

TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/466

Devices Qualified Level

2N5683 2N5684

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N5683	2N5684	Unit
Collector-Emitter Voltage	V_{CEO}	60	80	Vdc
Collector-Base Voltage	V_{CBO}	60	80	Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Base Current	I_{B}	15		Adc
Collector Current	I_{C}	5	0	Adc
Total Power Dissipation $^{(1)}$ @ $T_C = 25^0$ C	B 300		W	
$^{\circ}$	P_{T}	17	71	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		^{0}C

THERMAL CHARACTERISTICS

THE MANUEL CHARGE TEMPTICE			
Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.584	⁰ C/W

¹⁾ Derate linearly 1.715 W/ $^{\circ}$ C between $T_C = +25^{\circ}$ C and $T_C = +200^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characterist	ics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N5683	$V_{(BR)CEO}$	60		Vdc
	2N5684		80		
Collector-Emitter Cutoff Current					
$V_{CE} = 30 \text{ Vdc}$	2N5683	I_{CEO}		5.0	μAdc
$V_{CE} = 40 \text{ Vdc}$	2N5684			5.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5683	I_{CEX}		5.0	μAdc
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5684			5.0	
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ Vdc}$	2N5683	I_{CBO}		5.0	μAdc
$V_{CB} = 80 \text{ Vdc}$	2N5684			5.0	
Emitter-Base Cutoff Current		т		5.0	۸
$V_{EB} = 5.0 \text{ Vdc}$		I_{EBO}		5.0	μAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

2N5683, 2N5684 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	1.	30		
$I_C = 25$ Adc, $V_{CE} = 2.0$ Vdc	$h_{ m FE}$	15	60	
$I_C = 50 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$		5.0		
Collector-Emitter Saturation Voltage				
$I_{\rm C} = 25 \text{ Adc}, I_{\rm B} = 2.5 \text{ Adc}$	$V_{CE(sat)}$	1.0 5.0		Vdc
$I_C = 50 \text{ Adc}, I_B = 10 \text{ Adc}$			5.0	
Base-Emitter Saturation Voltage	V		2.0	Vdc
$I_C = 25 \text{ Adc}, I_B = 2.5 \text{ Adc}$	V _{BE(sat)}		2.0	v uc
Base-Emitter Voltage	V		2.0	Vdc
$I_C = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	V _{BE(on)}		2.0	vuc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	2.0	20	
$I_C = 5.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio	h	15		
$I_C = 10 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h_{fe}	13		
Output Capacitance	C		2,000	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 0.1 \text{ MHz} \le f \le 1.0 \text{ MHz}$	$C_{ m obo}$	2,000	pr	
SWITCHING CHARACTERISTICS				
Turn-On Time	^t on		1.5	ша
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_B = 2.5 \text{ Adc}$	on	1.5		μs
Turn-Off Time	toff		3.0	Ше
$V_{CC} = 30 \text{ Vdc}$; $I_C = 25 \text{ Adc}$; $I_{B1} = I_{B2} = 2.5 \text{ Adc}$	OH		3.0	μs

SAFE OPERATING AREA

DC Tests	
$T_C = +25^{\circ}C$, 1 Cycle, $t = 1.0 \text{ s}$	
Test 1	
$V_{CE} = 6.0 \text{ Vdc}, I_C = 50 \text{ Adc}$	All Types
Test 2	
$V_{CE} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}$	All Types
Test 3	
$V_{CE} = 50 \text{ Vdc}, I_C = 560 \text{ mAdc}$	2N5683
$V_{CE} = 60 \text{ Vdc}, I_C = 640 \text{ mAdc}$	2N5684

⁽²⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А