MHz 0 wait 001 1 wait ~50MHz 010 2 wait ~75MHz 011 ~75MHz 3 wait 100 4 wait ~75MHz ~75MHz 101 5 wait

Table 4.1. Flash Wait Control Recommendation

Cold Reset

Cold reset is an important feature of the chip when power is up. This characteristic globally affects the system boot. Internal VDC is enabled when VDD power is turned on. The internal VDD level slope is followed by the external VDD power slope. The internal PoR trigger level is 1.4 V of internal VDC voltage out level. At this time, boot operation is started. The RINGOSC clock is enabled and counts to 4 msec for internal VDC level stabilizing. During this time, the external VDD voltage level should be greater than the initial LVD level (2.3 V). After waiting 4 msec, the CPU reset is released and the operation is started.

Figure 4.6 shows the power up sequence and internal reset waveform.

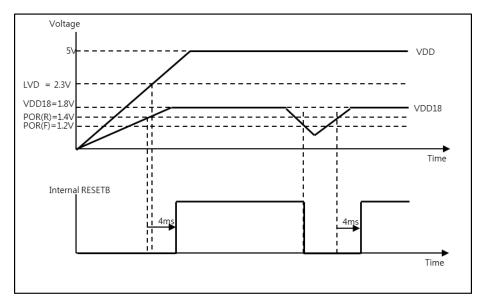


Figure 4.6. Power Up POR Sequence

The RSSR register shows the POR reset status. The last reset comes from POR; RSSR.PORST is set to "1". After power up, this bit is always "1". If an abnormal internal voltage drop occurs during normal operation, the system will be reset and this bit is also set to "1".

When cold reset is applied, the chip returns to its initial state.

Warm Reset

The warm reset event has several reset sources. Some parts of the chip return to initial state when a warm reset condition occurs.

The warm reset source is controlled by the RSER register and the status appears in the RSSR register. The reset for each peripheral block is controlled by the PRER register. The reset can be masked independently.

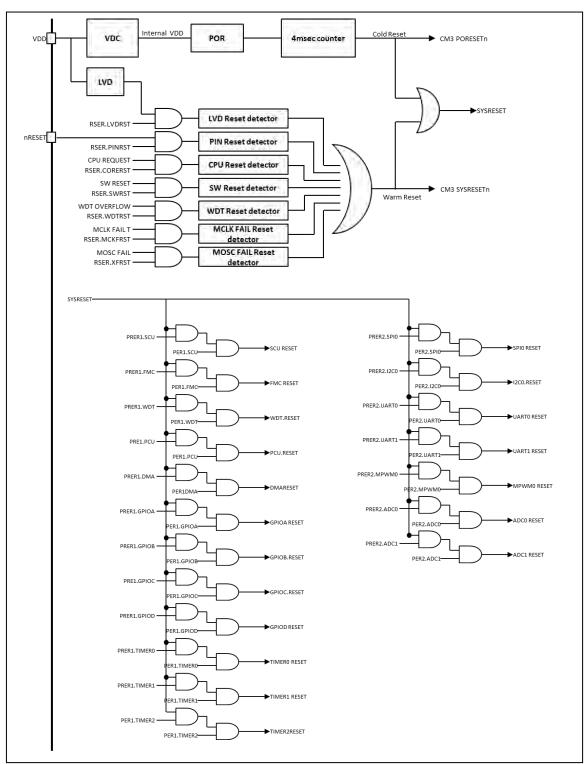


Figure 4.7. Warm Reset

The CM3_SYSRESETn signal resets the processor, excluding debug logic in the processor.

Operation Mode

The INIT mode is the initial state of the chip when reset is asserted. The RUN mode is for maximum performance of the CPU with a high-speed clock system. The SLEEP and POWER DOWN modes can be used as low-power consumption modes. Low-power consumption is achieved by halting the processor core and unused peripherals.

Figure 4.5 shows the operating mode transition diagram.

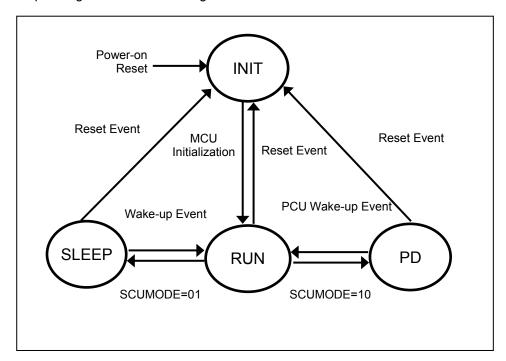


Figure 4.5. Operating Mode

RUN Mode

In RUN mode, the CPU core and the peripheral hardware is operated by using the high-speed clock. After reset, followed by the INIT state, the chip enters RUN mode.

SLEEP Mode

In SLEEP mode, only the CPU is stopped. Each peripheral function can be enabled by the function enable and clock enable bit in the PER and PCER register.

POWER DOWN Mode

In POWER DOWN mode, all internal circuits enter the stop state. Power down operation has a special power off sequence, as shown in Figure 4.6.

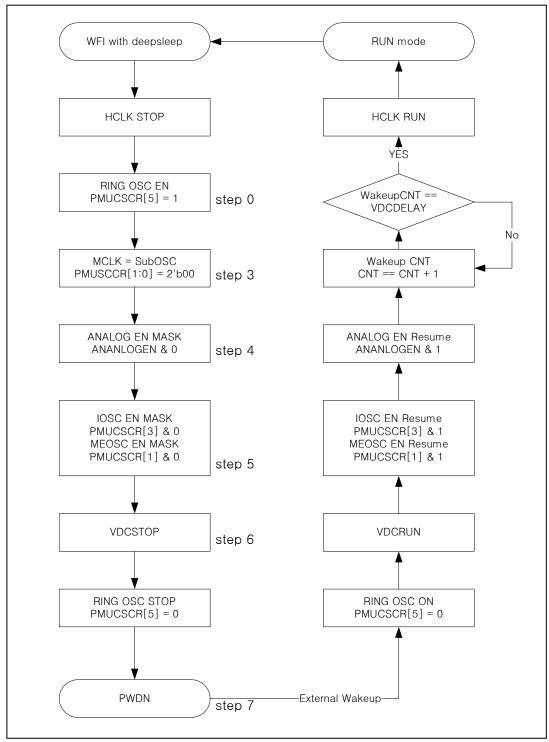


Figure 4.6. Power-down and Wake-up Procedure

Pin Description

Table4.2. SCU and PLL Pins

PIN NAME	TYPE	DESCRIPTION					
nRESET	I	External Reset Input					
XIN/XOUT							
SXIN/SXOUT	osc	External Sub Crystal Oscillator					
STBYO	0	Stand-by Output Signal					
CLKO	0	Clock Output Monitoring Signal					

Registers

The base address of SCU is $0x4000_0000$ and the register map is described in Table.4.3

Table 4.3. SCU Register Map

Name	Offset	R/W	Description	Reset
CIDR	0x0000	R	CHIP ID Register	AC33_0384
SMR	0x0004	R/W	System Mode Register	0000_0000
SRCR	0x0008	R/W	System Reset Control Register	0000_0000
CIDR2	0x000C	R/W	CHIP Revision ID Register	0000_0000
WUER	0x0010	R/W	Wake up source enable register	0000_0000
WUSR	0x0014	R/W	Wake up source status register	0000_0000
RSER	0x0018	R/W	Reset source enable register	0000_0049
RSSR	0x001C	R/W	Reset source status register	0000_0080*
PRER1	0x0020	R/W	Peripheral reset enable register 1	03FF_1F1F*
PRER2	0x0024	R/W	Peripheral reset enable register 2	00F3_0F33*
PER1	0x0028	R/W	Peripheral enable register 1	0000_000F*
PER2	0x002C	R/W	Peripheral enable register 2	0000_0101*
PCER1	0x0030	R/W	Peripheral clock enable register 1	0000_000F*
PCER2	0x0034	R/W	Peripheral clock enable register 2	0000_0101*
CSCR	0x0040	R/W	Clock Source Control register	0000_0020
SCCR	0x0044	R/W	System Clock Control register	0000_0000
CMR	0x0048	R/W	Clock Monitoring register	0000_0003
NMIR	0x004C	R/W	NMI control register	0000_0000
COR	0x0050	R/W	Clock Output Control register	0000_000F
	0x0054	-	Reserved	
PLLCON	0x0060	R/W	PLL Control register	0000_1000
VDCCON	0x0064	R/W	VDC Control register	0000_000F
LVDCON	0x0068	R/W	LVD Control register	0000_0001
IOSCTRIM	0x006C	R/W	Internal RC OSC Control register	0000_0000
	0x0070	ı	Reserved	0000_0000
	0x0074	ı	Reserved	0000_0000
	0x0078	-	Reserved	0000_0000
	0x007C	-	Reserved	0000_0000
EOSCR	0x0080	R/W	External Oscillator control register	0000_0000
EMODR	0x0084	R/W	External mode pin read register	0000_000X
DBCLK1	0x009C	R/W	Debounce Clock for PA, PB Pins	0000_0000
DBCLK2	0x00A0	R/W	Debounce Clock for PC, PD Pins	0000_0000
DBCLK3	0x00A4	R/W	Debounce Clock for PE, PF pins	0000_0001
MCCR1	0x0090	R/W	Trace and SysClock Clock Control	0404_0001
MCCR2	0x0094	R/W	MPWM0 and MPWM1 Clock Control	0000_0000
MCCR3	0x0098	R/W	TEXT0 and WDT clock control	0000_0001
MCCR4	0x00A8	R/W	ADC and NMI Debounce Clock control	0000_0001

CIDR

Chip ID Register

The Chip ID register shows chip identification information. This register is a 32-bit read-only register.

CIDR=0x4000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															СН	IPID															
	AC33_0384																														
														F	Read	Onl	у														
	31 CHIP ID Device ID																														
								0)	C	1111	ID				AC33															

CIDR2=0x4000_000C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														RE	VIS	ION	ID														
	0x0000_0002																														
	Read Only																														

31	REVISION ID	Device Revision ID	
0		0x0000_0002	

SMR

System Mode Register

The current operating mode is shown in this SCU mode register and the operation mode can be changed by writing new mode in this register. The previous operating mode is saved in this register after a reset event.

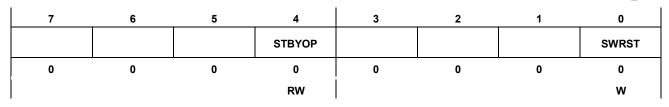
The System Mode register is a 16-bit register.

SMR=0x4000_0004

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Ļ	ц				
								NO			Ġ	MODE MODE				
								CA			5	5				
								ΛĎ			i	у Х П				
-																
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ì								R/W			F	₹				

8	VDCAON	_VDC Always on
		0 VDC will be off when Power down mode
		1 VDC always on even in power down mode
5	PREVMODE	Previous operating mode before current reset event.
4		00 Previous operating mode was RUN mode
		01 Previous operating mode was SLEEP mode
		10 Previous operating mode was PowerDown mode
		11 Previous operating mode was INIT mode

PS034602-0316 PRELIMINARY 30



SRCR

System Reset Control Register

The Ssystem Reset Control register is an 8-bit register.

SCR=0x4000_0008

5	STBYOP	STBYO pin output polarity select bit
		0 Low active when chip is in Power Down
		1 High active when chip is in PowerDown
1	SWRST	Internal soft reset activation bit
		0 Normal operation
		1 Internal soft reset is applied and auto cleared

PS034602-0316 PRELIMINARY 31

WUER

Wakeup Source Enable Register

The Wakeup Source Enable register enables the wakeup source when the chip is in Power Down mode. Wakeup sources which will be used as the source of chip wakeup should be enabled in each bit field. If the source will be used as the wakeup source, write '1' to its enable bit. If the source will not be used as the wakeup source, write 0 to its enable bit.

This register is a 16-bit register.

WUER=-0x4000_0010

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		GPIOFWUE	GPIOEWUE	GPIODWUE	GPIOCWUE	GPIOBWUE	GPIOAWUE						FRTWUE	WDTWUE	LVDWUE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RW	RW	RW	RW	RW	RW						RW	RW	RW

13	GPIOFWUE	Enable wakeup source of GPIOF port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
12	GPIOEWUE	Enable wakeup source of GPIOE port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
11	GPIODWUE	Enable wakeup source of GPIOD port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
10	GPIOCWUE	Enable wakeup source of GPIOC port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
9	GPIOBWUE	Enable wakeup source of GPIOB port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
8	GPIOAWUE	Enable wakeup source of GPIOA port pin change event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
2	FRTWUE	Enable wakeup source of free run timer event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
1	WDTWUE	Enable wakeup source of watchdog timer event
		0 Not used for wakeup source
		1 Enable the wakeup event generation
0	LVDWUE	Enable wakeup source of LVD event
		0 Not used for wakeup source
		1 Enable the wakeup event generation

WUSR

Wakeup Source Status Register

When the system is woken up by any wakeup source, the wakeup source is identified by reading the Wakeup Source Status register. When the bit is set to 1, the related wakeup source issues the wakeup to the SCU. The bit will be cleared when the event is cleared by the software.

WUSR=0x4000_0014

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		GPIOFWU	GPIOEWU	GPIODWU	GPIOCWU	GPIOBWU	GPIOAWU						FRTWU	WDTWU	LVDWU
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		R	R	R	R	R	R						R	R	R

13	GPIOFWU	Status of wakeup source of GPIOF port pin change event
		0 No wakeup event
		1 Wakeup event was generated
12	GPIOEWU	Status of wakeup source of GPIOE port pin change event
		0 No wakeup event
		1 Wakeup event was generated
11	GPIODWU	Status of wakeup source of GPIOD port pin change event
		0 No wakeup event
		1 Wakeup event was generated
10	GPIOCWU	Status of wakeup source of GPIOC port pin change event
		0 No wakeup event
		1 Wakeup event was generated
9	GPIOBWU	Status of wakeup source of GPIOB port pin change event
		0 No wakeup event
		1 Wakeup event was generated
8	GPIOAWU	Status of wakeup source of GPIOA port pin change event
		0 No wakeup event
		1 Wakeup event was generated
2	FRTWU	Status of wakeup source of free run timer event
		0 No wakeup event
		1 Wakeup event was generated
1	WDTWU	Status of wakeup source of watchdog timer event
		0 No wakeup event
		1 Wakeup event was generated
0	LVDWU	Status of wakeup source of LVD event
		0 No wakeup event
		1 Wakeup event was generated

PS034602-0316 PRELIMINARY 33

RSER

Reset Source Enable Register

The reset source which will generate the reset event can be selected by the Reset Source Enable register. When writing 1 to the bit field of each reset source, the reset source event will be transferred to the reset generator. When writing 0 to the bit field of each reset source, the reset source event will be masked and will not generate a reset event.

RSER=0x4000_0018

7	6		5	4	3	2	1	0			
	PINRST	COR	RERST	SWRST	WDTRST	MCKFRST	XFRST	LVDRST			
0	1		0	0	1	0	0	1			
	RW	F	RW	RW	RW	RW	RW	RW			
		6	PINRS	_		this event is ma					
		5	CPUR	ST _	CPU request rese Reset from	this event is ma	sked				
		4	SWRS	Т	Software reset en O Reset from	this event is ma	sked				
		3	WDTF		Watchdog Timer	this event is enar reset enable bit this event is ma					
		2	MCKF		MCLK Clock fail 1 Reset from	this event is ma	sked				
		0 Reset from this event is masked 1 Reset from this event is enabled 1 XFRST External OSC Clock fail reset enable bit 0 Reset from this event is masked 1 Reset from this event is enabled									
		0	LVDRS		LVD reset enable Reset from		sked				

RSSR

Reset Source Status Register

The Reset Source Status register shows the reset source information when a reset event occurs. "1" indicates that a reset event exists and "0" indicates that a reset event does not exist for a reset source. When the reset source is found, writing "1" to the corresponding bit will clear the reset status.

This register is an 8-bit register.

RSSR=0x4000_001C

7	6	5	4	3	2	1	0
PORST	PINRST	CORERST	SWRST	WDTRST	MCKFRST	XFRST	LVDRST
1	0	0	0	0	0	0	0
RC1	RC1	RC1	RC1	RC1	RC1	RC1	RC1
		7 POF6 PIN5 CPU	RST _	Write : no e Read :Rese Write : Clea External pin rese Read : Rese Write : no e Read :Rese Write : Clea CPU request rese	et from this even effect t from this event ar the status et status bit et from this even effect t from this event ar the status et status bit	t was occurred was occurred was occurred	
		4 SWI	RST _	Write : no e Read :Rese Write : Clea Software reset st Read : Rese Write : no e Read :Rese	t from this event or the status atus bit of from this even	was occurred t was not exist	
			_	Watchdog Timer 0 Read : Rese Write : no e 1 Read :Rese	reset status bit t from this even		
		1 XFR	_	Write : no e 1 Read :Rese	t from this even		
		0 LVD	_	Write : no e 1 Read :Rese	t from this even		

PRER1

Peripheral Reset Enable Register 1

The reset of each peripheral by an event reset can be masked by a user setting. The Peripheral Reset Enable register controls enabling of the event reset. If the corresponding bit is '1', the peripheral corresponds with this bit and accepts the reset event. Otherwise, the peripheral is protected from the reset event and maintains its current operation.

When a reset is issued (enabled by the RSER register), you can configure each peripheral to either reset the registers to the default settings or ignore the reset. This applies to all resets except for removal of power.

Caution: If you disable the SCU reset response, you may not be able to connect via the debugger without a power off and on reset. Caution should also be applied with the GPIO/PCU peripherals because the debugger uses these as well.

PRER1=0x4000_0020

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TIMER9	TIMER8	TIMER7	TIMER6	TIMER5	TIMER4	TIMER3	TIMER2	TIMER1	TIMERO			GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	FRT			DMA	PCU	WDT	FMC	SCU
	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1
							RW	™	RW	R	₩.	RW	RW	ΚW	₩.	₩ M			R	™	RW	R	₩ M	₩ M	RW			R	₩ M	™	R	₩ M

25	TIMEDO	TIMEDO recet meeds
25	TIMER9	TIMER9 reset mask
24	TIMER8	TIMER8 reset mask
23	TIMER7	TIMER3 reset mask
22	TIMER6	TIMER2 reset mask
21	TIMER5	TIMER1 reset mask
20	TIMER4	TIMER0 reset mask
19	TIMER3	TIMER3 reset mask
18	TIMER2	TIMER2 reset mask
17	TIMER1	TIMER1 reset mask
16	TIMER0	TIMER0 reset mask
13	GPIOF	GPIOF reset mask
12	GPIOE	GPIOE reset mask
11	GPIOD	GPIOE reset mask
10	GPIOC	GPIOE reset mask
9	GPIOB	GPIOE reset mask
8	GPIOA	GPIOA reset mask
7	FRT	FRT reset mask
4	DMA	DMA reset mask
3	PCU	Port Control Unit reset mask
2	WDT	Watchdog Timer reset mask
1	FMC	Flash memory controller reset mask
0	SCU	System Control Unit reset mask

PRER2

Peripheral Reset Enable Register 2

Peripheral Reset Enable Register 2 is a 32-bit register (See PRER1 for a full explaination of this register).

PRER2=0x4000_0024

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										ADC1	ADC0			MPWM1	MWPM0					UART3	UART2	UART1	UART0			12C1	12C0			SP11	SP10
0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	1	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1
								R		ΑW	ΑW			ΑW	ΑW					ΑW	R W	ΑW	₩ M			R W	₩ M			R W	RW

21	ADC1	ADC1 reset enable
20	ADC0	ADC0 reset enable
17	MPWM1	MPWM1 reset enable
16	MPWM0	MPWM0 reset enable
11	UART3	UART3 reset enable
10	UART2	UART2 reset enable
9	UART1	UART1 reset enable
8	UART0	UART0 reset enable
5	I2C1	I ² C1 reset enable
4	I2C0	I ² CO reset enable
1	SPI1	SPI1 reset enable
0	SPI0	SPIO reset enable

PER1

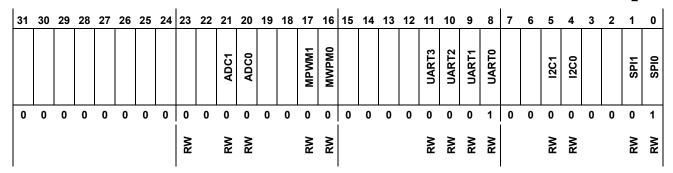
Peripheral Enable Register 1

All the peripherals are disabled by default except SPI0 and UART0. To use the peripheral unit, activate it by writing "1" to the corresponding bit in the PER0/1 register. When the bit for the peripheral unit is cleared ("0"), the peripheral will stay in a reset state.

PER1=0x4000_0028

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TIMER9	TIMER8	TIMER7	TIMER6	TIMER5	TIMER4	TIMER3	TIMER2	TIMER1	TIMER0			GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	FRT			DMA				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
						ΑM	X N	RW				ΑW	ΑM	ΑM	ΑM			S.	R W	ΑW	ΑW	Α	RW				W.	œ	œ	œ	œ

25	TIMER9	TIMER9 function enable
24	TIMER8	TIMER8 function enable
23	TIMER7	TIMER7 function enable
22	TIMER6	TIMER6 function enable
21	TIMER5	TIMER5 function enable
20	TIMER4	TIMER4 function enable
19	TIMER3	TIMER3 function enable
18	TIMER2	TIMER2 function enable
17	TIMER1	TIMER1 function enable
16	TIMER0	TIMER0 function enable
13	GPIOF	GPIOF function enable
12	GPIOE	GPIOE function enable
11	GPIOD	GPIOD function enable
10	GPIOC	GPIOC function enable
9	GPIOB	GPIOB function enable
8	GPIOA	GPIOA function enable
7	FRT	FRT function enable
4	DMA	DMA function enable
3	•	
2		Reserved
1		Nesei veu
0	•	



PER2

Peripheral Enable Register 2

Peripheral Enable Register 2 is a 32-bit register.

PER2=0x4000_002C

21	ADC1	ADC1 function enable
20	ADC0	ADC0 function enable
17	MPWM1	MPWM1 function enable
16	MPWM0	MPWM0 function enable
11	UART3	UART3 function enable
10	UART2	UART2 function enable
9	UART1	UART1 function enable
8	UART0	UART0 function enable
5	I2C1	I ² C1 function enable
4	I2C0	I ² C0 function enable
1	SPI1	SPI1 function enable
0	SPI0	SPI0 function enable

PCER1

Peripheral Clock Enable Register 1

To use the peripheral unit, its clock should be activated by writing '1' to the corresponding bit in the PCER0/1 register. Before enabling its clock, the peripheral will not operate correctly.

To stop the clock of the peripheral unit, write '0' to the corresponding bit in the PCER0/1 register, after which the clock of the peripheral is stopped.

PCER1=0x4000_0030

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TIMER9	TIMER8	TIMER7	TIMER6	TIMER5	TIMER4	TIMER3	TIMER2	TIMER1	TIMER0			GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	FRT			DMA				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
						RW	RW	RW				R	RW	R	R			R	R	R	R	R	R				R	œ	œ	œ	œ

TIMER9	TIMER9 clock enable
TIMER8	TIMER8 clock enable
TIMER7	TIMER7 clock enable
TIMER6	TIMER6 clock enable
TIMER5	TIMER5 clock enable
TIMER4	TIMER4 clock enable
TIMER3	TIMER3 clock enable
TIMER2	TIMER2 clock enable
TIMER1	TIMER1 clock enable
TIMER0	TIMERO clock enable
GPIOF	GPIOF clock enable
GPIOE	GPIOE clock enable
GPIOD	GPIOD clock enable
GPIOC	GPIOC clock enable
GPIOB	GPIOB clock enable
GPIOA	GPIOA clock enable
FRT	FRT clock enable
DMA	DMA clock enable
	- Decembed
	- Reserved
	-
	TIMER8 TIMER7 TIMER6 TIMER5 TIMER4 TIMER3 TIMER2 TIMER1 TIMER0 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA FRT

PCER2

Peripheral Clock Enable Register 2

To use the peripheral unit, its clock should be activated by writing '1' to the corresponding bit.

PCER2=0x4000_0034

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										ADC1	ADC0			MPWM1	MWPM0					UART3	UART2	UART1	UART0			12C1	12C0			SP11	SP10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
										RW	ΑW			R	X W					ΑW	R	R	Α			RW	R			ΑW	RW

21	ADC1	ADC1 clock enable
20	ADC0	ADC0 clock enable
17	MPWM1	MPWM1 clock enable
16	MPWM0	MPWM0 clock enable
11	UART3	UART3 clock enable
10	UART2	UART2 clock enable
9	UART1	UART1 clock enable
8	UART0	UART0 clock enable
5	I2C1	I ² C1 clock enable
4	I2C0	I ² CO clock enable
1	SPI1	SPI1 clock enable
0	SPI0	SPI0 clock enable

CSCR

Clock Source Control Register

The Z32F384 MCU has multiple clock sources to generate internal operating clocks. Each clock source can be enabled or disabled by the CSCR register.

This register is an 8-bit register.

CSCR=0x4000 0040

7	6	5	4	3	2	1	0
SXOSCEN		RINGO	SCCON	IOSC	CON	EOS	CCON
0	0	1	0	0	0	(00
RW		R	w	R'	w	R	w

7	SXOSCEN	External Sub Oscillator Enable
		0 Disable Sub Oscillator
		1 Enable Sub Oscillator
5	RINGOSCCON	Internal ring oscillator control
4		0X Stop internal sub oscillator
		10 Enable internal sub oscillator
		11 Enable internal sub oscillator divide by 2
3	IOSCCON	Internal oscillator control
2		0X Stop internal oscillator
		10 Enable internal oscillator
		11 Enable internal oscillator divide by 2
1	EOSCON	External crystal oscillator control
0		0X Stop internal oscillator
		10 Enable internal oscillator
		11 Enable internal oscillator divide by 2

SCCR

System Clock Control Register

The System Clock Control register is the source for the PLL system and clock selection.

FINSEL selects either the IOSC or the External OSC as the input to the PLL system. The System clock select selects internal sub osciallator (Ring), External OSC, Internal OSC or PLL.

When changing FINSEL to MOSC ("1"), both internal OSC and external OSC should be alive, otherwise the chip will malfunction.

SCCR=0x4000_0044

7	6	5	l	4	3	2	1	0
		-				FINSEL	MCLKS	SEL
		000	00			0	00	
		R	l			RW	RW	
		2	FINSEL			e FIN select regis		
				-		is used as FIN clo k is used as FIN c		
		1	MCLKSEL		System clock sel	ect register		
		0		_	0X Internal su	b oscillator	•	
				_	10 PLL bypas	sed clock		
					11 PLL output	t clock		

CMR

Clock Monitoring Register

You can monitor the internal clock and external osciallators. To enable monitoring, the MCLKMNT/EOSCMNTSXOSCMNT bits must be set before the MCLKSTS, EOSCSTS, and SXOSCSTS bits are valid.

Note: The EOSCSTS bit only checks for the EOSCSTS oscillation and does not check for stability. When the system detects an MCLKFAIL interrupt, the MCLKREC bit determines if the system just dies or will auto recover using the ROSC. In most cases, the system should auto recover to keep running. The Clock Monitoring register is a 16-bit register.

Note: Oscillator clock statuses only refer to oscilliation and are not necessarly stable. After enabling a clock, check the status for oscillation, then wait for stability before using the clock.

MR=0x4000 0048

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MCLKREC				SXOSCMNT	SXOSCIE	SXOSCFAIL	SXOSCSTS	MCLKMNT	MCLKIE	MCLKFAIL	MCLKSTS	EOSCMNT	EOSCIE	EOSCFAIL	EOSCSTS
0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
R				RW	RW	WC1	WC1	RW	RW	WC1	WC1	RW	RW	WC1	WC1

15	MCLKREC	MCLK fail auto recovery
		0 MCLK is changed to RINGOSC by default when
		MCLKFAIL issued
		1 MCLK auto recovery is disabled
11	SXOSCMNT	Sub Oscillator monitoring enable
		0 Sub Oscillator monitoring disabled
		1 Sub Oscillator monitoring enabled
10	SXOSCIE	Sub Oscillator fail interrupt enable
		0 Sub Oscillator fail interrupt disabled
		1 Sub Oscillator fail interrupt enabled
9	SXOSCFAIL	Sub Oscillator fail interrupt
		0 Sub Oscillator fail interrupt not occurred
		1 Read : Sub Oscillator fail interrupt is pending
		Write: Clear pending interrupt
8	SXOSCSTS	Sub Oscillator clock status
		0 Not oscillate
		1 Sub oscillator is working normally
7	MCLKMNT	MCLK monitoring enable
		0 MCLK monitoring disabled
		1 MCLK monitoring enabled
6	MCLKIE	MCLK fail interrupt enable
		0 MCLK fail interrupt disabled
		1 MCLK fail interrupt enabled
5	MCLKFAIL	MCLK fail interrupt
		0 MCLK fail interrupt not occurred
		1 Read: MCLK fail interrupt is pending
		Write : Clear pending interrupt
4	MCLKSTS	MCLK clock status
		0 No clock is present on MCLK
		1 Clock is present on MCLK
3	EOSCMNT	External oscillator monitoring enable
		0 External oscillator monitoring disabled
		1 External oscillator monitoring enabled
2	EOSCIE	External oscillator fail interrupt enable
		0 External oscillator fail interrupt disabled

		1 External oscillator fail interrupt enabled
1	EOSCFAIL	External oscillator fail interrupt
		0 External oscillator fail interrupt not occurred
		1 Read : External oscillator fail interrupt is pending
		Write : Clear pending interrupt
0	EOSCSTS	External oscillator status
		0 Not oscillate
		1 External oscillator is working normally
		1 External oscillator is working normally

Z32F384 Product Specification

NMIR

NMI Control Register

The NMI Control register provides control and status for Non-Maskable Interrupt. There are 6 available NMI sources. Write access key is required 0xA32 on NMIR[31:20] when writing to this register.

NMIR = 0x4000_004C

								i								i		IN	IVIII	- 02	(400	0_0	J4C
31 30 29 28	27 26 25 24	23 22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG ('hA)	ACCESS ('h3)	CODE	E ('h2)	NMIPINSTS	LNIIWN	NMIPINDBEN		NMIINTSTS	PROT1STS	OVP1STS	PROT0STS	OVP0STS	WDTSTS	MCLKFAILSTS	BODSTS	NIMPINEN	PROT1EN	OVP1EN	PROT0EN	OVP0EN	WDTEN	MCLKFAILEN	LVDEN
				1	0	1		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
				R	WC1	RW		R	R	R	R	R	R	R	R	RW	RW	RW	RW	RW	RW	RW	RW
		19	NMIF	PINST	ΓS		ľ	IMI	pin s	statı	ıs bi	t											_
							0	1	IMI	pin	is lo	w.											
							1	1	IMI	pin	is hi	gh.											
		18	NMII	NT			N	MI ir	iteri	upt	bit,	Wri	te 1	to c	lear								
							0	1	IMI	inte	rrup	t is	not	pen	ding	3							
							1						pen		3								
		17	NMIF	PINDI	BEN			IMI			ounc	e er	able	е									
							0		Disal														_
							1		Enab														_
		15	NMII	NTST	rs			MI p							1.								_
							0						not			3							_
		14	PROT	r1 CT(<u> </u>		1 M	PWI					pen			atuc	hit						
		14	ricoi	131.	3		0		VII S					пир	1 310	atus	DIL.						_
							1						осс	urre	h4								
		13	OVP1	STS				PWI								ı int	erru	ıpt s	tatu	s bi	t		_
							0		No O									F					_
							1						occu	rred	l								_
		12	PROT	TOSTS	S		M	PWI	И0's	Pro	tect	ion i	inter	rrup	t sta	atus	bit.						_
							0	1	No P	ROT	0 in	terr	upt										
							1	I	PRO	Γint	terru	ıpt o	occu	rrec	i								
		11	OVPO	STS			M	PWI	И0's	Ove	er Vo	ltag	e Pr	otec	ctior	ı int	erru	ıpt s	tatu	s bi	t		
							0	1	No O	VP0) inte	erru	pt										
							1	()VP(0 int	errı	ıpt c	occu	rred	l								
		10	WDT	INTS	TS			DT I															
							0		V oV														
							1						ccur										_
		9	MCLI	KFAII	LSTS			CLK															_
							0						erru			1							_
			DOD(2mc			1						upt o	occu	rrec	1							_
		8	BODS	515				ii QC															_
							$\frac{0}{1}$		No B				ccur	rod									_
							1	1	עטכ	11116	ıı u	ינ טו	LCUI.	ıtu									_

7	NMIPINEN	NMI pin interrupt Enable
		Write permission is required by PCU write enable sequence
		0 Disable
		1 Enable
6	PROT1EN	MPWM1's Protection interrupt enable for NMI interrupt
		0 Disable
		1 Enable
5	OVP1EN	MPWM1's Over Voltage Protection interrupt enable for NMI interrupt
		0 Disable
		1 Enable
4	PROT0EN	MPWM0's Protection interrupt enable for NMI interrupt
		0 Disable
		1 Enable
3	OVP0EN	MPWM0's Over Voltage Protection interrupt enable for NMI interrupt
		0 Disable
		1 Enable
2	WDTINTEN	WDT Interrrupt condition enable for NMI interrupt
		0 Disable
		1 Enable
1	MCLKFAILEN	MCLK Fail condition enable for NMI interrupt
		0 Disable
		1 Enable
0	LVDEN	LVD Detect condition enable for NMI interrupt
		0 Disable
		1 Enable

COR

Clock Output Register

The Clock Output register controls enabling/disabling and provides a divider for the clock output. To output the clock signal, you must enable the clock out function pin (See Chapter 5, Port Control Unit).

COR=0x4000_0050

7	6	5	4	3	2	1	0
	-		CLKOEN		CLK	ODIV	
	000		0		11	111	
	R		RW		R	W	
		4 CLK	ODIV	Clock output ena CLKO is dis. CLKO Is ena Clock output divi	abled and stay " abled	•	
				$CLKO = \frac{1}{2}$	MCLK * (CLKODIV +	1) (CLKODIN	7 > 0)

PLLCON

PLL Control Register

Integrated PLL can synthesize the high speed clock for extremely high performance of the CPU from either the internal oscillator (IOSC) or the external oscillator (MOSC). The PLL Control register provides the configuration for the PLL system. By default, the PLL system is in reset mode and disabled. You must negate the reset and enable the PLL to operate (bits 14 and 15 must be set). The Bypass bit must be set to output the PLL clock. The active clock is defined in SCCR bit 2 (FIN).

To calculate the PLL output:

PLL Out = ((Active clock / PREDIV) * FBCTRL) / POSTDI

Note: (Active Clock/PREDIV) * FBCTRL) must be below 224 MHz else PLL will not lock.

PLLCON=0x4000_0060

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PLLRSTB	PLLEN	BYPASS	LOCKSTS				PREDIV		į	FBCIRL				Post DIV	
0	0	0	0	0	0	0	0		00	00			00	00	
RW	RW	RW	R				RW		R	w			R	W	

O PLL reset is asserted 1 PLL reset is negated	15	PLLRSTB	PLL reset
PLL enable O PLL is disabled 1 PLL is enabled			0 PLL reset is asserted
O PLL is disabled 1 PLL is enabled 1 PUT is bypass 0 FOUT is bypassed as FIN 1 FOUT is PLL output 12 LOCK LOCK status 0 PLL is not locked 1 PLL is locke			1 PLL reset is negated
1	14	PLLEN	PLL enable
Time			0 PLL is disabled
1			1 PLL is enabled
1 FOUT is PLL output LOCK	13	BYPASS	FIN bypass
LOCK			0 FOUT is bypassed as FIN
O PLL is not locked 1 PLL is locked 1 PLL			1 FOUT is PLL output
PREDIV	12	LOCK	LOCK status
FIN predivider			0 PLL is not locked
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 PLL is locked
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	PREDIV	FIN predivider
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 FIN divided by 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	FBCTRL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0110 M = 22 1110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
001 N = 2 010 N = 3 011 N = 4 100 N = 6 101 N = 8 110 N = 12		POSTDIV	
$\begin{array}{ccc} 010 & N = 3 \\ 011 & N = 4 \\ 100 & N = 6 \\ \hline 101 & N = 8 \\ 110 & N = 12 \end{array}$	0		
$ \begin{array}{ccc} 100 & N = 6 \\ \hline 101 & N = 8 \\ \hline 110 & N = 12 \end{array} $			
$ \begin{array}{c c} 101 & N = 8 \\ 110 & N = 12 \end{array} $			
110 N = 12			
111 N=16			
			111 N = 16

VDCCON

VDC Control Register

The on chip VDC control register is shown below.

VDCTRIM is used for the trim value of VDC output. To modify the VDCTRIM bit, VDCTE should write "1" simultaneously. VDCWDLY value can be written with writing "1" to VDCDE bit simultaneously.

VDCCON=0x4000_0064

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BMRTE						BMRTRIM		VDCTE						VDCIRIM									ADCDE				!	VDCWDLY			
0	0	0	0	0		00		0	0	0	0		00	00		0	0	0	0	0	0	0	0				0x	0F			
W						RW		W					R	W									w				R	w			

31	BMRTE	Reference BGR trim write enable.
		0 BMRTRIM field is not updated by writing
		1 BMRTRIM filed can be updated by writing
26	BMRTRIM	Reference BGR output voltage trim value
24		
23	VDCTE	VDCTRIM value write enable. Write only with VDCTRIM
		value.
		0 VDCTRIM field is not updated by writing
		1 VDCTRIM filed can be updated by writing
19	VDCTRIM	VDC output voltage trim value
16		
8	VDCDE	VDCWDLY value write enable. Write only with VDCWDLY
		value
		0 VDCWLDLY field is not updated by writing
		0 VDCWLDLY field can be updated by writing
7	VDCWDLY	VDC warm-up delay count value.
0		When SCU is waked up from powerdown mode, the warm-up
		delay is inserted for VDC output being stabilized.
		The amount of delay can be defined with this register value
-		7F: 2msec

LVDCON

LVD Control Register

The on chip brown-out detector control register is a 32-bit register.

LVDCON=0x4000_0068

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17 1	6 15	5 14	1 13	3 12	11	10	9	8	7	6	5	4	3	2	1	0
								BODTE						BODTRIM	SEI EN	GEEEN						BODSEL							BODLVL	BODEN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
								RW						₩.	M						i	≩							RW	RW

23	BODTE	BODTRIM value write enable. Write only with BODTRIM
		_ value.
		0 BODTRIM field is not updated by writing
		1 BODTRIM filed can be updated by writing
17	BODTRIM	BOD voltage level trim value
16		It can writable when trim enable mode in FMC
9	BODSEL	BOD detect level select
8		00 BOD detect level is 1.8V- 50mV
		01 BOD detect level is 2.2V – 50mV
		10 BOD detect level is 2.7V -50mV
		11 BOD detect level is 4.3V – 50mV
0	BODEN	BOD Function enable
		0 BOD is not enabled
		1 BOD is enabled

IOSCTRIM

Internal OSC Trim Register

The Internal Oscillator Frequency Trim register. Is a 32-bit register. All trim bits are writable when trim mode in FMC is enabled.

IOSCTRIM=0x4000_006C

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									TSLEN						TSL		LTEN			!	5		į	⊠	UDCEN				NDCH		NDCL	
	0	0	0	0	0	0	0	0	0	0	0	0	0		000		0	0		00	00		0	0	0	0	0	(00		000	
									>						R		8			i	χ ≷		i	≩	8				S S		RW	

23	TSLEN	TSL trim value write enable. Write only with TSL trim value.
		0 TSL field is not updated by writing
		1 TSL filed can be updated by writing
18	TSL[2:0]	TSL trim value
16		
15	LTEN	LTM/LT value write enable. Write only with LTM/LT value
		0 LT field is not updated by writing
		1 LT filed can be updated by writing
13	LTM/LT	Internal oscillator LT trim value
8		
7	UDCEN	UDCH/UDCL value write enable. Write only with UDC value
		0 UDC field is not updated by writing
		1 UDC filed can be updated by writing
4	UDCH/UDCL	Internal oscillator UDC trim value
0		

EOSCR

External Oscillator Control Register

The External Oscillator Control register is a 16-bit register. The external main crystal oscillator has two characteristics. For noise immunity, NMOS amp type is recommended and for the low power characteristic, INV amp type is recommended.

EOSCR=0x4000_0080

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ISELEN						ISEL		NCEN						i d	
0	0	0	0	0	0	00		0	0	0	0	0	0	10	0
W						RW		w						RV	N

15	ISELEN	Write enable of bit field ISEL.
		0 Write access of ISEL field is masked
		1 Write access of ISEL field is accepted
9	ISEL	Select current. Default 0x0
8		00 Minimum current driving option
		01 Low current driving option

		10 High current driving option
		11 Maximum current driving option
7	NCEN	Write enable of bit field NCSEL
		0 Write access of NCSEL field is masked
		1 Write access of NCSEL field is accepted
1	NCSEL	Select noise cancel delay, default 0x2
0		00 10ns
	•	01 15ns
		10 20ns
		11 25ns

Freq. (MHz)	ISEL_I<1:0>	NCSEL_I<1:0>	NC DELAY (ns)
4	<00>	<11>	25
8	<00>	<10>	20
12	<01>	<01>	15
16	<11>	<00>	10

EMODR

External Mode Status Register

The External Mode Status register shows external mode pin status while booting. This register is an 8-bit register.

EMODR=0x4000_0084

7	6		5	4	3	2	1	0
						SCANMD	TEST	воот
		0:	k 0			0	0	-
		ı	र			R	R	R
		2	SCANMD		SCANMD pin leve 0 SCANMD pin 1 SCANMD pin	n is low		
		1	TEST		TEST pin level 0 TEST pin is 1 TEST pin is	low		
		0	ВООТ		BOOT pin level 0 BOOT (PC1	1) pin is low 1) pin is high		

DBCLK1

Debounce Clock Control Register 1

The Debounce Clock Control Register 1 is a register for PA and PB port pins.

MCCR4=0x4000_009C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						PBDCSEL					1	PBDDIV										PADCSEL						PADDIV			
0	0	0	0	0		000					0x	01				0	0	0	0	0		000					0>	(01			
						RW					R	w										RW					R	W			

26	PBDCSEL	Debounce Clock for Port B source select bit
24		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
23	PBDDIV	PORT B Debounce Clock N divider
16		
10	PADCSEL	Debounce Clock for Port A source select bit
10 8	PADCSEL	Debounce Clock for Port A source select bit 0xx RING OSC 1MHz
	PADCSEL	
	PADCSEL	0xx RING OSC 1MHz
	PADCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock)
	PADCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock) 101 INT OSC 20MHz
	PADCSEL PADDIV	0xx RING OSC 1MHz 100 MCLK (bus clock) 101 INT OSC 20MHz 110 External Main OSC

DBCLK2

Debounce Clock Control Register 2

The Debounce Clock Control Register 2 is a register for PC and PD port pins.

MCCR5=0x4000_00A0

3	1 :	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PDDCSEL						PDDDIV										PCDCSEL						PCDDIV			
()	0	0	0	0		000					0x	01				0	0	0	0	0		000					0>	(01			
							RW					R	w										RW					R	w			

-0.6	DDD GGEI	D. I. Cl. I.C. DODED I . I . I .
26	PDDCSEL	Debounce Clock for PORT D source select bit
24		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
23	PDDDIV	PORT D Debounce Clock N divider
16		
10	PCDCSEL	Debounce Clock for PORT C source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	PCDDIV	PORT C Debounce Clock N divider
0		

DBCLK3

Debounce Clock Control Register 3

The Debounce Clock Control Register 3 is a register for PE and PF port pins.

0x4000_00A4

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						PFDCSEL					1	Probiv										PEDCSEL						PEDDIV			
0	0	0	0	0		000					0x	00				0	0	0	0	0		000					0:	c 01			
						RW					R	w										RW					R	w			

26	PFDCSEL	Debounce Clock for PORT F source select bit
24		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
23	PFDDIV	PORT F Debounce Clock N divider
16		
10	PEDCSEL	Debounce Clock for PORT E source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
_		DODE T D 1
7	PEDDIV	PORT E Debounce Clock N divider

Miscellaneous Clock Control Register 1

The Miscellaneous Clock Control Register 1 sets Trace and SysTick clock sources and dividers.

MCCR1=0x4000_0090

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
۵						ቯ					í	EDI										ΣĘΓ						≥			
TRCPOL						TRCSEI						ζ (STCSEI						STD			
-											i	=										0,									
0	0	0	0	0		100					0x	04				0	0	0	0	0		000					0×	01			
w						RW		İ			R											RW						w			

10	TRCSEL	TRACE Clock source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	TRACEDIV	TRACE Clock N divider
0		
10	STCSEL	SYSTIC Clock source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	STDIV	SYSTIC Clock N divider
0		

Miscellaneous Clock Control Register 2

The Miscellaneous Clock Control Register 2 is the clock source and divider register for the MPWM generator units.

MCCR2=0x4000_0094

Ĺ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PWM1CSEL						PWM1DIV										PWM0CSEL						PWM0DIV			
	0	0	0	0	0		000					0x	00				0	0	0	0	0		000					0>	00			
							RW					R	w										RW					R	W			

10	PWM1CSEL	PWM1 Clock source select bit
8	TWITTGOLL	0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	PWM1DIV	PWM1 Clock N divider
0		
10	DIAMAGCCEI	DIAMAO Clasharana alamahis
10	PWM0CSEL	PWM0 Clock source select bit
8	PWMUCSEL	0xx RING OSC 1MHz
	PWMUCSEL	
	PWMUCSEL	0xx RING OSC 1MHz
	PWMUCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock)
	PWMUCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock) 101 INT OSC 20MHz
	PWMODIV	0xx RING OSC 1MHz 100 MCLK (bus clock) 101 INT OSC 20MHz 110 External Main OSC

Miscellaneous Clock Control Register 3

The Miscellaneous Clock Control Register 3 is the Timer EXT0 Clock and Watch Dog Timer clock control register.

MCCR3=0x4000_0098

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ی																_									
							CSE					į											SEL						≧			
							Ĕ					ļ	EX										DTC						MDT			
							Œ					İ	=										₹						_			
()	0	0	0	0		000					0x	:01				0	0	0	0	0		000					0)	(01			
ĺ							RW					R	W										RW					R	w			

10	TEXT0CSEL	TEXTO Clock source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	TEXT0DIV	TEXTO Clock N divider
0		
10	WDTCSEL	WDT Clock source select bit
8		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
7	WDTDIV	WDT Clock N divider
0		

Miscellaneous Clock Control Register 4

The Miscellaneous Clock Control Register 4 is the alterntative ADC and NMI Debounce Clock Control register.

0x4000_00A8

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADCCSEL						ADCCDIV										NMICSEL						NMIDDIN			
Ī	0	0	0	0	0		000					0x	00				0	0	0	0	0		000					0>	(01			
							RW					R	w										RW					R	w			

26	ADCCCEI	ADC glogic gourge galact hit
	ADCCSEL	ADC clock source select bit
24		0xx RING OSC 1MHz
		100 MCLK (bus clock)
		101 INT OSC 20MHz
		110 External Main OSC
		111 PLL Clock
23	ADCCDIV	ADC Clock N divider
16		
10	NMIDCSEL	Debounce Clock for NMI source select bit
10 8	NMIDCSEL	Debounce Clock for NMI source select bit Oxx RING OSC 1MHz
	NMIDCSEL	
	NMIDCSEL	0xx RING OSC 1MHz
	NMIDCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock)
	NMIDCSEL	0xx RING OSC 1MHz 100 MCLK (bus clock) 101 INT OSC 20MHz
	NMIDCSEL NMIDDIV	0xxRING OSC 1MHz100MCLK (bus clock)101INT OSC 20MHz110External Main OSC

Functional Description

System Clock Setup Procedure Example for the Internal Clock with PLL

- Configure the FM.CFG register to the maximum wait
- Enable the internal clock IOSC in the CSCR register.
- Write 0x02 to the SCCR register (system clock control register) to select the IOSC as the PLL source (FIN) with bypassing the PLL output
- In the PLLCON register, Set bits 14,15 to enable PLL, clear bit 13 to bypass PLL output and configure bits 0-8 to the PREDIV/FBCTRL/POSTDIV for desired PLL output. For full speed, the PLLCON register would be set to 0xC100
- Wait for the PLL to be locked by monitoring the LOCK bit (bit 12) in the PLLCON register.
- Set bit 13 of the PLLCON register to enable the PLL output
- Set bit 0 of SCCR to enable the PLL for the system clock
- Set FM.CFG for the appropriate Flash Wait states for the speed selected.

System Clock Setup Procedure Example for the External Clock with PLL

- Enable the Port C peripheral and clock in the SCU PER1 and PCER1 registers
- Unlock the Port Controller using the PORTEN register as defined in PORT CONTROL UNIT (PCU)
- Enable the Alternative function 11b for pins 12 and 13 on PORT C through the PCC MR register
- Set the Pin type for pins 12 and 13 on PORT C to analog (11b)
- · Lock the Port Controller by writing any value to PORTEN register
- Configure the FM.CFG register to the maximum wait
- If not already enabled, enable Internal oscillator in CSCR
- Set bit 3 in the CMR register to monitor External Oscillator
- Enable External Oscillator in CSCR register
- Wait for bit 0 of the CMR register to be set. Note: if the external oscillator does not start, this bit will never be set.
- Wait for an additional time (more than 1 ms) to allow the oscillator to stabilize
- Write 0x06 to the SCCR register (system clock control register) to select the External Oscillator as the PLL source (FIN)
- Set PLLCON high byte (8-15) to 0xC and low byte (0-7) to the FBCTRL/POSTDIV for desired PLL output.
- Wait until bit 12 of PLLCON is set. Note: if the PLL does not lock, this bit will never be set.
- Set bit 13 to enable the PLL output
- Set bit 0 of SCCR to enable the PLL for the system clock
- Set FM.CFG for the appropriate Flash Wait states for the speed selected.

To Enable Clock Out for monitoring actual clock output

- Enable the Port C peripheral and clock in the SCU PER1 and PCER1 registers
- Unlock the Port Controller using the PORTEN register as defined in PORT CONTROL UNIT (PCU)
- Enable the Alternative function 01b for pin 9 on PORT C through the PCC MR register
- Set the Pin type for pin 9 on PORT C to output (00b)
- Lock the Port Controller by writing any value to PORTEN register
- Set bit 4 of the Clock Output Register (COR) to enable the output
- Configure the CLKODIV to the desired output divider

5. Port Control Unit

Overview

Port Control Unit (PCU) controls the external I/Os as follows:

- Set the multiplex state of each pin (for alternative functions)
- Set external signal type (Analog / Push-Pull output /Open Drain output /Input)
- Set enable/monitor/trigger type for interrupts for each pin
- Set internal pull-up register control for each pin
- Set debounce for each pin

Note: You must enable both the Port Peripheral and the Port Peripheral CLOCK in PER1/PCER1 to use the pins of the port.

Figure 5.1 shows a block diagram of the PCU. Figures 2.2 and 2.3 show I/O Port Block diagrams.

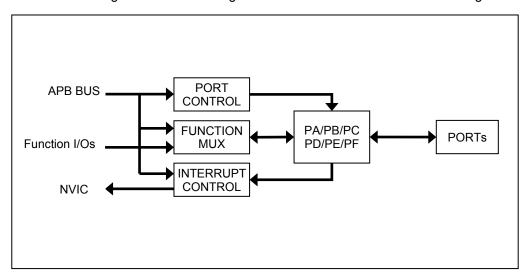


Figure 5.1. Block Diagram

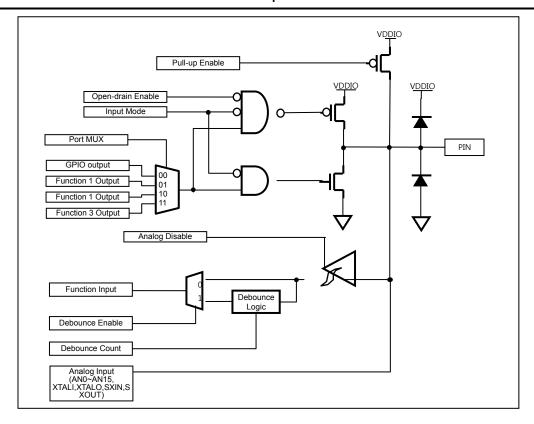


Figure 5.2. I/O Port Block Diagram (ADC and External Oscillator Pins)

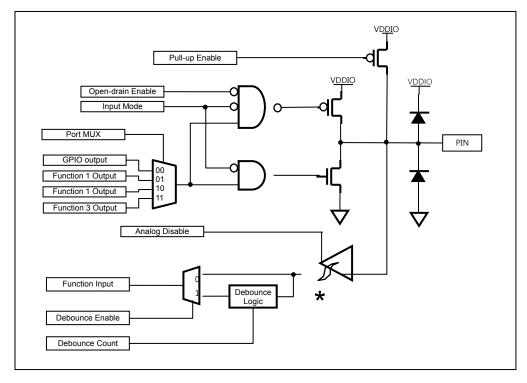


Figure 5.3. I/O Port Block Diagram (General I/O Pins)

Pin Multiplexing

GPIO pins have alternative function pins. Table 5.1 lists the pin multiplexing information.

Table 5.1. GPIO Alternative Function

DODT		Table 5.1. GPI		NCTION	
PORT		00	01	10	11
	0	PA0*			AN0
	1	PA1*			AN1
	2	PA2*			AN2
	3	PA3*			AN3
	4	PA4*		TOIO	AN4
	5	PA5*		T1IO	AN5
	6	PA6*		T2IO	AN6
PA	7	PA7*		T3IO	AN7
FA	8	PA8*			AN8
	9	PA9*			AN9
	10	PA10*			AN10
	11	PA11*			AN11
	12	PA12*	SS0		AN12
	13	PA13*	SCK0		AN13
	14	PA14*	MOSI0		AN14
	15	PA15*	MISO0		AN15
	0	PB0*	MP0UH		
	1	PB1*	MP0UL		
	2	PB2*	MP0VH		
	3	PB3*	MP0VL		
	4	PB4*	MP0WH		
	5	PB5*	MP0WL		
	6	PB6*	PRTIN0	WDTO ⁽²⁾	
РВ	7	PB7*	OVIN0	STBYO ⁽²⁾	
	8	PB8*	PRTIN1	RXD3	
	9	PB9*	OVIN1	TXD3	
	10	PB10*	MP1UH		
	11	PB11*	MP1UL		
	12	PB12*	MP1VH		
	13	PB13*	MP1VL		
	14	PB14*	MP1WH		
	15	PB15*	MP1WL		

^(*) mark indicates default pin setting.
(2) mark indicates secondary port

Table 5.1. GPIO Alternative Function (Continued)

	14.5.	e 5.1. GPIO Alte	TION	-,	
PORT		00	01	10	11
	0	PC0	TCK/SWCLK*	RXD0 ⁽²⁾	
	1	PC1	TMS/SWDIO*	RXD0 ⁽²⁾	
	2	PC2	TDO/SWO*		
	3	PC3	TDI*		
	4	PC4	nTRST*	T0IO ⁽²⁾	
	5	PC5*	RXD1	T1IO ⁽²⁾	
	6	PC6*	TXD1	T2IO ⁽²⁾	
PC	7	PC7*	SCL0	T3IO ⁽²⁾	
PC	8	PC8*	SDA0	T4IO ⁽²⁾	
	9	PC9*	CLKO	T8IO	
	10	PC10	nRESET*		
	11	PC11/BOOT*		T8IO ⁽²⁾	
	12	PC12*			XIN
	13	PC13*			XOUT
	14	PC14*	RXD0	MISO0 ⁽²⁾	
	15	PC15*	TXD0	MOSI0 ⁽²⁾	
	0	PD0*	SS1		SXIN
	1	PD1*	SCK1		SXOUT
	2	PD2*	MOSI1		
	3	PD3*	MISO1		
	4	PD4*	SCL1		AN16
	5	PD5*	SDA1		AN17
	6	PD6*	TXD2	1	AN18
PD	7	PD7*	RXD2		AN19
	8	PD8*	T6IO ⁽²⁾	WDTO	
	9	PD9*	T7IO ⁽²⁾	STBO	
	10	PD10*	AD0SOC	T0IO	
	11	PD11*	AD0EOC	T1IO	
	12	PD12*	AD1SOC	T2IO	
	13	PD13*	AD1EOC	T3IO	
	14	PD14*		SS0*	
	15	PD15*		SCK0*	

^(*) mark indicates default pin setting.
(2) mark indicates secondary port

Table 5.1. GPIO Alternative Function (Continued)

DODT		FUNCTION 00 01 10 10													
PORT		00	01	10	11										
	0	PE0		TXD1											
	1	PE1		RXD1											
	2	PE2		T4I(3)/T3O(5)											
	3	PE3	AD0O*	SCL0*											
	4	PE4	AD10*	SDA0*											
	5	PE5*		T510											
	6	PE6*		T5IO ⁽²⁾											
PE	7	PE7*		T6IO ⁽²⁾											
PE	8	PE8*		T7IO ⁽²⁾											
	9	PE9*		T8IO ⁽²⁾											
	10	PE10		T9IO ⁽²⁾											
	11	PE11	T0IO ⁽²⁾	SCL1*											
	12	PE12*	T1IO ⁽²⁾	SDA1*											
	13	PE13*	T2IO ⁽²⁾	TXD2*											
	14	PE14*	T3IO ⁽²⁾	RXD2*											
	15	PE15*	T4IO ⁽²⁾												
	0	PF0*													
	1	PF1*													
	2	PF2*			AN20										
	3	PF3*			AN21										
	4	PF4*													
	5	PF5*													
PF															

^(*) mark indicates default pin setting. (2) mark indicates secondary port

Registers

The base address of the PCU block is $0x4000_1000$.

Table 5.2. Base Address of Port

PORT	ADDRESS
PA	0x4000_1000
PB	0x4000_1100
PC	0x4000_1200
PD	0x4000_1300
PE	0x4000_1400
PF	0x4000_1500

Table 5.3. PCU Register Map

	1 00 Regioter map		
Register	Offset	R/W	Description
PC <i>n.</i> MR	0x00	R/W	Port n pin mux select register
PCn.CR	0x04	R/W	Port <i>n</i> pin control register
PCn.PCR	0x08	R/W	Port <i>n</i> internal pull-up control register
PCn.DER	0x0C	R/W	Port n debounce register
PCn.IER	0x10	R/W	Port <i>n</i> interrupt enable register
PCn.ISR	0x14	R/W	Port <i>n</i> interrupt status register
PCn.ICR	0x18	R/W	Port <i>n</i> interrupt control register
PORTEN	0x1FF0	R/W	Port Access enable

PCA.MR

Port A Pin Mux Register

The Port A Pin Mux register is the PA port mode select register. This register and the PERx and PCERx registers must be configured correctly before using the port to guarantee its functionality. PERx enables the port and PCERx enables the clock to the port.

PCA.MR=0x4000_1000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PA	15	PA	14	PA	13	PA	12	PA	11	PA	10	P	A 9	P	A 8	P/	47	P/	46	P	A 5	P	A 4	P	A 3	P	42	P/	A 1	P	40
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0
R	W	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	w	R	W	R	w

DODT		SELECT	TION BIT	
PORT	00	01	10	11
PA0	PA0			AN0
PA1	PA1			AN1
PA2	PA2			AN2
PA3	PA3			AN3
PA4	PA4		TOIO	AN4
PA5	PA5		T1IO	AN5
PA6	PA6		T2IO	AN6
PA7	PA7		T3IO	AN7
PA8	PA8			AN8
PA9	PA9			AN9
PA10	PA10			AN10
PA11	PA11			AN11
PA12	PA12	SS0		AN12
PA13	PA13	SCK0		AN13
PA14	PA14	MOSI0		AN14
PA15	PA15	MISO0		AN15

^{*: 2&}lt;sup>nd</sup> function

PCB.MR

Port B Pin Mux Register

The Port B Pin Mux register is the PB port mode select register. This register and the PERx and PCERx registers must be configured correctly before using the port to guarantee its functionality. PERx enables the port and PCERx enables the clock to the port.

PCB.MR=0x4000_1100

;	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	РΒ	15	РВ	14	РВ	313	PE	312	PE	311	PE	310	PI	В9	PI	В8	PI	37	PI	36	PI	В5	PI	34	PI	В3	PE	32	PI	31	PE	30
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R۱	N	R	W	R	W	R	W	R	W	R	W	R	W	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R\	w

DODT		SELECTION BIT													
PORT	00	01	10	11											
PB0	PB0	MP0UH													
PB1	PB1	MP0UL													
PB2	PB2	MP0VH													
PB3	PB3	MP0VL													
PB4	PB4	MP0WH	T9IO												
PB5	PB5	MP0WL	T9IO ⁽²⁾												
PB6	PB6	PRTIN0													
PB7	PB7	OVIN0	STBYO ⁽²⁾												
PB8	PB8	PRTIN1	RXD3												
PB9	PB9	OVIN1	TXD3												
PB10	PB10	MP1UH													
PB11	PB11	MP1UL													
PB12	PB12	MP1VH													
PB13	PB13	MP1VL													
PB14	PB14	MP1WH													
PB15	PB15	MP1WL													

PCC.MR

Port C Pin Mux Register

The Port C Pin Mux register is the PC port mode select register. This register and the PERx and PCERx registers must be configured correctly before using the port to guarantee its functionality. PERx enables the port and PCERx enables the clock to the port.

PCC.MR=0x4000_1200

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PC	15	PC	14	РС	13	PC	12	PC	:11	РС	10	P	C9	P	C8	P	27	P	C6	P	C5	P	C4	P	СЗ	P	C2	P	C1	P	CO
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	C	1	0	1	0	1	0	1
R	W	R	W	R\	W	R	W	R	W	R\	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W

DODT		SELEC	TION BIT	
PORT	00	01	10	11
PC0	PC0	TCK/SWCLK*	RXD0 ⁽²⁾	
PC1	PC1	TMS/SWDIO*	TXD0 ⁽²⁾	
PC2	PC2	TDO/SWO*		
PC3	PC3	TDI*		
PC4	PC4	nTRST*	T0IO ⁽²⁾	
PC5	PC5	RXD1	T1IO ⁽²⁾	
PC6	PC6	TXD1	T2IO ⁽²⁾	
PC7	PC7	SCL0	T3IO ⁽²⁾	
PC8	PC8	SDA0	T4IO ⁽²⁾	
PC9	PC9	CLKO	T8IO	
PC10	PC10	nRESET*		
PC11	PC11/BOOT*		T8IO ⁽²⁾	
PC12	PC12			XIN
PC13	PC13			XOUT
PC14	PC14	RXD0	MISO0 ⁽²⁾	
PC15	PC15	TXD0	MOSI0 ⁽²⁾	

^{*: 2&}lt;sup>nd</sup> function

PCD.MR

Port D Pin Mux Register

The Port D Pin Mux register is the PD port mode select register. This register and the PERx and PCERx registers must be configured correctly before using the port to guarantee its functionality. The PERx enables the port and PCERx enables the clock to the port.

PCD.MR=0x4000_1300

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD	15	PC)14	PC	013	PD	12	PC)11	PD	10	ΡI	D 9	PI	D8	PI	D 7	PI	D 6	PI	D5	P	D4	Р	D3	PI	02	PI	D1	ΡI	00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0
R	W	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	w

PORT		SELEC	TION BIT	
PORI	00	01	10	11
PD0	PD0	SS1		SXIN
PD1	PD1	SCK1		SXOUT
PD2	PD2	MOSI1		
PD3	PD3	MISO1		
PD4	PD4	SCL1		AN16
PD5	PD5	SDA1		AN17
PD6	PD6	TXD2		AN18
PD7	PD7	RXD2		AN19
PD8	PD8	T6IO	WDTO	
PD9	PD9	T7IO	STBO	
PD10	PD10	AD0SOC	T0IO	
PD11	PD11	AD0EOC	T1IO	
PD12	PD12	AD1SOC	T2IO	
PD13	PD13	AD1EOC	T3IO	
PD14	PD14		SS0*	
PD15	PD15		SCK0*	

^{*: 2&}lt;sup>nd</sup> function

PCE.MR

Port E Pin Mux Register

The Port E Pin Mux register is the PE port mode select register. This register and the PERx and PCERx registers must be configured properly before using the port to guarantee its functionality. The PERx enables the port and PCERx enables the clock to the port.

PCE.MR=0x4000_1400

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PI	≣15	PE	14	PE	13	PE	12	PE	11	PE	10	P	E9	PI	E8	PI	E7	P	E6	PI	E5	P	E4	PI	E3	PI	E2	PI	E1	PI	E0
(00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	w	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W

DODT		SELEC	TION BIT	
PORT	00	01	10	11
PE0	PE0		TXD1	
PE1	PE1		RXD1	
PE2	PE2		T4I ⁽³⁾ /T3O ⁽⁵⁾	
PE3	PE3		SCL0*	
PE4	PE4		SDA0*	
PE5	PE5		T5IO	
PE6	PE6		T5IO ⁽²⁾	
PE7	PE7		T6IO ⁽²⁾	
PE8	PE8		T7IO ⁽²⁾	
PE9	PE9		T8IO ⁽²⁾	
PE10	PE10		T9IO ⁽²⁾	
PE11	PE11	T0IO ⁽²⁾	SCL1*	
PE12	PE12	T1IO ⁽²⁾	SDA1*	
PE13	PE13	T2IO ⁽²⁾	TXD2*	
PE14	PE14	T3IO ⁽²⁾	RXD2*	
PE15	PE15	T4IO ⁽²⁾		

^{*: 2&}lt;sup>nd</sup> function, **: 3rd function

PCF.MR

Port F Pin Mux Register

The Port F Pin Mux register is the PF port mode select register. This register and the PERx and PCERx registers must be configured correctly before using the port to guarantee its functionality. The PERx enables the port and PCERx enables the clock to the port.

PCF.MR=0x4000_1500

3	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																					PI	F5	PI	F4	Р	F3	P	F2	Р	F1	PI	F0
	00		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0
																					R	W	R	w	R	W	R	w	R	w	R	W

PORT		SELEC	TION BIT	
PORI	00	01	10	11
PF0	PF0			
PF1	PF1			
PF2	PF2			AN20
PF3	PF3			AN21
PF4	PF4			
PF5	PF5			

PS034602-0316 PRELIMINARY 73

PCn.CR

Port n Pin Control Register (Except for PCC.CR)

The Port n Pin Control register handles the input or output control of each port pin. Each pin can be configured as input pin, output pin, or open-drain pin.

PCA.CR=0x4000_1004, PCB.CR=0x4000_1104 PCD.CR=0x4000_1304, PCE.CR=0x4000_1404, PCF.CR=0x4000_1504

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P	15	Р	14	P	13	P	12	P	11	P	10	F	9	Р	8	P	7	Р	6	P	5	P	4	F	23	P	2	Р	1	Р	0
1	1	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1
R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	w

Pn	Port	control
	00	Push-pull output
	01	Open-drain output
	10	Input
	11	Analog

5.1.1 PCC.CR Port C Pin Control Register

The Port C Pin Control register handles the input or output control of each port pin. Each pin can be configured as input pin, output pin, or open-drain pin.

PCC.CR=0x4000 1204

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P1	5	P1	4	P	13	P	12	P	11	P	10	Р	9	Р	8	Р	7	P	6	P	5	Р	4	P	23	P	2	P	1	P	0
11		1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1	0	1	0
RV	٧	R۱	N	R	W	R\	W	R	W	R	W	R	W	R	W	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	W

Pn	Port control
	00 Push-pull output
	01 Open-drain output
	10 Input
	11 Analog

PCn.PCR

Port n Pull-up Resistor Control Register

Every pin in the port has on-chip pull-up resistors which can be configured by the Port n Pull-up Resistor Control registers.

PCA.PCR=0x4000_1008, PCB.PCR=0x4000_1108, PCC.PCR=0x4000_1208 PCD.PCR=0x4000_1308, PCE.PCR=0x4000_1408, PCF.PCR=0x4000_1508

								_	_			_			_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
PUE15	PUE14	PUE13	PUE12	PUE11	PUE10	PUE9	PUE8	PUE7	PUE6	PUE5	PUE4	PUE3	PUE2	PUE1	PUE0	
							00	00								
							R/	w								

n	PUEn	Port pull-up control	

_	0	Disable pull-up resistor
	1	Enable pull-up resister

PCn.DER Port n Debounce Enable Register

Every pin in the port has a digital debounce filter which can be configured by the Port n Debounce Enable registers. The Debounce clock can be configured in the DBCLKx registers in the SCU.

PCA.DER=0x4000_100C, PCB.DER=0x4000_110C, PCC.DER=0x4000_120C PCD.DER=0x4000_130C, PCE.DER=0x4000_140C, PCF.DER=0x4000_150C

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PDE15	PDE14	PDE13	PDE12	PDE11	PDE10	PDE9	PDE8	PDE7	PDE6	PDE5	PDE4	PDE3	PDE2	PDE1	PDE0
ŀ				I.				00	00					II.		
								R	W							

n	PDEn	Pin debounce enable
		0 Disable debounce filter
		1 Enable debounce filter

PS034602-0316 PRELIMINARY 75

PCn.IER

Port n Interrupt Enable Register

Each individual pin can be an external interrupt source. Edge trigger interrupt and level trigger interrupt are both supported. Interrupt mode can be configured by setting the Port n Interrupt Enable registers

PCA.IER=0x4000_1010, PCB.IER=0x4000_1110, PCC.IER=0x4000_1210 PCD.IER=0x4000_1310, PCE.IER=0x4000_1410, PCF.IER=0x4000_1510

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIE	15	PII	≣14	PII	E13	PIE	E12	PIE	≣11	PIE	E 10	PI	E9	PI	E8	PI	E 7	PI	E6	PI	E5	PI	E4	PI	E 3	PI	E2	PI	E1	PI	E0
0	0	C	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0
R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	w	R	W	R	w

PIEn	Pin i	interrupt enable
	00	Interrupt disabled
	01	Enable interrupt as level trigger mode
	10	Reserved
	11	Enable interrupt as edge trigger mode

PCn.ISR

Port n Interrupt Status Register

When an interrupt is delivered to the CPU, the interrupt status can be detected by reading the Port n Interrupt Status register. This register reports a source pin of interrupt and a type of interrupt.

PCA.ISR=0x4000_1014, PCB.ISR=0x4000_1114, PCC.ISR=0x4000_1214 PCD.ISR=0x4000_1314, PCE.ISR=0x4000_1414, PCF.ISR=0x4000_1514

31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3 2	1 0
PIS15	PIS14	PIS13	PIS12	PIS11	PIS10	PIS9	PIS8	PIS7	PIS6	PIS5	PIS4	PIS3	PIS2	PIS1	PIS0
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

PISn	Pin interrupt status
	00 No interrupt event
	01 Low level interrupt or Falling edge interrupt event is
	present
	10 High level interrupt or rising edge interrupt event is
	present
	11 Both of rising and falling edge interrupt event is present
	in edge trigger interrupt mode.
	Not available in level trigger interrupt mode

PCn.ICR

Port n Interrupt Control Register

The Port n Interrupt Control register is the interrupt mode control register. Edge interrupt produces a pulsed interrupt while a level interrupt maintains the interrupt as long as the pin is in the defined state (low or high).

PCA.ICR=0x4000_1018, PCB.ICR=0x4000_1118, PCC.ICR=0x4000_1218 PCD.ICR=0x4000_1318, PCE.ICR=0x4000_1418, PCF.ICR=0x4000_1518

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIC	215	PIC	214	PIC	213	PIC	C12	PIC	:11	PIC	:10	PI	C9	PI	C8	PI	C 7	PI	C6	PI	C5	PI	C4	PI	СЗ	PI	C2	PI	C1	PI	C0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	00	0	0	0	0	0	0
R	W	R	W	R	W	R	W	R	W	R	W	R	W	R	N	R	w	R	W	R	W	R	W	R	W	R	W	R	W	R	W

PICn	Pin interrupt mode
	00 Prohibit external interrupt
	01 Low level interrupt or Falling edge interrupt mode
	10 High level interrupt or rising edge interrupt mode
	Both of rising and falling edge interrupt mode.
	Not support for level trigger mode

PORTEN I

Port Access Enable

The Port Access Enable register enables register writing permission of all PCU registers.

PORTEN=0x4000_1FF0

7	PORTEN	Writing the sequence of 0x15 and 0x51 in this register
0		enables writing to PCU registers, and writing other values
		protects all PCU registers from writing.

Functional Description

All the GPIO pins can be configured for different operations, inputs, outputs, triggered interrupts (both level and edge) through the PCU. The system is also able to disable ports by setting the PER1 and PCER1 registers in the SCU. By default, all pins are disabled (except for UART0/SPI0) so the developer must enable these to operate.

All configuration parameters are protected by the Port Access Enable register. You must write the sequence in order $(0 \times 15, 0 \times 51)$ to the PORTEN register to configure any pin(s). After the configuration is complete, write any other value to the PORTEN register to lock it.

Note: Do not read in between the sequence, that will prevent the configuration registers from being unlocked.

6. General Purpose I/O

Overview

Most of the pins except the dedicated function pins can be used as general I/O ports. General input/output ports are controlled by the GPIO block.

• Output signal level (H/L) select

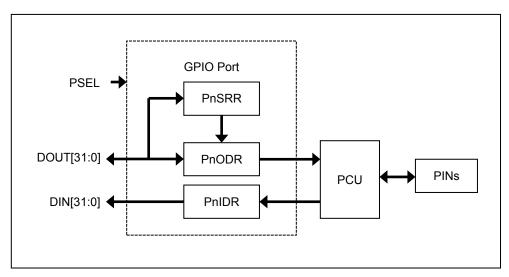


Figure 6.1. Block Diagram

Pin Description

Table 6.1. External Signal

PIN NAME	TYPE	DESCRIPTION
PA	Ю	PA0 - PA15
PB	O	PB0 - PB15
PC	O	PC0 - PC15
PD	O	PD0 - PD15
PE	O	PE0 – PE15
PF	Ю	PF0 – PF5

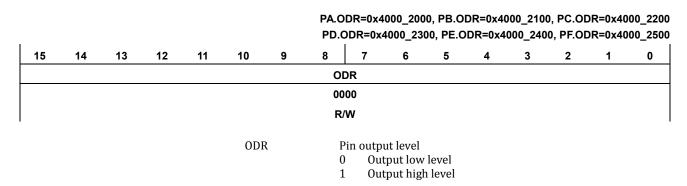
Registers

The base address of GPIO is $0x4000_2000$ and the register map is described in Tables 6.2 and 6.3.

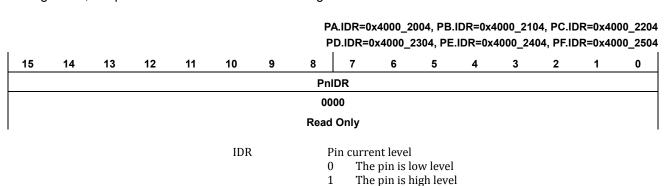
Table 6.2. Base Address of Each Port

PORT	Address
PA PORT	0x4000_2000
PB PORT	0x4000_2100
PC PORT	0x4000_2200
PD PORT	0x4000_2300
PE PORT	0x4000_2400
PF PORT	0x4000_2500

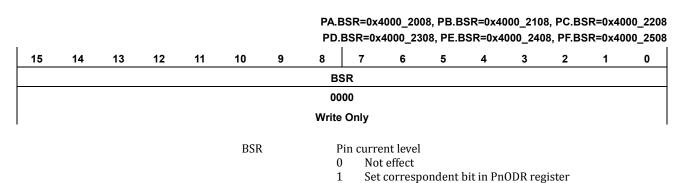
Table 6.3. GPIO Register Map


Name	Offset	R/W	Description	Reset
Pn.ODR	0x00	R/W	Port n Output data register	0x00000000
Pn.IDR	0x04	RO	Port n Input data register	0x00000000
Pn.BSR	0x08	WO	Port n Pin set register	0x00000000
Pn.BCR	0x—0C	WO	Port n Pin clear register	0x00000000

Pn.ODR


Port n Output Data Register

When the pin is set to output and GPIO mode, the pin output level is defined by the Port n Output Data registers.

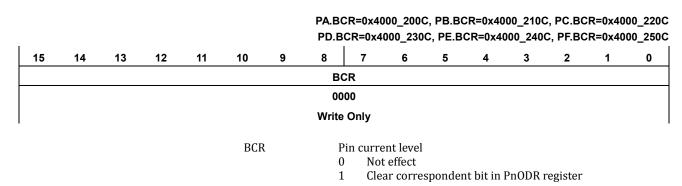

Pn.IDR Port n Input Data Register

Each pin level status can be read in the Port n Input Data register. Even if the pin is in alternative mode except analog mode, the pin level can be detected in this register.

Pn.BSR Port n Bit Set Register

The Port n Bit Set register controls each bit of of the Port n Output Data register (PnODR). When you write "1" to a specific bit, the corresponding bit in the PnODR register is set.

1


PS034602-0316 **PRELIMINARY** 81

Pn.BCR

Port n Bit Clear Register

The Port n Bit Clear register controls each bit of the Port n Output Data register (PnODR). When you write "1" to a specific bit, the corresponding bit in the PnODR register is cleared.

Functional Description

The GPIO registers provide the input/output condition of the GPIO pins. The input data registers give the states of the pins of the ports. The output data register is for setting the port pins. The Set and Clear registers control the pins at the individual level.

PS034602-0316 PRELIMINARY 82

7. Flash Memory Controller

Introduction

Flash Memory Controller is an internal Flash memory interface controller with the following features:

- 384KB Flash code memory
- 32-bit data bus width
- Code cache block for fast access mode
- 256-byte page size
- Supports page erase and macro erase
- 256-byte unit program

Item	Description
Size	384KB
Start Address	0x0000_0000
End Address	0x0005_FFFF
Page Size	256-byte
Total Page Count	1,536 pages
PGM Unit	256-byte
Erase Unit	256-byte

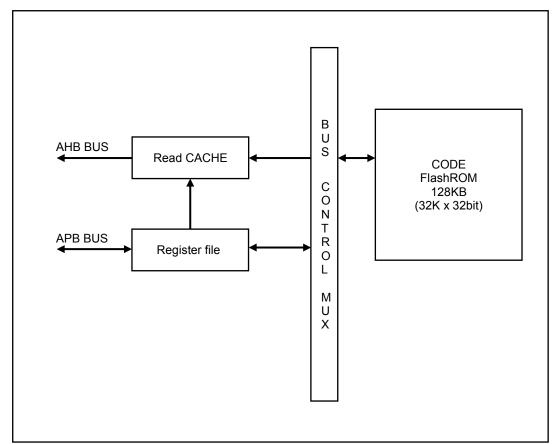


Figure 7.1. Block Diagram

Pin Description

There are no external interface pins for this peripheral.

Registers

The base address of the Flash Memory Controller is shown in Table 7.1.

Table 7.1. Flash Memory Controller Base Address

	Address
Flash Controller	0x4000_0100

Table 7.2 shows the register memory map.

Table 7.2. Flash Memory Controller Register Map

			memory controller register map	
Name	Offset	R/W	Description	Reset
FM.MR	0x0004	R/W	Flash Memory Mode Select register	0x01000000
FM.CR	0x0008	R/W	Flash Memory Control register	0x82000000
FM.AR	0x000C	R/W	Flash Memory Address register	0x00000000
FM.DR	0x0010	R/W	Flash Memory Data register	0x00000000
FM.TMR	0x0014	R/W	Flash Memory Timer register	0x000000bb
FM.DRTY	0x0018	R/W	Flash Memory Dirty bit	
FM.TICK	0x001C	RO	Flash Memory Tick Timer	0x00000000
FM.CRC	0x0020	RO	Flash Memory Read CRC Value	
FM.CFG	0x0030	R/W	Flash Memory config value register	0x00000000
FM.OTPCR	0x0034	R/W	Flash OTP control register	0x00000000
FM.BOOTCR	0x0074	R/W	Boot ROM Remap Clear register	0x00000000
FM.PROT	0x0078	R/W	Flash Page protection register	0x00000000
FM.JTAGEN	0x007C	R/W	Jtag protection register	0x00000001

FM.MR

Flash Memory Mode Register

The Internal Flash Memory Mode register is a 32-bit register.

FM.MR=0x4000_0104

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ВООТ							IDLE	VERIFY	AMBAEN					TRMEN	TRM							FEMOD	FMOD					ACODE			
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0x	00			
~							œ	RW	ΑM					œ	œ							œ	œ				i	¥ ≷			

31	BOOT	0	
		1	Boot mode enable status(read only)
24	IDLE	0	
		1	Boot mode enable status(read only)
23	VERIFY	0	
		1	Flash Verify mode enable status(read only)
22	AMBAEN	0	AMBA mode disable
		1	AMBA mode enable (can change wait state and etc)
17	TRMEN	0	
		1	Trim mode entry status(read only)
16	TRM	0	
		1	Trim mode status(read only)
9	FEMOD	0	
		1	Flash mode entry status(read only)
8	FMOD	0	
		1	Flash mode status(read only)
7	ACODE	5A → A5	Flash mode
0		A5 → 5A	Trim mode
		81 → 28	AMBA mode

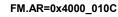
FM.CR

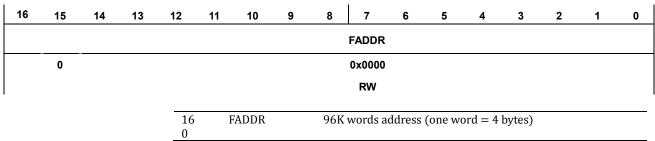
Flash Memory Control Register

The Internal Flash Memory Control register is shown below.

FM.CR=0x4000_0108

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											TIMER			TEST1	TEST0	VPPOUT	EVER	PVER	RESERVED	RESERVED	RESERVED	PPGM	AE			PMOD	WE	ВВГ	PGM	ERS	PBR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
₩.	₩ M	₩ M	ΑW	Α		ΑW	ΑW	R	ΑW		ΑW			₩ M	₩ M	ď	₩ M	₩ M		R M	80	R M	RW			R M	ΑW	R M	R M	R M	RW


		1	
20	TIMER	0	Program/Erase timer enable
		1	(timer can be enable by PGM or ERS bit)
17	TEST[1:0]	00	Normal operation
16		01	(read) Row voltage mode
		01	(write) ODD Row program
		10	Even Row program
		11	All Row program
15	VPPOUT		Enable charge-pump Vpp output
14	EVER		Set erase verify mode
13	PVER		Set program verify mode
12	RESERVED		Reserved
11	RESERVED		Reserved
10	RESERVED		Reserved
9	PPGM		Pre PGM enable
			Page buffer set automatically
8	AE		All erase enable
5	PMODE		PMODE enable(Address path changing)
4	WE		Write enable
3	PBLD		Page buffer load (PMODE should be set)
2	PGM		Program enable
1	ERS	0	Program mode enable
		1	Erase mode enable
0	PBR		Page buffer reset



FM.AR

Flash Memory Address Register

The Flash Memory Address register is the internal Flash Memory program/erase address register.

FM.DR Flash Memory Data Register

The Internal Flash Memory Data register is shown below.

FM.DR=0x4000_0110

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															FDA	TA															
	0x0000_0000																														
															RV	٧															
								3	1	F	DAT	A			Fl	ash	PGI	M da	ata (32-l	oit)										

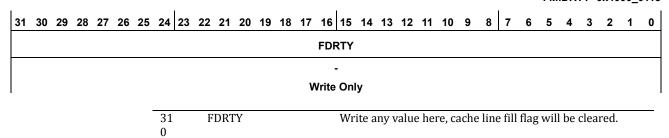
FM.TMR Flash Memory Timer Register

In the internal Flash Memory Timer value register (16-bit), the Erase/Program timer runs up to {TMR[15:0}.

FM.TMR=0x4000_0114

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TI	MR							
							0x0	9C4							
							R	:W							
			15	Т	ΓMR				PGM tim						
			0						counts u ock. It ca					or Exte	ernal

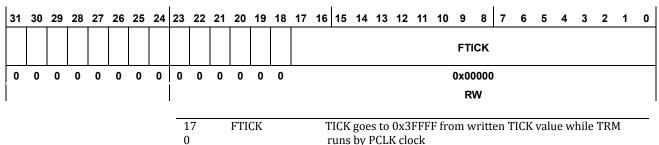
PS034602-0316 PRELIMINARY 87



FM.DRTY

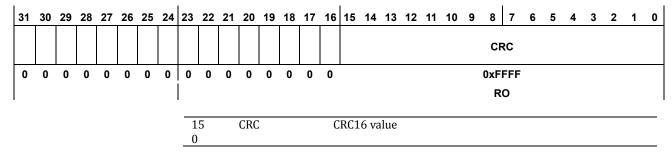
Flash Memory Dirty Bit Register

The internal Flash Memory Dirty Bit clear register is shown below.


FM.DRTY=0x4000 0118

FM.TICK Flash Memory Tick Timer Register

The Flash Memory Tick Timer register is the internal Flash Memory Burst Mode channel selection register.


FM.TICK=0x4000_011C

FM.CRC Flash Memory CRC Value Register

The Flash Memory CRC Value register shows the CRC value resulting from read accesses on internal Flash memory.

FM.CRC=0x4000_0120

PS034602-0316 PRELIMINARY 88

FM.CFG

Flash Memory Config Value Register

The Flash Memory Config Value register is the Flash Trim value register.

FM.CFG=0x4000_0130

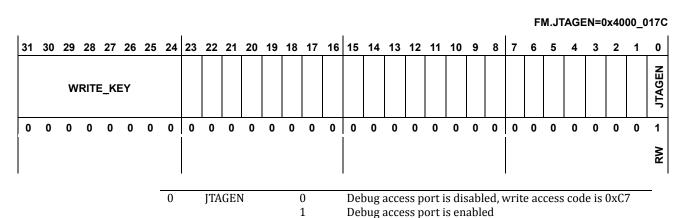
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						w	RITI	E KE	Υ							HRESPD			TMRCK			WAIT		CRCINIT	CRCEN				TR	IM	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1				0		1	1	0	0				()	
																													R/	W	

31 15	WRITE KEY		KEY Value : 0x7858
15	HRESPD		Disable HRESP(error response function) of Data or System
			bus
			(HRESP is AMBA AHB signal)
12	TMRCK	0	PGM/ERASE timer source is 20MHz INTOSC
		1	PRM/ERASE timer source is External Clock
10	WAIT	000	No wait access for flash memory
8		001	1-wait inserted for flash access
		010	2-wait inserted for flash access
		011	3-wait inserted for flash access
		100	4-wait inserted for flash access
		101	5-wait inserted for flash access
7	CRCINIT	0	CRC register winll be initialized. It should be reset again
		1	before read flash to generate CRC16 calculation
			(Initial value of FMCRC is 0xFFFF)
6	CRCEN	0	CRC16 enable
		1	CRC value will be calculated at every flash read timing
3	TRIM		FLASH TRIM Value (trim_mode_entry)
0			

FM.BOOTCR Boot ROM Remap Clear Register

The Boot ROM Remap Clear register is an 8-bit register.

FM.BOOTCR=0x4000_0174


7	6	5	4	3	2	1	0
							воотком
0	0	0	0	0	0	0	1
							R
		0 BOO'		This bit is used	can be written i to clear boot loa TROM low, exte	der mode at end	l of boot

FM.JTAGEN

JTAG Protection Control Register

The JTAG Protection Control register is the debug access control register.

FM.PROT Write Protection Control Register

The Write Protection Control register is the internal Flash memory control register. The PAS selects the area to protect and the WP bits specify the section within the area.

																									FM.	PRO	TEC	T=0	x400	0_0	178
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		w	RITI	E_KI	ΕY			APR						PAS		WP15	WP14	WP13	WP12	MP11	WP10	WP9	WP8	24M	9dM	WP5	WP4	WP3	WP2	MP1	WP0
0	0	0	0	0	0	0	0	0	0	0	0	0		0x0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								RW						X N		R/w	S.	Α M	Α M	S.	S.	Α	R W	RW	S.	W.	W.	S.	R W	R W	R W

23	APR	All protection removed, write_key is 0xA9
		0x0 : protection enabled (default)
		$0x1$: removed All protection, WP15 \sim 0 will be set as APR
		set
18	PAS	Protection Area Selction, write_key is 0x98
16		0x0: protection area < 64KB
		0x1: 64KB < protection area < 128KB
		0x2: 128KB < protection area < 192KB
		0x3: 192KB < protection area < 256KB
		0x4: 256KB < protection area < 320KB
		0x5: 320KB < protection area < 384KB
15	WP15	$0xF000 \sim 0xFFFF$, write_key is $0x87$ or $0x98$
14	WP14	$0xE000 \sim 0xEFFF$, write_key is $0x87$ or $0x98$
13	WP13	$0xD000 \sim 0xDFFF$, write_key is $0x87$ or $0x98$
12	WP12	$0xC000 \sim 0xCFFF$, write_key is $0x87$ or $0x98$
11	WP11	$0xB000 \sim 0xBFFF$, write_key is $0x87$ or $0x98$
10	WP10	$0xA000 \sim 0xAFFF$, write_key is $0x87$ or $0x98$
9	WP9	0x9000 ~ 0x9FFF, write_key is 0x87 or 0x98
8	WP8	0x8000 ~ 0x8FFF, write_key is 0x87 or 0x98
7	WP7	0x7000 ~ 0x7FFF, write_key is 0x87 or 0x98
6	WP6	0x6000 ~ 0x6FFF, write_key is 0x87 or 0x98
5	WP5	0x5000 ~ 0x5FFF, write_key is 0x87 or 0x98
4	WP4	0x4000 ~ 0x4FFF, write_key is 0x87 or 0x98

3	WP3	0x3000 ~ 0x3FFF, write key is 0x87 or 0x98
2	WP2	0x2000 ~ 0x2FFF, write key is 0x87 or 0x98
1	WP1	$0x1000 \sim 0x1FFF$, write_key is $0x87$ or $0x98$
0	WP0	$0x0000 \sim 0x0FFF$, write_key is $0x97$ or $0x98$
		0x0 : Protected (default)
		0x1 : PGM/ERASE enabled

Functional Description

The Flash area can be read from directly via the memory address. Writing of Flash memory can be done through the Boot mode or In-application programming. The execution for the writing of Flash must occur from the RAM area (or from Boot ROM). The Flash controller cannot read Flash memory (including instructions) once the program bit has been set.

Caution: If the vector table is not placed in RAM, you MUST disable interrupts to prevent reading the interrupt service routine in Flash memory.

8. Internal SRAM

Overview

The Z32F384 MCU implements zero-wait on the chip's SRAM. The size of the SRAM is 16 KB. The SRAM base address is $0x2000_0000$.

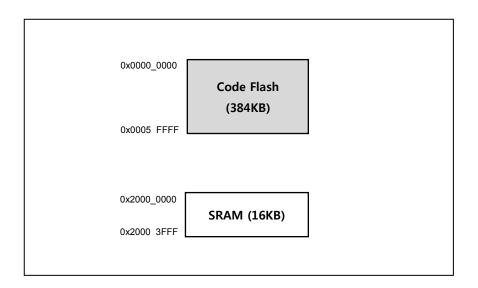


Figure 8.1. SRAM Block Diagram

9. Direct Memory Access Contoller

Introduction

The Direct Memory Access (DMA) controller has the following features:

- 8 channels
- Single transfer only
- Supports 8-/16-/32-bit data size
- Supports multiple buffers with same size
- Interrupt condition is transferred through peripheral interrupt

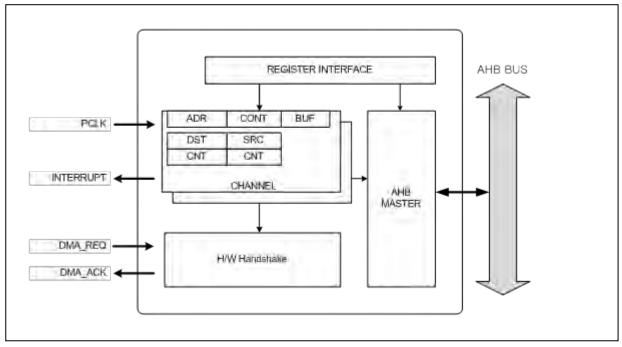


Figure 9.1. Block Diagram

Pin Description

There are no external interface pins.

Registers

The base addresses of the DMA controller are shown in Table 9.1.

Table 9.1. DMA Controller Base Addresses

Ch. No.	Base Address	Assigned Peripheral
DMACH0	0x4000_0400	
DMACH1	0x4000_0410	
DMACH2	0x4000_0420	
DMACH3	0x4000_0430	
DMACH4	0x4000_0440	
DMACH5	0x4000_0450	
DMACH6	0x4000_0460	
DMACH7	0x4000_0470	

Table 9.2 shows the register map of the DMA controller.

Table 9.2. DMAC Register Map

		10010 011	i ziii te regieter map	
Name	Offset	R/W	Description	Reset
DCn.CR	0x0000	R/W	DMA Channel n Control Register	0x0000_0000
DC <i>n.</i> SR	0x0004	R/W	DMA Channel n Status Register	0x0000_0000
DC <i>n.</i> PAR	0x0008	R	DMA Channel n Peripheral Address	0x0000_0000
DC <i>n.</i> MAR	0x000C	R/W	DMA Channel n Memory Address	0x2000_0000

DCn.CR

DMA Controller Configuration Register

The DMA operation control register is a 32-bit register.

DC0.CR=0x4000_0400 , DC1.CR=0x4000_0410 DC2.CR=0x4000_0420 , DC3.CR=0x4000_0430 DC4.CR=0x4000_0440 , DC5.CR=0x4000_0450 DC6.CR=0x4000_0460 , DC7.CR=0x4000_0470

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									TI	RAN	SCN	IT										PER	ISEL	•					SI	ZE	DIR	
	0	0	0	0						0x(000						0	0	0	0		()		0	0	0	0	0	0	0	0
										R	W											R	W						R	w	R/W	

27	TRANSCNT	Number of DMA transfer remained
16		Required transfer number should be written before enable
		DMA transfer.
		0 DMA transfer is done.
		N N transfers are remained
11	PERISEL	Peripheral selction
8		N Associated peripheral selection.
		Refer to DMA Peripheral connection table
3	SIZE	Bus transfer size.
2		00 DMA transfer is byte size transfer
		01 DMA transfer is half word size transfer
		10 DMA transfer is word size transfer
		11 Reserved
1	DIR	Select transfer direction.
		0 Transfer direction is from memory to peripheral. (TX)
		1 Transfer direction is from peripheral to memory (RX)

A DMA channel is connected with the selected peripheral.

Table 9.3 sTable 9.3. DMAC PERISEL Selectionhows peripheral selection numbers. The PERISEL field should be set with the correct number of the peripheral which will be connected with the DMA interface.

Table 9.3. DMAC PERISEL Selection

PERISEL[3:0]	Associated Peripheral
0	CHANNEL IDLE
1	UARTO RX
2	UARTO TX
3	UART1 RX
4	UART1 TX
5	UART2 RX
6	UART2 TX
7	UART3 RX
8	UART3 TX
9	SPIO RX
10	SPI0 TX
11	SPI1 RX
12	SPI1 TX
13	ADC0 RX
14	ADC1 RX

PERISEL cannot have the same value in different channels. If the same PERISEL value is wriiten in more than one channel, proper operation is not guaranteed.

Unused channels should contain a CHANNEL IDLE value in the PERISEL bit postions.

DCn.SR DMA Controller Status Register

The DMA Controller Status register is an 8-bit register. This register represents the current status of DMA Controller and enables DMA function.

DC0.SR=0x4000_0404 , DC1.SR=0x4000_0414 DC2.SR=0x4000_0424 , DC3.SR=0x4000_0434 DC4.SR=0x4000_0444 , DC5.SR=0x4000_0454 DC6.SR=0x4000_0464 , DC7.SR=0x4000_0474

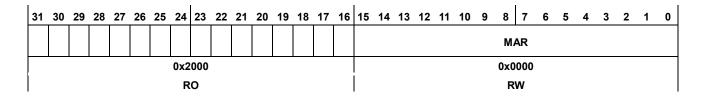
7	6	5	4	3	2	1	0
EOT							DMAEN
1	0	0	0	0	0	0	0
RO							R/W
		7 EOT	1	TRANSCNT	value		

DCn.PAR

DMA Controller Peripheral Address Register

The DMA Controller Peripheral Address register represents the peripheral address.

DC0.PAR=0x4000_0408 , DC1.PAR=0x4000_0418 DC2.PAR=0x4000_0428 , DC3.PAR=0x4000_0438 DC4.PAR=0x4000_0448 , DC5.PAR=0x4000_0458 DC6.PAR=0x4000_0468 , DC7.PAR=0x4000_0478


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				F	Perip	oher	al B	ASE	OF	FSE	Г												P	ΑR							
							0x4	000															0x0	000							
							R	0															R	W							

31	PAR	Target Peripheral address of transmit buffer or receive buffer.
0		User must set exact target peripheral buffer address in this
		field.
		If DIR is "0" this address is destination address of data
		transfer.
		If DIR is "1", this address is source address of data transfer.

DCn.MAR DMA Controller Memory Address Register

The DMA Controller Memory Address register represents the memory address.

DC0.MAR=0x4000_040C , DC1.MAR=0x4000_041C DC2.MAR=0x4000_042C , DC3.MAR=0x4000_043C DC4.MAR=0x4000_044C , DC5.MAR=0x4000_045C DC6.MAR=0x4000_046C , DC7.MAR=0x4000_047C

31	MAR	Target memory address of data transfer.
0		Address is automatically incremented according to SIZE bits
		when each transfer is done.
		If DIR is "0" this address is source address of data transfer.
		If DIR is "1", this address is destination address of data
		transfer.

Functional Description

The DMA controller performs direct memory transfer by sharing the system bus with the CPU core. The system bus is shared by two AHB masters following the round-robin priority strategy. Therefore, the DMA controller can share half of the system bandwidth.

The DMA controller can be triggered only by a peripheral request. When a peripheral requests a transfer to the DMA controller, the related channel is activated and accesses the bus to transfer the requested data from memory to the peripheral data buffer or vice versa.

The transfer process involves the following steps:

- 1. User sets the peripheral and memory addresses.
- 2. User configures DMA operation mode and transfer count.
- 3. User enables the DMA channel.
- 4. Peripheral generates a DMA request.
- 5. DMA activates the channel that was requested
- 6. DMA reads data from the source address and saves it to the internal buffer.
- 7. DMA writes the buffered data to the destination address.
- 8. Transfer count number is decreased by 1.
- 9. When the transfer count is 0, the EOT flag is set and notice is sent to the peripheral to issue the interrupt.
- 10. DMA does not have an interrupt source; the interrupt-related DMA status can be shown from the assigned peripheral interrupt.

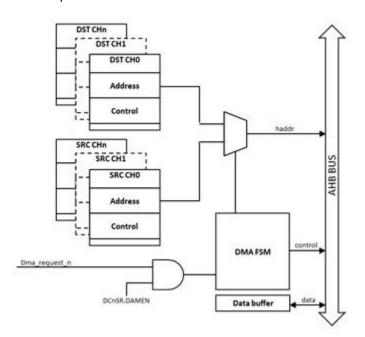


Figure 9.2. Block Diagram

Figure 9.3The figure shows the functional timing diagram of the DMA controller. The transfer request from the peripheral is pended internally and it invokes source data read transfer on the AHB bus. The read data from the source address is stored in the internal buffer. This data is transferred to the destination address when the AHB bus is available.

The timing diagram for a DMA transfer from the peripheral to memory is shown in Figure 9.3. A 4-clock cycle latency exists when accessing the peripheral. If the bus is occupied by a different bus master, the number of bus waiting cycles increase until the bus is available.

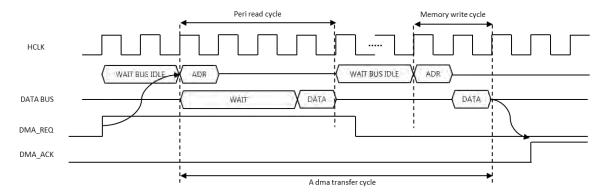


Figure 9.3. DMA Transfer from Peripheral to Memory

The timing diagram for a DMA transfer from memory to the peripheral is shown in Figure 9.4. A 4-clock cycle latency exists when accessing the peripheral. If the bus is occupied by a different bus master, the number of bus waiting cycles increase until the bus is available.

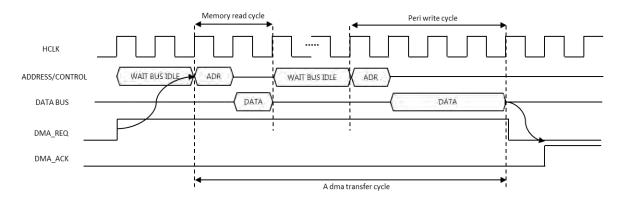


Figure 9.4. DMA Transfer from Memory to Peripheral

Figure 9.5 is an example of N data transfers with the DMA. The DMA transfer is started when DCnSR.DMAEN is set and cleared when all the transfers are completed.

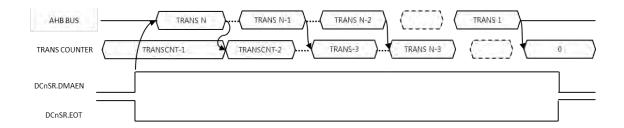


Figure 9.5. Example of N DMA Transfer

10. Watch-Dog Timer

Overview

The Watchdog Timer can monitor the system and generate an interrupt or a reset. It has a 32-bit down-counter. Miscellaneous Clock Control Register 3 provides base clock options with clock dividers to drive the WDT clock. This can be selected in the WDTCON register. To prevent the WDT from firing, reload the LR register with the appropriate value before the WDT times out.

- 32-bit down counter (WDTCNT)
- · Select reset or periodic interrupt
- · Count clock selection
- · Dedicated pre-scaler
- Watchdog overflow output signal

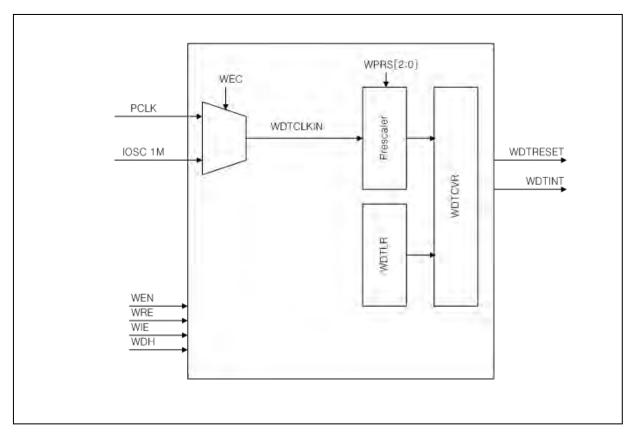


Figure 10.1. Block Diagram

Registers

The base address of the watchdog timer is $0x4000_0200$ and the register map is listed in Table 10.1. Initial watchdog time-out period is set to 2000-miliseconds.

Table 10.1. Watchdog Timer Register Map

			p	
Name	Offset	R/W	Description	Reset
WDT.LR	0x0000	W	WDT Load register	0x00000000
WDT.CNT	0x0004	R	WDT Current counter register	0x0000FFFF
WDT.CON	8000x0	R/W	WDT Control register	0x0000805C

WDT.LR Watchdog Timer Load Register

The Watchdog Timer Load register is used to update the WDTCNT register. To update the WDTCNT register, the WEN bit of WDTCON should be set to 1 and written into the WDTLR register with a target value of WDTCNT.

WDT.LR=0x4000_0200

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															WD.	TLR															
	0x0000_0000																														
															R	W															
								3	31	1	NDT	LR			7	Wato	hdo	g tii	mer	load	l val	ue r	egis	ter							
								()																R reg	giste	r wi	ill uj	pdat	e	
																WD'	rcn'	T va	lue	with	wr	itten	val	ue							_

WDT.CNT Watchdog Timer Current Counter Register

The Watchdog Timer Current Counter register represents the current count value of the 32-bit down counter .When the counter value reaches 0, the interrupt or reset is awoken.

WDT.CNT=0x4000_0204

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															,	WDT	CN	г														
															0x	0000)_FF	FF														
																R	W															

31	WDTCNT	Watchdog timer current counter register
0		32-bit down counter will run from the written value.

WDT.CON

Watchdog Timer Control Register

The timer module should be correctly configured before running. When the target purpose is defined, the timer can be configured in the TnCON register.

WDT.CON=0x4000_0208

15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0
WDBG							WUF	WDTIE	WDTRE		WDTEN	CKSEL	SGM	2
1	0	0	0	0	0	0	0	0	1	0	1	1	10	0
RW							RW	RW	RW		RW	RW	R\	N

15	WDBG	Watchdog operation control in debug mode
		0 Watchdog counter running when debug mode
		1 Watchdog counter stopped when debug mode
8	WUF	Watchdog timer underflow flag
		0 No underflow
		1 Underflow is pending
7	WDTIE	Watchdog timer counter underflow interrupt enable
		0 Disable interrupt
		1 Enable interrupt
6	WDTRE	Watchdog timer counter underflow interrupt enable
		0 Disable reset
		1 Enable reset
4	WDTEN	Watchdog Counter enable
		0 Watch dog counter disabled
		1 Watch dog counter enabled
3	CKSEL	WDTCLKIN clock source select
		0 PCLK
		1 External clock (Configured in MCCR3)
2	WPRS[2:0]	Counter clock prescaler
0		WDTCLK = WDTCLKIN/WPRS
		000 WDTCLKIN / 1
		001 WDTCLKIN / 4
		010 WDTCLKIN / 8
		011 WDTCLKIN / 16
		100 WDTCLKIN / 32
		101 WDTCLKIN / 64
		110 WDTCLKIN / 128
		111 WDTCLKIN / 256

Functional Description

The MCCR3 register must be configured to enable the clock source and divider for the Watch Dog Timer (WDT) to run. To prevent the WDT from resetting or interrupting, load a new value into the WDTLR register before the WDTCNT reaches 0.

The watchdog timer count is enabled by setting WDTEN (WDT.CON[4]) to 1. When the watchdog timer is enabled, the down counter starts counting from the load value. If WDTRE (WDT.CON[6]) is set to 1, WDT reset is asserted when the WDT counter value reaches 0 (underflow event) from the WDTLR value. Before the WDT counter goes down to 0, the software can write a certain value to the WDTLR register to reload the WDT counter.

Timing Diagram

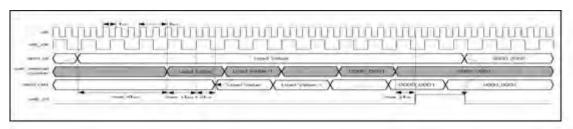


Figure 10.2. Timing Diagram in Interrupt Mode Operation when WDT Clock is External Clock

In WDT interrupt mode, after the WDT underflow occurs, a certain count value is reloaded to prevent the next WDT interrupt in a short time period. This reloading action can only be activated when the watchdog timer counter is set to Interrupt mode (set WDTIE of WDT.CON). It takes up to 5 cycles from the load value to the CNT value. The WDT interrupt signal and CNT value data might be delayed by a maximum of 2 system bus clocks in synchronous logic.

Prescale Table

The WDT includes a 32-bit down counter with programmable prescaler to define different time-out intervals.

The clock sources of the watchdog timer can include the peripheral clock (PCLK) or one of 3 external clock sources. An external clock source can be enabled by CKSEL (WDT.CON[3]) set to '1' and external clock source chosen in MCCR3 register of the System Control Unit block.

To make the WDT counter base clock, users can control the 3-bit prescaler WPRS [2:0] in the WDT.CON register and the maximum prescaled value is "clock source frequency/256". The prescaled WDT counter clock frequency values are listed in Table 10.2.

Selectable clock source (40 kHz ~ 16 MHz) and the time out interval when 1 count

Time out period = {(Load Value) * (1/pre-scaled WDT counter clock frequency) + max 5Text} + max 4Tclk

*Time out period (time out period from load Value to interrupt set '1')

Table 10.2. Prescaled WDT Counter Clock Frequency

Clock Source	WDTCLKIN	WDTCL KIN/4	WDTCLKI N/8	WDTCL KIN/16	WDTCLKI N/32	WDTCLKI N/64	WDTCLKI N/128	WDTCLKI N/256
Ring OSC	1MHz	250kHz	125kHz	62.5kHz	31.25kHz	15.625kHz	7.8125kHz	3.90625k Hz
MCLK	MCLK (BUS CLK)	MCLK/4	MCLK/8	MCLK/16	MCLK/32	MCLK/64	MCLK/128	MCLK/256
IOSC20	20MHz	5MHz	2.5MHz	1.25MHz	625kHz	312.5kHz	156.25kHz	78.125kHz
EOSC	XTAL	XTAL/4	XTAL/8	XTAL/16	XTAL/32	XTAL/64	XTAL/128	XTAL/256
SubOSC	32.768kHz	8.192kHz	4.096kHz	2.048kHz	1.024kHz	512Hz	256Hz	128Hz

11. 16-Bit Timer

Overview

The Timer block consists of 10 channels of 16-bit general-purpose timers. They can support periodic timer, PWM pulse, one-shot timer, and capture mode.

- 16-bit up-counter
- · Periodic timer mode
- One-shot timer mode
- PWM pulse mode
- · Capture mode
- 10-bit prescaler
- Multi-channel synchronization function

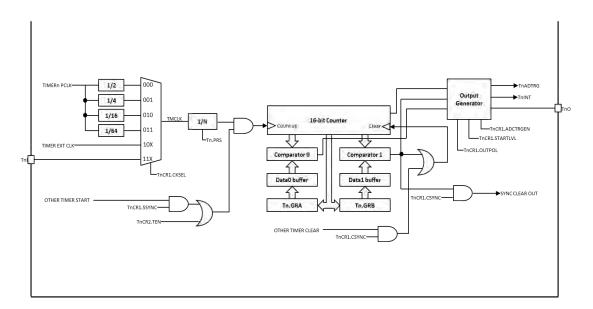


Figure 11.1. Block Diagram

Pin Description

Table 11.1. External Pin

PIN NAME	TYPE	DESCRIPTION
TnC	I	External clock / capture input
TnO	0	Timer output

Registers

The base address of the TIMER is $0x4000_3000$ and the register map is described in Table.11.2 and 11.3.

Table 11.2. Base Address of Each Channel

CHANNEL	Address
T0	0x4000_3000
T1	0x4000_3020
T2	0x4000_3040
Т3	0x4000_3060
T4	0x4000_3080
Т5	0x4000_30A0
Т6	0x4000_30C0
Т7	0x4000_30E0
Т8	0x4000_3100
Т9	0x4000_3120

Table 11.3. Timer Register Map

Table 11.3. Timer Register Map										
Name	Offset	R/W	Description	Reset						
Tn.CR1	0x-000	R/W	Timer control register 1	0x00000000						
Tn.CR2	0x-004	R/W	Timer control register 2	0x00000000						
Tn.PRS	0x-008	R/W	Timer prescaler register	0x00000000						
T <i>n.</i> GRA	0x-00C	R/W	Timer general data register A	0x00000000						
T <i>n.</i> GRB	0x-010	R/W	Timer general data register B	0x00000000						
Tn.CNT	0x-014	R/W	Timer counter register	0x00000000						
T <i>n.</i> SR	0x-018	R/W	Timer status register	0x00000000						
T <i>n</i> l.ER	0x-01C	R/W	Timer interrupt enable register	0x00000000						

Tn.CR1Timer n Control Register 1

The Timer Control Register 1 is a 16-bit register.

The timer module should be correctly configured before running. When the target purpose is defined, the timer can be configured in the TnCR1 register.

T0.CR1=0x4000_3000, T1.CR1=0x4000_3020 T2.CR1=0x4000_3040, T3.CR1=0x4000_3060 T4.CR1=0x4000_3080, T5.CR1=0x4000_30A0 T6.CR1=0x4000_30C0, T7.CR1=0x4000_30E0 T8.CR1=0x4000_3100, T9.CR1=0x4000_3120

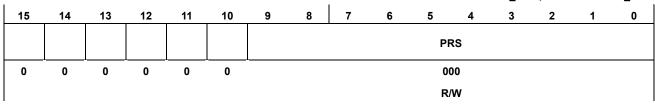
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSYNC	CSYNC	UAO	OUTPOL				ADCTRGEN	STARTLVL		CKSEL			CLKMOD		MODE
0	0	0	0	0	0	0	0	0	-	000		0	0		00
R/W	R/W	R/W	R/W				R/W			R/W		R/	w	F	R/W

15	SSYNC	Synchronize start counter with other synchronized timers
		0 Single counter mode
		1 Synchronized counter start mode
14	CSYNC	Synchronize clear counter with other synchronized timers
		0 Single counter mode
		1 Synchronized counter clear mode
13	UAO	Select GRA, GRB update mode
		0 Writing GRA or GRB takes effect after current period
		1 Writing GRA or GRB takes effect in current period
12	OUTPOL	Timer output polarity
		0 Normal output
		1 Negated output
8	ADCTRGEN	ADC Trigger enable control
		0 Disable adc trigger
		1 Enable adc trigger
7	STARTLVL	Timer output polarity control
		0 Default output level is HIGH
		1 Defulat output level is LOW
6	CKSEL[2:0]	Counter clock source select
4		000 PCLK/2
		001 PCLK/4
		010 PCLK/16
		011 PCLK/64
		10X EXTO (MCCR3)
		11X TnC pin input
3	CLRMD	Clear select when capture mode
2		00 Rising edge clear mode
		01 Falling edge clear mode
		10 Both edge clear mode
		11 None clear mode
1	MODE[1:0]	11 None clear mode Timer operation mode control
1 0	MODE[1:0]	
_	MODE[1:0]	Timer operation mode control
_	MODE[1:0]	Timer operation mode control O Normal periodic operation mode

Tn.CR2Timer n Control Register 2

The Timer Control Register 2 is an 8-bit register.

T0.CR2=0x4000_3004, T1.CR2=0x4000_3024 T2.CR2=0x4000_3044, T3.CR2=0x4000_3064 T4.CR2=0x4000_3084, T5.CR2=0x4000_30A4 T6.CR2=0x4000_30C4, T7.CR2=0x4000_30E4 T8.CR2=0x4000_3104, T9.CR2=0x4000_3124

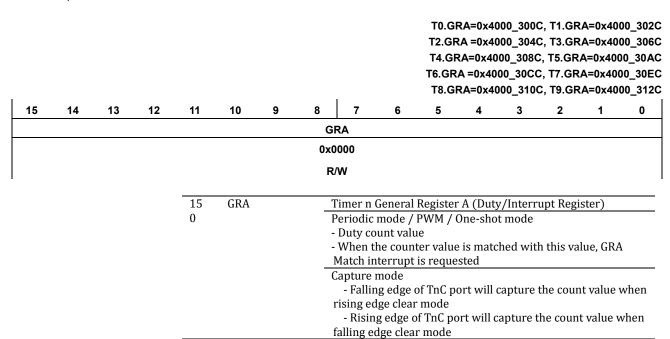

7	6	5	4	3	2	1	0
						TCLR	TEN
0	0	0	0	0	0	0	0
R	R	R	R	R	R	R/W	R/W
		1 TCL	R	Timer register cl No Clear count timer clock	t register (This b	it will be cleared	l after next
		0 TEN		Timer enable bit Stop Timer Start Time	Counting		

It is recommended to start the timer with the TCLR bit set to '1'.

Tn.PRS Timer n Prescaler Register

The Timer Prescaler Register is a 16-bit register to prescale the counter input clock.

T0.PRS=0x4000_3008, T1.PRS=0x4000_3028 T2.PRS =0x4000_3048, T3.PRS=0x4000_3068 T4.PRS=0x4000_3088, T5.PRS=0x4000_30A8 T6.PRS =0x4000_30C8, T7.PRS=0x4000_30E8 T8.PRS=0x4000_3108, T9.PRS=0x4000_3128



9	PRS	Pre-scale value of count clock	
0		TCLK = PCLK/(PRS+1)	

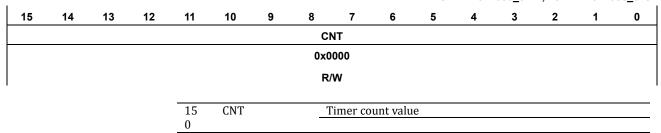
Tn.GRA Timer n General Register A

The Timer General Register A is a 16-bit register. The GRA register is the duty register. This register controls the TxIO pin.

Tn.GRB Timer n General Register B

Timer General Register B is a 16-bit register. The GRB register is the period match counter. It does not toggle the TxIO pins and is required in most modes as the period.

T0.GRB=0x4000 3010, T1.GRB=0x4000 3030 T2.GRB=0x4000 3050, T3.GRB=0x4000 3070 T4.GRB=0x4000 3090, T5.GRB=0x4000 30B0 T6.GRB=0x4000 30D0, T7.GRB=0x4000 30F0 T8.GRB=0x4000 3110, T9.GRB=0x4000 3130 15 14 13 12 11 10 GRB 0x0000 R/W 15 GRB Timer n General Register A (Period/Interrupt register) Periodic mode / PWM / One-shot mode - In periodic mode or PWM mode, this register is used as Period value. The counter will count up to (GRB-1) value. - When the counter value is matched with this value, GRB Match interrupt is requested only in PWM and one-shot modes. Capture mode - Rising edge of TnC port will capture the count value when rising edge clear mode - Falling edge of TnC port will capture the count value when falling edge clear mode



Tn.CNT

Timer n Counter Register

The Timer Counter Register is a 16-bit register.

T0.CNT=0x4000_3014, T1.CNT=0x4000_3034 T2.CNT=0x4000_3054, T3.CNT=0x4000_3074 T4.CNT=0x4000 3094, T5.CNT=0x4000 30B4 T6.CNT=0x4000 30D4, T7.CNT=0x4000 30F4 T8.CNT=0x4000_3114, T9.CNT=0x4000_3134

Tn.SR Timer n Status Register

The Timer Status Register is an 8-bit register. This register indicates the current status of the timer module.

T0.SR=0x4000_3018, T1.SR=0x4000_3038

						T2.SR=0	4000_3058, T3.5	SR=0x4000_30
						T4.SR=0x	4000_3098, T5.S	R=0x4000_30
						T6.SR=0x	4000_30F8, T7.S	R=0x4000_30
						T8.SR=0	4000_3118, T9.5	SR=0x4000_31
7	6		5	4	3	2	1	0
						MFA	MFB	OVF
0	0	-	0	0	0	0	0	0
		R	z/W	R/W		R/W	R/W	R/W
		2	MFA	_	GRA Match flag	(Duty Match)		
				_	0 No direction	on change		
				_	1 Match flag	with GRA		
		1	MFB	_	GRB Match flag	(Period Match)		
				_	0 No direction	on change		
				_	1 Match flag			
		0	OVF		Counter overflo	w flag (Only occ	urs when count	er rolls over
				_	at 0xFFFF)			
				_	0 No direction	on change		
					1 Counter or	verflow flag		

Tn.IER Timer n Interrupt Enable Register

The Timer Interrupt Enable Register is an 8-bit register. Each status flag of the timer block can issue the interrupt. To enable the interrupt, write "1" in the corresponding bit in the TnIER register.

T0.IER=0x4000_301C, T1.IER=0x4000_303C T2 .IER=0x4000_305C, T3.IER=0x4000_307C T4.IER=0x4000_309C, T5.IER=0x4000_30BC T6.IER=0x4000_30DC, T7.IER=0x4000_30FC T8.IER=0x4000_311C, T9.IER=0x4000_313C

							· · · ·	0000_0
7	6		5	4	3	2	1	0
						MAIE	MBIE	OVIE
0	0		0	0	0	0	0	0
	R/W	R	R/W	R/W		w	R/W	w
		2	MAIE		GRA Match inter	rupt enable		
					0 Not effect			
					1 Enable ma	tch register A int	errupt	
		1	MBIE		GRB Match inter	rupt enable		
					0 Not effect			
					1 Enable ma	tch register B int	errupt	
		0	OVIE		Counter overflow	w interrupt enab	le	
					0 Not effect			
					1 Enable cou	inter overflow in	terrupt	

Functional Description

Basic Operation of Timer

In Figure 11.2, TMCLK is a reference clock for operation of the timer. This clock is divided by the prescaler setting and the counting clock will work. The following images show the starting point of the counter and the ending of the period point of the counter in normal periodic mode.

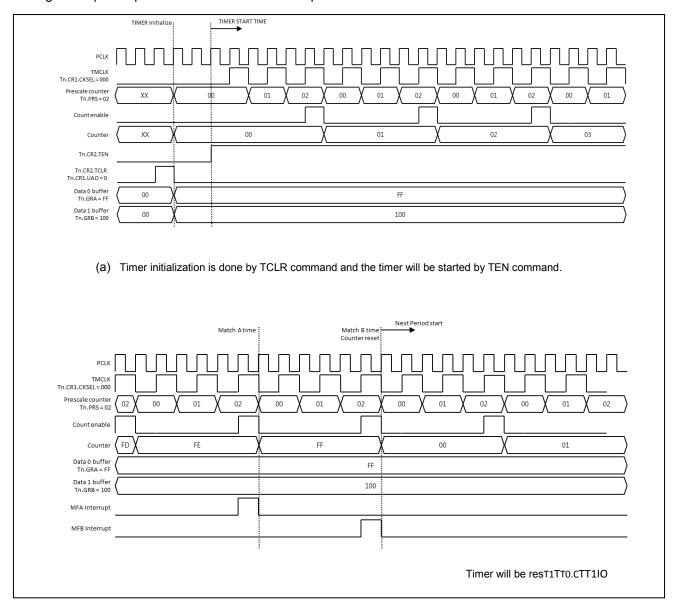


Figure 11.2. Basic Start and Match Operation

The period of timer count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value
Match A interrupt time = TMCLK Period * Tn.GRA value

If the Tn.CR1.UAO bit is "0", the Tn.CR2.TCLR command will initialize all the registers in the timer block and load the GRA and GRB value into the Data0 and Data1 buffers. When you change the timer setting and restart the timer with the new setting, write the CR2.TCLR command before the CR2.TEN command.

The update timing of the Data0 and Data1 buffers in dynamic operation is different in each operating mode and depends on the Tn.CR1.UAO bit.

Normal Periodic Mode

Figure 11.3 shows the timing diagram in normal periodic mode. The Tn.GRB value decides the timer period. An additional comparison point is provided with the Tn.GRA register value.

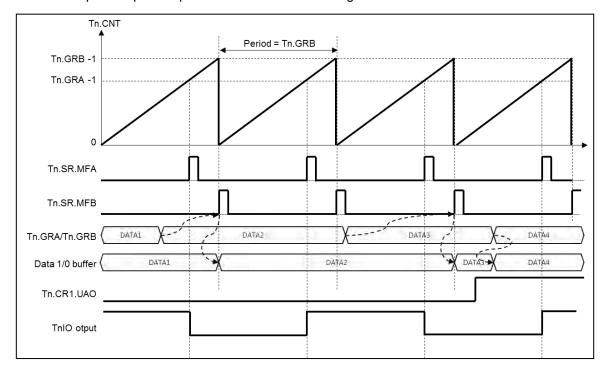


Figure 11.3. Normal Periodic Mode Operation

The period of the timer count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1", because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffers 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated when the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal is toggled at the time of every Match A condition. If the value of TnGRA is 0, the TnIO output does not change its previous level. If TnGRA is the same as TnGRB, the TnIO ouput toggles at the same time as the counter start time. The initial level of the TnIO signal is decided by the TnCR1.STARTLVL value.

One Shot Mode

Figure 11.4 shows the timing diagram in One Shot mode. The Tn.GRB value decides the one shot period. An additional comparison point is provided with the Tn.GRA register value.

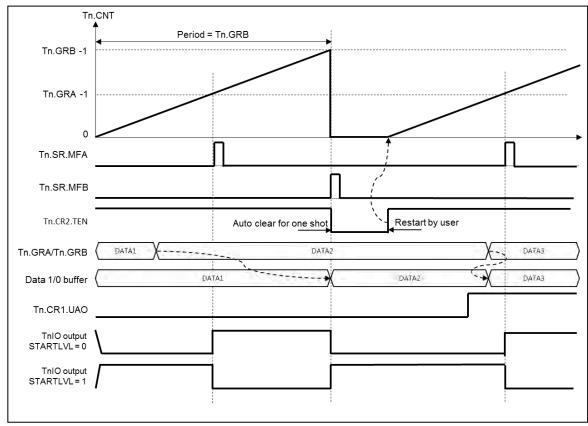


Figure 11.4. One Shot Mode Operation

The period of one shot count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffers 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated when the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal format is the same as in PWM mode. The Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse.

PWM Timer Output

Figure 11.5 shows the timing diagram in PWM output mode. The Tn.GRB value decides the PWM pulse period. An additional comparison point is provided with the Tn.GRA register value which defines the pulse width of PWM output.

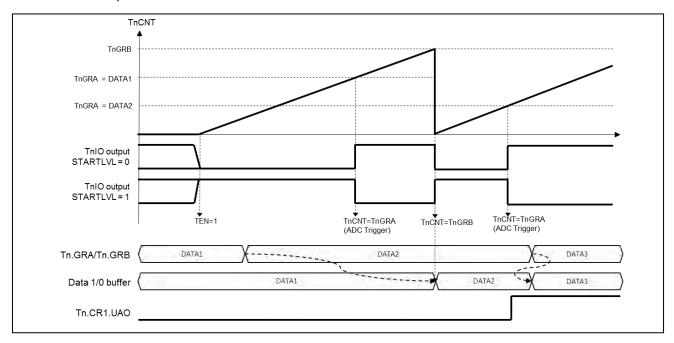


Figure 11.5. PWM Output Operation

The period of PWM pulse can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffer 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated when the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal generates a PWM pulse. The Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse. The active level of the PWM pulse can be controlled by the Tn.CR1.STARTLVL bit value.

ADC Trigger generation is available at Match A interrupt time.

PWM Synchronization Function

2 PWM outputs are usually used as synchronous PWM signal control. This function is provided with a synchronous start function.

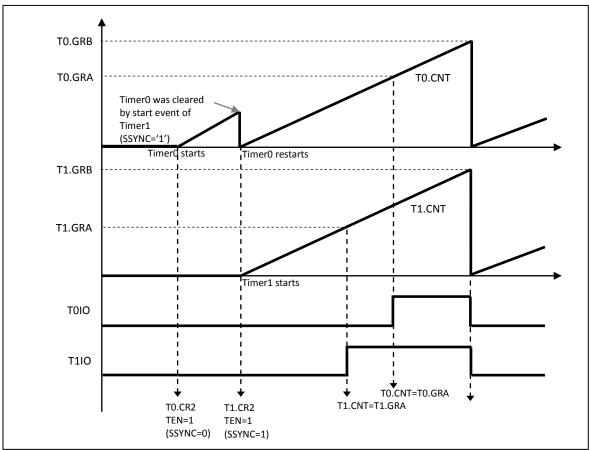


Figure 11.6 shows the synchronous PWM generation function.

Figure 11.6. An Example of the Timer Synchronization Function (SSYNC='0')

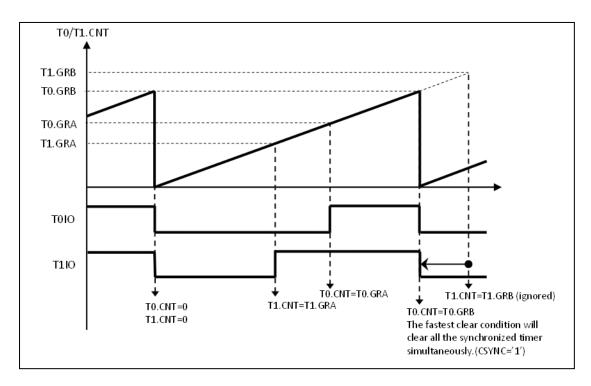


Figure 11.7. An Example of the Timer Synchronization Function (CSYNC='1')

The TnCR1.SSYNC bit controls start synchronization with other timer blocks. The TnCR1.CSYCN bit controls clear sync with other timer blocks. The SSYNC and CSYNC bits are only effective when used with tow or more timers.

For example, timer0 and timer1 set the SSYNC and CCSYNC bits in each CR1 register; both timers are started when one of them is enabled. Both timers are cleared with a short period match value. However, others are not affected by these 2 timers, and they can be operated independently because their SYNC control bit is 0.

Capture Mode

Figure 11.8 shows the timing diagram in Capture mode operation. The TnIO input signal is used for the capture pulse. Both rising and falling edges can capture the counter value in each capture condition.

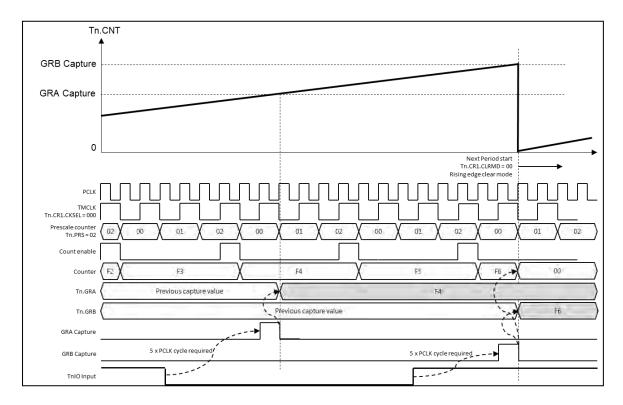


Figure 11.8. Capture Mode Operation

A 5 PCLK clock cycle is required internally. Therefore, the actual capture point is after 5 PCLK clock cycles from the rising or falling edge of the TnIO input signal.

The internal counter can be cleared in various modes. The TnCR1.CLRMD field controls the counter clear mode. Rising Edge clear mode, Falling Edge clear mode, Both Edges clear mode, and None clear mode are supported.

Figure 11.8 displays the rising edge clear mode.

ADC Trigger Function

The timer module can generate ADC start trigger signals. One timer can be one trigger source of the ADC block. Trigger source control is performed by the ADC control register.

Figure 11.9 shows the ADC trigger function.

The conversion rate must be shorter than the timer period. If this is not true, an overrun situation can occur. ADC acknowledge is not required because the trigger signal will be cleared automatically after 3 PCLK clock pulses.

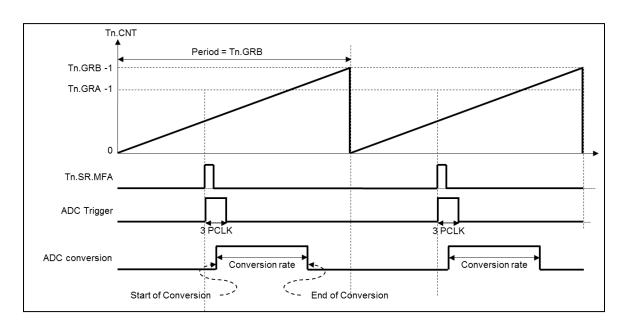


Figure 11.9. ADC Trigger Function Timing Diagram

12. 32-Bit Free Run Timer

Overview

The FRT block is a 32-bit Free Run Timer. It can be used in power down mode.

- 32-bit up-counter with SUB OSC
- Matched interrupt

Registers

The base address of FRT is $0x4000_30E0$ and the register map is described in Tables 12.1 and 12.2.

Table 12.1. Base Address of Each Channel

Channel	Address
FRT	0x4000_0600

Table 12.2. Timer Register Map

Name	Offset	R/W	Description	Reset
FRT.MR	0x0000	R/W	FRT mode register	0x00000000
FRT.CR	0x0004	R/W	FRT control register	0x00000000
FRT.PER	0x0008	R/W	FRT period register	0x00000000
FRT.CNT	0x000C	RO	FRT counter register	0x00000000
FRT.SR	0x0010	R/W	FRT status register	0x00000000

FRT.MR **FRT Mode Register**

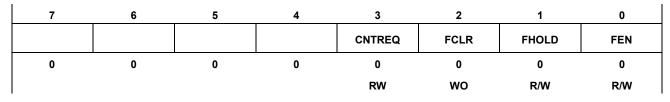
FRT is a 32-bit up counter. It can be used in power down mode. The SUB OSC clock is directly connected to FRT. The clock is uncontrollable in the SCU block. The FRT Mode Register is an 8-bit register.

FRTMR=0x4000_0600

7	6	5		4	3	2	1	0
				CLKS	SEL	MCD	OVIE	MIE
0	0	0		00)	0	0	0
				RV	V	RW	RW	RW
		3	CLKSEL	FF	RT counter cloc	k source control		
		2		0	Interna	l Oscillator clock	divided by 16	
				1	Externa	l Oscillator clock	divided by 16	
				2	Sub Osc	illator clock		
				3	Reserve	ed		
		1	MCD	_ Co	ounter Match Cl	lear Disable bit		
				0	Counter	Match Clear fun	ction is enabled	
						er the counter n		
					will be s	set zero and wait	ing for MF to be	cleared.
				1	Counter	Match Clear fun	ction is disabled	l.
					The cou	nter will keep co	untering withou	ıt set zero
		1	OVIE	_0	verflow Interru	pt Enable bit		
				_0	Not effe	ect		
				1	Interruj	pt enabled		

0

FRT.CR


FRT Control Register

The FRT Control register is an 8-bit register.

0

MIE

FRTCR=0x4000_3E04

3	CNTREQ	FRT Counter read request bit
		0 No
		1 Request to read FCNT (cleared when CNTACK(FSR[1])
		is high)
2	FCLR	FRT Counter register clear bit
		0 No
		1 Clear the counter
1	FHOLD	FRT Counter register hold bit
		0 No
		1 Hold the counter
0	FEN	FRT enable bit
		0 FRT Disabled
		1 FRT Enabled

Match Interrupt Enable bit Not effect

Interrupt enabled

FRT.PER

FRT Period Match Register

The FRT Period Match register is a 32-bit register.

FRTPER=0x4000_3E08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DA	TΑ															
														0x	000	0_00	00														
															R	W															
								3	32	D	ATA				F	RT 1	mato	ch d	ata												

FRT.CNT FRT Counter Register

The FRT Counter Register is a 32-bit register.

FRTCNT=0x4000_3E0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															C	NT															
														0x	000	0_00	00														
															R	0															
								3	2	C	NT				F	FRT	Coui	nter													

FRT.SRFRT Status Register

FRT Status Register is an 8-bit register.FRTSR=0x4000_0610

7	6	5		4	3	2	1	0			
						RACK	OVIF	MIF			
0	0	0		0	0	0	0	0			
						WC1	WC1	WC1			
		2	RACK	т	Read Counter Acl	mourladge hit					
		2	NACK			o read CNT value	3				
				1	Ready to re	ad CNT value					
		1	OVIF	_ (verflow interru	pt flag bit					
				-	Overflow in	terrupt did not	occur				
				1	Overflow in	terrupt occurred	d				
		0	MIF	_ N	latch interrupt f	lag bit					
				0	Match inter	rupt did not occ	ur.				
				1	Match Inter	rupt occurred		_			
		In Counter Match Clear mode, this bit should be cleared for restarting the counter.									

Functional Description

FRT has two types of interrupt:

- Match interrupt
- Overflow interrupt

Match Interrupt Operation

The match interrupt timing diagram is shown in

Figure 12.1. FRT.MR.MIE should be set as '1' for using match-interrupt.

The FRT clock starts the FRT counter after FRT.CR.EN is '1'. Interrupt and wakeup signals occur when the counter is matched with the value of FRT.PER. The 'interrupt' signal might be delayed in a maximum of 2 system clocks and 'wakeup' signal might be delayed in a maximum of (1 clk + 2 frt_clk).

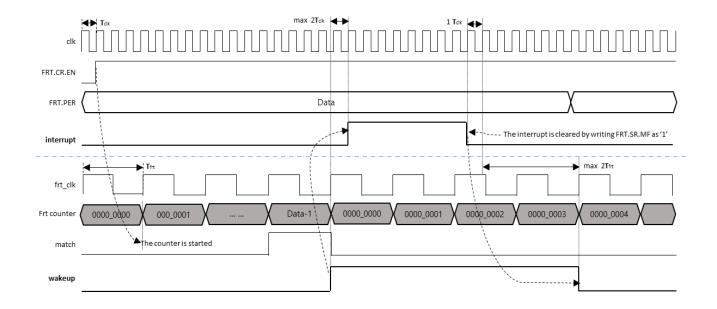


Figure 12.1. Match Interrupt Operation Timing Diagram

Overflow Interrupt Operation

The overflow interrupt timing diagram is shown in

Figure 12.2. The overflow-interrupt operation is similar to the match-interrupt operation. The overflow-interrupt is started to set when the FRT counter matches <code>0xffffffff</code>.

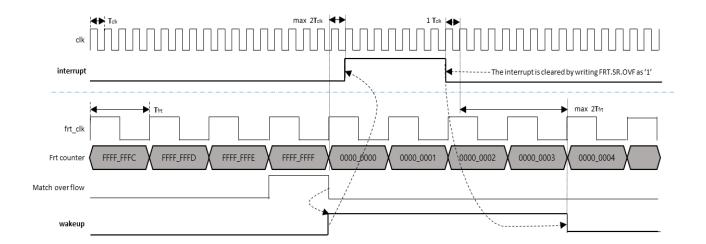


Figure 12.2. Overflow Interrupt Operation Timing Diagram

13. UART

Overview

4-Channel Universal Asynchronous Receiver/Transmitter (UART) modules are provided. There is dedicated DMA support to data transfer between the memory buffer and the transmit or receive buffer of the UART block.

The UART operation status, including error status, can be read from the status register. The prescaler, which generates the correct baud rate, exists for each UART channel. The prescaler can divide the UART clock source, PCLK/2, from 1 to 65535. The baud rate is generated by the clock which is internally divided by 16 of the prescaled clock and 8-bit precision clock tuning function.

The programmable interrupt generation function helps control communication via the UART channel.

Features

- Compatible with 16450
- Supports DMA transfer
- Standard asynchronous control bit (start, stop, and parity) configurable
- Programmable 16-bit fractional baud generator
- Programmable serial communication
- 5-, 6-, 7- or 8- bit data transfer
- Even, odd, or no-parity bit insertion and detection
- 1-, 1.5- or 2-stop bit-insertion and detection
- 16-bit baud rate generation with 8-bit fraction control
- Hardware inter-frame delay function
- Stop bit error detection
- Detail status register

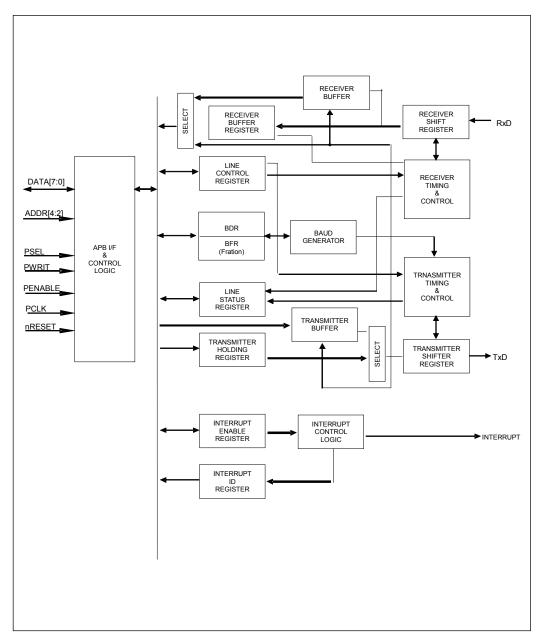


Figure 13.1. Block Diagram

Pin Description

Table 13.1. External Signal

PIN NAME	TYPE	DESCRIPTION
TXD0	0	UART Channel 0 transmit output
RXD0	I	UART Channel 0 receive input
TXD1	0	UART Channel 1 transmit output
RXD1	I	UART Channel 1 receive input
TXD2	0	UART Channel 2 transmit output
RXD2	I	UART Channel 2 receive input
TXD3	0	UART Channel 3 transmit output
RXD3	I	UART Channel 3 receive input

Registers

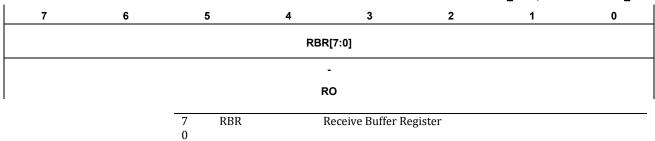
The base address of UART is $0x4000_8000$ and the register map is described in Tables 13.2 and 13.3.

Table 13.2. Base Address of Each Port

UART Channel	Address
UART0	0x4000_8000
UART1	0x4000_8100
UART2	0x4000_8200
UART3	0x4000_8300

Table 13.3. UART Register Map

Name	Offset	R/W	Description	Reset
Un.RBR	0x00	R	Receive data buffer register	0x00
Un.THR	0x00	W	Transmit data hold register	0x00
Un.IER	0x04	R/W	Interrupt enable register	0x00
Un.IIR	0x08	R	Interrupt ID register	0x01
Un.LCR	0x0C	R/W	Line control register	0x00
Un.DCR	0x10	R/W	Data Control Register	
Un.LSR	0x14	R	Line status register	0x00
Un.SCR	0x1C	R/W	Scratch pad register	0x00
Un.BDR	0x20	R/W	Baud rate Divisor Latch Register	
Un.BFR	0x24	R/W	Baud rate Fractional Counter Value	0x00
Un.IDTR	0x30	R/W	Inter-frame Delay Time Register	0x00



Un.RBR

Receive Buffer Register

The UART Receive Buffer Register is an 8-bit read-only register.

U0.RBR=0x4000_8000, U1.RBR=0x4000_8100 U2.RBR=0x4000_8200, U3.RBR=0x4000_8300

Un.THR Transmit Data Hold Register

The UART Transmit Data Hold Register is an 8-bit write-only register.

U0.THR=0x4000_8000, U1.THR=0x4000_8100 U2.THR=0x4000 8200. U3.THR=0x4000 8300

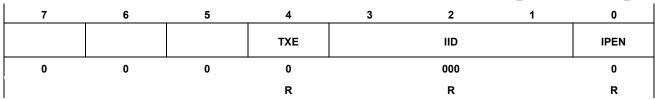
					U2.THR=0x4	000_8200, U3.TI	HR=0x4000_8300
7	6	5	4	3	2	1	0
			Ti	HR			
				-			
			W	10			
		7 7	ГHR 1	Transmit Data	Hold Register		

PS034602-0316 PRELIMINARY 129

Un.IER UART Interrupt Enable Register

The UART Interrupt Enable Register is an 8-bit register.

U0.IER=0x4000_8004, U1.IER=0x4000_8104 U2.IER=0x4000_8204, U3.IER=0x4000_8304


7	6		5	4	3	2	1	0							
-	-	DT	XIEN	DRXIEN	TXEIE	RLSIE	THREIE	DRIE							
0	0	•	0	0	0	0	0	0							
		F	RW.	RW	RW	RW	RW	RW							
		5	DTXIE		DMA transmit do										
				<u></u>		e status interrup e status interrup									
		4	DRXIE		DMA receive do	-									
				<u> </u>	0 DMA receive done interrupt is disabled 1 DMA receive done interrupt is enabled										
		3	TXEIE		End-of-transmit										
						nit interrupt is o									
						nit interrupt is e									
		2	RLSIE		Receiver line stat										
						status interrup									
			THE			status interrup									
		1	THRE				interrupt enable								
							mpty interrupt is mpty interrupt is								
		0	DRIE	<u>.</u>	Data receive inte		inply interrupt is	ciiabicu							
		J	DIGIL			e interrupt is dis	sahled								
						e interrupt is an									

Un.IIR UART Interrupt ID Register

The UART Interrupt ID Register is an 8-bit register. Reading this register will clear the interrupts.

U0.IIR=0x4000_8008, U1.IIR=0x4000_8108 U2.IIR=0x4000_8208, U3.IIR=0x4000_8308

4	TXE	Interrupt source ID See interrupt source ID table
3	IID	Interrupt source ID
1		See interrupt source ID table
0	IPEN	Interrupt pending bit
		0 Interrupt is pending
		1 No interrupt is pending.

The UART supports 3-priority interrupt generation and the Interrupt Source ID register shows one interrupt source which has the highest priority amongst pending interrupts. The priority is defined as follows:

- Receive line status interrupt
- Receive data ready interrupt/ character timeout interrupt
- Transmit hold register empty interrupt
- Tx/Rx DMA complete interrupt

Priority	TXE	DMA	II	D	IPEN				
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Interrupt	Interrupt condition	Interrupt clear	
-	0	0	0	0	1	None	-	-	
1	0	0	1	1	0	Receiver Line Status	Overrun, Parity, Framing or Break Error	Read LSR register	
2	0	0	1	0	0	Receiver Data Available	Receive data is available.	Read receive register or read IIR register	
3	0	0	0	1	0	Transmitter Holding Register Empty	Transmit buffer empty	Write transmit hold register or read IIR register	
4	1	Х	Х	Х	Х	Transmitter Register Empty	Transmit register empty	Write transmit hold register or read IIR register	
5	0	1	1	0	0	Rx DMA done	Rx DMA completed.	Read IIR register	
6	0	1	0	1	0	Tx DMA done	Tx DMA completed.	Read IIR register	
7	1	х	х	х	х	Transmitter register Empty and DMA done	Transmitter regiser Empty and Tx DMA completed.	Read IIR register	

Un.LCR UART Line Control Register

The UART Line Control Register is an 8-bit register.

U0.LCR=0x4000_800C, U1.LCR=0x4000_810C U2.LCR=0x4000_820C, U3.LCR=0x4000_830C

7	6	5	4	3	2	1	0
	BREAK	STICKP	PARITY	PEN	STOPBIT	DL	EN
0	0	0	0	0	0	0	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W

6	BREAK	When this bit is set, TxD pin will be driven at low state in order to
		notice the alert to the receiver.
		0 Normal transfer mode
		1 Break transmit mode
5	STICKP	Force parity and it will be effective when PEN bit is set.
		0 Parity stuck is disabled
		Parity stuck is enabled and parity always the bit of PARITY.
4	PARITY	Parity mode selection bit and stuck parity select bit
		0 Odd parity mode
		1 Even parity mode
3	PEN	Parity bit transfer enable
		0 The parity bit disabled
		1 The parity bit enabled
2	STOPBIT	The number of stop bit followed by data bits.
		0 1 stop bit
		1 1.5 / 2 stop bit
		In case of 5 bit data case, 1.5 stop bit is added. In case of 6,7 or
		8 bit data, 2 stop bit is added
1	DLEN	The data length in one transfer word.
0		00 5 bit data
		01 6 bit data
		10 7 bit data
		11 8 bit data

The parity bit is generated according to bits 3,4,5 of the UnLCR register. Table 13.4 shows the variation of parity bit generation.

Table 13.4. Parity Bit Generation

rubio 10.4.1 unity bit comoration									
STICKP	PARITY	PEN	Parity						
Х	Х	0	No Parity						
0	0	1	Odd Parity						
0	1	1	Even Parity						
1	0	1	Force parity as "1"						
1	1	1	Force parity as "0"						

Un.DCR

UART Data Control Register

The UART Data Control Register is an 8-bit register.

U0DCR=0x4000_8010, U1DCR=0x4000_8110 U2DCR=0x4000_8210, U3DCR=0x4000_8310

7	6	5	4	3	2	1	0
				RXINV	TXINV		
0	0	0	0	0	0	0	0
				R/W	R/W		
	3	RXINV	Rx Data Ir	nversion Selection	n		
			0 No	ormal RxData Inp	out		
			1 Inverted RxData Input				
	2	TXINV	Tx Data Inversion Selection				
			0 No	ormal TxData Out	tput		
			1 In	verted TxData Οι	ıtput		

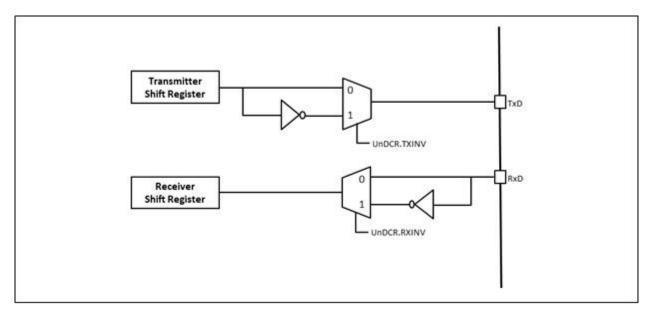


Figure 13.2. Data Inversion Diagram

Un.LSR

UART Line Status Register

The UART Line Status Register is an 8-bit register.

U0LSR=0x4000_8014, U1LSR=0x4000_8114 U2LSR=0x4000_8214, U3LSR=0x4000_8314

7	6		5	4	3	2	1	0				
-	TEMT	TH	HRE	ВІ	FE	PE	OE	DR				
0	1		1	0	0	0	0	0				
	R		R	R	R	R	R	R				
		6	TEMT	` <u> </u>	ransmit empty.							
							ata is now trans	ferring				
				1		egister is empty.						
		5	THRE		ransmit holding							
						olding register is						
				1		olding register e	mpty					
		4	BI		Break condition i							
					0 Normal status							
			FF	1		ition is detected						
		3	FE	<u> </u>	rame Error.	омиом						
				<u></u> 1	U		character did no	t have a valid				
				1	stop bit	ioi. The receive	character ulu no	t llave a vallu				
		2	PE	F	Parity Error							
		-			-	rror						
				1			aracter does not	have correct				
					parity info							
		1	OE	(verrun error							
				1	Overrun er	ror. Additional d	ata arrives while	e the RHR is				
					full							
		0	DR		ata received							
						receive holding 1						
				1	Data Hab be		is saved in the r	eceive				
					holding reg	gister						

This register provides the status of data transfers between the transmitter and receiver. Users can get line status information from this register and can handle the next process. Bits 1,2,3,4 will arise the line status interrupt when the RLSIE bit in the UnIEN register is set. Other bits can generate its interrupt when the interrupt enable bit in the UnIEN register is set.

Un.BDR Baud rate Divisor Latch Register

The UART Baud rate Divisor Latch Register is a 16-bit register.

U0.BDR=0x4000_8020, U1.BDR=0x4000_8120 U2.BDR=0x4000 8220, U3.BDR=0x4000 8320

										02.2	D U		0, 00.22	•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							В	DR							
0x0000															
							R	/W							
15 BDR Baud rate Di 0							e Divide	r latch v	alue						

To establish communication with the UART channel, the baud rate should be set correctly. The programmable baud rate generation allows division from 1 to 65535. The 16 bit divider register (UnBDR) should be written for the expected baud rate.

The baud rate calculation formula is shown in the following equation:

$$BDR = \frac{UART_{PCLK}}{32 \times BaudRate}$$

For an 72 MHz UART_PCLK speed, the divider value and error rate is described in Table 13.5.

Table 13.5. Example of Baud Rate Calculation

UART_PCLK=72 MHz						
Baud rate	Divider	Error (%)				
1200	1875	0.00%				
2400	937	0.05%				
4800	468	0.16%				
9600	234	0.16%				
19200	117	0.16%				
38400	58	1.02%				
57600	39	0.16%				
115200	19	2.79%				

Un.BFR

Baud rate Fraction Counter Register

The Baud rate Fraction Counter Register is an 8-bit register.

U0.BFR=0x4000_8024, U1.BFR=0x4000_8124 U2.BFR=0x4000_8224, U3.BFR=0x4000_8324

						· · · - · , · · ·	
7	6	5	4	3	2	1	0
				BFR			
				0x00			
				R/W			
		7 E	BFR	Fractions coun	ter value.		
		0		0 Fraction o	counter is disable	d	
					counter enabled. I		

Table 13.6 Example of Baud Rate Calculation

	UART_PCLK=72 MHz									
Baud rate	Baud rate Divider FCNT Error (%)									
1200	1875	0	0.0%							
2400	937	128	0.0%							
4800	468	192	0.0%							
9600	234	96	0.0%							
19200	117	48	0.0%							
38400	58	152	0.0%							
57600	39	16	0.0%							
115200	19	136	0.0%							

$$FCNT = Float * 256$$

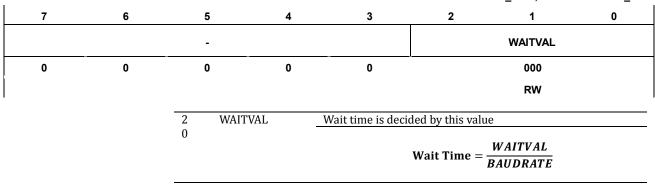
The 8-bit fractional counter will count up by the FCNT value every (baud rate)/16 period and when the fractional counter overflow occurs, the divisor value increments by 1. Therefore, this period is compensated. In the next period, the divisor value returns to the original set value.

For example, if 9600 bps,

$$\frac{\text{PCLK } / 2}{16 \text{ x } \textit{BaudRate}} = \frac{72000000 / 2}{16 \text{ x } 9600} = 234.375 \quad \textit{Divider} = 234 \quad \textit{Float} = .375$$

$$\text{FCNT} = \textit{Float} \times 256 = .375 \times 256 = 96$$

BDR = 234, BFR = 96



Un.IDTR

Inter-frame Delay Time Register

The UART Inter-frame Time Register is an 8-bit register. A dummy delay can be inserted between two continuous transmits.

U0.IDTR=0x4000_8030, U1.IDTR=0x4000_8130 U2.IDTR=0x4000_8230, U3.IDTR=0x4000_8330

Functional Description

The UART module is compatible with the 16450 UART. Additionally, dedicated DMA channels and fractional baud rate compensation logic are provided. The UART does not have an internal FIFO block. Therefore, data transfers are established interactively or with DMA support.

Two DMA channels are provided for each UART module – one channel for TX transfer and the other channel for RX transfer. Each channel has a 32-bit memory address register and a 16-bit transfer counter register. Prior to the DMA operation, the DMA memory address register and transfer count register should be configured. For the RX operation, the memory address is the destination memory address and for the TX operation, the memory address is the source memory address.

The transfer counter register stores the number of data transfers. When a single transfer is done, the counter is decremented by 1. When the counter reaches zero, the DMA done flag is delivered to the UART control block. If the interrupt is enabled, this flag generates the interrupt.

Receiver Sampling Timing

The UART operates per the following timing:

If the falling edge is on the receive line, the UART judges it as the start bit. From the start timing, the UART oversamples 16 times of 1-bit and detects the bit value at the 7th sample of 16 samples.

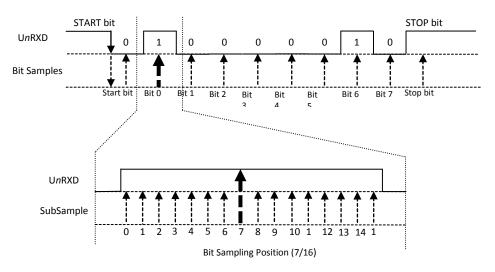


Figure 13.3 The Sampling Timing of UART Receiver

Note: Zilog recommends enabling debounce settings in the PCU block to reinforce the immunity of external glitch noise.

Transmitter

The transmitter's function is to transmit data. The start bit, data bits, optional parity bit, and stop bit are serially shifted with the least significant bit first. The number of data bits is selected in the DLAN[1:0] field in the Un.LCR register.

The parity bit is set according to the PARITY and PEN bit field in the Un.LCR register. If the parity type is even, then the parity bit depends on the one bit sum of all data bits. For odd parity, the parity bit is the inverted sum of all data bits.

The number of stop bits is selected in the STOPBIT field in the Un.LCR register.

An example of transmit data format is shown in Figure 13.4.

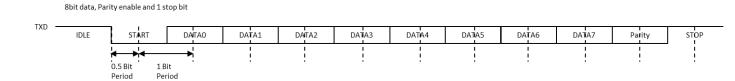


Figure 13.4. Transmit Data Format Example

Inter-frame Delay Transmission

The Inter-frame Delay function allows the transmitter to insert an idle state on the TXD line between two characters. The width of the idle state is defined in the WAITVAL field in the Un.IDTR register. When this field is set to 0, no time-delay is generated. Otherwise, the transmitter holds a high level on TXD after each transmitted character during the number of bit periods defined in the WATIVAL field.

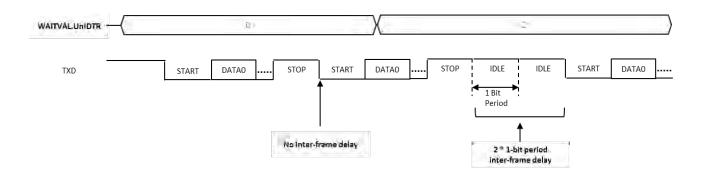


Figure 13.5. Inter-frame Delay Timing Diagram

Transmit Interrupt

The transmit operation generates interrupt flags. When the transmitter holding register is empty, the THRE interrupt flag is set. Whe the transmitter shifter register is empty, the TXE interrupt flag is set. Users can select which interrupt timing is best for the application.

Figure 13.6. Transmit Interrupt Timing Diagram

DMA Transfers

The UART supports the DMA interface function (optionally provided, depending on the device). The start memory address for transfer data and the length of transfer data are programmd in the registers in the DMA block.

The end of transfer is notified via the related transfer done flag.

Transmit with DMA operation invokes the DTX.UnIIR DMA TX done flag and sets the DMA TX done interrupt ID when all the transmit data are written to the transmit holding register. Two transmit data values remain in the registers of the UART block after the DMA transfer done interrupt.

Receive with DMA operation invokes the RXT.UnIIR DMA RX done flag and sets the DMA RX done interrupt ID when all the receive data are written to the destination memory. Therefore, the UART RXD signal is already in IDLE state when the DMA RX done interrupt is issued.

14. Serial Peripheral Interface

Overview

2-channel serial interfaces are provided for synchronous serial communications with external peripherals. The SPI block supports the master and slave modes. Four signals are used for SPI communication – SS, SCK, MOSI, and MISO.

- Master or Slave operation
- Programmable clock polarity and phase
- 8,9,16,17-bit wide transmit/receive register
- 8,9,16,17-bit wide data frame
- Loop-back mode
- Programmable start, burst, and stop delay time
- DMA handshake operation

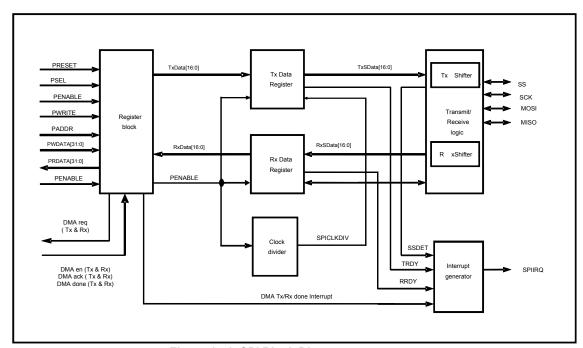


Figure 14.1. SPI Block Diagram

Pin Description

Table 14.1. External Pins

PIN NAME	TYPE	DESCRIPTION		
SS0	I/O	SPI0 Slave select input / output		
SCK0 I/O SPI0 Serial clock input / output		SPI0 Serial clock input / output		
MOSI0 I/O SPI0 Serial data (Mas		SPI0 Serial data (Master output, Slave input)		
MISOO I/O		SPI0 Serial data (Master input, Slave output)		
SS1	I/O	SPI1 Slave select input / output		
SCK1	I/O	SPI1 Serial clock input / output		
MOSI1	I/O	SPI1 Serial data (Master output, Slave input)		
MISO1	I/O	SPI1 Serial data (Master input, Slave output)		

Registers

The base address of SPI is $0x4000_9000$ and the register map is described in Tables 14.2 and 14.3.

Table 14.2. SPI Base Address

Channel	Base address
SPI0	0x4000_9000
SPI1	0x4000_9100

Table 14.3 SPI Register Map

Name	Offset	TYPE	Description	Reset
SP <i>n.</i> TDR	0x00	W	SPI n Transmit Data Register	1
SP <i>n.</i> RDR	0x00	R	SPI n Receive Data Register	0x000000
SP <i>n.</i> CR	0x04	R/W	SPI n Control Register	0x001020
SP <i>n.</i> SR	0x08	R/W	SPI n Status Register	0x000006
SP <i>n.</i> BR	0x0C	R/W	SPI n Baud rate Register	0x0000FF
SP <i>n.</i> EN	0x10	R/W	SPI n Enable register	0x000000
SPn.LR	0x14	R/W	SPI n delay Length Register	0x010101

SPn.CR

SPI n Control Register

SPnCR is a 20-bit read/write register and can be set to configure SPI operation mode.

SP0.CR=0x4000_9004, SP1.CR=0x4000_9104

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											TXBC	RXBC	DTXIE	DRXIE	SSCIE	TXIE	RXIE	SSMOD	SSOUT	LBE	SSMASK	SSMO	SSPOL			MS	MSBF	СРНА	CPOL		BITSZ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
											X W	ΑW	ΑW	ΑW	RW	ΑW	ΑW	Α×	Α×	R	Α×	Α×	RW			ΑW	Α	Α	Α×	i	S S

20	TXBC	Tx buffer clear bit.
20	IADC	0 No action
10	DVDC	
19	RXBC	Rx buffer clear bit
		0 No action
	D	1 Clear Rx buffer
18	DTXIE	DMA Tx Done Interrupt Enable bit.
		0 DMA Tx Done Interrupt is disabled.
		1 DMA Tx Done Interrupt is enabled.
17	DRXIE	DMA Rx Done Interrupt Enable bit.
		0 DMA Rx Done Interrupt is disabled.
		1 DMA Rx Done Interrupt is enabled.
16	SSCIE	nSS Edge Change Interrupt Enable bit.
		0 nSS interrupt is disabled.
		1 nSS interrupt is enabled for both edges (L \rightarrow H, H \rightarrow L)
15	TXIE	Transmit Interrupt Enable bit.
		0 Transmit Interrupt is disabled.
		1 Transmit Interrupt is enabled.
14	RXIE	Receive Interrupt Enable bit
		0 Receive Interrupt is disabled.
		1 Receive Interrupt is enabled.
13	SSMOD	SS Auto/Manual output select bit.
		0 SS output is not set by SSOUT (SPnCR[12]).
		- SS signal is in normal operation mode.
		1 SS output signal is set by SSOUT.
12	SSOUT	SS output signal select bit.
		0 SS output is 'L.'
		1 SS output is 'H'.
11	LBE	Loop-back mode select bit in master mode.
		0 Loop-back mode is disabled.
		1 Loop-back mode is enabled.
10	SSMASK	SS signal masking bit in slave mode.
		0 SS signal masking is disabled.
		- Receive data when SS signal is active.
		1 SS signal masking is enabled.
		- Receive data at SCLK edges. SS signal is ignored.
9	SSMO	SS output signal select bit.
		0 SS output signal is disabled.
		1 SS output signal is enabled.
8	SSPOL	SS signal Polarity select bit.
_		0 SS signal is Active-Low.
		1 SS signal is Active-High.
7		1 00 018.1111 101.110 1118.11
6		Reserved
-		

Z32F384 Product Specification

5	MS	Master/Slave select bit.
		0 SPI is in Slave mode.
		1 SPI is in Master mode.
4	MSBF	MSB/LSB Transmit select bit.
		0 LSB is transferred first.
		1 MSB is transferred first.
3	СРНА	SPI Clock Phase bit.
		O Sampling of data occurs at odd edges (1,3,5,,15).
		1 Sampling of data occurs at even edges (2,4,6,,16).
2	CPOL	SPI Clock Polarity bit.
		0 Active-high clocks selected.
		1 Active-low clocks selected.
1	BITSZ	Transmit/Receive Data Bits select bit.
		00 8 bits
		01 9 bits
_		10 16 bits
0		11 17 bits

CPOL=0, CPHA=0: data sampling at rising edge, data changing at falling edge CPOL=0, CPHA=1: data sampling at falling edge, data changing at rising edge CPOL=1, CPHA=0: data sampling at falling edge, data changing at rising edge CPOL=1, CPHA=1: data sampling at rising edge, data changing at falling edge

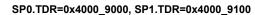
SP*n.*SR

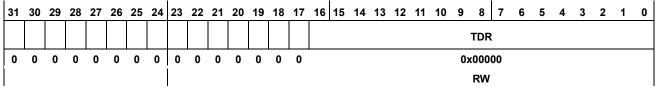
SPI n Status Register

SPnSR is a 10-bits read/write register. It contains the status of SPI interface.

SP0.SR=0x4000_9008, SP1.SR=0x4000_9108

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TXDMAF	RXDMAF	SBUSY	SSDET	SSON	OVRF	UDRF	SRDY	TRDY	RRDY
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
						RC1	RC1	R	RC1	RC1	RC1	RC1	R	R	R

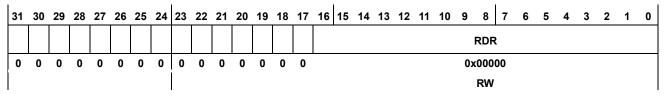

9 TXDMAF DMA Transmit Operation Complete flag. (DMA to SPI) 0 DMA Transmit Op is working or is disabled. 1 DMA Transmit Op is done. 8 RXDMAF DMA Receive Operation Complete flag. (SPI to DMA) 0 DMA Receive Operation is working or is disabled. 1 DMA Transmit Op is done. 1 DMA Transmit Op is done.
1 DMA Transmit Op is done. 8 RXDMAF DMA Receive Operation Complete flag. (SPI to DMA) 0 DMA Receive Operation is working or is disabled. 1 DMA Transmit Op is done.
8 RXDMAF DMA Receive Operation Complete flag. (SPI to DMA) 0 DMA Receive Operation is working or is disabled. 1 DMA Transmit Op is done.
0 DMA Receive Operation is working or is disabled.1 DMA Transmit Op is done.
1 DMA Transmit Op is done.
*
8 SBUSY Transmit/Receive Operation flag
0 SPI is in IDLE state
1 SPI is operating
6 SSDET The rising or falling edge of SS signal Detect flag.
0 SS edge is not detected.
1 SS edge is detected.
- The bit is cleared when it is written as "0".
5 SSON SS signal Status flag.
0 SS signal is inactive.
1 SS signal is active.
4 OVRF Receive Overrun Error flag.
0 Receive Overrun error is not detected.
1 Receive Overrun error is detected.
- This bit is cleared by writing or reading SPnRDR.
3 UDRF Transmit Underrun Error flag.
0 Transmit Underrun is not occurred.
1 Transmit Underrun is occurred.
- This bit is cleared by writing or reading SPnTDR.
2 SRDY Shift register Empty flag.
0 Shift register is busy.
1 Shift register is ready.
 This bit is cleared by writing SPnTDR to Shift rgister and is TRI
complement when SSON is active.
1 TRDY Transmit buffer Empty flag.
0 Transmit buffer is busy.
1 Transmit buffer is ready.
 This bit is cleared by writing data to SPnTDR.
0 RRDY Receive buffer Ready flag.
0 Receive buffer has no data.
1 Receive buffer has data.
- This bit is cleared by writing data to SPnRDR.



SP*n.*TDR

SPI n Transmit Data Register

SPnTDR is a 17-bit read/write register. It contains serial transmit data.



16	TDR	Transmit Data Register
0		

SPn.RDR SPI n Receive Data Register

SPnRDR is a 17-bit read/write register. It contains serial receive data.

SP0.RDR=0x4000_9000, SP1.RDR=0x4000_9100

16	RDR	Receive Data Register
0		

SPn.BR

SPI n Baud Rate Register

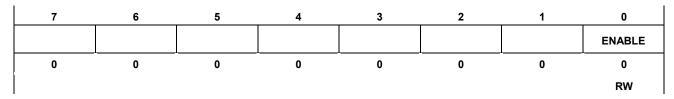
SPnBR is an16-bit read/write register. Baud rate can be set by writing to this register.

SP0.BR=0x4000_900C, SP1.BR=0x4000_910C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							В	R							
							0x0	0FF							
							R	w							

15	BR	Baud rate setting bits
		- Baud Rate = $PCLK / (BR + 1)$.
0		(BR must be bigger than "0", BR ≥ 2)

PS034602-0316 PRELIMINARY 145



SPn.EN

SPI n Enable Register

SPnEN is a single-bit read/write register. It contains SPI enable bit.

SP0.EN=0x4000_9010, SP1.EN=0x4000_9110

shifted. To prevent this, write data to SPTDR before this bit is active.

Note: When in SPI Slave mode, be sure to disable the SPI prior to loading the TDR register, then enable it to prevent an extra byte from being sent.

SPn.LR

SPI n delay Length Register

SPnLR is a 24-bit read/write register. It contains start, burst, and stop length value.

SP0.CR=0x4000_9014, SP1.CR=0x4000_9114

3	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												SI	٦L							В	TL							S.	TL			
()	0	0	0	0	0	0	0				0x	01							0>	:01							0x	:01			
												R	w							R	W							R	w			

23	SPL	StoPLength value											
16		$0x01 \sim 0xFF : 1 \sim 255 \text{ SCLKs.}$ (SPL >= 1)											
15	BTL	BursTLength value											
8		$0x01 \sim 0xFF : 1 \sim 255 \text{ SCLKs.}$ (BTL >= 1)											
7	STL	STart Length value											
0		$0x01 \sim 0xFF : 1 \sim 255 \text{ SCLKs.}$ (STL >= 1)											

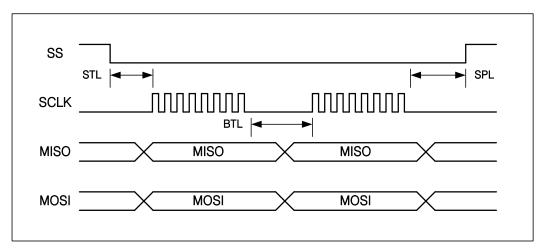


Figure 14.1. SPI Waveform (STL, BTL, and SPL)

Functional Description

The SPI Transmit and Receive blocks share Clock Gen Block but they are independent of each other. The Transmit and Receive blocks have double buffers and SPI is available for back-to-back transfer operation.

SPI Timing

The SPI has four modes of operation. These modes essentially control the way data is clocked in or out of an SPI device. The configuration is done by two bits in the SPI control register (SPnCR). The clock polarity is specified by the CPOL control bit, which selects an active high or active low clock. The clock phase (CPHA) control bit selects one of the two fundamentally different transfer formats. To ensure effective communication between master and slave, both devices have to run in the same mode. This can require a reconfiguration of the master to match the requirements of different peripheral slaves.

The clock polarity has no significant effect on the transfer format. Switching this bit causes the clock signal to be inverted (active high becomes active low and idle low becomes idle high). The settings of the clock phase, however, select one of the two different transfer timings, which are described in the next two chapters. Since the MOSI and MISO lines of the master and the slave are directly connected to each other, the diagrams show the timing of both devices, master and slave. The nSS line is the slave select input of the slave. The nSS pin of the master is not shown in the diagrams. It has to be inactive by a high level on this pin (if configured as input pin) or by configuring it as an output pin.

The timing of a SPI transfer where CPHA is zero is shown in Figures 10.3 and 10.4. Two wave forms are shown for the SCK signal – one where CPOL equals zero and another where CPOL equals one.

When the SPI is configured as a slave, the transmission starts with the falling edge of the /SS line. This activates the SPI of the slave and the MSB of the byte stored in its data register (SPnTDR) is output on the MISO line. The actual transfer is started by a software write to the SPnTDR of the master. This causes the clock signal to be generated. If the CPHA equals zero, the SCLK signal remains zero for the first half of the first SCLK cycle. This ensures that the data is stable on the input lines of both the master and the slave. The data on the input lines is read with the edge of the SCLK line from its inactive to its active. The edge of the SCLK line from its active to its inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one) causes the data to be shifted one bit further so that the next bit is output on the MOSI and MISO lines.

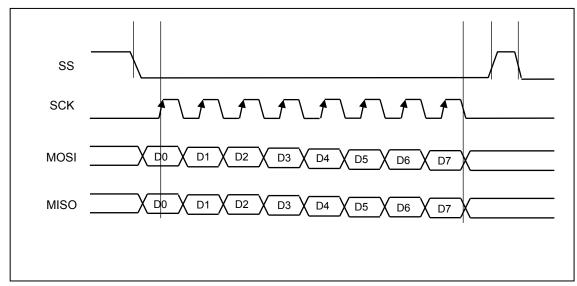


Figure 14.2.SPI Transfer Timing 1/4 (CPHA=0, CPOL=0, MSBF=0)

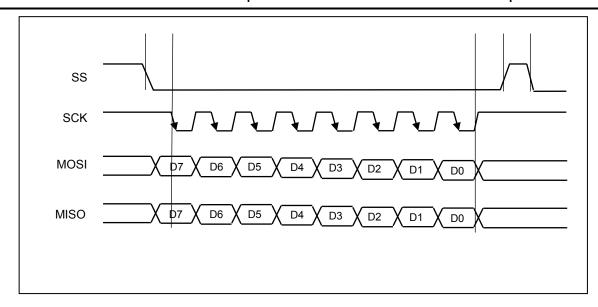


Figure 14.3.SPI Transfer Timing 2/4 (CPHA=0, CPOL=1, MSBF=1)

The timing of a SPI transfer where CPHA is one is shown in Figure 10.5 and 10.6. Two wave forms are shown for the SCLK signal – one when CPOL equals zero and another when CPOL equals one.

Similar to the pevious case, the falling edge of the nSS lines selects and activates the slave. Compared to the previous case, where CPHA equals zero, the transmission is not started and the MSB is not output by the slave at this stage. The actual transfer is started by a software write to the SPnTDR of the master that causes the clock signal to be generated. The first edge of the SCLK signal from its inactive to its active state (rising edge if CPOL equals zero and falling edge if CPOL equals one) causes both the master and the slave to output the MSB of the byte in the SPnTDR.

As shown in Figures 14.3 and 14.4, there is no delay of half a SCLK-cycle. The SCLK line changes its level immediately at the beginning of the first SCLK-cycle. The data on the input lines is read with the edge of the SCLK line from its active to its inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one). After eight clock pulses the transmission is completed.

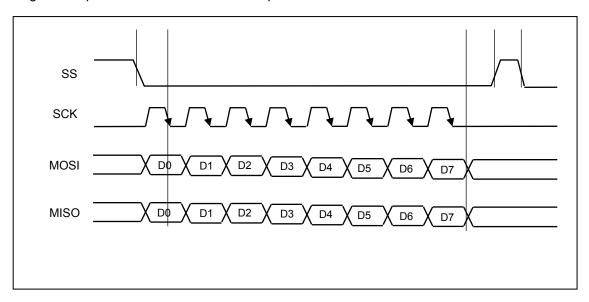


Figure 14.4.SPI Transfer Timing 3/4 (CPHA=1, CPOL=0, MSBF=0)

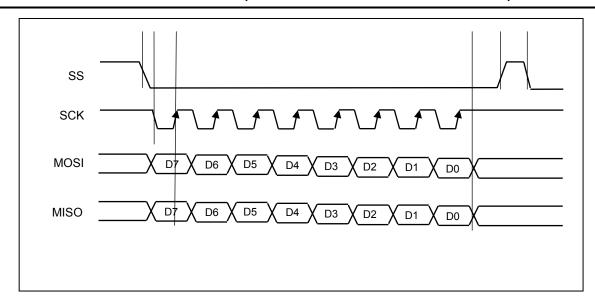


Figure 14.5.SPI Transfer Timing 4/4 (CPHA=1, CPOL=1, MSBF=1)

DMA Handshake

SPI supports DMA handshaking operation. In order to operate DMA handshake, DMA registers should be set first. (See Chapter 9. Direct Memory Access Contoller). SPI0 has 2 channels of DMA, channel 8 for receiver and channel 9 for transmitter. SPI1 has channel 10 for receiver and channel 11 for transmitter. Because the transmitter and receiver are independent of each other, SPI can operate the two channels at the same time.

After the DMA channel for receiver is enabled and the receive buffer is filled, SPI sends Rx request to DMA to empty the buffer and waits for an ACK signal from DMA. If the Receive buffer is filled again after ACK signal, SPI sends an Rx request. If DMA Rx DONE becomes high, RXDMAF (SPnSR[8]) goes "1" and an interrupt is serviced when RXDIE (SPnCR[17]) is set.

Similarly, if the transmit buffer is empty after the DMA channel for transmitter is enabled, SPI sends a Tx request to DMA to fill the buffer and waits for an ACK signal from DMA. If the transmit buffer is empty again after the ACK signal, SPI sends a Tx request. If DMA Tx DONE becomes high, TXDMAF(SPnSR[9]) goes "1" and an interrupt is serviced when TXDIE(SPnCR[18]) is set.

The slave transmitter sends dummy data at the first transfer (8~17 SCLKs) in DMA handshake mode.

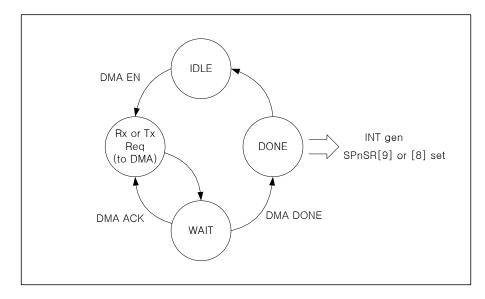


Figure 14.6.DMA Handshake Flowchart

15. I²C Interface

Overview

The Inter-Integrated Circuit (I^2C) bus serves as an interface between the microcontroller and the serial I^2C bus. It provides two wires and a serial bus interface to a large number of popular devices and allows parallel-bus systems to communicate bidirectionally with the I^2C -bus.

- Master and slave operation
- Programmable communication speed
- Multi-master bus configuration
- 7-bit addressing mode
- Standard data rate of 100/400 kbps
- STOP signal generation and detection
- START signal generation
- ACK bit generation and detection

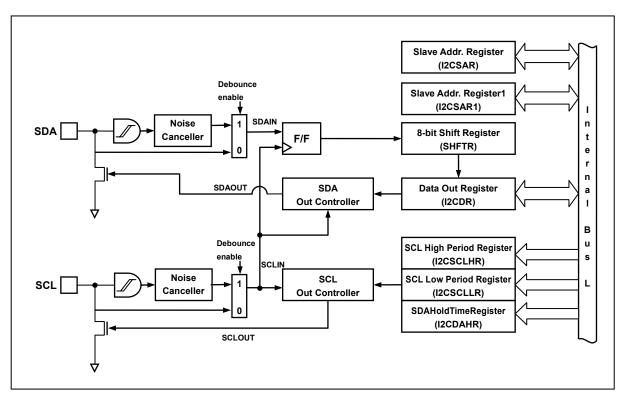


Figure 15.1. I²C Block Diagram

Pin Description

Table 15.1. I²C Interface External Pins

PIN NAME	TYPE	DESCRIPTION
SCL0	I/O	I ² C channel 0 Serial clock bus line (open-drain)
SDA0	I/O	I ² C channel 0 Serial data bus line (open-drain)
SCL1	I/O	I ² C channel 1 Serial clock bus line (open-drain)
SDA1	I/O	I ² C channel 1 Serial data bus line (open-drain)

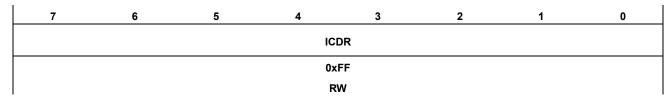
Registers

The base address of I^2C0 is $0x4000_A000$ and the base address of I^2C1 is $0x4000_A100$. The register map is described in Tables 15.2 and 15.3.

Table 15.2. I²C Interface Base Address

Channel	Base address
I ² C0	0x4000_A000
l ² C1	0x4000_A100

Table 15.3. I²C Register Map


Table 15.3. I C Register Map									
Name	Offset	R/W	Description	Reset					
IC0.DR	0xA000	R/W	I ² C0 Data Register	0xFF					
IC0.SR	0xA008	R, R/W	I ² C0 Status Register	0x00					
IC0.SAR	0xA00C	R/W	I ² C0 Slave Address Register	0x00					
IC0.CR	0xA014	R/W	I ² C0 Control Register 0x0						
IC0.SCLL	0xA018	R/W	I ² C0 SCL LOW duration Register	0xFFFF					
IC0.SCLH	0xA01C	R/W	I ² C0 SCL HIGH duration Register	0xFFFF					
IC0.SDH	0xA020	R/W	I ² C0 SDA Hold Register	0x7F					
IC1.DR	0xA100	R/W	I ² C1 Data Register	0xFF					
IC1.SR	0xA108	R, R/W	I ² C1 Status Register	0x00					
IC1.SAR	0xA10C	R/W	I ² C1 Slave Address Register	0x00					
IC1.CR	0xA114	R/W	I ² C1 Control Register	0x00					
IC1.SCLL	0xA118	R/W	I ² C1 SCL LOW duration Register	0xFFFF					
IC1.SCLH	0xA11C	R/W	I ² C1 SCL HIGH duration Register	0xFFFF					
IC1.SDH	0xA120	R/W	I ² C1 SDA Hold Register	0x007F					

ICn.DR I²C Data Register

ICnDR is an 8-bit read/write register. It contains a byte of serial data to be transmitted or a byte which has just been received.

IC0.DR=0x4000_A000, IC1.DR=0x4000_A100,

7	ICDR	The most recently received data or data to be transmitted.
0		

ICn.SR I²C Status Register

ICnSR is an 8-bit read/write register. It contains the status of I^2C bus interface. Writing to the register clears the status bits except for IMASTER.

IC0.SR=0x4000_A008, IC1.SR=0x4000_A008

7	6	5	4	3	2	1	0
GCALL	TEND	STOP	SSEL	MLOST	BUSY	TMODE	RXACK
0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

7	GCALL	General call flag					
		0 General call is not detected.					
		1 General call detected.					
6	TEND	1 Byte transmission complete flag					
		0 The transmission is working or not completed.					
		1 The transmission is completed.					
5	STOP	STOP flag					
		0 STOP is not detected.					
		1 STOP is detected.					
4	SSEL	Slave flag (Start condition received)					
		0 Slave is not selected.					
		1 Slave is selected.					
3	MLOST	Mastership lost flag					
		0 Mastership is not lost.					
		1 Mastership is lost.					
2	BUSY	BUSY flag					
		0 I ² C bus is in IDLE state.					
		1 I ² C bus is busy.					
1	TMODE	Transmitter/Receiver mode flag					
		0 Receiver mode.					
		1 Transmitter mode.					
0	RXACK	Rx ACK flag					
		0 Rx ACK is not received.					
		1 Rx ACK is received.					

ICn.SAR

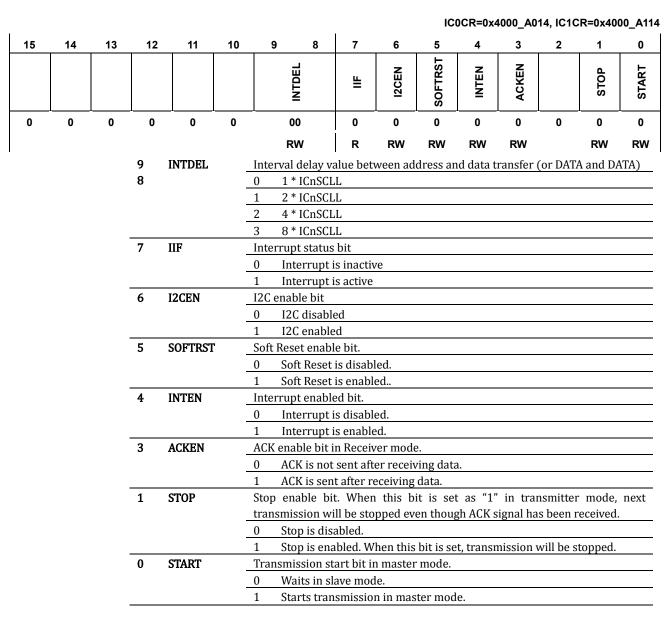
I²C Slave Address Register

ICnSAR is an 8-bit read/write register. It shows the address in slave mode.

IC0.SAR=0x4000 A00C, IC1.SAR=0x4000 A10C

					100.5AI\-0X400	0_A000, IC 1.32	-11-0x - 000_A1
7	6	5	4	3	2	1	0
			SVAD				GCEN
			0x00				0
			RW				RW
	7	SVAD	7-bit Slave Address	3			
	_1						
	0	GCEN	General call enable	bit			

General call is disabled.


General call is enabled.

PS034602-0316 PRELIMINARY 154

ICn.CR I²C Control Register

ICnCR is an 8-bit read/write register. The register can be set to configure I²C operation mode and simultaneously allows for I²C transactions to be kicked off.

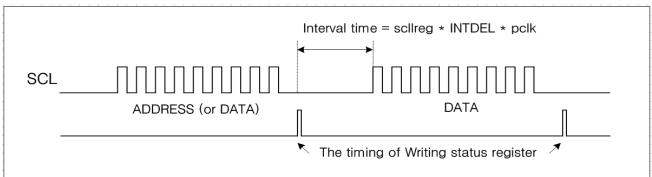


Figure 15.1. INTDEL in Master Mode

I²C SCL LOW Duration Register ICn.SCLL

ICnSCLL is a 16-bit read/write register. The SCL LOW time is set by writing this register in master mode.

I	C0.SDL	L=0x400	0_A018,	IC1.SDL	L=0x40	00_A118
6	5	4	3	2	1	0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							sc	LL							
							0xF	FFF							
							R	W							

15	SCLL	SCL LOW duration value.
		SCLL = (PCLK * SCLL[15:0]) + 2*PCLKs
0		Default value is 0xFFFF.

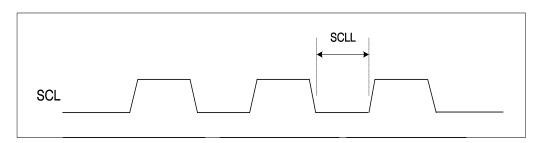


Figure 15.2. SCL LOW Timing

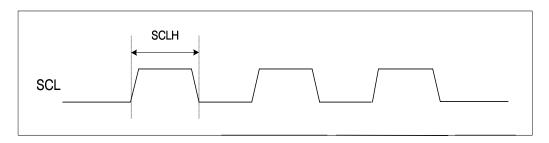
ICn.SCLH I²C SCL HIGH Duration Register

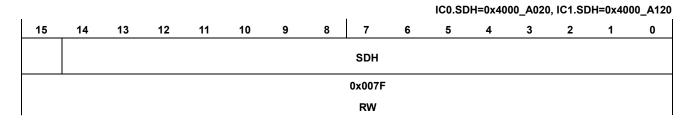
ICnSCLH is a 16-bit read/write register. The SCL HIGH time is set by writing this register in master mode.

IC0.SDLH=0x4000	A01C	IC1.SDLH=0x4000	A110

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							sc	LH							
							0xF	FFF							
							R	w							

15	SCLH	SCL HIGH duration value.
		SCLH = (PCLK * SCLH[15:0]) + 3 PCLKs
0		Default value is 0xFFFF.




Figure 15.3.SCL HIGH Timing

ICn.SDH

SDA Hold Register

ICnSDH is a 15-bit read/write register. The SDA HOLD time is set by writing this register in master mode.

14	SDH	SDA HOLD time setting value.
		SDH = (PCLK * SDH[14:0]) + 4 PCLKs
0		Default value is 0x3FFF.

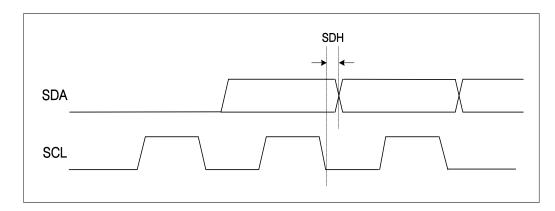


Figure 15.4.SDA HOLD Timing

Functional Description

I²C Bit Transfer

The data on the SDA line must be stable during the "H" period of the clock. The "H" or "L" state of the data line can only change when the clock signal on the SCL line is "L" as shown in Figure 15.5.

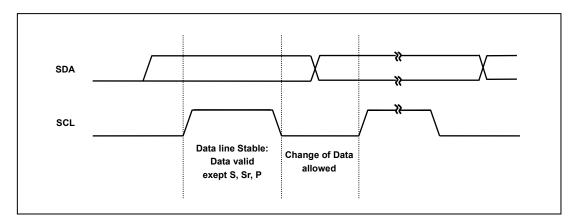


Figure 15.5. I²C Bus Bit Transfer

START/Repeated START/STOP

Within the procedure of the I^2 C-bus, unique situations arise which are defined as START(S) and STOP(P) conditions (see Figure 15.6.).

An "H" to "L" transition on the SDA line while SCL is "H" is one such unique case. This situation indicates a START condition.

An "L" to "H" transition on the SDA line while SCL is "H" defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.

The bus is busy if a repeated START(Sr) is generated instead of a STOP condition. In this respect, the START(S) and repeated START(Sr) conditions are functionally identical. Therefore, for the remainder of this document, the S symbol will be used as a generic term to represent both the START and repeated START conditions, unless Sr is particularly relevant.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period to sense the transition.

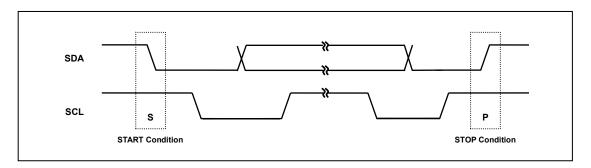


Figure 15.6. START and STOP Condition

Data Transfer

Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see Figure 15.7). If a slave cannot receive or transmit another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL "L" to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

A message which starts with such an address can be terminated by generation of a STOP conditions, even during the transmission of a byte. In this case, no acknowledge is generated.

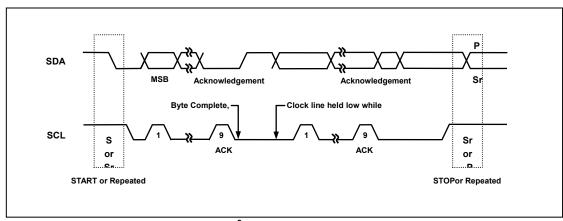


Figure 15.7. I²C Bus Data Transfer

Acknowledge

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable "L" during the "H" period of this clock pulse (see Figure 15.8). Additionally, set-up and hold times must also be taken into account.

When a slave doesn't acknowledge the slave address (for example, it's unable to receive or transmit because it's performing some real-time function), the data line must be left "H" by the slave. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a slave-receiver acknowledges the slave address, but later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave generating the not-acknowledge on the first byte to follow. The slave leaves the data line "H" and the master generates a STOP or a repeated START condition.

If a master-receiver is involved in a transfer, it must signal the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

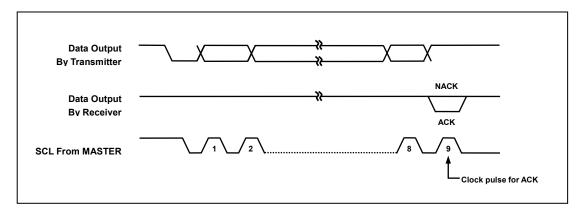


Figure 15.8. I²C Bus Acknowledge

Synchronization

All masters generate their own clock on the SCL line to transfer messages on the I²C-bus. Data is only valid during the "H" period of the clock. A defined clock is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of I²C interfaces to the SCL line. This means that an "H" to "L" transition on the SCL line will cause the devices to start counting off their "L" period and, after a device clock has gone "L", it will hold the SCL line in that state until the clock "H" state is reached (see Figure 15.9). However, the "L" to "H" transition of this clock may not change the state of the SCL line if another clock is still within its "L" by the device with the longest "L" period. Devices with shorter "L" periods enter an "H" wait-state during this time.

When all devices have counted off their "L" period, the clock line will be released and go "H". There will then be no difference between the device clocks and the state of the SCL line, and the devices will start counting their "H" periods. The first device to complete its "H" period will again pull the SCL line "L".

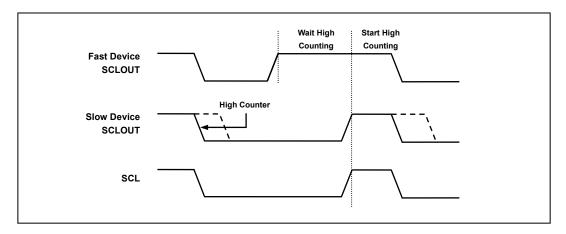


Figure 15.9.Clock Synchronization During the Arbitration Procedure

Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition within the minimum hold time of the START condition which results in a defined START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the "H" level, in such a way that the master which transmits "H" level, while another master is transmitting a "L" level will switch off its DATA output stage because the level on the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of the address bits. If the masters are each trying to address the same device, arbitration continues with comparison of the data-bits if they are master-transmitter, or acknowledge-bits if they are master-receiver. Because address and data information on the I²C-bus is determined by the winning master, no information is lost during the arbitration process.

A master that loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration.

If a master also incorporates a slave function and it loses arbitration during the addressing stage, it is possible that the winning master is trying to address it. The losing master must therefore switch over immediately to its slave mode.

Figure 15.10 shows the arbitration procedure for two masters. There may be additional masters involved, depending on how many masters are connected to the bus. As soon as there is a difference between the internal data level of the master generating Device1 Dataout and the actual level on the SDA line, its data output is switched off, which means that an "H" output level is then connected to the bus. This will not affect the data transfer initiated by the winning master.

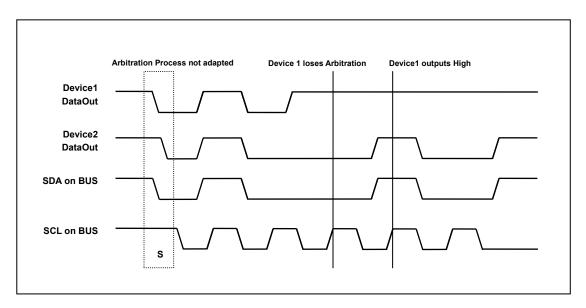


Figure 15.10. Arbitration Procedure of Two Masters

I²C OPERATION

 I^2C supports interrupt operation. After the interrupt is serviced, the IIF(ICnSR[10]) flag is set. ICnSR shows I^2C -bus status information and the SCL line stays "L" before the register is written as a certain value. The status register can be cleared by writing any value to the status register.

Master Transmitter

The master transmitter shows the flow of the transmitter in Master mode as shown in Figure 15.11.

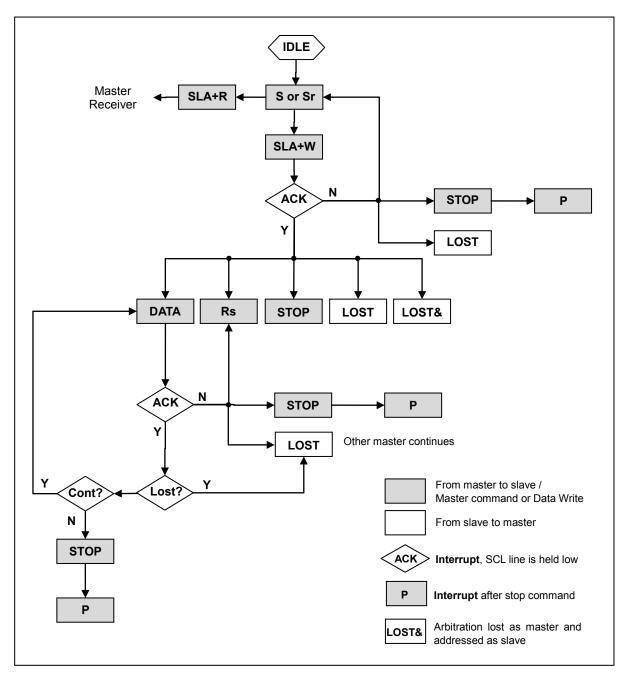


Figure 15.11. Transmitter Flowchart in Master Mode

Master Receiver

The master receiver shows the flow of the receiver in Master mode as shown in Figure 15.12.

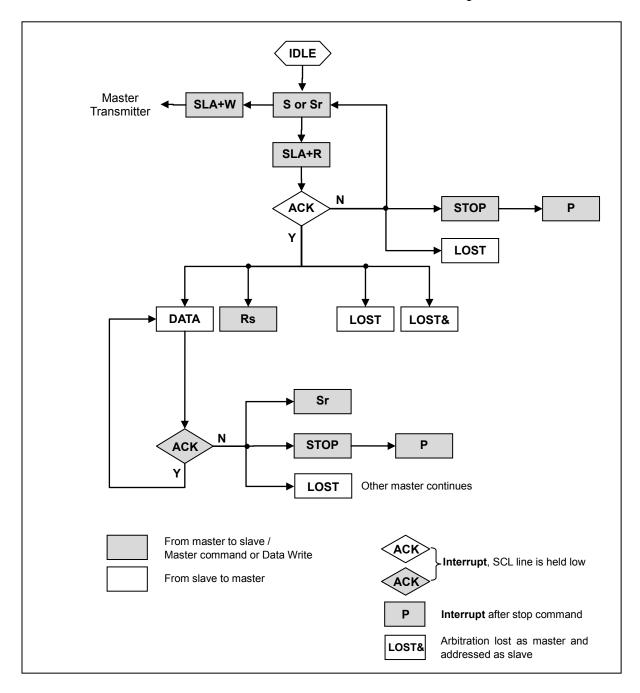


Figure 15.12. Receiver Flowchart in Master Mode

Slave Transmitter

The slave transmitter shows the flow of the transmitter in Slave mode, as shown in Figure 15.13.

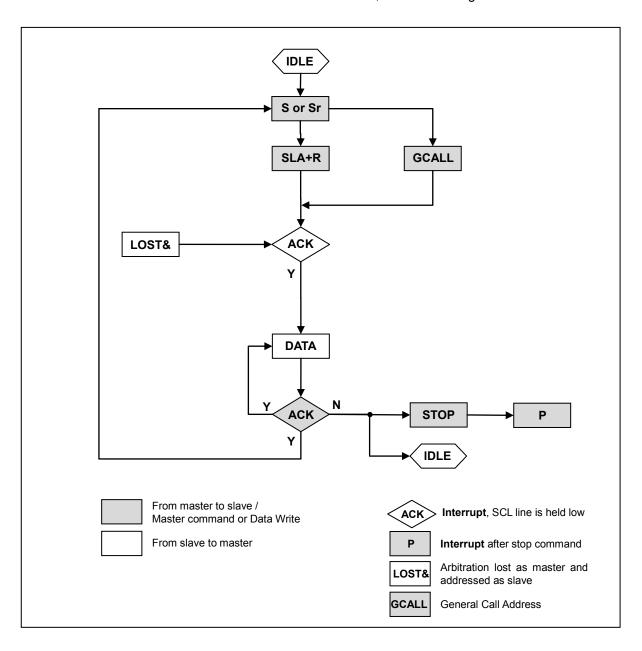


Figure 15.13. Transmitter Flowchart in Slave Mode

Slave Receiver

The slave receiver shows the flow of the receiver in Slave mode, as shown in Figure 15.14.

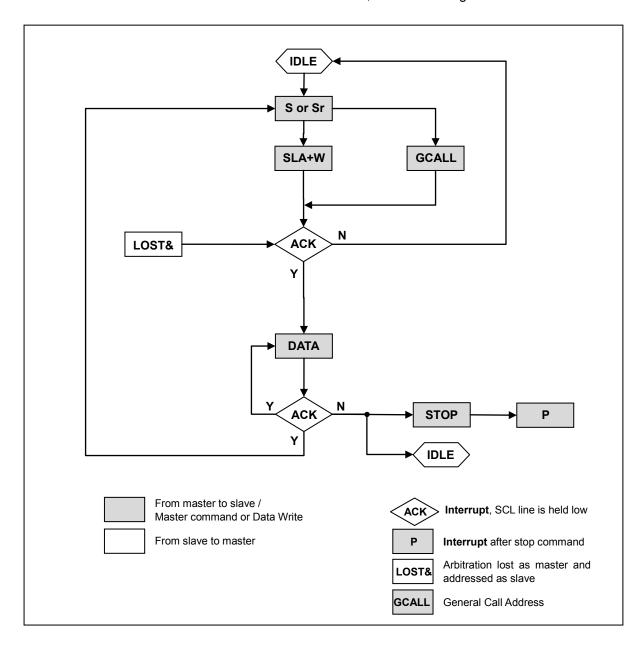


Figure 15.14. Receiver Flowchart in Slave Mode

16. Motor Pulse-Width-Modulator

Introduction

The Motor Pulse Width Modulator (MPWM) is a programmable motor controller which is optimized for 3-phase inverter control applications. It can be used in several other applications that require timing, counting, and comparison.

MPWM includes three channels, each of which controls a pair of outputs that in turn can control an AC or DC motor through an inverter bridge. Features include:

- 6 channel outputs for motor control
- Dead- time zone support
- Protection event and over voltage event handling
- 6 trigger outputs for ADC
- Interval interrupt mode
- Up-down count mode

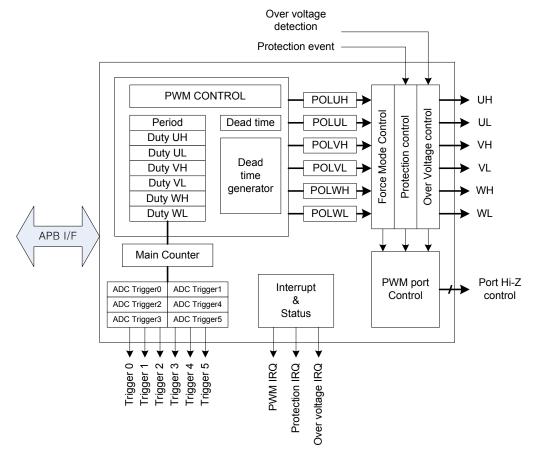


Figure 16.1. Block Diagram

Pin Description

Table16.1. External Signals

PIN NAME	TYPE	DESCRIPTION			
MP0UH	0	MPWM 0 Phase-U H-side output			
MP0UL	0	MPWM 0 Phase-ULH-side output			
MP0VH	0	MPWM 0 Phase-V H-side output			
MP0VL	0	MPWM 0 Phase-V L-side output			
MP0WH	0	MPWM 0 Phase-W L-side output			
MP0WL	0	MPWM 0 Phase-W L-side output			
MP1UH	0	MPWM 1 Phase-U H-side output			
MP1UL	0	MPWM 1 Phase-U L-side output			
MP1VH	0	MPWM 1 Phase-V H-side output			
MP1VL	0	MPWM 1 Phase-V L-side output			
MP1WH	0	MPWM 1 Phase-W L-side output			
MP1WL	0	MPWM 1 Phase-W L-side output			
PRTIN0	I	MPWM 0 Protection Input			
OVIN0	I	MPWM 0 Over-voltage Input			
PRTIN1	I	MPWM 1 Protection Input			
OVIN1	I	MPWM 1 Over-voltage Input			

Registers

The base address of MPWM is Table 16.2.

Table16.2. MPWM Base Address

145.0.10.2 11 2400 / 144.000						
	BASE ADDRESS					
MPWM0	0x4000_4000					
MPWM0	0x4000_5000					

Table 16.3 shows the register memory map.

Table 16.3. MPWM Register Map

Name	Offset	R/W	Description	Reset
MPn.MR	0x0000	R/W	PWM Mode register	0x0000 0000
MPn.OLR	0x0004	R/W	PWM Output Level register	0x0000 0000
MPn.FOR	0x0008	R/W	PWM Force Output register	0x0000 0000
MPn.PRD	0x000C	R/W	PWM Period register	0x0000_0002
MPn.DUH	0x0010	R/W	PWM Duty UH register	0x0000 0001
MPn.DVH	0x0014	R/W	PWM Duty VH register	0x0000 0001
MPn.DWH	0x0018	R/W	PWM Duty WH register	0x0000 0001
MPn.DUL	0x001C	R/W	PWM Duty UL register	0x0000 0001
MPn.DVL	0x0020	R/W	PWM Duty VL register	0x0000_0001
MPn.DWL	0x0024	R/W	PWM Duty WL register	0x0000_0001
MPn.CR1	0x0028	R/W	PWM Control register 1	0x0000_0000
MPn.CR2	0x002C	R/W	PWM Control register 2	0x0000_0000
MPn.SR	0x0030	R	PWM Status register	0x0000_0000
MPn.IER	0x0034	R/W	PWM Interrupt Enable	0x0000_0000
MPn.CNT	0x0038	R	PWM counter register	0x0000_0001
MPn.DTR	0x003C	R/W	PWM dead time control	0x0000_0000
MPn.PCR0	0x0040	R/W	PWM protection 0 control register	0x0000_0000
MPn.PSR0	0x0044	R/W	PWM protection 0 status register	0x0000_0080
MPn.PCR1	0x0048	R/W	PWM protection 1 control register	0x0000_0000
MPn.PSR1	0x004C	R/W	PWM protection 1 status register	0x0000_0000
-	0x0054	1	Reserved	-
MPn.ATR1	0x0058	R/W	PWM ADC Trigger reg1	0x0000_0000
MPn.ATR2	0x005C	R/W	PWM ADC Trigger reg2	0x0000_0000
MPn.ATR3	0x0060	R/W	PWM ADC Trigger reg3	0x0000_0000
MPn.ATR4	0x0064	R/W	PWM ADC Trigger reg4	0x0000_0000
MPn.ATR5	0x0068	R/W	PWM ADC Trigger reg5	0x0000_0000
MPn.ATR6	0x006C	R/W	PWM ADC Trigger reg6	0x0000_0000

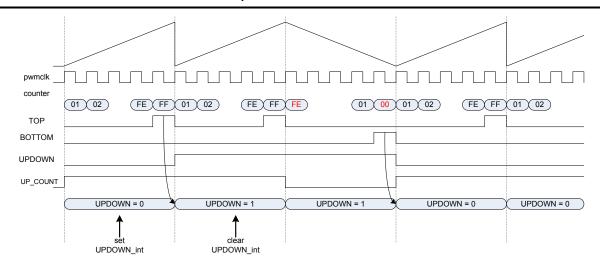
MPn.MR

MPWM Mode Register

The PWM operation Mode register is a 16-bit register.

MP0.MR=0x4000 4000 MP1.MR=0x4000 500			
	ON MP=0~4000	4000 MD1 MD=0v4	ስበ በ 5000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOTORB								UAO		TUP	BUP			МСНМОБ	UPDOWN
0	•		•		•	•	•			0	0	'	0	00	0
R/W								R/W		R/W	R/W		R	w	R/W


15	MOTORB		Set PWM Mode
		0	Motor Mode
		1	Normal (PWM) mode
7	UAO	0	Update will be executed at designated timing.
		1	Update all duty, period register at once.
			When UPDATE set, Duty and Period registers are updated after
			two PWM clocks
5	TUP	0	Period, duty values are not updated at every period match.
		1	Period, duty values are updated at every period match.
4	BUP	0	Period, duty values are not updated at every bottom match
		1	Period, duty values are updated at every bottom match
2	MCHMOD	00	2 channels symmetric mode
1			Duty H decides toggle high/low time of H-ch
			Duty L decides toggle high/low time of L-ch
		01	1 channel asymmetric mode
			Duty H decides toggle high time of H-ch
			Duty L decides toggle low time of H-ch
			L channel become the inversion of H channel
		10	1 channel symmetric mode
			Duty H decides toggle high/low time of H-ch
			L channel become the inversion of H channel
		11	Not valid (same with 00)
0	UPDOWN	0	PWM Up count mode (only in Normal mode)
		1	PWM Up/Down count mode

After initial PWM period and duty setting is completed, the UAO bit should be set once for updating the setting value into the internal operating registers. This action will help to transfer the setting data from the user interface register to the internal operating register. The UAO bit should stay at the set state for at least 2-PWM clock periods. Otherwise, the update command can be missed and internal registers will retain the previous data.

MCHMOD in the MPn.MR field is only effective when MOTORB in MPn.MR is clear "0". Otherwise, the MCHMOD field value will be ignored internally and will keep the "00" value.

UPDOWN in the MPn.MR field is only effective when MOTORB in MPn.MR is set to "1". Otherwise, the UPDOWN field value will be ignored internally and will keep the "1" value. In the motor mode, the counter is always updown count operation.

MPn.OLR MPWM Output Level Register

PWM Port Mode register is a 16-bit register.

MP0.OLR=0x4000_4004, MP1.OLR=0x4000_5004

7	6	5	4	3	2	1	0
		WHL	VHL	UHL	WLL	VLL	ULL
0	0	0	0	0	0	0	0
		RW	RW	RW	RW	RW	RW

WHL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L
VHL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L
UHL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L
WLL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L
VLL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L
ULL	0	Normal Output = L / Active Output = H
	1	Normal Output = H / Active Output = L

DIA/AA Oostassit	Laval	NORM	MOTOD mode	
PWM Output	Level	UP mode	UPDOWN mode	MOTOR mode
WH	Default level	LOW	HIGH	LOW
VVII	Active level	HIGH	LOW	HIGH
10/1	Default level	LOW	LOW	HIGH
WL	Active level	HIGH	HIGH	LOW
VH	Default level	LOW	HIGH	LOW
VΠ	Active level	HIGH	LOW	HIGH
VL	Default level	LOW	LOW	HIGH
VL	Active level	HIGH	HIGH	LOW
ш	Default level	LOW	HIGH	LOW
UH	Active level	HIGH	LOW	HIGH
111	Default level	LOW	LOW	HIGH
UL	Active level	HIGH	HIGH	LOW

Table 16.1. MPWM Register Map

Figure 16.2 shows the polarity control block. This is an example of WH signal polarity control.

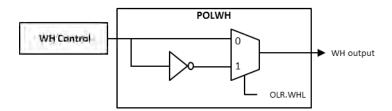


Figure 16.2 Polarity Control Block

MPn.FOR MPWM Force Output Level Register

The PWM force output register is an 8-bit register. The PWM output level can be forced by an abnormal event from an external or user-intended condition. When the forced condition occurs, each PWM output level which is programmed in the FOLR register will be forced.

MP0.FOR=0x4000_4008, MP1.FOR=0x4000_5008,

7	6		5	4		3	2	1	0
		W	HFL	VHFL		UHFL	WLFL	VLFL	ULFL
0	0	0		0		0	0	0	0
		F	RW	RW		RW	RW	RW	RW
		5	WHFL		Sele	ct WH Outpu	it Force Level		
					0		ce Level is 'L'		_
					1	Output For	ce Level is 'H'		
		4	VHFL	_	Sele	ct VH Output	Force Level		
					0	Output For	ce Level is 'L'		
					1	Output For	ce Level is 'H'		
		3 UHFL			Sele	ct UH Output	t Force Level		
				•	0	Output For	ce Level is 'L'		
					1	Output For	ce Level is 'H'		
		2	WLFL		Sele	ct WL Outpu	t Force Level		

		0 Output Force Level is 'L'
		1 Output Force Level is 'H'
1	VLFL	Select VL Output Force Level
		0 Output Force Level is 'L'
		1 Output Force Level is 'H'
0	ULFL	Select UL Output Force Level
		0 Output Force Level is 'L'
		1 Output Force Level is 'H'

MPn.CR1

MPWM Control Register 1

PWM Control Register 1 is a 16-bit register.

MP0.CR1=0x4000_4028, MP1.CR1=0x4000_5028

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						7									Z
						RQ									VMEN
						=									≥
						000			0	0	0	0	0	0	0
						RW									RW

10	IRQN	IRQ interval number
8	-	(Every 1~8th PRDIRQ,BOTIRQ,ATRn)
0	PWMEN	PWM enable
		When this bit is set to 0, the PWM block stays in the reset state but the user interface can be accessed. To operate the
		PWM block, this bit should be set to 1.

MPn.CR2 MPWM Control Register 2

PWM Control Register 2 is an 8-bit register.

MP0.CR2=0x4000_402C, MP1.CR2=0x4000_502C,

PWMEN should be "1" to start PWM counter

7	6	5	4	3	2	1	0
HALT							PSTART
0	0	0	0	0	0	0	0
RW							RW
		7 HA		PWM HALT (PWI			
		0 PST	'ART (PWM count	ter stop and clea		PWM clock
				twice)	•	•	

MPn.PRD

MPWM Period Register

PWM Period Register is a 16-bit register.

MP0 PRD=0x4000400C	MP1.PRD=0x40000500C

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								PER	RIOD							
-								0×0	002							
									w							
ļ								K/	VV							

15:0	PERIOD	16-bit PWM period. It should be larger than 0x0010
		(if Duty is 0x0000, PWM will not work)

MPn.DUH MPWM Duty UH Register

PWM U channel duty register is an 16-bit register.

MP0DUH=0x4000_4010, MP1DUH=0x4000_5010

										020	UX .U		,	UX	00_00.0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DUTY III														
	DUTY UH														
	0x0001														
							R	w							
Ī															
				15:0	DUTY	/ UH	1	.6-bit PV	VM Duty	y for UH	output.				

15:0	DUTY UH	16-bit PWM Duty for UH output.
		It should be larger than 0x0001
		(if Duty is 0x0000, PWM will not work)

MPn.DVH MPWM Duty VH Register

PWM V channel duty register is a 16-bit register.

MP0.DVH=0x4000_4014, MP1DVH=0x4000_5014

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	V \/L							
							БОТ	1 VII							
							0x0	001							
							R/	W							

15:0	DUTY VH	16-bit PWM Duty for VH output.
		It should be larger than 0x0001
		(if Duty is 0x0000, PWM will not work)

MPn.DWH

MPWM Duty WH Register

PWM W channel duty register is a 16-bit register.

MP0.DWH=0x4000 4018,	MP1.DWH=0x4000 5018
----------------------	---------------------

15	14	13	12	11	10	9 8	7	6	5	4	3	2	1	0
	DUTY WH													
	DOLL AND													
0x0001														
							R/W							
15:0 DUTY WH 16-bit PWM Duty for WH output.														

15:0 **DUTY WH** 16-bit PWM Duty for WH output.

It should be larger than 0x0001

(if Duty is 0x0000, PWM will not work)

MPn.DUL MPWM Duty UL Register

PWM U channel duty register is a 16-bit register.

MP0.DUL=0x4000_401C, MP1.DUL=0x4000_501C

															_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DUTY UL															
							UXU	1001							
R/W															
							0x0	0001							

15:0	DUTY UL	16-bit PWM Duty for UL output.
		It should be larger than 0x0001
		(if Duty is 0x0000, PWM will not work)

MPn.DVL MPWM Duty VL Register

PWM V channel duty register is a 16-bit register.

MP0.DVL=0x4000	4020.	MP1.DVL=0x4000	5020

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	·V VI							
	DUTY VL														
	0x0001														
							R	/W							
				15.0	יוות	יע עיי	1	6-hit DI	MM Duts	for VI	outnut				

15:0 **DUTY VL** 16-bit PWM Duty for VL output.

It should be larger than 0x0001

(if Duty is 0x0000, PWM will not work)

MPn.DWL

MPWM Duty WL Register

PWM W channel duty register is a 16-bit register.

MP0.DWL=0x4000	4024	MP1 DWI =0x4000	5024
ITII U.DTTL-UXTUUU	TV2T,	IVII I.DVVL-UX-UUU	7027

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DUTY WL														
	DOTT WE														
	0x0001														
	R/W														
•															

15:0	DUTY WL	16-bit PWM Duty for WL output.
		It should be larger than 0x0001
		(if Duty is 0x0000, PWM will not work)

MPn.IER

MPWM Interrupt Enable Register

PWM Interrupt Enable Register is an 8-bit register.

MP0.IER=0x4000_4034, MP1.IER=0x4000_5034,

PRDIEN	BOTIEN	WHIE		VHIE	UHIE	WLIE	VLIE	ULIE					
0	0	0		0	0	0	0	0					
RW	RW	RW		RW	RW	RW	RW	RW					
		7	PRDII		PWM Counter Period Interrupt enable 0 interrupt disable								
		6	BOTII	EN	1 interrupt enable PWM Counter Bottom Interrupt enable								
		-			0 interrupt disable 1 interrupt enable								
		5	WHIE	ie –	WH Duty or ATR6 Match Interrupt enable 0 interrupt disable 1 interrupt enable								
		4	VHIE ATR5	E	VH Duty or ATR5 0 interrupt di	Match Interrup sable	t enable						
		3	UHIE ATR4	<u> </u>	1 interrupt er UH Duty or ATR4 0 interrupt di 1 interrupt er	Match Interrup	t enable						
		2	ATR3IE		WL Duty or ATR3 interrupt di interrupt en	B Match Interrup sable	ot enable						
		1			VL Duty or ATR2 Match Interrupt enable 0 interrupt disable 1 interrupt enable								
		0	ULIE ATR1	_	UL Duty or ATR1 0 interrupt di 1 interrupt ei	Match Interrup sable	t enable						

MPn.IER[5:0] control bits are shared by the duty match interrupt event and ADC trigger match interrupt event. When ADC trigger mode is disabled, the interrupt is generated by the duty match condition; else the interrupt is generated by the ADC trigger counter match condition. The ADC trigger mode is selected by the ATMOD bit field in the ATRm register.

MPn.SR

MPWM Status Register

PWM Status Register is a 16-bit register.

MP0.SR=0x4000_4030, MP1.SR=0x4000_5030

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DOWN		IRQCNT						PRDIF	BOTIF	DWHIF ATR6F	DVHIF ATRSF	DUHIF ATR4F	DWLIF ATR3F	DVLIF ATR2F	DULIF ATR1F
0		000		0	0	0	0	0	0	0	0	0	0	0	0
R/W		R/W						R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

15	DOWN	0	PWM Count Up
		1	PWM Count Down
14	IRQCNT[2:0]		Interrupt count number of period match
12			(Interval PRDIRQ mode)
7	PRDIF		PWM Period Interrupt flag(write "1" to clear flag)
		0	No interrupt occurred
		1	Interrupt occurred
6	BOTIF		PWM Bottom Interrupt flag(write "1" to clear flag)
		0	No interrupt occurred
		1	Interrupt occurred
5	DWHIF		PWM duty WH interrupt flag(write "1" to clear flag)
	ATR6F		(Duty interrupt is enabled if ATR6 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred
4	DVHIF		PWM duty VH interrupt flag(write "1" to clear flag)
	ATR5F		(Duty interrupt is enabled if ATR5 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred
3	DUHIF		PWM duty UH interrupt flag(write "1" to clear flag)
	ATR4F		(Duty interrupt is enabled if ATR4 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred
2	DWLIF		PWM duty WL interrupt flag(write "1" to clear flag)
	ATR3F		(Duty interrupt is enabled if ATR3 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred
1	DVLIF		PWM duty VL interrupt flag(write "1" to clear flag)
	ATR2F		(Duty interrupt is enabled if ATR2 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred
0	DULIF	•	PWM duty UL interrupt flag(write "1" to clear flag)
	ATR1F		(Duty interrupt is enabled if ATR1 was disabled)
		0	No interrupt occurred
		1	Interrupt occurred

MPn.CNT

MPWM Counter Register

PWM Counter Register is a 16-bit Read-Only register.

										MP0.CN	NT=0x40	00_4038	, MP1.CI	NT=0x40	00_5038
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MPn	CNT							
							0x0	0000							
							R	/ W							
					MPn(NT	F	PWM Co	unter Va	lue					

MPn.DTR MPWM Dead Time Register

PWM Dead Time Register is a 16-bit register.

									ı	MP0.DTF	R=0x400	0_403C,	MP1.DT	R=0x400	0_503C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTEN	PSHRT						DTCLK				ł	L			
0	0	0	0	0	0	0	0				0x	00			
RW							RW				R	w			

DTEN	Dead-time function enable
	0 Disable Dead-time function
	1 Enable Dead-time function
PSHRT	Protect short condition
	0 Protection disable
	1 When H-side and L-side are active, disable both side
DTCLK	Dead-time prescaler
	0 Dead time counter uses PWM CLK/4
	1 Dead time counter uses PWM CLK/16
DT[7:0]	Dead Time value (Dead time setting makes output delay of
	'low to high transition' in normal polarity)
	0x01 ~0xFF : Dead time

Note: Protect short condtion is for only internal PWM level and not for external PWM level. When the internal signal of H-side and L-side are the same high level, the protection short function works to force both H-side and L-side to low level.

PS034602-0316 PRELIMINARY 179

MPn.PCR0/1 MP

MPWM Protection 0/1 Control Register

PWM Protection Control Register is a 16-bit register.

MP0.PCR=0x4000_4040, MP1.PCR=0x4000_5040

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PROTEN	PROTPOL					PROTD		PROTIE		WHPROTM	VHPROTM	UHPROTM	WLPROTM	VPROTM	UPROTM
Ī	0	0					000		0		0	0	0	0	0	0
	RW	RW					RW		RW		RW	RW	RW	RW	RW	RW

15	PROT0EN	Enable Protection Input 0
14	PROT0POL	Select Protection Input Polarity
		0: Low-Active
		1: High-Active
10	PROTD	Protection Input debounce
8		0 – no debounce
		1~7 - debounce by (MPWMCLK * PROTD[2:0])
7	PROTIE	Protection Interrupt enable
		0 Disable protection interrupt
		1 Enable protection interrupt
5	WHPROTM	Activate W-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
4	VHPROTM	Activate V-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
3	UHPROTM	Activate U-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
2	WLPROTM	Activate W-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
1	VLPROTM	Activate V-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
0	ULPROTM	Activate U-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value

MPn.PSR0/1 MPWM Protection 0/1 Status Register

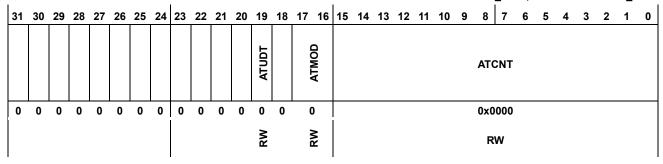
PWM Protection Status Register is a 16-bit register. This register indicates which outputs are disabled and users can set the output masks manually. Without writing PROTKEY when writing any value, the written values are ignored.

MP0.PSR=0x4000_4044, MP1.PSR=0x4000_5044

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PRO1	ΓΚΕΥ				PROTIF		WHPROTF	VHPROTF	UHPROTF	WLPROTF	VPROTF	UPROTF
			-					0		0	0	0	0	0	0
			W	0				RC		RW	RW	RW	RW	RW	RW

15	PROTKEY	Protection Clear Access Key
8		To clear flags, write 0xCA with protection flag
		(PSR0 key is 0xCA and PSR1 key is 0xAC)
		Writing without PROTKEY prohibited.
7	PROTIF	Protection Interrupt status
		0 No Protection Interrupt
		1 Protection Interrupt occurred
5	WHPROT	Activate W-phase H-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled
4	VHPROT	Activate V-phase H-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled
3	UHPROT	Activate U-phase H-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled
2	WLPROT	Activate W-phase L-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled
1	VLPROT	Activate V-phase L-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled
0	ULPROT	Activate U-phase L-side protection flag
		0 Protection not occurred.
		1 Protection occurred or protection output enabled

Note: MPn.PCR0 is related to the PRTINn pin and MPn.PCR1 is related to OVINn.



MPn.ATRm	MPWMn ADC Trigger Counter m Register
----------	--------------------------------------

MPn.ATR1	MPWM ADC Trigger Counter 1 Register
MPn.ATR2	MPWM ADC Trigger Counter 2 Register
MPn.ATR3	MPWM ADC Trigger Counter 3 Register
MPn.ATR4	MPWM ADC Trigger Counter 4 Register
MPn.ATR5	MPWM ADC Trigger Counter 5 Register
MPn.ATR6	MPWM ADC Trigger Counter 6 Register

The PWM ADC Trigger Counter Register is a 32-bit register.

MP0.ATR1=0x4000_4058, MP1.ATR1=0x4000_5058
MP0.ATR2=0x4000_405C, MP1.ATR2=0x4000_505C
MP0.ATR3=0x4000_4060, MP1.ATR3=0x4000_5060
MP0.ATR4=0x4000_4064, MP1.ATR4=0x4000_5064
MP0.ATR5=0x4000_4068, MP1.ATR5=0x4000_5068
MP0.ATR6=0x4000_406C, MP1.ATR6=0x4000_506C

19	ATUDT	Trigger register update mode
		0 ADC trigger value applied at period match event
		(at the same time with period and duty registers update)
		1 Trigger register update mode
		When this bit set, written Trigger register values are sent to
		trigger compare block after two PWM clocks (through
-		synchronization logic)
17	ATMOD	ADC trigger Mode register
16		00 ADC trigger Disable
		01 Trigger out when up count match
		10 Trigger out when down count match
		00 Trigger out when up-down count match
15	ATCNT	ADC Trigger counter
0		(it should be less than PWM period)

Functional Description

The PWMx module allows users to configure the PWM for different types of modulation schemes described in the previous section. The PER2 and PCER2 registers must be configured to enable the PWMx peripheral and the PWMx peripheral clock.

Setting or resetting the MOTOR bit in the MPnMR register allows users to operate the motor in Independent or Complementary PWM modes. For more information about operating modes, refer to the diagrams in the following section.

Figure 16.3 shows the diagram for generating a PWM output signal.

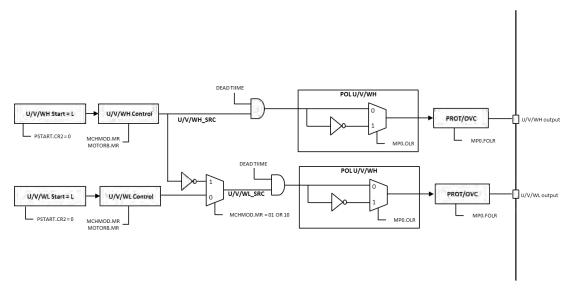


Figure 16.3 PWM Output Generation Chain

Normal PWM Up Count Mode Timing

In normal PWM mode, each channel runs independently. 6 PWM outputs can be generated. An example waveform is shown in Figure 16.4. Before PSTART is activated, the PWM output stay at the default value L. When PSTART is enabled, the period counter starts up count until the MP0.PRD count value. In the first period, the MPWM does not generate a PWM pulse.

The PWM pulse is generated from the second period. The active level is derived at the start of the counter value during duty value time.

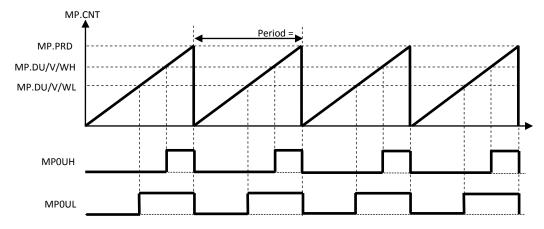


Figure 16.4. Up Count Mode Waveform (MOTORB=1, UPDOWN=0)

Normal PWM Up/Down Count Mode Timing

The basic operation of the Up/Down count mode is the same as the Up count mode except that one up/down period is twice as long as an UP count mode period. The default active level is opposite in a pair PWM output. This output polarity can be controlled by the MP0.OLR register.

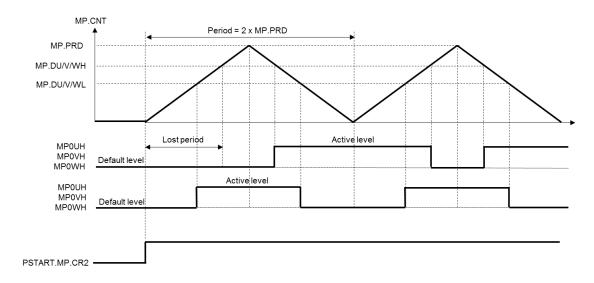


Figure 16.5. Up/Down Count Mode Waveform (MOTORB=0, MCHMOD=0, UPDOWN=1)

Motor PWM 2-Channel Symmetric Mode Timing

The motor PWM operation has three types of operating mode:

- 2-Channel symmetric mode
- 1-Channel symmetric mode
- 1-Channel asymmetric mode

Figure 16.6 shows a 2-channel symmetric mode waveform.

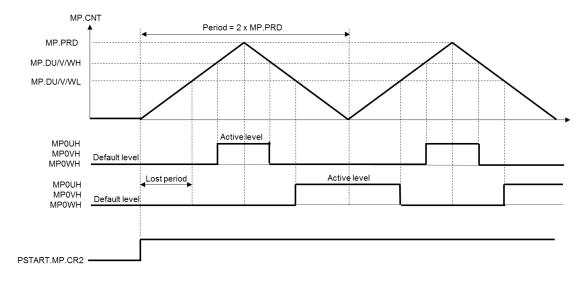


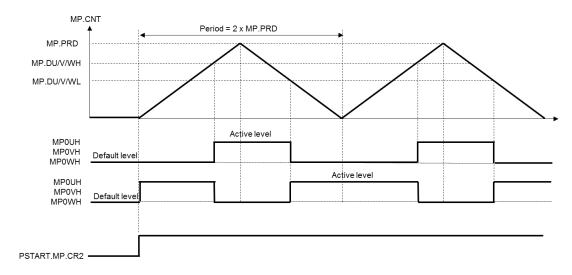
Figure 16.6. 2-Channel Symmetric Mode Wave Form (MOTORB=0,MCHMOD=00)

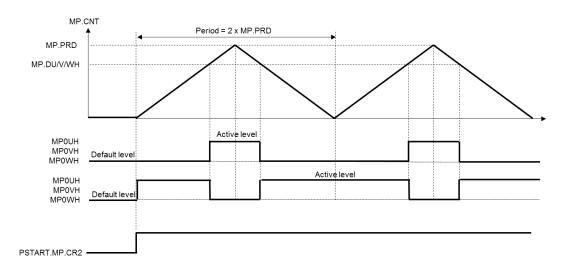
The default start level of both H-side and L-side is low. For the H-side, the PWM ouput level is changed to active level when the duty level is matched in the up count period and is returned to the default level when the duty level is matched in the down count period.

The symmetrical feature appears in each channel which is controlled by the corresponding DUTY register value

Motor PWM 1-Channel Asymmetric Mode Timing

The 1 channel asymmetric mode generates asymmetric duration pulses which are defined by the H-side and L-side DUTY register. Therefore, the L-side signal is always the negative signal of H-side. During the up count period, the H-side DUTY register matching condition generates the active level pulse and during the down count period, the L-side DUTY register matiching condition generates the default level pulse.




Figure 16.7. 1-Channel Asymmetric Mode Waveform (MOTORB=0,MCHMOD=01)

The default start level of both H-side and L-side is low. For the H-side, PWM ouput level is changed to active level when the H-side duty level is matched in up count period and is returned to default level when the L-side duty level is matched in down count period.

When the PSTART is set, the L-side PWM output is changed to the active level then the L-side PWM output is inverse output of H-side output.

Motor PWM 1-Channel Symmetric Mode Timing

The 1-channel symmetric mode generates a symmetric duration pulse which is defined by the H-side DUTY register. Therefore, the L-side signal is always the negative of the H-side signal. During up count period, the H-side DUTY register matching condition creates the active level pulse and during down count period, the H-side DUTY register matiching condition also generates the default level pulse.

Figure 16.8. 1-Channel Symmetric Mode Waveform (MOTORB=0,MCHMOD=10)

The default start level of both H-side and L-side is low. For the H-side, PWM ouput level is changed to active level when the H-side duty level is matched in up count period and is returned to the default level when the H-side duty level is matched again in down count period.

When PSTART is set, the L-side PWM output is changed to the active level, then the L-side PWM output is inverse output of H-side output.

PWM Dead-time Operation

To prevent external short conditions, the MPWM provides dead time functionality. This function is only available for motor PWM mode. When one of H-sdie or L-side output changes to active level, the amount of dead time is inserted if the DTEN.MP.DTR bit is enabled.

The duration of dead time is decided by the value in the DT.MP.DTR[7:0] field.

When DTCLK = 0, the dead time duration = DT[7:0] * (PWM clock period * 4) When DTCLK = 1, the dead time duration = DT[7:0] * (PWM clock period * 16)

When the PWM counter reaches the duty value, the PWM output is masked and the dead time counter starts to run. When the dead time counter reaches the value in the DT[7:0] register, the output mask is disabled.

Figure 16.9 is an example of dead time operation in 1-channel symmetric mode.

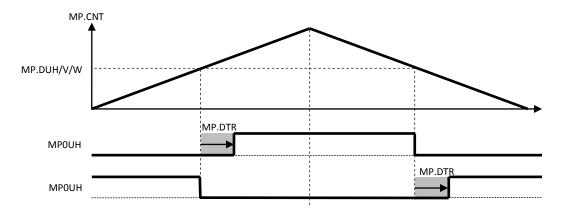


Figure 16.9. PWM Dead-time Operation Timing Diagram (Symmetric Mode)

Figure 16.10 is an example of dead time operation in 1-channel asymmetric mode

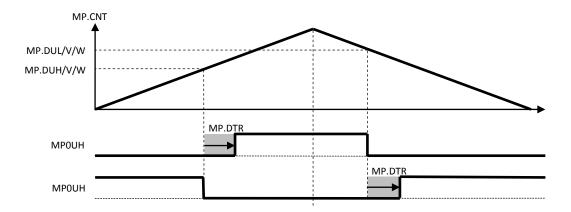


Figure 16.10. PWM Dead-time Operation Timing Diagram (Asymmetric Mode)

The dead time function is not available for 2-channel symmetric mode. Therefore, the dead condition is generated by each channel's duty control.

MPWM Dead-time Timing Examples

The following images show how the dead-time operates. In normal situations, the dead time masking is activated at duty match time and the dead time counter runs. When the dead time counter reaches the dead time value, the mask is disabled.

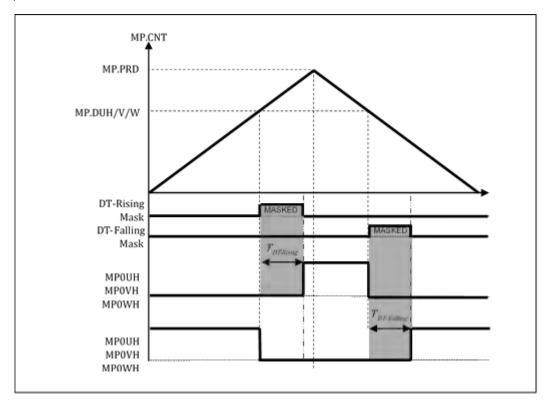


Figure 16.11. Normal Dead-time Operation (T_{DUTY}>T_{DT})

The following figures show the dead time configuration in special situations.

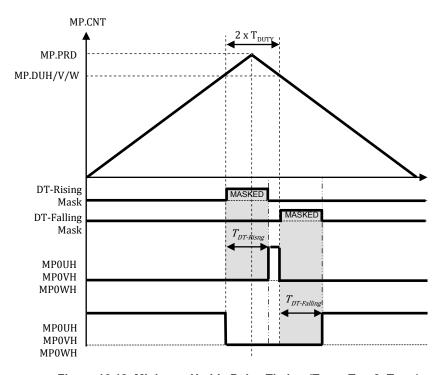


Figure 16.12. Minimum H-side Pulse Timing (T_{DUTY}<T_{DT}<2xT_{DUTY})

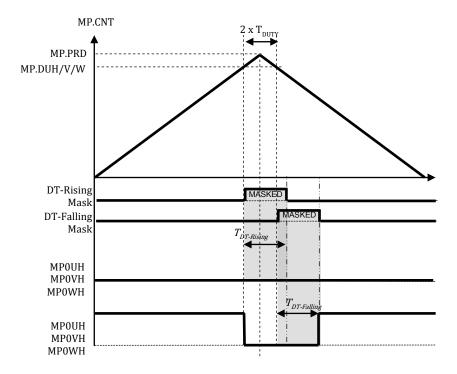


Figure 16.13. Zero H-side Pulse Timing (T_{DT}>2xT_{DUTY})

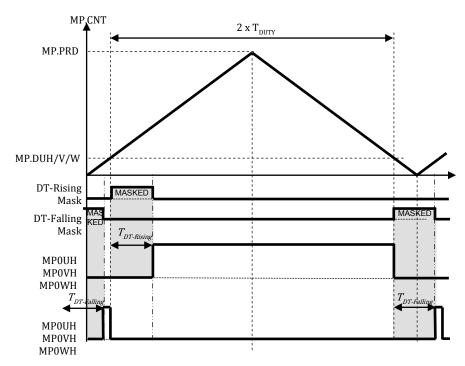


Figure 16.14. Minimum L-side Pulse Timing (T_{DT}<Period-T_{DUTY})

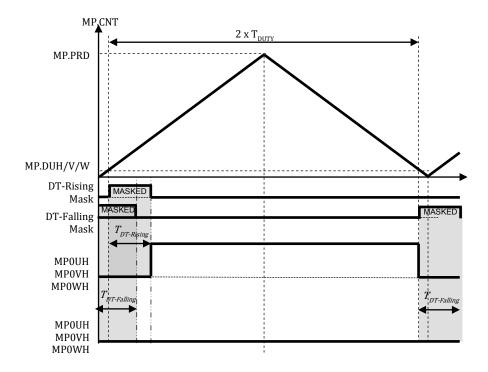


Figure 16.15. Zero L-side Pulse Timing (T_{DT}>Period-T_{DUTY})

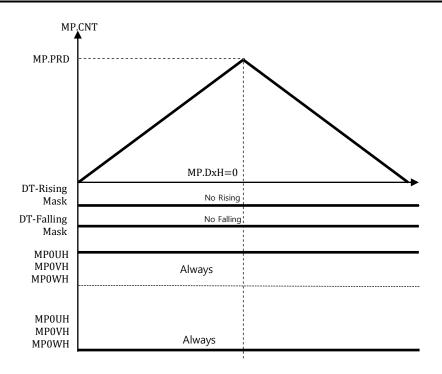


Figure 16.16. H-side Always On (T_{DUTY}=Period: Dead-time Disabled)

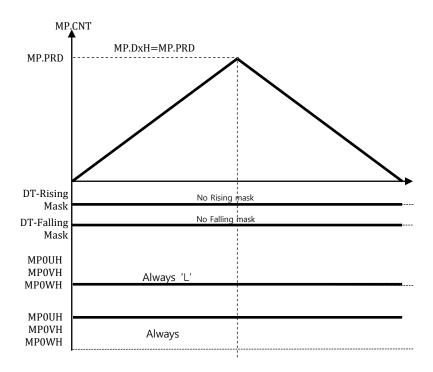


Figure 16.17. L-side Always On (T_{DUTY}='0': Dead-time Disabled)

Symmetrical Mode vs Asymmetrical Mode

In symmetrical mode, the wave form is symmetrical on both sides of the mid-point of the period. The duty comparison is performed twice in both up and down count periods.

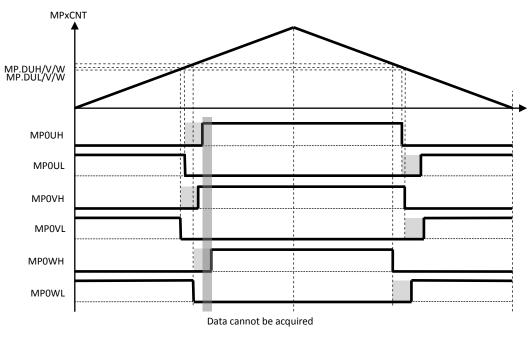


Figure 16.18. Symmetrical PWM Timing

In asymmetrical mode, the wave from is not symmetrical from the mid-point of the period. The duty comparison of H-side is performed in up count period. The duty comparison of L-side is performed in down count period.

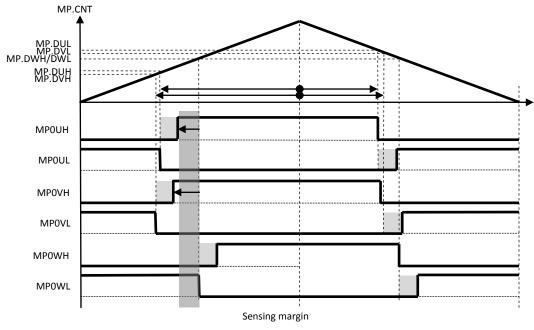


Figure 16.19. Asymmetrical PWM Timing and Sensing Margin

Description of ADC Triggering Function

A total of 6 ADC trigger timing registers are provided. This dedicated register generates a trigger signal to start ADC conversion. The conversion channel of ADC is defined in the ADC control register.

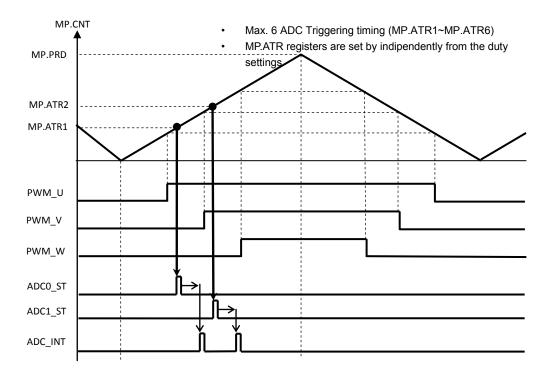


Figure 16.20. ADC Triggering Function Timing Diagram

An example of ADC data acquisition is shown in Figure 16.21.

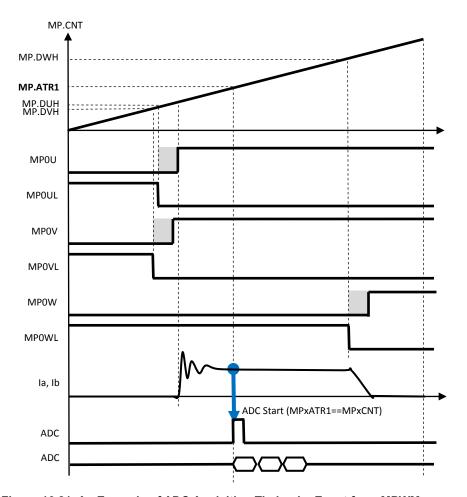


Figure 16.21. An Example of ADC Aquisition Timing by Event from MPWM

Interrupt Generation Timing

Each timing event can make interrupt requests to the CPU.

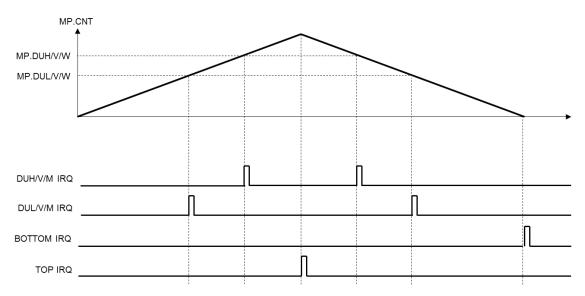


Figure 16.22. Interrupt Generation Timing

17. 12-Bit A/D Converter

Introduction

ADC block consists of 2 independent ADC units.

- 16 Channels of analog inputs
- · Single and Sequential conversion mode
- Up to 8 times sequential conversion support
- External pin trigger support
- 8 internal trigger sources support (PWMs, timers)
- Adjustable sample & hold time

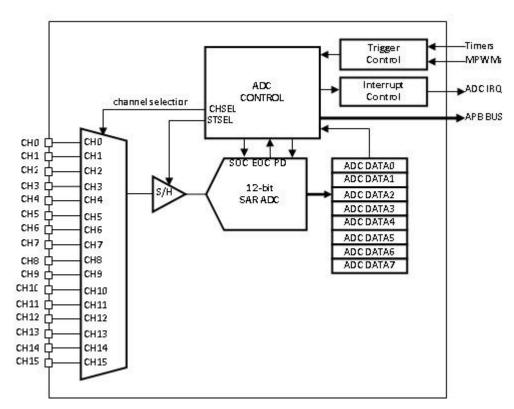


Figure 17.1. Block Diagram

Pin Description

Table 17.1. External Signal

PIN NAME	TYPE	DESCRIPTION	AINx PIN to ADO	C Channel Mapping			
AVDD	Р	Analog Power(3.0V~VDD)	ADC0	ADC1			
AVSS	Р	Analog GND					
AN0	Α	ADC Input 0	Channel 0	Channel 0			
AN1	Α	ADC Input 1	Channel 1	Channel 1			
AN2	Α	ADC Input 2	Channel 2	Channel 2			
AN3	Α	ADC Input 3	Channel 3	Channel 3			
AN4	Α	ADC Input 4	Channel 4	Channel 4			
AN5	Α	ADC Input 5	Channel 5	Channel 5			
AN6	Α	ADC Input 6	Channel 6				
AN7	Α	ADC Input 7	Channel 7				
AN8	Α	ADC Input 8	Channel 8				
AN9	Α	ADC Input 9	Channel 9				
AN10	Α	ADC Input 10	Channel 10				
AN11	Α	ADC Input 11	Channel 11				
AN12	Α	ADC Input 12	Channel 12				
AN13	Α	ADC Input 13	Channel 13				
AN14	Α	ADC Input 14	Channel 14	Channel 6			
AN15	Α	ADC Input 15		Channel 7			
AN16	Α	ADC Input 16		Channel 8			
AN17	Α	ADC Input 17		Channel 9			
AN18	Α	ADC Input 18		Channel 10			
AN19	Α	ADC Input 19		Channel 11			
AN20	Α	ADC Input 20		Channel 12			
AN21	Α	ADC Input 21	Channe				

Registers

The base addresses of ADC units are shown in Table 17.2.

Table 17.2. ADC Base Address

	BASE ADDRESS
ADC0	0x4000_B000
ADC1	0x4000_B100

Table 17.3 shows the register memory map.

Table 17.3. ADCIF Register Map

Nama	Officet	Offset R/W Description						
Name	Offset	R/VV	Description	Reset				
ADn.MR	0x0000	R/W	ADC Mode register	0x00				
ADn.CSCR	0x0004	R/W	ADC Current Sequence/Channel register	0x00				
ADn.CCR	0x0008	R/W	ADC Clock Control register	0x80				
ADn.TRG	0x000C	R/W	ADC Trigger Selection register	0x00				
-	0x0010	1	Reserved					
-	0x0014	-	Reserved					
ADn.SCSR	0x0018	R/W	ADC Burst mode channel select	0x00				
ADn.CR	0x0020	R/W	ADC Control register	0x00				
ADn.SR	0x0024	R/W	ADC Status register	0x00				
ADn.IER	0x0028	R/W	ADC Interrupt Enable register	0x00				
ADn.DDR	0x002C	R	ADCn DMA Data Register	0x00				
ADn.DR0	0x0030	R	ADCn Sequence 0 Data register	0x00				
ADn.DR1	0x0034	R	ADCn Sequence 1 Data register	0x00				
ADn.DR2	0x0038	R	ADCn Sequence 2 Data register	0x00				
ADn.DR3	0x003C	R	ADCn Sequence 3 Data register	0x00				
ADn.DR4	0x0040	R	ADCn Sequence 4 Data register	0x00				
ADn.DR5	0x0044	R	ADCn Sequence 5 Data register	0x00				
ADn.DR6	0x0048	R	ADCn Sequence 6 Data register	0x00				
ADn.DR7	0x004C	R	ADCn Sequence 7 Data register	0x00				

ADn.MR

ADCn Mode Register

ADC Mode Registers are 32-bit registers. This register configures ADC operation mode. This register should be written first before the other registers.

AD0.MR=0x4000	B000,	AD1.MR=	0x4000	B100
---------------	-------	---------	--------	------

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														DMACH	DMAEN			STSEL					SEQCNT		ADEN	ARST	ADMOD				TRGSEL	
														0x0	0x0			0x0				O	x0		0x0	0x0	0x	0			0x0	
														RW	RW			RW				F	RW		RW	RW	R۷	V			RW	'

18	DMACH	DMA channel option	
		When DMACH is set, Channel information of DMA data will be locate	ed at
		ADDMAR[3:0] for half word size transfer.	
		Channel information is at ADDMAR[19:16] in default.(DMACH is low	v)
17	DMAEN	DMA enable bit – should be set to '1' when ADCEN='1'.	
		When DMA function is enabled, DMA request at every end of conver	rsion
		(also in burst mode) and interrupt request only be generated when	ADC
		receives DMA done from DMAC.	
16	STSEL	Sampling Time Selection	
12		ADC Sample & Hold circuit sampling time become (2 + STSEL[-	4:0])
		MCLK cycles	
		Minimum sampling time is 2 MCLK cycle	
-10		When STSEL[4:0]=11111, the sampling channel is always on.	
10	SEQCNT	Number of coversions in a sequence	
8		If ADMOD is 2'h0 and SEQCNT is not 3'h0, CSEQN will be increased	up to
		SEQCNT by trigger event.	
		000 Single mode 100 5 sequence AD conver	
		2 sequence AD conversion 101 6 sequence AD conver	
		010 3 sequence AD conversion 110 7 sequence AD conver	
		011 4 sequence AD conversion 111 8 sequence AD conver	sion
7	ADEN	0 ADC disable	
		1 ADC enable	
6	ARST	O Stop at the end of sequence.	
		Should set ASTART as 1 to restart again	
	101100	1 Restart at the end of sequence.	
5	ADMOD	00 Single/Continuous conversion mode	
4		01 Sequenced conversion mode	
		10 Reserved	
		11 Reserved	
1	TRGSEL	00 Event Trigger Disabled/Soft-Trigger Only	
0		01 Timer Event Trigger	
		10 MPWM0 Event Trigger	
		11 MPWM1 Event Trigger	

If ADn.MR.ADCMOD was set as Single Sequential Conversion mode (Single sequential mode), the AD channels are controlled by ADn.SCSR.SEQ0CH ~ SEQ7CH. Single sequential mode always starts from SEQ0CH when not writing CSEQN. If in single sequential mode and SEQCNT is set as 3, AD converts the channels which are assigned at ADn.SCSR.SEQ0CH, ADn.SCSR.SEQ1CH, and ADn.SCSR.SEQ2CH to ADn.TRG.SEQTRG0, ADn.TRG.SEQTRG1, and ADn.TRG.SEQTRG2 when ADn.MR.TRGSEL is 0x1(Timer Event Trigger) or 0x2(MPWM Event Trigger).

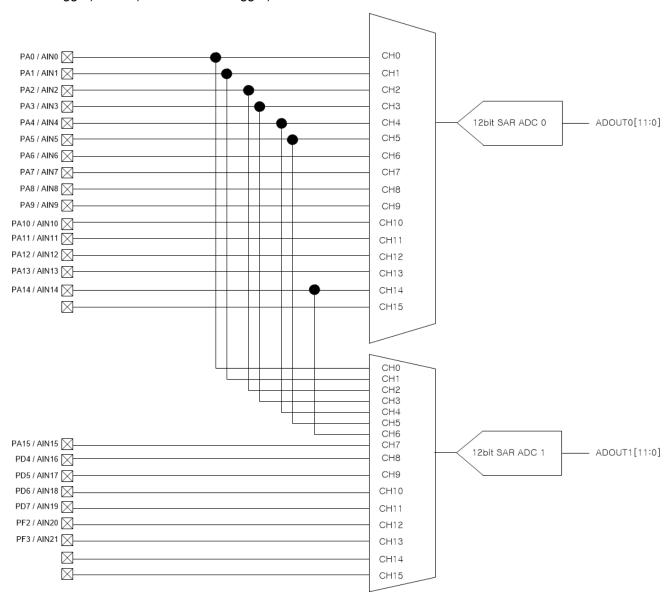


Figure 17.2. Analog Channel Block Diagram

ADn.CSCR

ADCn Current Sequence/Channel Register

ADC Current Sequence/Channel Registers are 7-bit registers. These registers consist of Current Sequence Number and Current Active Channel value. CSEQN (Current Sequence Number) can be written to change the next sequence number. Upon writing CSEQN as 0x7 when CSEQN is 0x3 and ADn.MR.SEQCNT is 0x7, the next sequence number is 0x7 and AD converts this channel of ADn.SCSR.SEQ7CH. The 4,5,6 sequence is skipped. This register should be written first before ADn.SCSR.

D0.CSCR=0x4000_B004, AD1.CSCR=0x4000_B104

7	6		5	4		3	2	1	0
-		CS	EQN				CAC	Н	
-	1	0:	x0				0x0)	
		ь	w				RO		
-		N	vv				KO		
		7	CSEQN	(Current	Sequence Nu	mber , can wi	ite when not	busy
		4		(0000	Current Seq	uence is 0		
				(0001	Current Seq	uence is 1		
				(0010	Current Seq	uence is 2		
				(0011	Current Seq	uence is 3		
					0100	Current Seq			
					0101	Current Seq			
					0110	Current Seq			
					0111	Current Seq			
		3	CACH			Active Chann			
		R0			0000	ADC channe			
					0001	ADC channe			
					0010	ADC channe			
					0011	ADC channe			
					0100	ADC channe			
					0101 0110	ADC channe			
					0111	ADC channe			
					1000	ADC channe			
					1000	ADC channe			
					1010		l 10 is active		
					1011		l 11 is active		
					1100		l 12 is active		
					1101		l 13 is active		
					1110		l 14 is active		
					1111		l 15 is active		
				-		c chamie			

ADn.CR1

ADCn Clock Control Register

ADC Control Registers are 16-bit registers. ADC period register

AD0.CR1=0x4000_B008, AD1.CR1=0x4000_B108

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCPDA	CKDIV								EXTCLK	CLKINVT	-	-	-	-	-
0				0x00				1	0	0	=	_	=	_	
RW				RW				RW	RW	RW					

15	ADCPDA	ADC R-DAC disable to save power
		Don't set "1" here(it's optional bit)
14	CLKDIV[6:0]	ADC clock divider when EXTCLK is '0'.
8		ADC clock = system clock/CLKDIV
		CKDIV=0 : ADC clock=system clock
		CKDIV=1: ADC clock=stop
7	ADCPD	ADC Power Down
		0 – ADC normal mode
		1 – ADC Power Down mode
6	EXTCLK	Select if ADC uses external clock.
		0 – internal clock(CKDIV enabled)
		1 - external clock(Clock configured in SCU_MCCR4)
5	CLKINVT	Divided clock inversion(optional bit)
		0 – duty ratio of divided clock is larger than 50%
		1 – duty ratio of divided clock is less than 50%

ADn.TRG

ADC Trigger Selection Register

ADC Trigger registers are 32-bt registers. ADC Trigger channel register. In Single/Continuous mode, all the bit fields are used. In Burst conversion mode, only BSTTRG bit field(bit3~bit0) is used.

AD0.TRG=0x4000_B00C, AD1.TRG=0x4000_B10C

31	30 29 2	8 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEQTRG7	7	SE	QTR	G6		SE	QTR	RG5		SE	QTR	G4		SE	QTR	G3		SE	QTR	G2		SE	QTR	RG1		SEC BS	•	
	0x0			0x0				0x0)			0x0				0x0				0x0				0x0	1		()x0	
	RW			RW				RW	'			RW				RW				RW				RW	,		F	RW	

30	SEQTRG7	8 th Sequence Trigger Source
28		
26	SEQTRG6	7th Sequence Trigger Source
24		
22	SEQTRG5	6th Sequence Trigger Source
20	-	-
18	SEQTRG4	5th Sequence Trigger Source
16	-	
14	SEQTRG3	4th Sequence Trigger Source
12		
10	SEQTRG2	3 rd Sequence Trigger Source
8	•	. 00
6	SEQTRG1	2 nd Sequence Trigger Source
4	-	. 33
2	SEQTRG0	1st Sequence Trigger Source
0	-	

Value	Timer (TRGSEL '2'h1)	MPWM0 (TRGSEL '2'h2)	MPWM1 (TRGSEL '2'h3)
0	Timer 0	MP0ATR1	MP1ATR1
1	Timer 1	MP0ATR2	MP1ATR2
2	Timer 2	MP0ATR3	MP1ATR3
3	Timer 3	MP0ATR4	MP1ATR4
4	Timer 8	MP0ATR5	MP1ATR5
5	Timer 9	MP0ATR6	MP1ATR6
6	-	ВОТТОМ	ВОТТОМ
7	-	PERIOD	PERIOD

PS034602-0316 PRELIMINARY 202

ADn.SCSR ADC Sequence Channel Selection Register

The ADC Sequence Channel Select Register is a 32-bit register.

AD0.BCSR=0x4000_B018, AD1.BCSR=0x4000_B118

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEC	7CH	ı		SEC	6CF	ı		SEC	5CH	ı		SEC	4CH	ı		SEQ	3CF	ı		SEQ	2CH	l		SEQ	1CH	ı		SEQ	0СН	
	0:	x0			0:	к0			0:	к0			0:	к0			0:	(0			0)	κ0			0)	(0			0>	0	
	R	W			R	W			R	W			R	W			R	W			R	W			R	W			R	N	

31	SEQ7CH	8th conversion sequence channel selection
28		
27	SEQ6CH	7 th conversion sequence channel selection
24		
23	SEQ5CH	6th conversion sequence channel selection
20		
19	SEQ4CH	5th conversion sequence channel selection
16		
15	SEQ3CH	4th conversion sequence channel selection
12		
11	SEQ2CH	3 rd conversion sequence channel selection
8		
7	SEQ1CH	2 nd conversion sequence channel selection
4		
3	SEQ0CH	1st conversion sequence channel selection
0		

ADn.CR ADCn Control Register

This is the ADC start register. This register is an 8-bit register.

AD0.CR=0x4000_B020, AD1.CR=0x4000_B120

7	6	5	4	3	2	1	0
ASTOP							ASTART
0							0
w							RW

7	ASTOP	_ 0	No
		1	ADC conversion stop (will be clear next @ADC clock)
			If ASTOP set after conversion cycle start, present
			conversion would be completed.
0	ASTART	0	No ADC conversion
		1	ADC conversion start (will be clear next @ADC clock)
			ADCEN should be "1" to start ADC.
			If ASTART is set as 0 when ARST is 0 in Timer/MPWM
			trigger event mode, AD converts to ADn.MR.SEQCNT
			once and AD stops. ASTART should be written to start
			the conversion sequence again

ADn.SR

ADCn Status Register

The ADC Status Register is a 32-bit register.

AD0.SR=0x4000_B024, AD1.SR=0x4000_B124

7	6		5	4	3	2	1	0			
EOC	ABUSY	DOV	/RUN	DMAIRQ	TRGIRQ	EOSIRQ	-	EOCIRQ			
0	0		0	0	0	0	-	0			
RO	RO	F	ю	RO	RC	RC	-	RC			
		7	EOC			of-Conversion fl Conversion mad RT)		ears this bit ,			
		6	ABUS	Y	ADC conversion busy flag						
		5	DOVR	UN	DMA overrun flag (not interrupt)						
		(DMA ACK didn't come until end of next cor						onversion)			
		4	DMAI	RQ	DMA don	e received (DMA	transfer is com	pleted)			
		3	TRGII	RQ	ADC Trigg	ger interrupt flag	g(Write "1" to cle	ear flag)			
					(0: no int	/ 1: int occurred	d)				
		2	EOSIF	RQ		will be set up	on final end of	a sequence			
					(Write "1	" to clear flag)					
					0 Non	ie.					
					1 End	-of-Sequence(bu	ırst) Interrupt o	ccurred			
		0	EOCIF	RQ	This flag	will be set u	ipon each conv	version in a			
					sequence	is occurred(Wri	te "1" to clear fla	ag)			
					0 Non	ie.					
					1 End	-of-Conversion I	nterrupt occurr	ed			

ADn.IER

Interrupt Enable Register

TRGIRQE

EOSIRQE

EOCIRQE

AD0.IER=0x4000_B028, AD1.IER=0x4000_B128

7	6	ţ	5	4	3	2	1	0
				DMAIRQE	TRGIRQE	EOSIRQE	•	EOCIRQE
				0	0	0	-	0
				RW	RW	RW	-	RW
		4	DMAIR	QE I	DMA done interr	upt enable		
				(): interrupt disal	ole		
				1	1: interrupt enab	le		

ADC trigger conversion interrupt enable

ADC single conversion interrupt enable

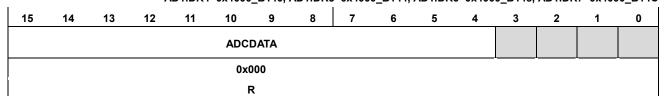
ADC sequence conversion interrupt enable

ADn.DDR

ADCn DMA Data Register

ADC DMA Data Registers are 16-bit registers. This is the ADC conversion result register for DMA (AD data of just completed conversion).

AD0.DDR=0x4000B02C,	AD1.DDR=0x4000B12C
ADO.DDIK OX-000D020,	AD I.DDIX OXTOOD IEO


	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					ADC	DMA Tei	mporary	Data						ADM	ACH	
ſ						0x0	000							0>	κ0	
						F	₹							F	₹	

15	ADDMAR	ADC conversion result data (12-bit)	
4			
3	ADMACH	ADC data channel indicator	
0			

ADn.DRx ADCn Sequence Data Register 0~7

The DRx Data Registers are 16-bit registers. This is the ADC conversion result register for the related sequence number.

AD0.DR0=0x4000_B030, AD0.DR1=0x4000_B034, AD0.DR2=0x4000_B038, AD0.DR3=0x4000_B03C AD0.DR4=0x4000_B040, AD0.DR5=0x4000_B044, AD0.DR6=0x4000_B048, AD0.DR7=0x4000_B04C AD1.DR0=0x4000_B130, AD1.DR1=0x4000_B134, AD1.DR2=0x4000_B138, AD1.DR3=0x4000_B13C AD1.DR4=0x4000_B140, AD1.DR5=0x4000_B144, AD1.DR6=0x4000_B148, AD1.DR7=0x4000_B14C

4	

PS034602-0316 PRELIMINARY 205

Functional Description

The ADC block provides the ability to convert an analog signal to a digital value. The ADC compares the input channel with the AVDD voltage and provides a 12-bit value.

```
Voltage value = (ADC Reading / 4096) * AVDD voltage
```

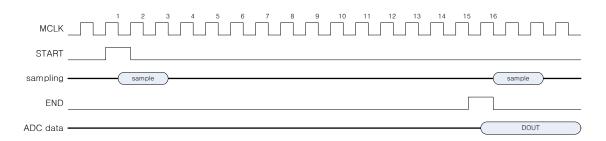
The ADC clock can be configured up to 22.5Mhz and be driven from any of the available clocks – System clock, Ring OSC, Bus Clock, Int OSC, External OSC or the PLL clock. There is a 6 bit divider available for the system clock (divider must be greater than 1) or the ADC clock can be configured in the MCCR6 register, which provides access to all clocks and 8 bit divider. The clock is selected in CR1 register (and optionally configured in the SCU MCCR4 register).

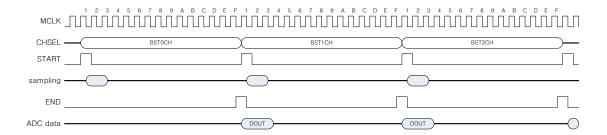
The ADC takes 15 ADC clocks to complete one sample. There is a single clock to start then sample and hold time (minimum of 2 ADC clocks) then 1 clock per bit (12 bits). To increase sample time, you can configure up to 511 clock sampling time (which would then take 511 + 15 = 526 ADC clocks per sample).

To calculate the maximum ADC clock that can be used is:

```
ADC Clock = 1.5Msps * (15 clocks per sample + Sample time) 
 Example (Sampling time = 0): 
 ADC clock = 1.5Msps * (15 clocks + 0) = 22.5Mhz
```

The above example shows that if the system clock was running at 72 MHz the divider cannot be less than 4.


The sequence feature allows the programmer to retrieve multiple readings (up to 8) with only one start request. You can either continue to run the sequence or run it just once. The ADC block will automatically go through all 8 taking readings without intervention. Each sequence can be triggered on different events in order and sequence result has its own data register.


General ADC Setup Procedure

- 1. Allow the modification of the I/O pins to use the ADC inputs needed by writing the unlock sequence as described in PORT CONTROL UNIT (PCU), no pullups enabled.
- 2. Enable the ADC peripherals needed in PER2 register.
- 3. Enable the ADC peripheral clock in the PCER2 register.
- 4. Select the alternating function for the ADC inputs (Port n MUX registers).
- 5. Configure the ADC Pins to Analog
- 6. Configure the ADC mode in the ADCnMODE register and enabled the channel ADCn.
- 7. Configure the ADCnCR1 register and write an appropriate clock divider value.
- 8. Configure any special features such as triggers, sequencing, etc.
- 9. Start ADC conversion

ADC Single Mode Timing Diagram

ADC Sequencing Mode Timing Diagram

18. Electrical Characteristics

DC Characteristics

Absolute Maximum Ratings

Absolute maximum ratings are limiting values of operating and environmental conditions which should not be exceeded under the worst possible conditions..

Table 18.1. Absolute Maximum Rating

Idu	ie 18.1. Absolu	te maximum Ka	aung	
Parameter	Symbol	min	max	unit
Power Supply (VDD)	VDD	-0.5	+6	V
Analog Power Supply (AVDD)	AVDD	-0.5	+6	V
VDC Output Voltage	VDD18			V
Input High Voltage		-	VDD+0.5	V
Input Low Voltage		VSS - 0.5	-	V
Output Low Current per pin	l _{OL}		20	mA
Output Low Current Total	∑ I _{OL}			mA
Output Low Current per pin	I _{OH}		10	mA
Output Low Current Total	∑loн			mA
Power consumption				mW
Input Main Clock Range		0.4	8	MHz
Operating Frequency		-	72	MHz
Storage Temperature	Tst	-55	+125	℃
Operating Temperature	Тор	-40	+85	℃

DC Characteristics

Table 18.2 Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Supply Voltage	VDD		3.0		5.5	V
Supply Voltage	AVDD		3.0	5.0	5.5	V
		MOSC	4		16	MHz
Operating Frequency	FREQ	INTOSC		20		MHz
		PLL	4		75	MHz
Operating Temperature	Тор	Тор	-40		+85	°C

Table 18.3 DC Electrical Characteristics (VDD = +5V, Ta = 25 $^{\circ}$ C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Input Low Voltage	V_{IL}	Schmitt input	1	-	0.2VDD	V
Input High Voltage	V _{IH}	Schmitt input	0.8VDD	-	-	V
Output Low Voltage	V_{OL}	I _{OL} = 10mA	-	-	VSS+1.0	V
Output High Voltage	V _{OH}	I _{OH} = - 3mA	VDD-1.0	-	-	V
Output Low Current	I _{OL}		-	-	3	mA
Output High Current	Іон		- 1.2	-		mA
Input High Leakage	I _{IH}				4	uA
Input Low Leakage	I _{IL}		-4			
Pull-up Resister	R _{PU}	Rmax:VDD =3.0V Rmin:VDD =5V	30	-	70	kΩ

POR Electrical Characteristics

Table18.4 POR Electrical Characteristics (Temperature: -40 ~ +105°C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	VDD18		1.6	1.8	2.0	V
Operating Current	IDD_PoR	Typ. <6uA If always on	-	60	-	nA
POR Set Level	VR _{PoR}	VDD rising (slow)	1.3	1.4	1.55	V
POR Reset Level	VF _{PoR}	VDD falling (slow)	1.1	1.2	1.4	V

BOD Electrical Characteristics

Table18.5 BOD Electrical Characteristics (Temperature: -40 ~ +105°C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	VDD		1.7		5	V
Operating Current	IDD _{BOD}	Typ. <6uA when always on	-	1	-	mA
BOD Set Level 0	VBOD0	VDD falling (slow)	1.7	1.8	1.9	V
BOD Set Level 1	VBOD1	VDD falling (slow)	2.1	2.2	2.3	V
BOD Set Level 2	VBOD2	VDD falling (slow)	3.2	3.3	3.4	V
BOD Set Level 3	VBOD3	VDD falling (slow)	4.2	4.3	4.4	V

VDC Electrical Characteristics

Table18.6VDC Electrical Characteristics (Temperature: -40 ~ +105°C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	VDD _{VDC}		3.0	-	5.5	V
	VOUT _{VDC}	@RUN	1.62	1.8	1.98	V
VDC Output Voltage		@STOP	1.4	1.8	2.0	V
Regulation Current	l _{out}				100	mA
Drop-out Voltage	VDROP _{VD}	VDDVDC=3.0V IOUT=100mA	-	-	200	mV
Current Consumption	IDD _{NORM}	@RUN	-	100	150	uA
	IDD _{STOP}	@STOP	-	1	2	uA

External OSC Characteristics

Table18.7External OSC Characteristics (Temperature: -40 ~ +105°C)

Parameter	Symbol	Condition	Min	Тур	Max	unit
Operating Voltage	VDD		3.0	-	5.5	V
IDD		@4MHz/5V	-	240		uA
Frequency	OSCF _{req}		4	8	10	MHz
Output Voltage	OSC _{VOUT}		1.2	2.4	-	V
Load Capacitance	LOAD _{CAP}		5	22	35	pF

Sub External OSC Characteristics

Table18.8External OSC Characteristics (Temperature: -40 ~ +85°C)

Parameter	Symbol	Condition	Min	Тур	Max	unit
Operating Voltage	VDD			1.8		V
IDD		@4MHz/5V	-	2.93		uA
Frequency	OSCF _{req}			32.768		KHz
Output Voltage	OSC _{VOUT}			1.8	-	V
Load Capacitance	LOAD _{CAP}					pF

Internal RC OSC Characteristics

Table 18.9 Internal RC OSC Characteristics (Temperature: -40 ~ +105°C)

Parameter	Symbol	Condition	Min	Тур	Max	unit
Operating Voltage	VDD		1.65	1.8	1.95	V
IDD	I _{osc}	@20MHz	-	240		uA
Frequency	IOSCF _{req}			20		MHz

PLL Electrical Characteristics

Table18.10PLL Electrical Characteristics (Temperature: -40 \sim +105°C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	VDD _{PLL}		1.65	1.8	1.95	V
Output Frequency	FOUT		4		80	MHz
Operating Current	IDD _{PLL}	@80MHz		1.3		mA
Duty	FOUT _{DUTY}		40	-	60	%
P-P Jitter	JITTER	@Lock			500	Ps
VCO	VCO		30		80	MHz
Input Frequency	FIN		4		8	MHz
Locking time	LOCK				1	ms

ADC Electrical Characteristics

Table 18.11ADC Electrical Characteristics (Temperature: -40 ~ +105°C)

Table 10.11ADC Electrical Characteristics (Temperature: -40 ~ +103 C)								
Parameter	Symbol	Condition	Min	Тур.	Max	unit		
Operating Voltage	AVDD		3.0	5	5.5	V		
Reference Voltage	AVREF		3.0	5	5.5	V		
Resolution				12		Bit		
Operating Current	IDDA				2.8	mA		
Analog Input Range			0		AVDD	V		
Conversion Rate				-	1.5	MHz		
Operating Frequency	ACLK				15	MHz		
DC Assuracy	INL			±2.5		LSB		
DC Accuracy	DNL			±1.0		LSB		
Offset Error				±1.5		LSB		
Full Scale Error				±1.5		LSB		
SNDR	SNDR			68		dB		
THD				-70		dB		

LQFP-100 Package Dimension

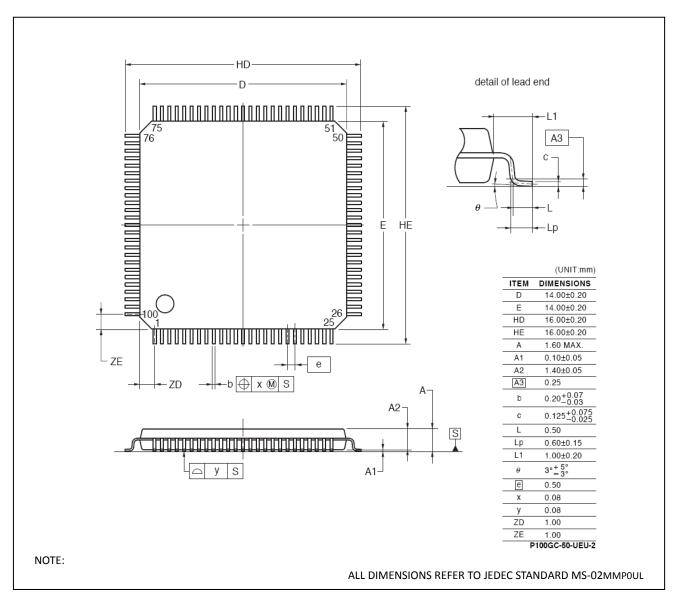


Figure 18.1. Package Dimension (LQFP-100 14X14)

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А