Ultra-Low Power, AT Command Controlled, Sigfox[®] Compliant Transceiver IC for Up-Link and Down-Link ## ON Semiconductor® www.onsemi.com #### **OVERVIEW** #### **Circuit Description** AX-Sigfox is an ultra-low power single chip solution for a node on the Sigfox network with both up- and down-link functionality. The AX-Sigfox chip is delivered fully ready for operation and contains all the necessary firmware to transmit and receive data from the Sigfox network in Europe. It connects to the customer product using a logic level RS232 UART. AT commands are used to send frames and configure radio parameters. #### **Features** Functionality and Ecosystem - Sigfox up-link and down-link functionality controlled by AT commands - The AX-Sigfox IC is part of a whole development and product ecosystem available from ON Semiconductor for any Sigfox requirement. Other parts of the ecosystem include - Ready to go AX-Sigfox development kit with fully functional AX-Sigfox module including Sigfox subscription - ◆ Sigfox Ready[®] certified reference design for the AX-Sigfox IC - MiniStamp by ON Semiconductor Sigfox modules with SMA connector or chip antenna - AX-Sigfox-API IC for customers wishing to write their own application software based on the AXSEM Sigfox Library #### General Features - QFN40 5 mm x 7 mm package - Supply range 1.8 V 3.6 V - -40°C to 85°C - Temperature sensor - Supply voltage measurements - 10 GPIO pins - ◆ 4 GPIO pins with selectable voltage measure functionality, differential (1 V or 10 V range) or single ended (1 V range) with 10 bit resolution - 2 GPIO pins with selectable sigma delta DAC output functionality - 2 GPIO pins with selectable output clock - 3 GPIO pins selectable as SPI master interface - Integrated RX/TX switching with differential antenna pins #### Power Consumption - Ultra-low Power Consumption: - Charge required to send a Sigfox OOB packet at 14 dBm output power: 0.28 C - Deepsleep mode current: 100 nA - Sleep mode current: 1.3 μA - Standby mode current: 0.5 mA - Continuous radio RX-mode at 869.525 MHz: 10 mA - ◆ Continuous radio TX-mode at 868.130 MHz 19 mA @ 0 dBm 49 mA @ 14 dBm High Performance Narrow-band Sigfox RF Transceiver - Receiver - ◆ Carrier frequency 869.525 MHz - Data-rate 600 bps FSK - ♦ Sensitivity - -126 dBm @ 600 bps, 869.525 MHz, GFSK - 0 dBm maximum input power - Transmitter - Carrier frequency 868.13 MHz - Data-rate 100 bps PSK - High efficiency, high linearity integrated power amplifier - Maximum output power 14 dBm - Power level programmable in 1 dBm steps ## **Applications** 1 Sigfox networks up-link and down-link. ## **BLOCK DIAGRAM** Figure 1. Functional Block Diagram of the AX-SIGFOX **Table 1. PIN FUNCTION DESCRIPTIONS** | Symbol | Pin(s) | Туре | Description | |-----------|--------|----------|---| | VDD_ANA | 1 | Р | Analog power output, decouple to neighboring GND | | GND | 2 | Р | Ground, decouple to neighboring VDD_ANA | | ANTP | 3 | Α | Differential antenna input/output | | ANTN | 4 | Α | Differential antenna input/output | | NC | 5 | N | Do not connect | | GND | 6 | Р | Ground, decouple to neighboring VDD_ANA | | VDD_ANA | 7 | Р | Analog power output, decouple to neighboring GND | | GND | 8 | Р | Ground | | FILT | 9 | Α | Synthesizer filter | | L2 | 10 | Α | Must be connected to pin L1 | | L1 | 11 | Α | Must be connected to pin L2 | | NC | 12 | N | Do not connect | | GPIO8 | 13 | I/O/PU | General purpose IO | | GPI07 | 14 | I/O/PU | General purpose IO, selectable SPI functionality (MISO) | | GPIO6 | 15 | I/O/PU | General purpose IO, selectable SPI functionality (MOSI) | | GPIO5 | 16 | I/O/PU | General purpose IO, selectable SPI functionality (SCK) | | GPIO4 | 17 | I/O/PU | General purpose IO, selectable $\Sigma\Delta$ DAC functionality, selectable dock functionality | | CPU_LED | 18 | 0 | CPU activity indicator | | RADIO_LED | 19 | 0 | Radio activity indicator | | VTCXO | 20 | 0 | TCXO power | | GPIO9 | 21 | I/O/PU | General purpose IO, wakeup from deep sleep | | UARTTX | 22 | 0 | UART transmit | | UARTRX | 23 | I/PU | UART receive | | RX_LED | 24 | 0 | Receive activity indicator | | TX_LED | 25 | 0 | Transmit activity indicator | | NC | 26 | PD | Do not connect | | RESET_N | 27 | I/PU | Optional reset pin. Internal pull-up resistor is permanently enabled, nevertheless it is recommended to connect this pin to VDD_IO if it is not used. | | GND | 28 | Р | Ground | | VDD_IO | 29 | Р | Unregulated power supply | | GPI00 | 30 | I/O/A/PU | General purpose IO, selectable ADC functionality, selectable $\Sigma\Delta$ DAC functionality, selectable clock functionality | | GPIO1 | 31 | I/O/A/PU | General purpose IO, selectable ADC functionality | | GPIO2 | 32 | I/O/A/PU | General purpose IO, selectable ADC functionality | | NC | 33 | N | Do not connect | | NC | 34 | N | Do not connect | | GPIO3 | 35 | I/O/A/PU | General purpose IO, selectable ADC functionality | | VDD_IO | 36 | Р | Unregulated power supply | | CAL | 37 | А | Connect to FILT as shown in the application diagram | | NC | 38 | N | Connect to Ground | | CLKN | 39 | А | TCXO interface | **Table 1. PIN FUNCTION DESCRIPTIONS** | Symbol | Pin(s) | Туре | Description | |--------|------------|------|--| | CLKP | 40 | Α | TCXO interface | | GND | Center pad | Р | Ground on center pad of QFN, must be connected | A = analog input I = digital input signal O = digital output signal PU = pull-up I/O = digital input/output signal N = not to be connected P = power or ground PD = pull-down All digital inputs are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible. Pins GPIO[3:0] must not be driven above VDD_IO, all other digital inputs are 5 V tolerant. All GPIO pins and UARTRX start up as input with pull–up. For explanations on how to use the GPIO pins, see chapter "AT Commands". Table 2. | Pin | Possible GPIO Modes | |-------|---------------------| | GPIO0 | 0, 1, Z, U, A, T | | GPIO1 | 0, 1, Z, U, A | | GPIO2 | 0, 1, Z, U, A | | GPIO3 | 0, 1, Z, U, A | | GPIO4 | 0, 1, Z, U, T | | GPIO5 | 0, 1, Z, U | | GPIO6 | 0, 1, Z, U | | GPIO7 | 0, 1, Z, U | | GPIO8 | 0, 1, Z, U | | GPIO9 | 0, 1, Z, U | 0 = pin drives 1 = not to be connected Z = pin is high impedance input U = pin is input with pull-up A = pin is analog input T = pin is driven by clock or DAC ## **Pinout Drawing** Figure 2. Pinout Drawing (Top View) ## **SPECIFICATIONS** **Table 3. ABSOLUTE MAXIMUM RATINGS** | Symbol | Description | Condition | Min | Max | Units | |------------------|--|-------------------------------|-------|------|-------| | VDD_IO | Supply voltage | | -0.5 | 5.5 | V | | IDD | Supply current | | | 200 | mA | | P _{tot} | Total power consumption | | | 800 | mW | | P _i | Absolute maximum input power at receiver input | ANTP and ANTN pins in RX mode | | 10 | dBm | | I _{I1} | DC current into any pin except ANTP, ANTN | | -10 | 10 | mA | | I _{I2} | DC current into pins ANTP, ANTN | | -100 | 100 | mA | | I _O | Output Current | | | 40 | mA | | V _{ia} | Input voltage ANTP, ANTN pins | | -0.5 | 5.5 | V | | | Input voltage digital pins | | -0.5 | 5.5 | V | | V _{es} | Electrostatic handling | HBM | -2000 | 2000 | V | | T _{amb} | Operating temperature | | -40 | 85 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | | Tj | Junction Temperature | | | 150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## **DC Characteristics** ## **Table 4. SUPPLIES** Conditions for all current and charge values unless otherwise specified are for the hardware configuration described in the AX-Sigfox Application Note: Sigfox Compliant Reference Design. | Symbol | Description | Condition | Min | Тур | Max | Units | |---------------------------|--|---------------------------------------|-----|------|-----|-------| | T _{AMB} | Operational ambient temperature | | -40 | 27 | 85 | °C | | VDD _{IO} | I/O and voltage regulator supply voltage | | 1.8 | 3.0 | 3.6 | V | | VDD _{IO_R1} | I/O voltage ramp for reset activation;
Note 1 | Ramp starts at VDD_IO ≤ 0.1 V | 0.1 | | | V/ms | | VDD _{IO_R2} | I/O voltage ramp for reset activation;
Note 1 | Ramp starts at 0.1 V < VDD_IO < 0.7 V | 3.3 | | | V/ms | | I _{DS} | Deep sleep mode current | AT\$P=2 | | 100 | | nA | | I _{SLP} | Sleep mode current | AT\$P=1 | | 1.3 | | μΑ | | I _{STDBY} | Standby mode current
Note 3 | | | 0.5 | | mA | | I _{RX_CONT} | Current consumption continuous RX | AT\$SR=1,1,-1 | | 10 | | mA | | Q _{SFX_OOB_0} | Charge to send a Sigfox out of band message, 0 dBm | AT\$S0 | | 0.12 | | С | | Q _{SFX_BIT_0} | Charge to send a bit, 0 dBm | AT\$SB=0 | | 0.08 | | С | | Q _{SFX_BITDL_0} | Charge to send a bit with downlink receive, 0 dBm | AT\$SB=0,1 | | 0.27 | | С | | Q _{SFX_LFR_0} | Charge to send the longest possible Sigfox frame (12 byte) , 0dBm | AT\$SF=00112233445566778899aabb | | 0.14 | | С | | Q _{SFX_LFRDL_0} | Charge to send the longest possible
Sigfox frame (12 byte) with downlink
receive, 0 dBm | AT\$SF=00112233445566778899aabb,1 | | 0.27 | | С | | Q _{SFX_OOB_14} | Charge to send a Sigfox out of band message, 14 dBm | AT\$S0 | | 0.28 | | С | | Q _{SFX_BIT_14} | Charge to send a bit, 14 dBm | AT\$SB=0 | | 0.20 | | С | | Q _{SFX_BITDL_14} | Charge to send a bit with downlink receive, 14 dBm | AT\$SB=0,1 | | 0.35 | | С | | Q _{SFX_LFR_14} | Charge to send the longest possible Sigfox frame (12 byte) , 14 dBm | AT\$SF=00112233445566778899aabb | | 0.39 | | С | | Q _{SFX_LFRDL_14} | Charge to send the longest possible
Sigfox frame (12 byte) with downlink
receive, 14 dBm | AT\$SF=00112233445566778899aabb,1 | | 0.46 | | С | | I _{TXMOD0AVG} | Modulated Transmitter Current,
Note 2 | Pout=0 dBm; average | | 19.0 | | mA | | I _{TXMOD14AVG} | Modulated Transmitter Current,
Note 2 | Pout=14 dBm; average | | 49.0 | | mA | If VDD_IO ramps cannot be guaranteed, an external reset circuit is recommended, see the AX8052 Application Note: Power On Reset The output power of the AX–Sigfox can be programmed in 1 dB steps from 0 dBm – 14 dBm. Current consumption values are given for a matching network that is optimized for 14 dBm output. 0 dBm transmission with typically 10 mA can be achieved with other networks that are optimized for 0 dBm operation. ^{3.} Internal 20 MHz iscillator, voltage conditioning and supervisory circuit running. ## **Typical Current Waveform** Figure 3. Typical Current Waveform for a Maximum Length Frame with Downlink Receive at 14 dBm Output Power ## **Battery Life Examples** #### Scenario 1: - CR2032 coin cell battery - One OOB frame transmitter per day at Pout=0 dBm - Device in Sleep - Neglecting battery self discharge | CR2032 capacity | 225 mAh * 3600 s/h | 810 C | |--------------------------|--------------------|------------| | Sleep charge per day | 1.3 μA * 86400 s | 0.11 C/day | | OOB frame transmission | | 0.12 C/day | | Total Charge consumption | | 0.23 C/day | | Battery life | | 9.6 Years | ## Scenario 2: - 2 AAA Alkaline batteries in series - One OOB frame transmitter per day at Pout=14 dBm - Four maximum length frames with downlink receive per day at Pout=14 dBm - Device in Sleep - Neglecting battery self discharge | 2 AAA alkaline capacity | 1500 mAh * 3600 s/h | 5400 C | |----------------------------------|---------------------|------------| | Sleep charge per day | 1.3 μA * 86400 s | 0.11 C/day | | OOB frame transmission | | 0.28 C/day | | Frame transmission with downlink | 4 * 0.46 C/day | 1.84 C/day | | Total Charge consumption | | 2.26 C/day | | Battery life | | 6.5 Years | Table 5. LOGIC | Symbol | Description | Condition | Min | Тур | Max | Units | |-------------------|---|-------------------------|------|------|--------|-------| | Digital Inpu | ts | • | • | | | | | V_{T+} | Schmitt trigger low to high threshold point | VDD_IO = 3.3 V | | 1.55 | | V | | V _{T-} | Schmitt trigger high to low threshold point | | | 1.25 | | V | | V _{IL} | Input voltage, low | | | | 0.8 | V | | V _{IH} | Input voltage, high | | 2.0 | | | V | | V _{IPA} | Input voltage range, GPIO[3:0] | | -0.5 | | VDD_IO | V | | V _{IPBC} | Input voltage range, GPIO[9:4], UARTRX | | -0.5 | | 5.5 | V | | IL | Input leakage current | | -10 | | 10 | μΑ | | R _{PU} | Programmable Pull-Up Resistance | | | 65 | | kΩ | | Digital Outp | outs | | | | | • | | I _{OH} | Output Current, high Ports GPIO[9:0], UARTTX, TXLED, RXLED, TXLED, CPULED | V _{OH} = 2.4 V | 8 | | | mA | | l _{OL} | Output Current, low
GPIO[9:0], UARTTX, TXLED, RXLED, TXLED,
CPULED | V _{OL} = 0.4 V | 8 | | | mA | | loz | Tri-state output leakage current | | -10 | | 10 | μΑ | #### **AC Characteristics** ## Table 6. TCXO REFERENCE INPUT | Symbol | Description | Condition | Min | Тур | Max | Units | |-------------------|----------------|---|-----|-----|-----|-------| | f _{TCXO} | TCXO frequency | A passive network between the TCXO output and the pins CLKP and CLKN is required. | | 48 | | MHz | | | | For detailed TCXO network recommendations depending on the TCXO output swing refer to the AX5043 Application Note: Use with a TCXO Reference Clock. | | | | | | | | For TCXO recommendations see the Ax–Sigfox Application Note: Sigfox Compliant Reference Design | | | | | ## **Table 7. TRANSMITTER** Conditions for transmitter specifications unless otherwise specified with the antenna network from AX–Sigfox Application Note: Sigfox Compliant Reference Design and at 868.130 MHz. | Symbol | Description | Condition | Min | Тур | Max | Units | |----------------------|---|-----------------------|-----|------|-----|-------| | SBR | Signal bit rate | | | 100 | | bps | | PTX _{min} | Lowest Transmitter output power | AT\$CW=868130000,1,0 | | 0 | | dBm | | PTX _{max} | Highest Transmitter output power | AT\$CW=868130000,1,14 | | 14 | | dBm | | PTX _{step} | Programming step size output power | | | 1 | | dB | | dTX _{temp} | Transmitter power variation vs. temperature | -40°C to +85°C | | ±0.5 | | dB | | dTX _{Vdd} | Transmitter power variation vs. VDD_IO | 1.8 to 3.6 V | | ±0.5 | | dB | | PTX _{harm2} | Emission @ 2 nd harmonic | | | -51 | | dBc | | PTX _{harm3} | Emission @ 3 rd harmonic | | | -63 | | | | PTX _{harm4} | Emission @ 4 th harmonic | | | -84 | | | Figure 4. Typical Spectrum with Harmonics at 14 dBm Output Power #### **Table 8. RECEIVER** Conditions for transmitter specifications unless otherwise specified with the antenna network from AX-Sigfox Application Note: Sigfox Compliant Reference Design and at 869.525 MHz. | Symbol | Description | Condition | Min | Тур | Max | Units | |----------------------|----------------------------|---|-----|------|-----|-------| | SBR | Signal bit rate | | | 600 | | bps | | IS _{BER868} | | AT\$SB=x,1, AT\$SF=x,1, AT\$SR
PER < 0.1 | | -126 | | dBm | | BLK ₈₆₈ | Blocking at ±10 MHz offset | Channel/Blocker @ PER = 0.1, wanted signal level is +3 dB above the typical sensitivity, the blocker signal is CW | | 78 | | dB | ## Table 9. ADC / TEMPERATURE SENSOR | Symbol | Description | Condition | Min | Тур | Max | Units | |------------------------|--|-----------|------|-----|--------|-------| | ADCRES | ADC resolution | | | 10 | | Bits | | V _{ADCREF} | ADC reference voltage | | 0.95 | 1 | 1.05 | V | | Z _{ADC00} | Input capacitance | | | | 2.5 | pF | | DNL | Differential nonlinearity | | | ± 1 | | LSB | | INL | Integral nonlinearity | | | ± 1 | | LSB | | OFF | Offset | | | 3 | | LSB | | GAIN_ERR | Gain error | | | 0.8 | | % | | ADC in Differ | rential Mode | | | | | | | V _{ABS_DIFF} | Absolute voltages & common mode voltage in differential mode at each input | | 0 | | VDD_IO | V | | V _{FS_DIFF01} | Full swing input for differential signals | Gain x1 | -500 | | 500 | mV | | V _{FS_DIFF10} | | Gain x10 | -50 | | 50 | mV | | ADC in Single | e Ended Mode | | | | • | • | | V _{MID_SE} | Mid code input voltage in single ended mode | | | 0.5 | | V | | V _{IN_SE00} | Input voltage in single ended mode | | 0 | | VDD_IO | V | | V _{FS_SE01} | Full swing input for single ended signals | Gain x1 | 0 | | 1 | V | | Temperature | Sensor | • | • | | • | • | | T _{RNG} | Temperature range | AT\$T? | -40 | | 85 | °C | | T _{ERR_CAL} | Temperature error | AT\$T? | -2 | | 2 | °C | #### **COMMAND INTERFACE** #### **General Information** The chapter "Command Interface" is a documentation of the AT-Command set for devices which do not have an API-interface. To see whether the device is capable of receiving AT-Commands, please refer to chapter "Part Numbers". If the device has been shipped with the API-Interface, please refer to the AX-Sigfox SOFTWARE MANUAL for an introduction on how to setup a project and how to use the API-Interface. #### Serial Parameters: 9600, 8, N, 1 The AX-Sigfox uses the UART (pins UARTTX, UARTRX) to communicate with a host and uses a bitrate of **9600 baud**, no parity, 8 data bits and one stop bit. #### **Power Modes** #### Standby After Power-Up and after finishing a SIGFOX transmission, AX-Sigfox enters Standby mode. In Standby mode, AX-Sigfox listens on the UART for commands from the host. Also, OOB frames are transmitted whenever the OOB timer fires. To conserve power, the AX-Sigfox can be put into Sleep or turned off (Deep Sleep) completely. ## Sleep The command AT\$P=1 is used to put the AX-Sigfox into Sleep mode. In this mode, only the wakeup timer for out-of-band messages is still running. To wake the AX-Sigfox up from Sleep mode toggle the serial UARTRX pin, e.g. by sending a break (break is an RS232 framing violation, i.e. at least 10 bit durations low). When an Out of Band (OOB) message is due, AX-Sigfox automatically wakes up to transmit the message, and then returns to Sleep mode. #### Deep Sleep In Deep Sleep mode, the AX-Sigfox is completely turned off and only draws negligible leakage current. Deep Sleep mode can be activated with AT\$P=2. To wake-up from Deep Sleep mode, GPIO9 is pulled to GND. When using Deep Sleep mode, keep two things in mind: Everything is turned off, timers are not running at all and all settings will be lost (use **AT\$WR** to save settings to flash before entering Deep Sleep mode). Out-of-band messages will therefore not be sent. The pins states are frozen in Deep Sleep mode. The user must ensure that this will not result in condition which would draw a lot of current. #### **AT Commands** Numerical Syntax ``` \begin{array}{lll} \text{hexdigit} & ::= [0 - 9 A - F a - f] \\ \text{hexnum} & ::= "0x" \text{ hexdigit+} \\ \text{decnum} & ::= "0" \mid [1 - 9] \mid [0 - 9] * \\ \text{octnum} & ::= "0" \mid [0 - 7] + \\ \text{binnum} & ::= "0b" \mid [01] + \\ \text{bit} & ::= [01] \\ \text{optnum} & ::= "-1" \end{array} ``` frame ::= (hexdigit hexdigit)+ uint ::= hexnum | decnum | octnum | binnum uint opt ::= uint | optnum #### Command Syntax A command starts with 'AT' (everything is case sensitive!), continues with the actual command followed by parameters (if any) and ends with any kind of whitespace (space, tab, newline etc.) If incorrect syntax is detected ("parsing error") all input is ignored up until the next whitespace character. Also note that any number can be entered in any format (Hexadecimal, Decimal, Octal and binary) by adding the corresponding prefix ('0x', '0', '0b'). The only exception is the 'Send Frame' command (AT\$SF) which expects a list of hexadecimal digits without any prefix. #### Return Codes A successful command execution is indicated by sending 'OK'. If a command returns a value (e.g. by querying a register) only the value is returned. ## Examples Bold text is sent to AX-Sigfox. #### AT\$I=0 **AXSEM AT Command Interface** Here, we execute command 'I' to query some general information. #### AT\$SF=aabb1234 OK This sends a Sigfox frame containing $\{0x00 : 0x11 : 0x22 : 0x33 : 0x44\}$, then waits for a downlink response telegram, which in this example contains $\{0xAA : 0xBB : 0xCC : 0xDD\}$. ## AT\$CB=0011223344,1 OΚ RX=AA BB CC DD This sends a Sigfox frame containing $\{0xAA:0xBB:0x12:0x34\}$ without waiting for a response telegram. AT\$CB=0xAA,1 OK The 'CB' command sends out a continuous pattern of bits, in this case 0xAA = 0b10101010. **AT\$P=1** OK This transitions the device into sleep mode. Out-of-band transmissions will still be triggered. The UART is powered down. The device can be woken up by a low level on the UART signal, i.e. by sending break. ## **Table 10. COMMANDS** | Command | Name | Description | | | | | |----------------------------|-----------------------------------|---|---|--|--|--| | AT | Dummy Command | Just returns 'OK' and does nothing else. Can be used to check communication. | | | | | | AT\$SB=bit[,bit] | Send Bit | Send a bit status (0 or 1). Optional bit flag indicates if AX–Sigfox should receive a downlink frame. | | | | | | AT\$SF=frame[,bit] | Send Frame | Send payload data, 1 to 12 bytes. Optional bit flag indicates if AX-Sigfox should receive a downlink frame. | | | | | | AT\$SO | Manually send out of band message | Send the out | Send the out-of-band message. | | | | | ATSuint? | Get Register | Query a spe
"Registers" f | Query a specific configuration register's value. See chapter "Registers" for a list of registers. | | | | | ATSuint=uint | Set Register | Change a co | onfiguration regis | ter. | | | | AT\$IF=uint | Set TX Frequency | Set the outp | ut carrier macro | channel for Sigfox frames. | | | | AT\$IF? | Get TX Frequency | Get the curre | Get the currently chosen TX frequency. | | | | | AT\$DR=uint | Set RX Frequency | Set the reception carrier macro channel for Sigfox frames. | | | | | | AT\$DR? | Get RX Frequency | Get the currently chosen RX frequency. | | | | | | AT\$CW=uint,bit[,uint_opt] | Continuous Wave | To run emission tests for Sigfox certification it is necessary to se continuous wave, i.e. just the base frequency without any modution. Parameters: | | | | | | | | Name | Range | Description | | | | | | Frequency | 80000000-
99999999, 0 | Continuous wave frequency in Hz.
Use 868130000 for Sigfox or 0 to
keep previous frequency. | | | | | | Mode | 0, 1 | Enable or disable carrier wave. | | | | | | Power | 0–14 | dBm of signal Default: 14 | | | | AT\$CB=uint_opt,bit | Test Mode: TX constant byte | For emission testing it is useful to send a specific bit pattern. The first parameter specifies the byte to send. Use '-1' for a (pseudo-)random pattern. Parameters: | | | | | | | | Name | Range | Decsription | | | | | | Pattern | 0–255, –1 | Byte to send. Use '-1' for a (pseudo-)random pattern. | | | | | | Mode | 0, 1 | Enable or disable pattern test mode. | | | | AT\$T? | Get Temperature | Measure inte | ernal temperature | e and return it in 1/10 th of a degree | | | | AT\$V? | Get Voltages | Return curre transmission | | oltage measured during the last | | | ## **Table 10. COMMANDS** | Command | Name | Description | | | | |------------|--------------------|---|--|--|--| | AT\$I=uint | Information | Display various product information: 0: Software Name & Version Example Response: AX-Sigfox 1.0.6-ETSI 1: Contact Details Example Response: support@axsem.com 2: Silicon revision lower byte Example Response: 8F 3: Silicon revision upper byte Example Response: 00 4: Major Firmware Version Example Response: 1 5: Minor Firmware Version Example Response: 0 6: Firmware Revision Example Response: 3 7: Firmware Variant (Frequency Band etc. (EU/US)) Example Response: ETSI 8: Firmware VCS Version Example Response: v1.0.2-36 9: SIGFOX Library Version Example Response: DL0-1.4 10: Device ID Example Response: 00012345 11: PAC Example Response: 0123456789ABCDEF | | | | | AT\$P=uint | Set Power Mode | To conserve power, the AX–Sigfox can be put to sleep manually. Depending on power mode, you will be responsible for waking up the AX–Sigfox again! 0: software reset (settings will be reset to values in flash) 1: sleep (send a break to wake up) 2: deep sleep (toggle GPIO9 or RESET_N pin to wake up; the AX–SIgfox is not running and all settings will be reset!) | | | | | AT\$WR | Save Config | Write all settings to flash (RX/TX frequencies, registers) so they survive reset/deep sleep or loss of power. Use AT\$P=0 to reset the AX-Sigfox and load settings from flash. | | | | | AT:Pn? | Get GPIO Pin | Return the setting of the GPIO Pin <i>n</i> ; <i>n</i> can range from 0 to 9. A character string is returned describing the mode of the pin, followed by the actual value. If the pin is configured as analog pin, then the voltage (range 01 V) is returned. The mode characters have the following meaning: Mode Description O Pin drives low 1 Pin drives high 2 Pin is high impedance input U Pin is input with pull-up A Pin is analog input (GPIO pin 03 only) T Pin is driven by clock or DAC (GPIO pin 0 and 4 only) The default mode after exiting reset is U on all GPIO pins. | | | | | AT:Pn=? | Get GPIO Pin Range | Print a list of possible modes for a pin. The table below lists the response. Pin Modes P0 0, 1, Z, U, A, T P1 0, 1, Z, U, A P2 0, 1, Z, U, A P3 0, 1, Z, U, A P4 0, 1, Z, U, T P5 0, 1, Z, U P6 0, 1, Z, U P7 0, 1, Z, U P8 0, 1, Z, U P9 0, 1, Z, U | | | | | AT:Pn=mode | Set GPIO Pin | Set the GPIO pin mode. For a list of the modes see the command AT:Pn? | | | | **Table 10. COMMANDS** | Command | Name | Description | | | | |---------------------------|-----------------------------|---|--|--|--| | AT:ADC Pn[-Pn[(1V 10V)]]? | Get GPIO Pin Analog Voltage | Measure the voltage applied to a GPIO pin. The command also allows measurement of the voltage difference across two GPIO pins. In differential mode, the full scale range may also be specified as 1 V or 10 V. Note however that the pin input voltages must not exceed the range 0VDD_IO. The command returns the result as fraction of the full scale range (1 V if none is specified). The GPIO pins referenced should be initialized to analog mode before issuing this command. | | | | | AT:SPI[(A B C D)]=bytes | SPI Transaction | This command clocks out <i>bytes</i> on the SPI port. The clock frequence is 312.5 kHz. The command returns the bytes read on MISO during our put. Optionally the clocking mode may be specified (default is A): | | | | | | | Mode Clock Inversion Clock Phase | | | | | | | A normal normal B normal alternate C inverted normal D inverted alternate | | | | | | | SEL (GPIOx) MOSI D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ MISO D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \ SCK A C D Note that SEL, if needed, is not generated by this command, and must instead be driven using standard GPIO commands (AT:Pn=0 1). | | | | | AT:CLK=freq,reffreq | Set Clock Generator | Output a square wave on the pin(s) set to T mode. The frequency of the square wave is (freq / 2^{16}) × reffreq. Possible values for reffreq are 20000000, 10000000, 5000000, 2500000, 1250000, 625000, 312500, 156250. Possible values if freq are 065535. | | | | | AT:CLK=OFF | Turn off Clock Generator | Switch off the clock generator | | | | | AT:CLK? | Get Clock Generator | Return the settings of the clock generator. Two numbers are returned, freq and reffreq. | | | | | AT:DAC=value | Set ΣΔ DAC | Output a $\Sigma\Delta$ DAC value on the pin(s) set to T mode. Parameter value may be in the range -3276832767 . The average output voltage is $(1/2 + \text{value} / 2^{17}) \times \text{VDD}$. An external low pass filter is needed to get smooth output voltages. The modulation frequency is 20 MHz. A possible low pass filter choice is a simple RC low pass filter with R = 10 k Ω and C = 1 μ F. | | | | | AT:DAC=OFF | Turn off $\Sigma\Delta$ DAC | Switch off the DAC | | | | | AT:DAC? | Get ΣΔ DAC | Return the DAC value | | | | Table 11. REGISTERS | Number | Name | Description | Default | Range | Units | |--------|-----------------------|--|---------|-------|-------| | 300 | Out Of Band
Period | AX-Sigfox sends periodic static messages to indicate that they are alive. Set to 0 to disable. | 24 | 0–24 | hours | | 302 | Power Level | The output power of the radio. | 14 | 0–14 | dBm | ## **APPLICATION INFORMATION** ## **Typical Application Diagrams** Typical Sigfox Application Diagram Figure 5. Typical Application Diagram For detailed application configuration and BOM see the AX-Sigfox Application Note: Sigfox Compliant Reference Design. #### **QFN40 PACKAGE INFORMATION** #### QFN40 7x5, 0.5P CASE 485EG ISSUE A ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **QFN40 Soldering Profile** Figure 6. QFN40 Soldering Profile Table 12. | Profile Feature | | Pb-Free Process | |--|---------------------------|-----------------| | Average Ramp-Up Rate | | 3°C/s max. | | Preheat Preheat | | | | Temperature Min | T _{sMIN} | 150°C | | Temperature Max | T _{sMAX} | 200°C | | Time (T _{sMIN} to T _{sMAX}) | t _s | 60 – 180 sec | | Time 25°C to Peak Temperature | T _{25°C to Peak} | 8 min max. | | Reflow Phase | | | | Liquidus Temperature | T_L | 217°C | | Time over Liquidus Temperature | t_L | 60 – 150 s | | Peak Temperature | t _p | 260°C | | Time within 5°C of actual Peak Temperature | T_p | 20 – 40 s | | Cooling Phase | | | | Ramp-down rate | | 6°C/s max. | ^{1.} All temperatures refer to the top side of the package, measured on the the package body surface. #### **QFN40 Recommended Pad Layout** 1. PCB land and solder masking recommendations are shown in Figure 7. - A = Clearance from PCB thermal pad to solder mask opening, 0.0635 mm minimum - B = Clearance from edge of PCB thermal pad to PCB land, 0.2 mm minimum - C = Clearance from PCB land edge to solder mask opening to be as tight as possible to ensure that some solder mask remains between PCB pads. - D = PCB land length = QFN solder pad length + 0.1 mm - E = PCB land width = QFN solder pad width + 0.1 mm Figure 7. PCB Land and Solder Mask Recommendations - 2. Thermal vias should be used on the PCB thermal pad (middle ground pad) to improve thermal conductivity from the device to a copper ground plane area on the reverse side of the printed circuit board. The number of vias depends on the package thermal requirements, as determined by thermal simulation or actual testing. - 3. Increasing the number of vias through the printed circuit board will improve the thermal conductivity to the reverse side ground plane and external heat sink. In general, adding more metal through the PC board under the IC will improve operational heat transfer, but will require careful attention to uniform heating of the board during assembly. #### **Assembly Process** Stencil Design & Solder Paste Application - 1. Stainless steel stencils are recommended for solder paste application. - 2. A stencil thickness of 0.125 0.150 mm (5 6 mils) is recommended for screening. - 3. For the PCB thermal pad, solder paste should be printed on the PCB by designing a stencil with an array of smaller openings that sum to 50% of the QFN exposed pad area. Solder paste should be applied through an array of squares (or circles) as shown in Figure 8. - 4. The aperture opening for the signal pads should be between 50–80% of the QFN pad area as shown in Figure 9. - 5. Optionally, for better solder paste release, the aperture walls should be trapezoidal and the corners rounded. - 6. The fine pitch of the IC leads requires accurate alignment of the stencil and the printed circuit board. The stencil and printed circuit assembly should be aligned to within + 1 mil prior to application of the solder paste. - 7. No-clean flux is recommended since flux from underneath the thermal pad will be difficult to clean if water-soluble flux is used. Figure 8. Solder Paste Application on Exposed Pad Figure 9. Solder Paste Application on Pins #### Life Support Applications This product is not designed for use in life support appliances, devices, or in systems where malfunction of this product can reasonably be expected to result in personal injury. ON Semiconductor customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify ON Semiconductor for any damages resulting from such improper use or sale. #### **Device Information** The following device information can be queried using the AT-Commands AT\$I=4, AT\$I=5, AT\$I=6 for the APP version and AT\$I=2, AT\$I=3 for the chip version. **Table 13. DEVICE VERSIONS** | | | APP Version | | Chip Version | | |-----------|--------------------------------|-------------|------|--------------|------| | Product | Part Number | [0] | [1] | [0] | [1] | | AX-SIGFOX | AX-SFEU-1-01-XXXX ¹ | 0x01 | 0x00 | 0x8F | 0x51 | ^{1.} TB05 for Reel 500, TX30 for Reel 3000 reel Sigfox and Sigfox Ready are registered trademarks of Sigfox SARL. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А