

KAMAYA

ELECTRONIC COMPONENTS
CATALOG

Only

Products Guide 2013

Chip product situation for environment

November, 2012

The reduction of the environmental hazardous materials(ex:Halogen,Antimony) of all chip product is promoted in KAMAYA now.

Products	RoHS	Pb free (Pb ≦ 1000ppm)	Halogen free CI or Br≦900ppm & CI+Br≦1500ppm	Antimony free (Sb ₂ O ₃ ≤900ppm)
Chip Resistors				
[General] RMC Series	0	×	0	0
[General] RGC Series	0	×	0	0
[General] RNC Series	0	0	0	0
[High Voltage] RVC Series	0	×	0	0
[High Voltage] RZC Series	0	×	0	0
[Surge] RPC Series	0	×	0	0
[Trimable] FCR Series	0	×	0	0
[Sencing] RLC Series	0	×	0	0
[Sencing] RLS Series	0	×	0	0
[Sencing] RLP · MLP Series	0	0	0	0
[Sencing] RCC Series	0	0	0	0
[Sencing] RHC Series	0	×	0	0
Chip Network				
[Chip Network] RAC Series	0	×	0	0
[Chip Network] RAC168U	0	×	0	0
Chip Fuses				
[Circuit Protection] FCC · FHC Series	0	0	0	0
[Circuit Protection] FCCR Series	0	0	0	0
[Circuit Protection] FMC16 Option code : AB	0	0	0	0
[Circuit Protection] FMC16 Option code : AH	0	0	0	0
[Circuit Protection] FMC10 Option code : AB	0	0	0	0
[Circuit Protection] SBF Series	0	0	0	0
Chip Fusible Resistors				
[Circuit Protection] FRC Series	0	×	0	0
ESD Suppressors				
[Circuit Protection] SPC Series	0	0	0	0
[Circuit Protection] HSPC Series	0	0	0	0
Chip Attenuators				
[High Frequency] RAC101A	0	×	0	0
Chip Thermistors				
[Temperature Compensation] LTC Series	0	0	0	0

<<NOTE>> The threshold in Pb free, Halogen free and Antimony free product shows the content in a homogeneous material.

"O"mean the items are matched the condition. "×"mean the items are not match the condition.

RoHS Directive Compliance & REACH Action

- 1. RoHS Directive Compliance
- (1) All Kamaya products are in compliance with RoHS directive*1.
- (2) The following 6 materials are prohibited by RoHS directive.

-Lead(Pb)

-Hexavalent Chromium

-Cadmium(Cd)

-Polybrominated Bipheuyl(PBB)

-Mercury(Hg)

-Polybrominated Diphenyl Ether(PBDE)

- (3) PbO is content in glass materials of Kamaya products. However, this is exception stated by RoHS directive.
 - =>Directive 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 8 June 2011 7(c)-I

Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectronic devices, or in a glass or ceramic matrix compound.

(4) About shipment product after January,2004 of our product(KAMAYA brand product),we ship it with an article (an electrode plating no lead article) for environment.

2. Kamaya REACH Action

Kamaya produce and develop our products in compliance with REACH*2 which is effective since June 2007.

Please contact Kamaya Sales department about contained material of ${\rm SVHC^{*3}}$ in Kamaya product, which need permission in REACH regulation.

- *1 RoHS Directive(The restriction of the certain hazardous substances in electrical and electronic equipment.)
- *2. REACH (The Regulation for Registration, Evaluation, Authorization, and Restriction of Chemicals)
- *3. SVHC (Substances of Very High Concern)

Substances in REACH regulation that especially affect the global environment and human body.

Please refer to ECHA (European Chemicals Agency) website for detail about SVHC in REACH regulation.

ECHA website :

(http://echa.europa.eu/chem_data/authorisation_process/candidate_list_table_en.asp)

- CONTENTS ----

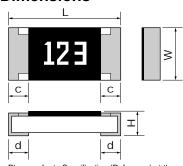
C hip R esistors		
General purpose	NEW NEW	Fixed Thick Film Chip Resistors; Rectangular Type
High Voltage		Fixed Thick Film Chip Resistors; Rectangular Type & High Voltage · · · RVC · · · · · · · · · · · · · · · · · · ·
Surge Sensing	NEW	Fixed Thick Film Chip Resistors; Rectangular Type & Anti Surge · RPC
Chip Network Trimmable & Sensing	NEW	Metal-Plate Chip Resistors; Low Ohm RLP, MLP S Fixed Chip Resistor Networks; Rectangular Type RAC S Fixed Chip Resistor Networks; Rectangular Type RAC168U S Trimmable Chip Resistors; Rectangular Type FCR 10 Fixed Thick Film Chip Resistors; Rectangular Type & High Ohm RHC 10
${f C}$ hip ${f A}$ ttenuators & ${f C}$ hip ${f T}$ hermistors		
High Frequency Temperature Compensation		Chip Attenuators
Chip Fuses Circuit Protection	NEW	Chip Fuses; Rectangular Type FCC, FHC 12 Chip Fuses; Rectangular Type FCCR10 14 Chip Fuses; Rectangular Type/Low-Ohm Fast Acting FMC16 Option Code: AB 15 Chip Fuses; Rectangular Type/In-rush Withstand FMC16 Option Code: AH 15 Chip Fuses; Rectangular Type/Low-Ohm Fast Acting FMC10 Option Code: AB 16 Chip Fuses; Rectangular Type/Slow Brow SBF32 17 Support of Chip Fuse Selection 18
${f C}$ hip ${f F}$ usible ${f R}$ esistors		
Circuit Protection		Chip Fusible Resistors ; Rectangular Type FRC 19
ESD Suppressors Circuit Protection	NEW	ESD Suppressors SPC10 20 ESD Suppressors HSPC16 21
Packaging for SMD		Packaging for Surface Mount Devices
Leaded Resistors Pulse High Voltage Packaging for Leaded Resistors		Fixed Conductive Path Resistors RC1/2U 24 Fixed Carbon Composition Resistors RC 24 Fixed High Voltage Resistors; Precision RH 25 Packaging for Leaded Resistors 25
Capacitors		Multilayer Ceramic Capacitor
SMD Product handling manual (R SMD Product handling manual (R Term Explanation Product Marking Standard Resistance Values and	Recomr Recomr	nended Land Pattern) 30 nended Soldering Condition) 31 32 34 ols 35

RMC

Halogen Free

Antimony Free

●Features


01005 to 2512 inch size and Jumper chip available.

Precise dimension by Laser-scriber method(RMC1/20,RMC1/32).

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Walsin Technology Corporation OEM products (1206 to 0402 inch) are also available.

Dimensions

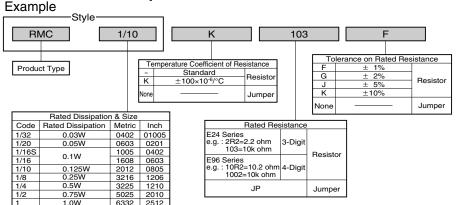
Please refer to Specification (Reference) at the Website for Marking.

Rated resistance value marking is 3-digit on the over coating except RMC1/16S & RMC1/20 & RMC1/32. 4-digit marking is available for F & G tolerance except RMC1/16, RMC1/16S & RMC1/20 & RMC1/32 type.

Unit : mm

Style	Metric	Inch	Product	L	W	Н	С	d	*Unit weight/pc.
RMC1/32	0402	01005	KAMAYA	0.4±0.02	0.2 ±0.02	0.13±0.02	0.08 ±0.03	0.1 ±0.03	0.035mg
RMC1/20	0603	0201	KAMAYA	0.6±0.03	0.3 ±0.03	0.23±0.03	0.1 ±0.05	0.15 ± 0.05	0.16mg
RMC1/16S	1005	0402	KAMAYA Walsin	1.0±0.05	0.5 ±0.05	0.35±0.05	0.2 ±0.1	0.25 +0.05 -0.10	0.6mg
RMC1/16	1608	0603	KAMAYA Walsin	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3 ±0.1	0.3 ±0.1	2mg
RMC1/10	2012	0805	KAMAYA Walsin	2.0±0.1	1.25±0.10	0.55±0.10	0.4 ±0.2	0.4 ±0.2	5mg
DMO4/0	2046	4000	KAMAYA	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5 ±0.25	0.5 ±0.25	0
RMC1/8	3216	1206	WALSIN	3.1±0.1	1.6 ±0.1	0.6 ±0.15	0.45 ±0.20	0.5 ±0.2	9mg
RMC1/4	3225	1210	KAMAYA	3.2±0.15	2.5 ±0.15	0.55±0.15	0.5 ±0.25	0.5 ±0.25	16mg
RMC1/2	5025	2010	KAMAYA	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6 ±0.2	0.6 ±0.2	25mg
RMC1	6332	2512	KAMAYA	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6 ±0.2	0.6 ±0.2	40mg

●Ratir	ngs									'			*V:	alues for reference
Style	Size Metric (Inch)	Rated Dissipation at 70°C	1Ω	100		tance Range		ΜΩ	Tolerance on Rated Resistance	Tempera	ature Coefficient of Resistance 10 ⁻⁶ /°c	Limiting Element Voltage V	Isolation Voltage V	Category Temperature Range °C
RMC1/32	0402 (01005)	0.03 (0.5A)		4.7~9.1	10~91	100~1M		 	F, J	=	+600~-200 ±300 ±200	15		
RMC1/20	0603 (0201)	0.05 (1.0A)	0.47~0.91	3.92 4.02~9.76	10^	~1M	1.1M~10M		J F, J F, G, J	_ 	+1000~+300 +600~-200 +350~-100 ±200	25	50	-55~+125
RMC1/16S	1005 (0402)	0.1 (1.0A)		1~9.76	10~	~1M		1	F, J G, J F F, G, J	– – K –	+500~-200 ±200 ±100 ±200			
RMC1/16	1608 (0603)	0.1 (2.0A)	0.47~0.91	1~9.76		10~10M		11M~22M	K F, G, J G, J F	– – – K	+1,000~+300 +500~-200 ±200 ±100 ±200	50	100	
RMC1/10	2012 (0805)	0.125 (2.0A)	0.27~0.91	1~9.76	10-	~2.2M	2.21M~10M	11M~22M	F, G, J G, J F F, G, J	— — — К	+1,000~+300 +500~-200 ±200 ±100 ±200	150		
RMC1/8	3216 (1206)	0.25 (2.0A)	0.22~0.91	1~9.76		~1M	1.02M~10M	1	K F, G, J G, J F F, G, J	— — — К	+1,000~+300 +500~-200 ±200 ±100 ±200			-55~+155
RMC1/4	3225 (1210)	0.5 (2.0A)	0.2~0.91	1~9.76	10~	~1M	1.02M~10M	11M~24M	J K F, J G, J F F, G, J	- - - K -	+1,000~+300 +500~-200 ±200 ±100 ±200	200	500	
RMC1/2	5025 (2010)	0.75 (2.0A)	0.33~0.91	1~9.76	10~	~1M	1.1M·	~22M	K F, J G, J F	- - - K -	+1,000~+300 +500~-200 ±200 ±100 ±200			
RMC1	6332 (2512)	1.0 (2.0A)	0.33~0.91	1~9.76	10~	~1M	1.1M	~22M	K F, J G, J F	– – – K	+1,000~+300 +500~-200 ±200 ±100 ±200			


Note1. E24 series is available, E96 series is available for tolerance"F"(1%)

Note2. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times (\text{Rated Resistance})}$. (d.c. or a.c. r.m.s. Voltage)

Note3. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Note4. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

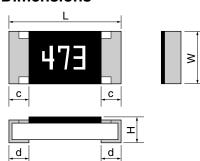
Note5. Jumper: Resistance value is less than 50m ohm.

	TI	Р	
	*Packaging & Sta	ndard Qty. (Mi	n.)
В	Bulk (Loose Package)	1,000pcs.	All Styles
PA	Press-Pocket	20,000pcs.	RMC1/32
PA	Paper Tape (2 mm pitch)	15,000pcs.	RMC1/20
тн	Paper Tape (2 mm pitch)	10,000pcs.	RMC1/16S RMC1/16
TP	Paper Tape	5,000pcs.	RMC1/16 RMC1/10 RMC1/8
TE	Embossed Tape	4,000pcs.	RMC1/4 RMC1/2 RMC1
		25,000pcs.	RMC1/16
BA	Bulk Case	10,000pcs.	RMC1/10
		5,000pcs.	RMC1/8

^{*}Refer to Tape and Packaging information on pages 22 and 23. *Please contact Kamaya sales department for 1mm pitch taping of RMC1/16s, 1/20.

http://www.kamaya.co.jp KAMAYA OHM

Halogen Free


Antimony Free

●Features

Suitable for precision applications

High stabilized characteristics and Performance equivalent to thin film chip resistors. Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Line up, 01005 sizes resistor.

Dimensions

Rated resistance value marking is with 3-digit (E24) or 4-digit (E96) on the over coating. RGC1/16: only 3-digit marking is available.

RGC1/16S,1/20,1/32: only No marking is available

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
▼ RGC1/32	0402	01005	0.4±0.02	0.2 ±0.02	0.13 ±0.02	0.08 ±0.03	0.1 ±0.03	0.035mg
RGC1/20	0603	0201	0.6±0.03	0.3 ±0.03	0.23 ±0.03	0.1 ±0.05	0.15 ±0.05	0.16mg
RGC1/16S	1005	0402	1.0±0.05	0.5 ±0.05	0.35 ±0.05	0.2 ±0.1	0.25 +0.05	0.6mg
RGC1/16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45 ±0.10	0.25 ±0.10	0.3 ±0.1	2mg
RGC1/10	2012	0805	2.0±0.1	1.25 ±0.10	0.6 ±0.1	0.4 ±0.2	0.4 ±0.2	5mg
RGC1/8	3216	1206	3.2±0.15	1.6 ±0.15	0.6 ±0.1	0.5 ±0.25	0.5 ±0.25	9mg

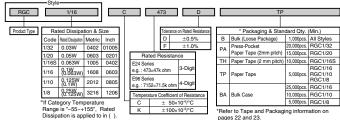
*Values for reference

Unit: mm

●Ratings

Size Metric (Inch)	Rated Dissipation at 70°C W					MΩ	Tolerance on Rated Resistance	Temperat of Ri Code	re Coefficient isistance 10 ⁻⁶ /°c	Limiting Element Voltage V	Isolation Voltage V	Calegory Temperature Range "C
0402 (01005)	0.03			100-	-100k		D(±0.5%)	С	± 50	15	50	-55~+125
0603 (0201)	0.05		51	~976	1k~1M		D(±0.5%)	K C	±100 ± 50	25	50	-55~+125
1005 (0402)	0.063		10~97.6	100	~1M	1.02M~3.3M	D(±0.5%) F(±1%)	C K	±100 ± 50 ±100			-55~+155
1608 (0603)	0.1 *1(0.063)	3.3~9.76	10~97.6	100	~1M	1.02M~3.3M	F(±1%) D(±0.5%) F(±1%)	K C K	±100 ± 50 ±100	50	100	_55~+125
2012 (0805)	0.125 *1(0.1)	3.3~9.76		10~	3.3M		F(±1%) D(±0.5%), F(±1%)	С	± 50	150		*1(-55~+155)
3216 (1206)	0.25 *1(0.125)	3.3~9.76		10~	4.7M		F(±1%) D(±0.5%), F(±1%)	С	± 50	200		
	Metric (Inch) 0402 (01005) 0603 (0201) 1005 (0402) 1608 (0603) 2012 (0805) 3216	Metric ai 70°C (Inch) W (Inch) W (Inch) W (Inch) W (1005) 0.03 (0201) 0.05 (0402) 0.063 (0201) 0.063 (0402) 0.063 (0803) *10.063 (0805) *10.125 (0805) *10.13 (0.125 (0805) *10.13 (0.135 (0.13	Metric at 70°C (Inch) (Metric at 70°C 100	Metric at 76°C 10Ω 100Ω 10Ω 100Ω 100Ω	Metric at 70°C 100 1000 1kD 1	Metric at 70°C (100 1000 140 100 140 100 140 100 140 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Metric at 70°C 10Ω 10Ω 1kΩ 1MΩ Relate Relations Code 10°F W V V V V V V V V V

"Il ICategory I emperiature narige is = 00-+1.02 , natiou biospanion is apprison to act y.


Notel. E24, E86 are available for "F1(15) and F0(10.5%)

Note2. Rated Vottage = _(Flated Dissipation) (Rated Resistance) . (d.c. or a.c. r.m.s. Vottage)

Note3. Limiting Element Vottage can only be applied to resistors when the resistance value is equal to rhigher than the critical resistance value.

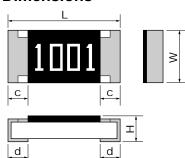
Note4. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Part Number Description

*Refer to Tape and Pa pages 22 and 23.

Please contact Kamaya sales department for 1mm pitch taping of RGC1/16s, 1/20.

Halogen Free


Antimony Free

Pb Free

●Features

Suitable for high precision, higher stability and reliability applications. Please refer to Specification (Reference) at the Website to confirm the specification for more detail. New line up minimum sizes resistor 0201inch.

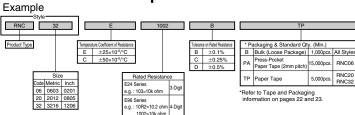
Dimensions

Rated resistance value is maked with 3-digit (E24) or

4-digit (E96) on the over coating.

HINCOO. OHIN INO	NCCC. Only NO marking is available.											
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.				
™RNC 06	0603	0201	0.6±0.03	0.3 ±0.03	0.23±0.03	0.1 ±0.05	0.15±0.05	0.16mg				
RNC20	2012	0805	2.0±0.15	1.25 +0.10	0.6 ±0.1	0.4 ±0.2	0.3 +0.2	5mg				
RNC32	3216	1206	3.1±0.1	1.55 +0.10	0.6 ±0.1	0.45±0.20	0.3 +0.2	9mg				

*Values for reference


Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Resistance Range	Dotad Desistance	0	rature Coefficient Resistance 104°C	Limiting Element Voltage V	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
		0.03	100Ω~1kΩ	B (±0.1%)	Е	±25				
RNC06	0603 (0201)	0.05	47Ω~4.99kΩ	D (±0.5%)	Е	±25	15		50	
	(0201)	0.05	5.1kΩ~10kΩ	D (±0.5%)	С	±50				
			100Ω~130kΩ	B (±0.1%)						
RNC20	IC20 2012 0.1 (0805)		10Ω~130kΩ	C (±0.25%) D (±0.5%)	_	±25	75	E96 E24		-55~+125
			100Ω~180kΩ	B (±0.1%)	Е	123		1	100	
RNC32	RNC32 3216 (1206)	0.125	10Ω~180kΩ	C (±0.25%) D (±0.5%)			150			

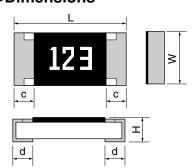
Note1. Rated Voltage = \(\frac{(Fated Dissipation)\times (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)}

Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

RVC

Halogen Free


Antimony Free

●Features

Higher Limiting Element Voltage compared with RMC series.

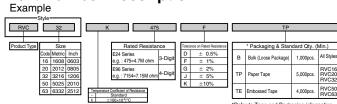
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistance is marked with 3-digit (E24) or 4-digit (E96) on the over coating. RVC16 : only 3-digit marking is available

Unit: mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RVC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3 ±0.1	0.3 ±0.1	2mg
RVC20	2012	0805	2.0±0.1	1.25±0.10	0.55±0.10	0.4 ±0.2	0.4 ±0.2	5mg
RVC32	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5 ±0.25	0.5 ±0.25	9mg
RVC50	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6 ± 0.2	0.6 ± 0.2	25mg
RVC63	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6 ±0.2	0.6 ±0.2	40mg


*Values for reference

Ratings

Style	Size	Rated Dissipation at 70°C	Limiting Element	Combinations of Rated Resistance Range and Tolerance on Rated Resistance				rature Coefficient of Resistance	Isolation Voltage	Category Temperature Range
Style	Metric (Inch)	W W	Voltage V	D(±0.5%)	F(±1%), G(±2%)	J(±5%), K(±10%)	Code	10 ⁶ /°C	Voltage	°C
RVC16	1608	0.1	200	-	470Ω -	~ 10MΩ	K	±100	100	
HVCI6	(0603)	0.1	200	-	$47\Omega \sim 464\Omega$			±200	100	
RVC20	2012	0.25	400	-	100Ω~10ΜΩ	100Ω~51MΩ	K	±100		1
HVC20	(0805)	0.25	400	-	47Ω -	~ 97.6Ω	-	±200		
RVC32	3216	0.05		100kΩ~4.7MΩ	100Ω~10ΜΩ	100Ω~51MΩ	K	±100		
HVU32	(1206)	0.25	500	-	47Ω -	~ 97.6Ω	-	±200		-55~+125
RVC50	5025	0.5	300	-	470Ω~20ΜΩ	470Ω~51MΩ	K	±100	500	
HVC30	(2010)	0.5		-	47Ω -	~ 464Ω	-	±200		
				-	560Ω~20MΩ	560Ω~51MΩ	K	±100		
RVC63	RVC63 6332 1.0 800		800	-	100Ω ~ 549Ω			±200		
	(2312)			-	$-$ 47 $\Omega \sim 97.6\Omega$		-	+500~-200		

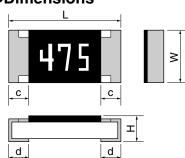
Note1. E24 series is available _E96 series is available for tolerance "D" (0.5%) and "F" (1%)
Note2. Rated Voltage = _(TRated Dissipation):(Rated Resistance) _ (d.c. or a.c. r.m.s. Voltage)
Note3. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.
Note4. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

●Part Number Description

RZC

Halogen Free

Antimony Free


●Features

Suitable for the backlight inverter for large-screen LCD.

Higher Limiting Element Voltage than RVC series.

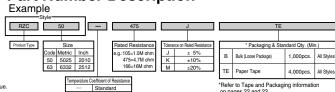
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Bated resistace is marked with 3-digit(E24) on the over coating

tated resistance to marked with a digit(E24) on the even seating.										
Style	Metric	Inch	L	W	Н	С	d	*Unit/weight/pc.		
RZC50	5025	2010	5.0±0.15	2.5±0.15	0.55±0.15	0.5±0.2	0.6±0.2	25mg		
RZC63	6332	2512	6.3±0.15	3.2±0.15	0.55±0.15	0.6±0.2	0.6±0.2	40mg		

*Values for reference


Ratings

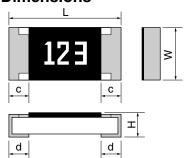
	_	, -								
Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Makere	Anti-Rush Voltage Charactoristics V	Rated Resistance Range	Tolerance on Rated Resistance	Temperature Coefficient of Resistance 104/°C	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
RZC50	5025 (2010)	0.5	1500	3000		J(±5%) K(±10%)	±200	E24	500	-55~+125
RZC63	6332 (2512)	1.0	2000	3000	1.0ΜΩ∼16ΜΩ	M(±20%)	±200	E24	500	-55~+125

Note1. Rated Voltage = \(\)(\text{Fated Dissipation}\) \text{. (Rated Resistance)}\). (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors, when the resistance values is equal to or higher than the critical resistance value.

Note3. Anit-Ravis Voltage Charactoristics: 3,000/f, 1sec \(^{10}\), 'esec'ort'; 1,000.00 times, Room temperature.

http://www.kamaya.co.jp KAMAYA OHM


RPC

Halogen Free

Antimony Free

● Features Higher Anti surge performance compared with RMC series. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

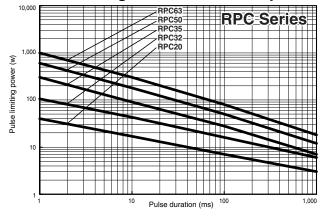
Dimensions

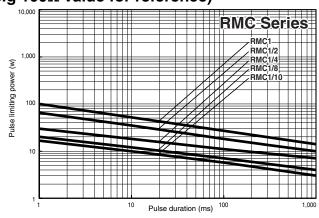
Rated resistance	value is marked	with 2 digit or	the over coating

Unit: mm

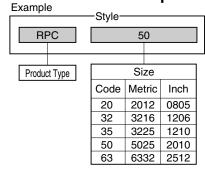
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RPC20	2012	0805	2.0±0.1	1.25 ±0.10	0.55±0.10	0.3±0.2	0.4±0.2	5mg
RPC32	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.3±0.2	0.5±0.25	9mg
RPC35	3225	1210	3.2±0.15	2.5 ±0.15	0.55±0.15	0.3±0.2	0.5±0.25	16mg
RPC50	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.3±0.15	0.6±0.2	25mg
RPC63	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.3±0.15	0.6±0.2	40mg

Ratings


	Style Size Rated Dissipation at 70°C (Inch) W			d Resistance Range and ifficient of Resistance	Tolerance on Rated Resistance	Limiting Element	Preferred Number	Isolation	Category Temperature
Style			Rated Resistance Range			Voltage V	Series for Resistors	Voltage V	Range °C
RPC20	2012 (0805)	0.125				150			
RPC32	3216 (1206)	0.25	0.070 0.040	1,000	J (± 5%)				
RPC35	3225 (1210)	0.5	$\frac{0.27\Omega\sim0.91\Omega}{1\Omega\sim 1\text{M}\Omega}$	±200 ±100	K(±10%)		E24	500	−55~+155
RPC50	5025 (2010)	0.75	1.1M~22MΩ	±200	M(±20%)	200			
RPC63	6332 (2512)	1.0							


Note1. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times \text{(Rated Resistance)}}$. (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors, when the resistance value is equal to or higher than the critical resistance value.


Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

●1Pulse Limiting Power Curve Comparison (e.g 100Ω value for reference)

- * pulse limiting power curve is different from resistance value.
- * Please contact Kamaya sales department for the details.

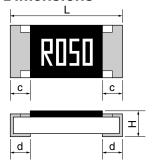
103								
Rated Res	sistance							
E24 Series e.g. : 2R2=2.2 o 103=10k								

J							
Toler	ance on Rated Resistance						
J	± 5%						
K	±10%						
М	±20%						

	IE										
* Packaging & Standard Qty. (Min.)											
В	Bulk (Loose Package)	1,000pcs.	All Styles								
TP	Paper Tape	5,000pcs.	RPC20 RPC32								
TE	Embossed Tape	4,000pcs.	RPC35 RPC50 RPC63								

^{*}Refer to Tape and Packaging information on pages 22 and 23.

≥


RLC

Halogen Free

Antimony Free

Features
 Most suitable for a detection of current in power source circuits, motor circuits, etc.
 Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistance is marked with 4-digit on the over coating. (RLC20~RLC63)

RLC10 : only No marking is available. Please contact KAMAYA for marking of RLC16.

Unit : mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RLC10	1005	0402	1.0±0.05	0.5 ±0.05	0.35±0.05	0.2±0.1	$0.25^{+0.05}_{-0.10}$	0.6mg
RLC16	1608	0603	1.6±0.1	0.8 + 0.15 - 0.05	0.45±0.10	0.3±0.1	0.3 ±0.1	2mg
RLC20	2012	0805	2.0±0.15	1.25 ±0.10	0.6 ±0.1	0.4±0.2	0.4 ±0.2	5mg
RLC32	3216	1206	3.1±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.3 +0.2	9mg
RLC35	3225	1210	3.1±0.2	2.5 ±0.15	0.6 ±0.15	0.5±0.25	0.3 +0.2	16mg
RLC50	5025	2010	5.0±0.2	2.5 ±0.15	0.6 ±0.15	0.6±0.2	0.6 ±0.2	25mg
RLC63	6332	2512	6.3±0.2	3.2 ±0.15	0.6 ±0.15	0.6±0.2	0.6 ±0.2	40mg

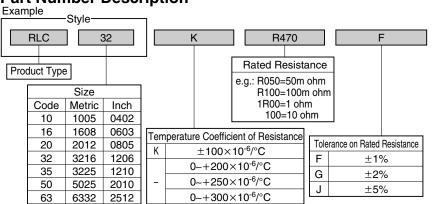
*Values for reference

Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Current Range A	Rated Resistance Range	Combinations of Rat Coefficient of Resistanc Rated Resistance Range			Isolation Voltage V	Category Temperature Range °C
RLC10	1005 (0402)	0.125	0.11~1.11	100mΩ~10Ω	100 m Ω ~220m Ω 240 m Ω ~430m Ω 470 m Ω ~3.3 Ω 3.6 Ω~10 Ω	J F, J F, G, J F, J	0~+300 0~+200 ±100		
RLC16	1608 (0603)	0.25	0.14~1.58	100mΩ~10Ω	100 m Ω ~180m Ω 200 m Ω ~430m Ω 470 m Ω ~3.3 Ω 3.6 Ω~10 Ω	F, G, J F, G, J F, G, J F, J	0~+250 0~+200 ±100	100	
RLC20	2012 (0805)	0.33	0.15~2.56		50mΩ~180mΩ 200mΩ~430mΩ	F, G, J F, G, J	0~+250 0~+200		− 55∼+125
RLC32	3216 (1206)	0.5	0.18~3.16	50mΩ~10Ω	470 m Ω ~3.3 Ω 3.6 Ω ~10 Ω	F, G, J F, J	±100		
RLC35	3225 (1210)	0.66	0.44~3.63		50mΩ~180mΩ	F, G, J	0~+250	500	
RLC50	5025 (2010)	0.75	0.47~3.87	$50m\Omega{\sim}3.3\Omega$	200mΩ~430mΩ 470mΩ~3.3Ω	F, G, J F, G, J	0~+200 ±100		
RLC63	6332 (2512)	1.0	0.55~4.47		47011122~3.312	1, G, J	±100		

Note1. Rated Current = √(Rated Dissipation)/(Rated Resistance) Note2. Rated Voltage = √(Rated Dissipation)×(Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

Note3. Limiting Element Voltage*¹ is set up on RLC16, 20, 32, and rated current is not applied in the range of following rated of Resistance*².


*1 RLC16=1.41V, RLC20=1.58V, RLC32=1.81V *2 RLC16 and RLC20: 7.5Ω<R, RLC32: 6.2Ω<R

The Rated Current in the above range of the Rated Resistance Value is calculated as below way. Rated Current=Limiting Element Voltage/Rated Resistance

Rated Resistance

Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code
50mΩ	R050	82mΩ	R082	200mΩ	R200	430mΩ	R430	750mΩ	R750	1.6Ω	1R60	4.3Ω	4R30
51mΩ	R051	90mΩ	R090	220mΩ	R220	470mΩ	R470	800mΩ	R800	1.8Ω	1R80	4.7Ω	4R70
56mΩ	R056	91mΩ	R091	240mΩ	R240	500mΩ	R500	820mΩ	R820	2.0Ω	2R00	5.1Ω	5R10
60mΩ	R060	100mΩ	R100	250mΩ	R250	510mΩ	R510	900mΩ	R900	2.2Ω	2R20	5.6Ω	5R60
62mΩ	R062	110mΩ	R110	270mΩ	R270	560mΩ	R560	910mΩ	R910	2.4Ω	2R40	6.2Ω	6R20
65mΩ	R065	120mΩ	R120	300mΩ	R300	600mΩ	R600	1.0Ω	1R00	2.7Ω	2R70	6.8Ω	6R80
68mΩ	R068	130mΩ	R130	330mΩ	R330	620mΩ	R620	1.1Ω	1R10	3.0Ω	3R00	7.5Ω	7R50
70mΩ	R070	150mΩ	R150	360mΩ	R360	650mΩ	R650	1.2Ω	1R20	3.3Ω	3R30	8.2Ω	8R20
75mΩ	R075	160mΩ	R160	390mΩ	R390	680mΩ	R680	1.3Ω	1R30	3.6Ω	3R60	9.1Ω	9R10
80mΩ	R080	180mΩ	R180	400mΩ	R400	700mΩ	R700	1.5Ω	1R50	3.9Ω	3R90	10Ω	100
Note3. Other	nominal re	esistances va	lues are als	so available,	please con	tact KAMAYA	for further	information.		-			

Part Number Description

TP										
* Packaging & Stan	dard Qty. (N	lin.)								
Bulk (Loose Package)	1,000pcs.	All Styles								
Paper Tape(2mm pitch)	10,000pcs.	RLC10								
Paper Tape	5,000pcs.	RLC16 RLC20 RLC32								
Embossed Tape	4,000pcs.	RLC35 RLC50 RLC63								
	* Packaging & Stan Bulk (Loose Package) Paper Tape(2mm pitch) Paper Tape	* Packaging & Standard Qty. (N Bulk (Loose Package) 1,000pcs. Paper Tape(2mm pitch) 10,000pcs. Paper Tape 5,000pcs.								

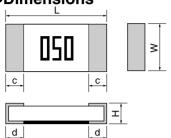
*Refer to Tape and Packaging information on pages 22 and 23.

http://www.kamaya.co.jp KAMAYA OHM

Halogen Free

Antimony Free

Pb Free


Peatures

New lineup, 0201 & 1206 Size, Lower than 50mΩ.

Suitable for current sensing of small mobile devices.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Resistance value is marking on surface

Please refer to Specification (Reference) on kamaya website. Please contact Kamaya Sales Dept. for marking of RCC16.

RCC10 & RCC06 is no marking.

Unit : mm

Style	Metric	Inch	Rated Resistance	L	W	Н	С	d	*Unit weight/pc.	
™ RCC06	0603	0201	All Resistance	0.6 ± 0.03	0.3 ±0.03	0.23 + 0.03	0.15 + 0.05	0.15 ± 0.05	0.16mg	
RCC10	1005	0402	All Resistance	1.0±0.05	0.5 ±0.05	0.35 + 0.05	0.25 + 0.05	0.25 + 0.05	0.6mg	
RCC16	1600	1608 0603	20mΩ ≤ R	1.6±0.1	0.8 + 0.15	0.5 ±0.10	0.3 ±0.1	0.3 ±0.1	2mg	
HCC10	1000	0003	R > 20mΩ	1.0±0.1	0.0 - 0.05	0.5 ±0.10	0.5 ±0.1	0.55 ± 0.1	zilig	
RCC20	2012	0805	20mΩ ≤ R	2.0+0.15	1.25 +0.10	0.6 +0.10	0.4 ±0.2	0.4 ±0.2	5mg	
HCC20	2012	012 0805	R > 20mΩ	2.0±0.13	1.23 ±0.10	0.0 ±0.10	0.4 ±0.2	0.6 ±0.2		
MBD RCC32	3216	1206	All Resistance	3.1±0.2	1.6 ±0.15	0.6 ±0.10	0.5 ±0.25	0.5 ±0.25	9mg	

*Values for reference

Ratings

Style	Size Metric	Rated Dissipation Rated Current at 70°C Range		remperature Coefficient of Resistance			Isolation Voltage	Category Temperature Range
	(Inch)	W	A	Range	of Resistance 10 ⁻⁸ /°C	Rated Resistance	٧	°C
RCC06	0603(0201)	0.1	1.0~2.23	$20m\Omega \sim 100m\Omega$	0~+500	J (±5%)	50	
RCC10	1005	0.405	1.11~2.23	$25m\Omega \sim 50m\Omega$	0~+350			
RCC10	(0402)	0.125	1.11~2.23	$51m\Omega \sim 100m\Omega$	±150			
				$10m\Omega \sim 30m\Omega$	0~+350		100	
RCC16	1608	0.25	1.58~5.00	$33m\Omega \sim 50m\Omega$	0~+250	F (±1%)		55 1405
	(0603)			$51m\Omega \sim 100m\Omega$	±150	J (±5%)		−55~+125
RCC20	2012	0.33	2.56~5.74	$10m\Omega \sim 27m\Omega$	0~+250	0 (=0/0)		
HCC20	(0805)	0.33	2.30~3.74	$30m\Omega \sim 50m\Omega$	±150		500	
RCC32	3216	0.5	2.23~5.00	$20m\Omega \sim 33m\Omega$	0~+250		500	
noC32	(1206)	0.5	2.23~5.00	$36m\Omega\sim 100m\Omega$	±100			

Note1. Rated Current = $\sqrt{\text{(Rated Dissipation)/(Rated Resistance)}}$ Note2. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times (\text{Rated Resistance)}}$. (d.c. or a.c. r.m.s. Voltage)

Part Number Description

Example

	IP								
	* Packaging & St	andard Qty. (Mi	n.)						
В	Bulk (Loose Package)	1,000pcs.	All style						
PA	Press-Pocket Paper Tape (2mm pitch)	15,000pcs.	RCC06						
TH	Paper Tape (2mm pitch)	10,000pcs.	RCC10						
TP	Paper Tape	5,000pcs.	RCC16 RCC20 RCC32						

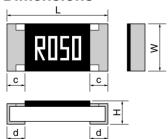
Precautions of use

- Resistive element is on bottom surface.
 Please note for inspection of parts existence & nonexistence, inversion mounting by
- Inspection machine.
 Resistance value will be changed by soldering condition.
 Please design products in consideration of this change of resistance value.

Rated Resistance

Tiut											
Resistance	Code	Mark	F	Resistance	Code	Mark		Resistance	Code	Ma	
10mΩ	R010	010	[39mΩ	R039	039	l	68mΩ	R068	06	
15mΩ	R015	015		40mΩ	R040	040	ı	70mΩ	R070	07	
20mΩ	R020	020	Ŀ	43 m Ω	R043	043	ı	75mΩ	R075	07	
22mΩ	R022	022	ŀ	47mΩ	R047	047	l	80mΩ	R080	30	
24mΩ	R024	024		50mΩ	R050	050	ı	82mΩ	R082	30	
25mΩ	R025	025	1	51mΩ	R051	051	l	90mΩ	R090	= 9	
27mΩ	R027	027		56mΩ	R056	056	l	91mΩ	R091	09	
30mΩ	R030	030		60mΩ	R060	060	ı	100mΩ	R100	R.	
33mΩ	R033	033	П	62mΩ	R062	062	l				
36mΩ	R036	036		65mΩ	R065	065	ı				

Halogen Free


Please contact Kamaya Sales Dept. for any other resistance values.

RLS

Suitable for current detection of high-precision circuits.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistance value is marked with 4-digit on the over coating.

Antimony Free

Alted resistance value is marked with 4-digit on the over coating. Unit								
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RLS50	5025	2010	5.0±0.2	2.5±0.15	0.6±0.15	0.6 ± 0.2	0.6±0.2	25mg
RLS63	6332	2512	6.3±0.2	3.2±0.15	0.6±0.15	0.6 ± 0.2	0.6±0.2	40mg

*Values for reference

Ratings

	_		, -						
	Style Size Metric (Inch)		Rated Dissipation at 70°C	Rated Current Range		ed Resistance Range and efficient of Resistance	Tolerance on	Maltana	Category Temperature Range °C
			W	A A	Rated Resistance Range	Temperature Coefficient of Resistance 10 ⁻⁶ / ^o C	Rated Resistance		
Г	RLS50	5025 (2010)	0.75	1.93~6.12	20mΩ~ 33mΩ	0~+350	F(±1%)	500	-55~+125
	RLS63	6332 (2512)	1.0	2.23~7.07	$36m\Omega \sim 47m\Omega$ $50m\Omega \sim 200m\Omega$	0~+200 0~+150	G(±2%) J(±5%)	500	-55~+125

Part Number Description

Example

R050		
Rated F	tesistance	
e.g.: R050=	50m ohm	
R100=	100m ohm	

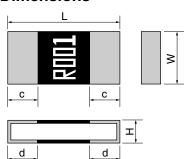
F					
Tolera	nce on Rated Resistance				
F	±1%				
G	±2%				
J	±5%				

Г	TE							
Ξ	1							
Ŀ	Pac	kaging & Standard	Qty. (Min.)					
l	В	Bulk (Loose Package)	1,000pcs.					
ľ	TE	Paper Tape	4,000pcs.					

*Refer to Tape and Packaging information on pages 22and 23.

Halogen Free

Antimony Free


Pb Free

•Features New lineup, 1mΩ to 5mΩ,10mΩ,15mΩ.

Suitable for current sensing of battery pack.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

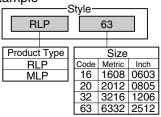
Resistance value of RLP series are marked like below.
The resistance value of RLP63 & MLP63 are marked with 4 charactors on the overcoating.
The resistance value of RLP20 & RLP32 are marked with "2 numbers" & "_" on the overcoating.

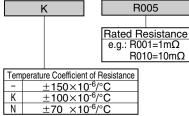
Please contact KAMAYA for marking of RLP16.

Unit: mm

Style	Metric	Inch	Rated Resistance	L	W	Н	С	d	*Unit weight/pc.
RLP16	1608	0603	10mΩ	1.6±0.1	0.8 ±0.1	0.3 ±0.1	0.2 ±0.1	0.3 ±0.1	2mg
MW RLP20	2012	0805	10mΩ	2.0±0.15	1.25±0.15	0.22±0.10	0.3 ±0.1	0.47±0.20	3mg
			1mΩ		1.6 ±0.15	0.32±0.15	1.1 ±0.25	1.1 ±0.25	12mg
			2mΩ			0.32 ± 0.15	0.5 ± 0.25	0.5 ±0.25	11mg
MBW RLP32	RLP32 3216	1206	5mΩ	3.2±0.15		0.35±0.10	1.0 ±0.25	1.0 ±0.25	11mg
			10mΩ			0.28±0.10	0.5 ±0.25	0.5 ±0.25	9mg
			15mΩ			0.22±0.10	0.5 ±0.25		6mg
			1mΩ		3.2 ± 0.25	0.38±0.15	2.2 ± 0.25	2.2 ±0.25	50mg
RLP63			5mΩ			0.34±0.15	1.95±0.25	1.95±0.25	43mg
nLF03	6332	2 2512	10mΩ	6.3±0.25		0.23±0.15	1.75±0.25	1.75±0.25	30mg
	0332	2512	15mΩ	6.3±0.25	3.1 ±0.25	0.23 ± 0.15	0.95±0.25	0.95±0.25	26mg
MLP63			5mΩ			0.51±0.15	1.1 ±0.25	1.1 ±0.25	64mg
WILFOS			10mΩ			0.35±0.15	0.5 ±0.25	0.5 ±0.25	41mg

*Values for reference


Ratings


	Size	Rated Dissipation	Rated Current	Combination of Rated Temperature Coef	Resistance F	Range and istance	Tolerance on	Isolation	Category Temperature
Style	Metric (Inch)	at 70°C W	Range A	Rated Resistance Range	Temperature of Res	Coefficient istance	Rated Resistance	Voltage V	Range °C
RLP16	1608 (0603)	0.33	5.7	10mΩ	K N	±100 ±70			
RLP20	2012 (0805)	0.5	7.0	10mΩ	K N	±100 ±70			
	3216	1	31.6	1mΩ	- K	±150 ±100			
RLP32	(1206)	'	22.3, 14.1, 10, 8.1	2mΩ, $5mΩ$, $10mΩ$, $15mΩ$	K N	±100 ±70	F(±1%) J(±5%)	100	−55~+155
		2	44.7	1mΩ	- N	±150 ±70			
RLP63	6332	1	14.1, 10, 8.1	5m Ω , 10m Ω , 15m Ω	К	±100			
MLP63	(2512)	2	20.0, 14.1	5mΩ, 10mΩ	N K	±70 ±100			
IVILEUS		2	20.0, 14.1	311122, 1011122	N	±70			

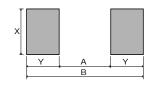
Note1. Rated Current = $\sqrt{(\text{Rated Dissipation})/(\text{Rated Resistance})}$ Note2. Rated Voltage = $\sqrt{(\text{Rated Dissipation}) \times (\text{Rated Resistance})}$. (d.c. or a.c. r.m.s. Voltage) Note3. Please contact Kamaya Sales Dept. for any other resistance values.

Part Number Description

Example

F					
Tolerance	e on Rated Resistance				
F	±1%				
J	±5%				

	TE								
* P	ackaging & Sta								
ТР	Paper Tape	5,000pcs.	RLP16 RLP20 RLP32						
TE	Embossed Tape	4,000pcs.	RLP63 MLP63						


^{*}Refer to Tape and Packaging information on page 22 and 23.

Rated Resistance

Recommended land Pattern

Unit: mm

Style	Resistance	Marking
RLP16	10mΩ	No Marking
RLP20	10mΩ	<u>10</u>
	1mΩ	<u>01</u>
	2mΩ	<u>02</u>
RLP32	5mΩ	<u>05</u>
	10mΩ	<u>10</u>
	15mΩ	<u>15</u>
	1mΩ	R001
BLP63	5mΩ	R005
HLP63	10mΩ	R010
	15mΩ	R015
MUDGO	5mΩ	R005
MLP63	10mΩ	R010

Style	Metric	Inch	Rated Resistance	Α	В	Χ	Υ
RLP16	1608	0603	10mΩ	1.0	2.2	0.8	0.6
RLP20	2012	0805	10mΩ	0.8	2.7	1.35	0.95
			1mΩ	1.0			1.45
			2mΩ	2.1			0.9
RLP32	3216	1206	5mΩ	1.4	3.9	1.7	1.25
			10mΩ	2.1			0.9
			15mΩ	2.1			0.9
			1mΩ	2.0			2.8
DI DOO			5mΩ	2.4			2.6
RLP63	6332	2512	10mΩ		7.6	3.5	
1	0332	2512	15mΩ	4.0	7.6	3.5	4.0
MLP63			5mΩ	4.0			1.8
IVILP63			10mΩ				

*Values for reference

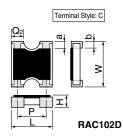
Precautions of use

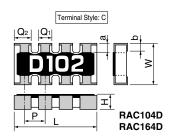
Resistance value will be changed by soldering condition.

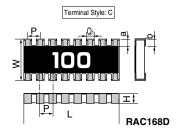
Please design products in consideration of this change of resistance value.

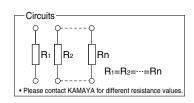
http://www.kamaya.co.jp KAMAYA OHM

RAC


Halogen Free


Antimony Free


● Features


High-density SMD packaging contributes higher productivity and reduces assembly costs. Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Walsin Technology Corporation OEM products are also available.

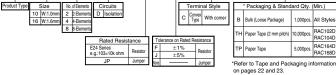
Dimensions

Note. Please contact KAMAYA for the detail of marking on the over coating

Total Fledge Contact to the Tribe and an internal grant the Over Codaing.											
Style	Terminal Style	Product	L	W	Н	Q ₁	*Q2	а	b	*P	*Unit weight/pc.
RAC102D	С	KAMAYA	1.0±0.05	1.0±0.05	0.35±0.05	_	0.33±0.10	0.15±0.10	$0.25^{+0.05}_{-0.10}$	0.65	1.1mg
NAC 102D	•	WALSIN	1.0±0.1	1.0±0.1	0.35±0.10		0.34±0.05	0.2 ±0.15	0.25±0.17	0.03	1.11119
RAC104D	04D C	KAMAYA	2.0±0.1	1.0±0.1	0.35±0.05	0.35±0.1	0.45±0.10	0.15±0.10	0.25±0.10	0.5	2.1mg
HAC 104D	C	WALSIN	2.0±0.1	1.0±0.1	0.45±0.10	0.3 ±0.05	0.4 ±0.1	0.2 ±0.1	0.25±0.10	0.5	2.11119
RAC164D	С	KAMAYA	3.2±0.1	1.6±0.1	0.5 ±0.1	0.4 ±0.15	0.6 ±0.15	0.3 ±0.2	0.25±0.15	0.8	7mg
HAC 104D	ا ر	WALSIN	3.2±0.1	1.6±0.1	0.5 ±0.1	0.4 ±0.1	0.6 ±0.1	0.3 ±0.1	0.3 ±0.2	0.6	/ / / /
RAC168D	C	WALSIN	3.8±0.1	1.6±0.1	0.45±0.1	0.3 ±0.1	-	0.3 ±0.1	0.3 ±0.1	0.5	8.3mg

*Values for reference

All Style 10,000pcs. RAC102E RAC104E


Ratings

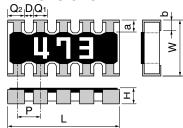
Style	Rated Dis		Rated Current of Jumper Range Range		Tolerance on	of Darietanea	Limiting Element Preferred Number Voltage Series for		Isolation Voltage	Category Temperature Range
	W/Element	W/pc.	A	Hange	Rated Resistance	10 ⁴ /°C	٧	Resistors	V	°C
RAC102D		0.125			W - 50()		25		50	
RAC104D		0.25			J(±5%)		25		50	
RAC164D	0.063	0.25	1.0	10Ω~1MΩ	F(±1%)J(±5%)	±200	50	E24	100	-55~+125
RAC168D		0.25			J(±5%)		25			

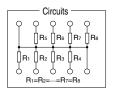
Note1. Rated Voltage = \(\preceq\)(Rated Dissipation) \(\times(Rated Resistance)\). (d.c. or a.c. r.m.s. Voltage)
Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value Note3. Orlitical Resistance Value and Voltage.

●Part Number Description

RAC168U

Halogen Free


Antimony Free


Features

Highly suitable for the purposes of pull-up and pull-down.

Easy to handle because of no specified direction for mounting due to the symmetrical position of common terminals. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Application Examples

- · Making the parallel 8-Elements resister for pull-up / pull-down into one chip.
- Ideal for high density SMT applications as direct mounting on the bus line is possible.

Pated resistance is marked with 2 digit on the over coating

nateu tesis	nated resistance is marked with 5-digit off the over coating.										
Style	Terminal Style	L	W	Н	D	Q ₁	* Q 2	а	b	*P	*Unit weight/pc.
RAC168U	С	3.2±0.2	1.6±0.1	0.5±0.1	0.32±0.10	0.32±0.10	0.53	0.3 ±0.2	0.3±0.15	0.64	7.6mg

*Values for reference

Ratings

ı									
	Style	Rated Dissipation at 70°C W	Rated Resistance Range	Tolerance on Rated Resistance	Temperature Coefficient of Resistance 10 ⁻⁶ /°C	Limiting Element Voltage V	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range *C
	RAC168U	0.063	10Ω~18Ω	J(±5%)	±250	25	F24	100	-55~+125
	DMU108U	0.063	20Ω~1ΜΩ	J(±5%)	±200	25	E24	100	-35~+125

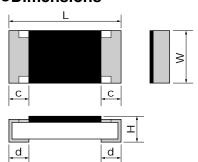
Note 1. Rated Voltage = \(\sqrt{Rated Dissipation}\) \(\sqrt{Rated Resistance}\). (d.c. or a.c.r.m.s. Voltage)

Note 2. Limiting Element Voltage can only be applied to resistors

when the resistance value is equal to or higher than the critical resistance value.

Note 3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage

FCR


Halogen Free

Antimony Free

● Features Trimmable device and replaceable with various resistors.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCR1/16	1608	0603	1.6±0.1	0.8 +0.15 -0.10	0.45±0.10	0.3±0.1	0.3±0.1	2mg
FCR1/10	2012	0805	2.0±0.1	1.25 ±0.10	0.55±0.10	0.4±0.2	0.4±0.2	5mg
FCR1/8	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5±0.25	0.5±0.25	9mg
FCR1/4	3225	1210	3.2±0.15	2.5 ±0.15	0.55±0.15	0.5±0.25	0.5±0.25	16mg
FCR1/2	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6±0.2	0.6±0.2	25mg
FCR1	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6±0.2	0.6±0.2	40mg

*Values for reference

Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W		ted Resistance Range and refficient of Resistance Temperature Coefficient of Resistance 10 ⁴ /°C	Tolerance on Rated Resistance	Limiting Element Voltage V	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
FCR1/16	1608 (0603)	0.063	10Ω~4.7MΩ	±200		50		100	
FCR1/10	2012 (0805)	0.1		+500~-200 ±200		150		500	-55~+125
FCR1/8	3216 (1206)	0.125			L (±15%)				
FCR1/4	3225 (1210)	0.25	1Ω~9.1Ω 10Ω~4.7MΩ		-(0~-30%)	200	E24		
FCR1/2	5025 (2010)	0.5							
FCR1	6332 (2512)	1.0							

Part Number Description

FCR		1/4			471			Ļ	
_		_							
Product Type	F	Rated Dissipa	ation &	Size	ı	To	lerance on Rati	ed Resistan	ce
	Code	Rated Dissipation	Metric	Inch	Ш		- 3	8%	1
	1/16	0.063W	1608	0603	Ш	L		:15%	_
	1/10	0.1W	2012	0805	Ш				
	1/8	0.125W	3216	1206	Ш	Doto	d Resista	2000	
	1/4	0.25W	3225	1210	ΙL	E24 S		IIICe	
	1/2	0.5W	5025	2010	1		471=470	ohm	
	1	1.0W	6332	2512	l	6.g	471-470	OIIIII	

			TE	
_				
ance		* Packaging & S	tandard Qty. (N	lin.)
	В	Bulk (Loose Package)	1,000pcs.	All Styles
	TP	Paper Tape	5,000pcs.	FCR1/16 FCR1/10 FCR1/8
	TE	Embossed Tape	4,000pcs.	FCR1/4 FCR1/2 FCR1

*Refer to Tape and Packaging information on pages 22 and 23.

Note1. Rated Voltage = \((Rated Dissipation) \times (Rated Resistance) \), (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Note4. T.C.R.: 100:n16\(^{\times C} \) (10 ohm-114 ohin) is available on your request.

Note5. The indicated values of Ratings are in the case without trimming.

RHC

Halogen Free

Antimony Free

● Features Suitable for compact instrumentation, infrared rays, sensors, etc. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

d

								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RHC16	1608	0603	1.6±0.1	0.8 +0.15	0.45±0.10	0.3±0.1	0.3±0.1	2mg
RHC20	2012	0805	2.0±0.1	1.25 ±0.10	0.55±0.10	0.4±0.2	0.4±0.2	5mg

*Values for reference

Ratings

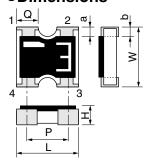
_d

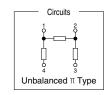
	•	,						
Style	Size Metric (Inch)	Rated Voltage V	Rated Resistance Range	Tolerance on Rated Resistance	Temperature Coefficient of Resistance 10 ⁶ /°C	Preferred Number series for resistors		Category Temperature Range °C
			$100M\Omega\sim270M\Omega$	J (± 5%)				
Bulgue	1608	1608	$100MΩ \sim 4GΩ$	K (±10%)	0~-2.000			-55~+155
RHC16	(0603)	15	$100M\Omega \sim 150G\Omega$	M (±20%) N (±30%) H (±50%)	0~-2,000	E12	100	-55~+155
		"	$100M\Omega \sim 1G\Omega$	J (± 5%) K (±10%)]		
RHC20	2012 (0805)		100MΩ \sim 10GΩ	M (±20%) N (±30%)	±2,000			-55~+125
			100GΩ ~ 150GΩ	H (±50%)	±4,000			

75	G0
Rated F	lesistance
e.g.: 100M=	:100M ohm
1G00=	:1G ohm
10G0=	:10G ohm
100G=	100G ohm

	M	l	TP							
Toleran	nce on Rated Resistance		* Pa	ackaging & Standard	Qty. (Min.)					
J	± 5%		В	Bulk (Loose Package)	1,000pcs.					
K	±10%		TP	Paper Tape	5,000pcs.					
М	±20%	l	*Refe	er to Tape and Pa	ckaging					
N	±30%	l	information on pages 22 and 23.							
н	+50%									

RAC101A


Halogen Free


Antimony Free

●Features

Suitable for use at DC and up to UHF band frequencies. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

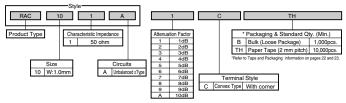
Dimensions

									OHIL HIHI
Style	Terminal Style	L	W	Н	Q	а	b	Р	*Unit weight/pc.
RAC101A	С	1.0±0.1	1.0 +0.10	0.35±0.1	0.33±0.10	0.15±0.10	0.25±0.10	0.65±0.10	1.1mg

*Values for reference

Dot mark on Termination 1 Attenuation factor on Termination 2 to 3

Ratings


Style	Characteristic Impedance	Attenuati symbol	on Factor dB	Tolerance on Attenuation Factor dB	Voltage Standing Wave Ratio	Frequency Range	Rated Input Power mW/package	Category Temperature Range °C
		1	1			DC ⊴f ≤3GHz		
		2	2		1.2max.		100	
		3	3	±0.3				-40~+125
		4	4					
		5	5					
RAC101A	50 ohm	6	6					
		7	7					
		8	8	±0.4				
		9	9					
		Α	10					

Note. The following information is available.

1. Test methods for Attenuation Factor and VSWR characteristics

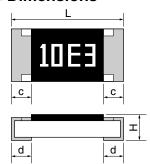
Part Number Description

Example

LTC

Halogen Free

Antimony Free


●Features

Linearity of resistance change in wide temperature range.

Suitable for temperature compensation, temperature sensing and controling, and circuit protection applications.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail

Dimensions

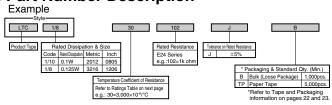
Rated resistance and T.C.R. value are marked with 4-digit on the over coating.

e.g. 10E3··· 10:1,000×10⁻⁶/°C

E3: 1.5k ohm

Please contact KAMAYA Sales department for further information.

Unit: mm


Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
LTC1/10	2012	0805	2.0±0.15	1.25 +0.10	0.6±0.1	0.4 ±0.2	0.3 +0.2	5mg
LTC1/8	3216	1206	3.1±0.1	1.55±0.10	0.6±0.1	0.45±0.20	0.3 +0.2	9mg

*Values for reference

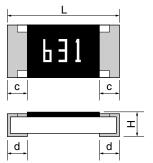
Ratings

Temperature Coefficient	of Resistance	Resistance Temperature	Rated Resist (Rated Dissip	ance Range ation at 70°C)	Tolerance on	Preferred Number	Isolation	Category Temperature
10 ⁻⁶ /°C	Code	Coefficient Tolerance	LTC1/10 (0.1W)	LTC1/8 (0.125W)	Rated Resistance	Series for Resistors	Voltage V	Range °C
500	05	±100×10 ⁻⁶ /°C	100 ohm-5.1k ohm	100 ohm- 10k ohm				
800	08	±150×10 ⁻⁶ /°C	100 ohm-5.1k ohm	100 ohm- 10k ohm	1			
1,000	10	450/	100 ohm-5.1k ohm	100 ohm- 10k ohm	1			
1,500	15	±15%	100 ohm-3.3k ohm	100 ohm-4.7k ohm	1			
2,000	20		100 ohm-3.3k ohm	100 ohm-4.7k ohm	1			
2,400	24	1	100 ohm-1.6k ohm	100 ohm-2.2k ohm	1			
2,800	28	1	100 ohm-3.3k ohm	100 ohm-3.6k ohm	J(±5%)	E24	100	-40-+125
3,000	30	1	100 ohm-3.3k ohm	100 ohm-3.6k ohm	1			
3,300	33	±10%	100 ohm-3.3k ohm	100 ohm-3.6k ohm	1			
3,600	36	1	51 ohm- 910 ohm	51 ohm-1.2k ohm	1			
3,900	39	1	51 ohm- 560 ohm	51 ohm- 910 ohm	1			1
4,200	42	1	33 ohm- 360 ohm	33 ohm- 470 ohm	1			1
4,500	45	1	33 ohm- 200 ohm	33 ohm- 180 ohm	1			

Note1. Rated Voltage = \(\sqrt{Rated Disspation} \) \(\text{X} \) (Rated Disspation) \(\text{Rated Resistance} \) (d.c. or a.c. r.m.s. Voltage) \(\text{Note2}. Listed above will be made by order. Please contact KAMAYA for further information.

FCC,FHC

Halogen Free


Antimony Free

Pb Free

Fast-Atcting Type. Suitable for over-current protection of the circuit of miniature portable equipment.
Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc.
We can provide Application Guide for FCC,FHC selection.
Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Certified UL, c-UL. File No.: E176847

Dimensions

Current value is marked on the cover coating.

Please refer to Ratings table as below.

■Ratings/O	ption Cod	le: AD, A	AB, AA					Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCC10	1005	0402	1.0±0.05	0.5 ±0.05	0.4 ±0.05	0.2±0.1	0.25±0.10	0.8mg
FHC10	1005	0402	1.0±0.05	0.5 ±0.05	0.4 ±0.05	0.2±0.1	0.25±0.10	U.only
FCC16	1608	0603	1.6±0.1	0.8 +0.15	0.45±0.10	0.3±0.15	0.3 ±0.1	2mg
FHC16	1000	0003	1.6±0.1	U.O _0.05	0.45±0.10	0.5±0.15	0.5 ±0.1	Zilig
FCC20	2012	0805	2.0±0.1	1.25±0.10	0.6 ±0.1	0.4±0.2	0.4 ±0.2	6ma
FHC20	2012	0005	2.0±0.1	1.25±0.10	0.6 ±0.1	0.4±0.2	0.4 ±0.2	6mg
FCC32	2016	1206	3.2±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.5 10.05	10mg
FHC32	3216	1200	3.2±0.2	1.6 ±0.15	0.65±0.10	0.5±0.25	0.5 ±0.25	11mg

■Ratings/Option Code : LB

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCC10	1005	0402	1.0±0.05	0.5 ±0.05	0.35 Max.	0.2±0.1	0.25±0.10	0.6mg

● Ratings/Option Code: AD (Fast-Acting type)

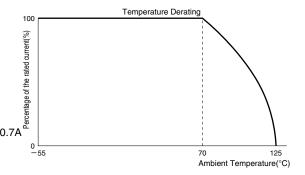
Si	ize	Ctula	Rate	ed Current	Internal Resistance	NAI-	Interrupting Pating	Time/Current Characteristics	Working Temperature Range		
Metric	Inch	Style	Code	А	m ohm max.	Mark	Interrupting Rating	Time/Guitent Gharactenstics	°C		
			151	0.15	2,700	0	32Vd.c. 35A				
			201	0.2	1,000	Z					
			251	0.25	750	С					
			321	0.315	620	D					
		FCC10	401	0.4	340	E			İ		
		FCC10	501	0.5	290	F	30Vd.c. 35A				
1005	0402		631	0.63	210	1					
1005	0402		801	0.8	150	K					
			102	1.0	120	L					
			132	1.25	90	M					
			162	1.6	55	N	_				
		FHC10	202	2.0	40	S	24Vd.c. 35A				
		111010	252	2.5	36	т					
			322	3.15	26	U	501/1 054				
			151	0.15	4,000	OD	50Vd.c. 35A				
			201	0.2	1,800	ZD	_				
			251	0.25	1,000	CD	_				
			321	0.315	750	DD	_				
			401	0.4	330	ED	_				
			501	0.5	280	FD					
		FCC16	631	0.63	200	ID	36Vd.c. 35A				
1608	0603		801	0.8	130	KD	_	_	_		
			102	1.0	110	LD	_				
			132	1.25	85	MD	\dashv				
			162	1.6 2.0	70	ND SD	\dashv				
			202 252	2.5	55 45	TD	32Vd.c. 35A				
			322	3.15	26	UD	32 Va.C. 33A	Dated Current VOE09/			
		FHC16	402	4.0	19	XD	24Vd.c. 35A	Rated Current×250%	−55 ∼ +125		
			401	0.4	330	401		Opening Time 5s max.	ix.		
			501	0.5	270	501	_				
			631	0.63	190	631	\dashv				
			801	0.8	130	801					
		FCC20	102	1.0	100	102	50Vd.c. 50A				
		1 0020	132	1.25	80	132	30 Va.c. 30A				
2012	0805		162	1.6	65	162					
			202	2.0	55	202					
			252	2.5	40	252					
			322	3.15	26	UD					
		FHC20	402	4.0	19	XD	32Vd.c. 50A				
			502	5.0	14	YD	24Vd.c. 50A				
			201	0.2	1,800	201					
			251	0.25	1,000	251					
			321	0.315	750	321					
			401	0.4	350	401					
			501	0.5	295	501					
			631	0.63	200	631					
		FCC32	801	0.8	140	801	64Vd.c. 50A				
3216	1206		102	1.0	110	102	_				
3210	1200		132	1.25	85	132					
			152	1.5	78	152	_				
			162	1.6	75	162	_				
			202	2.0	65	202	_				
			252	2.5	45	252					
			322	3.15	26	UD					
		FHC32	402	4.0	19	XD	32Vd.c. 50A				
		502	5.0	14	YD						

FCC, FHC

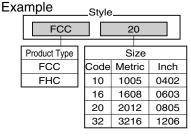
■Ratings/Option Code : AB (Fast-Acting type)

S	ize	Style	Ra	ted Current	Internal Resistance	Mark	Interrupting Rating	Time/Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting riating	Time/Ourient Onaracteristics	°C
			201	0.2	2,400	Z			
			251	0.25	1,000	С			
			321	0.315	750	D			
1			401	0.4	620	E			
l			501	0.5	340	F			
		FCC10	631	0.63	290	ı	001/-1 - 05 4		
1005	0402	FCC10	751	0.75	220	Α	30Vd.c. 35A		
1005	0402		801	0.8	210	K			
			102	1.0	150	L			
			132	1.25	120	М			
			152	1.5	100	Н			
			162	1.6	90	N			
		FHC10	202	2.0	55	S	24Vd.c. 35A		
		FHC10	252	2.5	40	Т	24 Va.C. 00A		
			201	0.2	3,200	ZB			
			251	0.25	1,800	CB		Rated Current×200%	−55 ∼ +125
			321	0.315	1,000	DB			
			401	0.4	750	EB			
			501	0.5	330	FB		Opening Time 5s max.	35 1 129
			631	0.63	280	IB			
1608	0603	FCC16	751	0.75	210	AB	36Vd.c. 35A		
1000	0603		801	0.8	200	KB			
1			102	1.0	130	LB			
			132	1.25	110	MB			
			152	1.5	95	HB			
			162	1.6	85	NB			
			202	2.0	70	SB			
		FHC16	252	2.5	40	TB	32Vd.c. 35A		
			501	0.5	330	FB			
			631	0.63	270	IB			
			801	0.8	190	KB			
2010	0005	FCC20	102	1.0	130	LB	50Vd.c. 50A		
2012	0805		132	1.25	100	MB	_		
			162	1.6	80	NB	_		
l			202	2.0	65	SB		1	
1	1	FHC20	252	2.5	40	TB	32Vd.c. 50A		

ı	S	ize	Style	Rated Current		Internal Resistance	ernal Resistance Mark	Interrupting Rating	Time/Current Characteristics	Working Temperature Range
- [Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting riating	Time/Ourtern Orial acteriotics	°C
-	1005	0402	FCC10	321	0315	750	3	30Vd.c. 35A	Rated Current×200% Opening Time 5s max.	−55∼+125


•Rating/Option Code : AA (Fast-Acting type)

	9 p		(,				
S	ize	Style	Ra	ated Current	Internal Resistance	Mark	Interrunting Rating	Time/Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	iviain	Interrupting riding	Timo/Ourient Ondidoteriotics	°C
			501	0.5	270	501			
			631	0.63	190	631	1		
			801	0.8	130	801	1		
2012	0805	FCC20	102	1.0	100	102	50Vd.c. 50A	Rated Current×200%	-55~+125
	0000	1 0020	132	1.25	80	132		Opening Time 120s max.	
			162	1.6	65	162	1	Opening Time 1203 max.	
			202	2.0	55	202	1		
			252	2.5	40	252	1		


Recommended Derating for Rated Current

- Nominal Derating
- Option Code AD:Nominal Derating ≤ 80% of Rated Current Option Code AB,LB:Nominal Derating ≤ 70% of Rated Current
- Temperature Derating
- Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FCC16 102AB (Rated Current:1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below, Rated Current : 1.0A \times (Nominal Derating : 70% \times Temperature Derating : 100%) =0.7A

Part Number Description

Rated Current
Rated Current
L
e.g. : 501=0.5A 132=1.25A 202=2.0A

AD										
Option Code										
Code	Cle	aring Time								
AD	Within 5s under 250% of Rated Current									
AB LB	Within 5s under 200% of Rated Current									
AA		n 120s under of Rated Current								

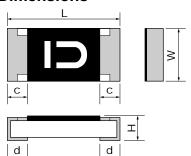
IP										
	* Packaging & Standard Qty. (Min.)									
В	Bulk (Loose Package)	1,000pcs.	All Styles							
РА	Press-Pocket Paper Tape (2mm pitch)	10,000pcs.	FCC10 FHC10							
TP	Paper Tape	5,000pcs.	FCC16 FHC16 FCC20 FHC20 FCC32 FHC32							
TH	Paper Tape (2mm pitch)	10,000pcs.	FCC10(LB)							

*Refer to Tape and Packaging information on pages 22 and 23.

FCCR10

Halogen Free

Antimony Free


Pb Free

● Features Suitable for over-current protection of the circuit of miniature portable equipment. Low internal resistance compared with FCC10AB series for low power consumption and voltage dropping. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Certified UL, c-UL. File No. : E176847

Dimensions

Current value is marked on the cover coating Please refer to Ratings table as below.

Unit: mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCCR10	1005	0402	1.0±0.05	0.5±0.05	0.4±0.05	0.2±0.1	0.25±0.10	0.8mg

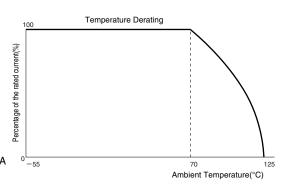
*Values for reference

•Ratings/Option Code : AB (Fast-Acting type)

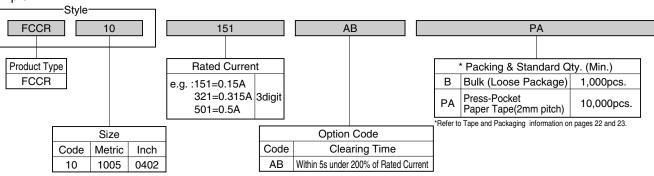
Si	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Dating	Time / Current Characteristics	Working Temperature Range	
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	Interrupting Rating	Time / Current Characteristics	°C	
			151	0.15	1850	Ū				
			201	0.2	1250	Z			ı	
1005	0402	FCCR10	251	0.25	880	С	24Vd.c. 35A	Rated Current × 200%	_55∼+125	
1005	0402	FCCR10	321	0.315	600	D	24VU.C. 35A	Opening time 5s Max.	-55~+125	
			401	0.4	400	E				
			501	0.5	300	F				

Recommended Derating for Rated Current

Nominal Derating


Nominal Derating ≤ 75% of Rated Current

· Temperature Derating


Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FCCR10 501AB (Rated Current:0.5A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below,

Rated Current: 0.5A× (Nominal Derating: 75%×Temperature Derating: 100%) = 0.375A

http://www.kamaya.co.jp KAMAYA OHM

Option Code: AB / Low Ohm & Fast Acting **FMC16** Option Code: AH / In-rush Withstand

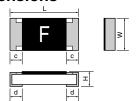
Halogen Free

Antimony Free

Pb Free

DFeatures Option code: AB / Low internal resistance compared with FCC/FHC16 AB series for low power consumption and voltage dropping.

Option code: AH / High anti pulse perfomance.


Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc. We can provide Application Guide for FMC16 selection.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Certified UL, c-UL. File No. : E176847

Dimensions

Current value is marked on the cover coating.

Please refer to Ratings table as below

	one. The state of												
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.					
FMC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3±0.15	0.3±0.1	2mg					

•Ratings/Option Code : AB (Fast-Acting type)

Si	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical Ch	naracteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIN	interrupting nating	Liectrical Ci	iaracieristics	°C
			501	0.5	260	F				
			751	0.75	140	Α				
			102	1.0	110	L		D-4 1 O		
			132	1.25	80	М		Hated Current	Opening time	
1000	0000	FMC16	152	1.5	65	Н	2011 254	×100%	4h Min.	55 . 105
1608	0603	FIVICIO	202	2.0	45	S	32Vd.c. 35A	×200%	5s Max.	−55~+125
			252	2.5	32	Т		×300% 0.2s Max.		
			302	3.0	26	R		×300%	U.25 IVIAX.	
1			402	4.0	18	X				
			502	5.0	14	Υ				

•Ratings/Option Code : AH (Fast-Acting type)

	•		•		0 71 /					
S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical Ch	naracteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting hatting	Electrical Ci	iaraciensiics	°C
			501	0.5	400	HF				
			631	0.63	300	HI				
		751	0.75	210	HA					
			801	0.8	180	HK				
			102	1.0	115	HL		D-4I 0		
			132	1.25	90	HM		Rated Current	Opening time	
1000	0000	EN4046	152	1.5	70	HH	001/-1 - 054	×100%	4h Min.	-55~+125
1608	0603	FMC16	162	1.6	60	HN	32Vd.c. 35A	×200%	5s Max.	-55~+125
			202	2.0	50	HS		×300%	0.2s Max.	
			252	2.5	37	HT		X300%	U.25 IVIAX.	
			302	3.0	28	HR				
			322	3.15	26	HU				
			402	4.0	18	HX				
			502	5.0	14	HY				

Recommended Derating for Rated Current

· Nominal Derating

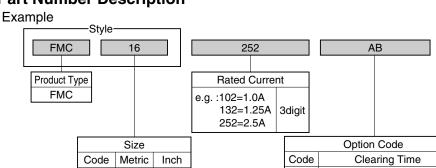
Nominal Derating ≤ 75% of Rated Current

· Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FMC16 102AB (Rated Current 1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below,

Rated Current : 1.0A× (Nominal Derating : 75%×Temperature Derating : 80%) = 0.6A


130 120 110 Percentage of the rated current(%) 100 90 80 70 60 50 40 30 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120130 Ambient Temperature(°C)

Part Number Description

16

1608

0603

	TP											
	* Packing & Standard Qty. (Min.)											
	В	Bulk (Loose Package) 1,000pcs.									
	TP Paper Tape 5,000pcs.											
*Ref	*Refer to Tape and Packaging information on pages 22 and 23.											

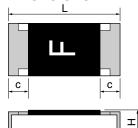
Option Code								
Code	Clearing Time							
AB AH	Rated Current×200% 5s max.							

FMC₁₀ Option Code: AB / Low Ohm & Fast Acting

Halogen Free

Antimony Free

Pb Free


● Features Suitable for over-current protection of the circuit of miniature portable equipment. Low internal resistance compared with FCC/FHC 10AB Series.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

d

Current value is marked on the cover coating. Please refer to Ratings table as below.

Unit : mm Metric Inch W Style *Unit weight/pc. FMC10 0402 1005 1.0±0.05 0.5 ± 0.05 0.38 ± 0.05 0.2 ± 0.1 0.25 ± 0.10 0.6mg

*Values for reference

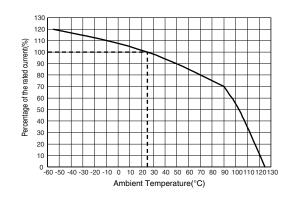
d

S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical Characteristics		Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting nating	Electrical Ci	laraciensiics	°C
			501	0.5	240	F				
			751	0.75	140	Α		Rated Current	Opening time	
			102	1.0	95	L		nateu Current		
1005	0402	FMC10	132	1.25	73	M	24Vd.c. 35A	×100%	4h Min.	-55~+125
1005	0402	1 101010	152	1.5	60	Н	24Vu.c. 33A	×200%	5s Max.	35 - 1125
			202	2.0	41	S		×300%	0.2s Max.	
			252	2.5	32	Т		×300%	U.23 Max.	
			302	3.0	25	R				

Recommended Derating for Rated Current

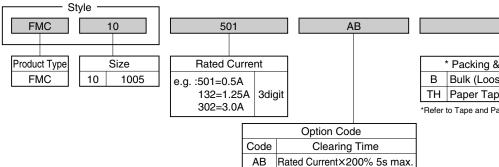
Nominal Derating

Nominal Derating m 75% of Rated Current


• Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FMC10 102AB (Rated Current 1.0A) is used under ambient temperature 70°C,


Kamaya recommends, less than the current value derated as below,

Rated Current : 1.0Au (Nominal Derating : 75%uTemperature Derating : 80%) = 0.6A

●Part Number Description

*Refer to Tape and Packaging information on pages 22 and 23.

http://www.kamaya.co.jp KAMAYA OHM

SBF32 Slow Blow

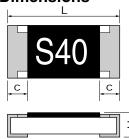
Halogen Free

Antimony Free

Pb Free

• Features

"Slow Blow "ensure high anti pulse performance.


Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc. We can provide Application Guide for SBF32 selection.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

d

Current value is marked on the cover coating. Please refer to Ratings table as below

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
SBF32	3216	1206	3.2±0.2	1.6±0.15	0.65±0.10	0.5±0.25	0.5±0.25	10mg

*Values for reference

Unit: mm

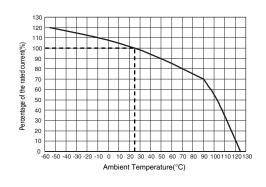
●Opton Code:AS(Slow Blow type)

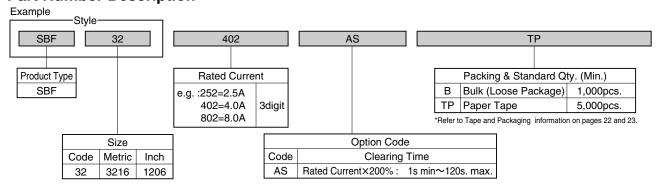
d

Si	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical	Characte	rictios	Working Temperature Range	
Metric	Inch	Style	Code	Α	m ohm typ.	IVIAIN	interrupting hatting	Liectrical	Onaracie	1151165	°C	
			102	1.0	130	S10						
			132	1.25	94	S13	63Vd.c. 50A					
			152	1.5	68	S15	03Vu.c. 30A	Rated Current Opening tin		, •		
			202	2.0	40	S20			Min.	Max.		
			252	2.5	30	S25		×100%	4h	_		
3216	1206	SBF32	302	3.0	24	S30		×200%	1s	120s	−55∼+125	
			402	4.0	15	S40		×300%	0.02s	3.0s		
			502	5.0	12	S50	32Vd.c. 50A					
			602	6.0	10	S60		×800%	0.0015s	0.05s		
			702	7.0	7	S70						
			802	8.0	6	S80						

Recommended Derating for Rated Current

· Nominal Derating

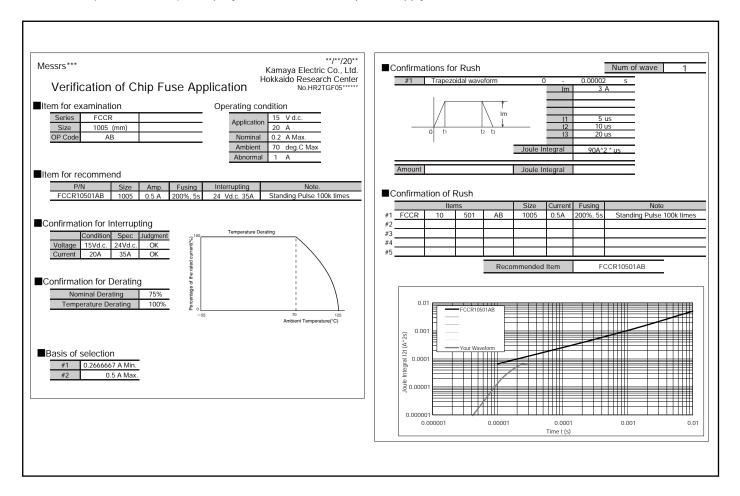

Nominal Derating ≤ 75% of Rated Current


· Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If SBF32 102AS (Rated Current 1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below.

Rated Current: 1.0A× (Nominal Derating: 75%×Temperature Derating: 80%) = 0.6A



Support of Chip Fuse Selection

We would like to support the customer to find the appropriate Kamaya chip fuse it the following condittions of usage are provided. Please contact kamaya Sales Dept for details.

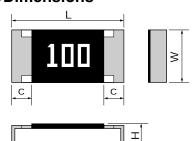
- The item you would like to check.
- · Circuit Voltage:Max voltage value of circuit mounting fuses.
- Steady-State Current:Current value flown fuses on normal condition.
- · Ambient Temperature: Temperature around fuses.
- Wave form (In-rush Current): It rapidly flows on circuit when power supply is turned on.

We can provide Application Guide for Fuses selection.

http://www.kamaya.co.jp KAMAYA OHM

FRC

Halogen Free


Antimony Free

●Features

Suitable for battery circuit and power supply circuit.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

d

Rated resistance value is marked	with 3-digit on the over	er coating
----------------------------------	--------------------------	------------

Unit: mm	
weight/nc	

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FRC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3±0.1 0.3±0.1		2.2mg
FRC20	2012	0805	2.0±0.1	1.25±0.10	0.6 ±0.1	0.4±0.2	0.4±0.2	6mg
FRC32	3216	1206	3.2±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.5±0.25	10mg
								41/1 / /

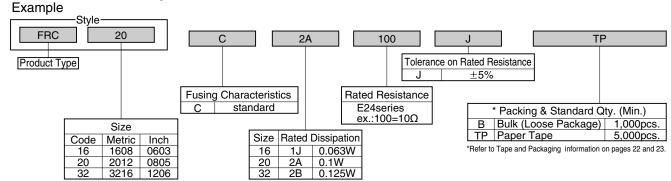
*Values for reference

Ratings

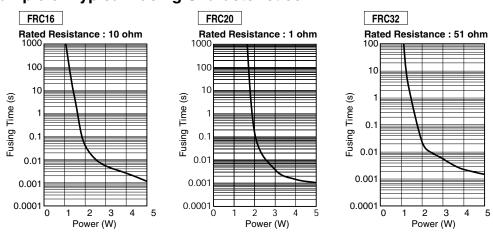
d

	Size	Rated Dissipation	Rated Resistance	Tolerance on	Temperature Coefficient	Preferred Number Series for	Fusing Cha	aracteristic	Maximum	Category Temperature Range °C	
Style	Metric (Inch)	W	Range	Rated Resistance	of Resistance 10 ⁻⁶ /°C	Resistors	Applied Power	Fusing Time	open-circuit voltage		
FRC16	1608 (0603)	0.063	3.9Ω∼51Ω				1.89W				
FRC20	2012 (0805)	0.1	1Ω~51Ω	J(±5%)	±1,000	E24	2.0W	30s max.	50V	-55~+125	
FRC32	3216 (1206)	0.125	1Ω~51Ω 56Ω~100Ω		±500		2.5W				

Note1. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times (\text{Rated Resistance})}$. (d.c. or a.c. r.m.s. Voltage)


Note2. Contact us for further information on other style, resistance and pre-arcing time-current characteristic than those mentioned above.

Note3. Contact us for information when inrush and surge voltage are supposed to be applied.


Note4. Maximum open circuit voltage is the value of voltage applicable to both ends of resistors, when a resister is open condition in a circuit.

This voltage shall be corresponding to 1,000 times the rated dissipation or maximum open circuit which is the less severe.

Part Number Description

Example of Typical Fusing Characteristics

SPC10

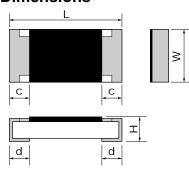
Halogen Free

Antimony Free

Pb Free

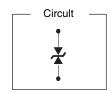
●Features

Low capacitance 0402inch: 0.1pF Max.


Suitable for ESD protection of High Speed data lines. High ESD Withstand, IEC61000-4-2 Lv4 8kV Contact Discharge

[Major application]

- PC, PC related equipment and peripherals
 Mobile Phone, PDA, Small portable devices
 Digital Video Camera, Digital Still Camera
- •LCD TV, PDP TV, STB


•Game equipment etc.
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
SPC10	1005	0402	1.0±0.05	0.5±0.05	0.35±0.05	0.2±0.1	0.25±0.10	0.6mg

*Values for reference

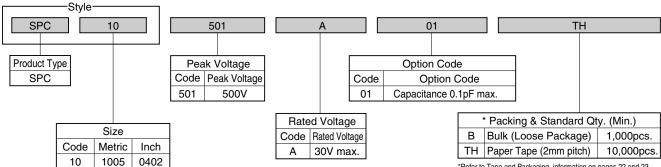
Ratings

Part Number	Size	Capacitance ^{Note.1}			ESD Characteristics		Note.4 Rated	Note.5 Leakage	Note.6 Category Temperature	
Part Number	Metric (Inch)	pF	Peak Vo	oltage ^{Note.2}	Clamp Voltage ^{Note.3}	ESD pulse withstand Pulses	votage V	current μA	Range °C	
SPC10	1005 (0402)	0.1 Max.	501	500 Max.	100 Max.	100 Min.	30 Max.	1 Max.	−55~+125	

Note1. Capacitance : Measured at 25℃, 1MHz, 1V rms.

Note2. Peak voltage: Measured at IEC61000-4-2 8kV Contact Discharge.

Note3. Clamp voltage: Measured at IEC61000-4-2 8kV Contact Discharge, at 30ns.


Note4. Rated Voltage: The value of voltage that is applicable to each terminal of ESD suppressor without operation of suppressor.

Note5. Leakage Current: The value of current that ESD suppressor is impressed at rated voltage.

Note6. Category Temperature Range: Working Temperature Range of ESD suppressor.

●Part Number Description

Example

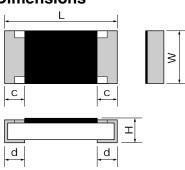
*Refer to Tape and Packaging information on pages 22 and 23.

http://www.kamaya.co.jp KAMAYA OHM

Halogen Free

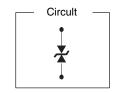
Antimony Free

Pb Free


●Features

High ESD protection performance(15kV) for automotive (Tight ESD spec requirement) IEC61000-4-2 Air Discharge: $\pm 15 kV$

[Major application]
Car audio, Car Navigation System etc.
Video Camera, DSC, Desk top-PC. Note PC etc.


Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Unit:									
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.	
HSPC16	1608	0603	1.6±0.1	0.8 ^{+0.15} _{-0.05}	0.5±0.10	0.3±0.1	0.3±0.1	2mg	

*Values for reference

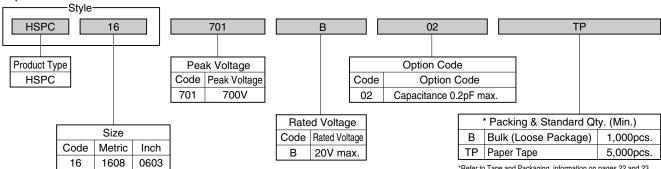
Ratings

	Style	Size	Capacitance ^{Note.1}			ESD Characteristics		Note.4 Rated	_	Note.6 Category Temperature
		Metric (Inch)		Peak Vo	oltage ^{Note.2}	Clamp Voltage ^{Note.3} V	ESD pulse withstand Pulses	votage V	current μA	Range °C
	HSPC16	1608 (0603)	0.2 Max.	701	700 Max.	100 Max.	100 Min.	20 Max.	1 Max.	−55∼+125

Note1. Capacitance : Measured at 25°C, 1MHz, 1V rms.

Note2. Peak voltage: Measured at IEC61000-4-2 15kV Air Discharge.

Note3. Clamp voltage: Measured at IEC61000-4-2 15kV Air Discharge, at 30ns.

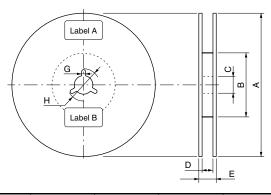

Note4. Rated Voltage: The value of voltage that is applicable to each terminal of ESD suppressor without operation of suppressor.

Note5. Leakage Current: The value of current that ESD suppressor is impressed at rated voltage.

Note6. Category Temperature Range: Working Temperature Range of ESD suppressor.

Part Number Description

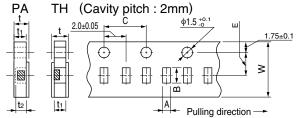
Example



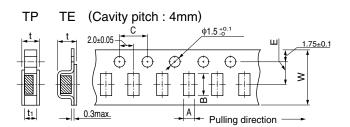
*Refer to Tape and Packaging information on pages 22 and 23.

Packaging for Surface Mount Devices

Reel Dimensions

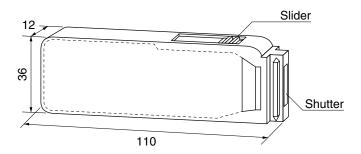


Unit: mm


	Co	de	Α	В	С	D	E	G	Н
Diagtic Deal	PA,TH,TP,TE	Shoot molding				Q +1.0	11.4±1.0	2±0.5	
Plastic Reel	(8 mm width)	Vaarum maldina	φ180 _{-1.5}	φ60 ⁺¹	φ13±0.2	9 0	13.0±1.0	2±0.5	φ21±0.8
(EIAJ ET-7200B)	TE(12 mm width)	Vacuum molding	-1.5			13 +1.0	17.0±1.0	_	

^{*}Dimension A: Please contact KAMAYA for plastic reels of \$\phi250mm\$ and \$\phi330mm\$.

● Tape Dimensions (Unit : mm)


*Please contact Kamaya sales department for 1mm pitch cavity taping.

Metric	Inch	Style	Code	Α	В	С	W	E	t ₁	t 2	t						
0402	01005	RMC1/32, RGC1/32		0.24±0.03	0.45±0.03	4.0±0.05			0.31±0.03	0.15±0.02	0.36±0.03						
0603	0201	RMC1/20, RGC1/20, RCC06, RNC06	PA	0.37±0.05	0.67±0.05	4.0±0.05			0.42±0.03	0.27±0.02	0.45±0.05						
		FCC10, FHC10, FCCR10		0.65±0.10	1.15±0.10	4.0±0.05			0.6±0.05	0.5±0.05	0.7 max.						
1005	0402	RMC1/16S, RGC1/16S, RLC10, RCC10, FCC10(LB), FMC10, SPC10	TH	0.65 +0.05	1.15 +0.05				0.4±0.05	-	0.5 max.						
		RMC1/16	III	1.15±0.15	1.9±0.2]			0.6±0.1	-	0.8 max.						
1608	0603	RMC1/16, RGC1/16, FCR1/16, RVC16 RLC16, RHC16, RCC16, RLP16 FCC16, FHC16, FMC16, FRC16, HSPC16		1.15±0.15	1.9±0.2		8.0±0.2		0.6±0.1	_	0.8 max.						
2012	0805	RMC1/10, RGC1/10, FCR1/10, RNC20 RVC20, RPC20, RLC20, RHC20, LTC1/10 FCC20, FHC20, FRC20, RCC20	ТР	1.65±0.15	2.5±0.2			3.5±0.05	0.8±0.1	_							
		RLP20	IP			40104			0.6±0.1		1.0 max.						
3216	1206	RMC1/8, RGC1/8, FCR1/8, RNC32, RVC32 RPC32, RLC32, LTC1/8, FCC32, FHC32 SBF32, FRC32, RCC32		2.0±0.15	3.6±0.2	4.0±0.1									0.8±0.1	-	1.0 max.
		RLP32							0.6±0.1	1							
3225	1210	RMC1/4, FCR1/4, RPC35, RLC35		2.85±0.20	3.5±0.2		8.0±0.3	1	-	-	1.0±0.2						
5025	2010	RMC1/2, FCR1/2, RVC50, RPC50, RZC50 RLC50, RLS50	TE	3.1±0.2	5.5±0.2		12±0.3	5.5±0.05	-	-	4 4 1 0 4 5						
6332	2512	RMC1, FCR1, RVC63, RPC63, RZC63 RLC63, RLS63, RLP63, MLP63		3.6±0.2	6.9±0.2		12±0.3	5.5±0.05	-	_	1.1±0.15						
	•	RAC101A		4 4 5 +0.05	4 4 F +0.05				0 4 +0.05		0.55 max.						
O N	<u></u> [RAC102D	TH	1.15 +0.05	1.15 +0.05		8.0±0.2		0.4 +0.05 -0.10	_	0.5 max.						
Chip Net Chip Atte		RAC104D		1.2±0.1	2.2±0.1	4.0±0.1	0.0.00.2	3.5±0.05	0.4±0.1	.4±0.1 –	U.S IIIdX.						
Only Atte	iluaiolo	RAC164D, RAC168U	TP	1.9±0.15	3.6±0.2				0.6±0.1		0.8 max.						
		RAC168D	I IP	1.9±0.15	4.1±0.15		8.0±0.3		0.0±0.1	_							

PACKAGING FOR SURFACE MOUNT DEVICES

●Bulk Case (Code: BA) (Unit: mm)

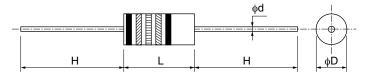
Standard Packaging Quantities

Si	ize	Bulk coop (peo (coop)
Metric	Inch	Bulk case (pcs./case)
1608	0603	25,000
2012	0805	10,000
3216	1206	5,000

Standard Packaging Quantities (Minimum Units)

					Tape & Red	el		Bulk
						Outer Cartor	ı	<u> </u>
Metric	Inch	Style	Code	M. P. Q. (pcs./reel)	Reel Q' ty (pcs.)	Gross Weight (kg)	Measurement (m³)	Q' ty (pcs.)
0402	01005	RMC1/32, RGC1/32		20,000		8.8		
0603	0201	RMC1/20, RGC1/20, RCC06, RNC06	PA	15,000		7.8		
		FCC10, FHC10, FCCR10			7			
1005 0402	0402	RMC1/16S, RGC1/16S, RLC10 RCC10, FMC10, SPC10	TH	10,000		6.0		
		RMC1/16				8.3		
1608	0603	RMC1/16, RGC1/16, FCR1/16 RVC16, RLC16, RHC16, RCC16, RLP16 FCC16, FHC16, FMC16, FRC16, HSPC16			50	7.2	0.027	1,000 [※]
2012	0805	RMC1/10, RGC1/10, FCR1/10, RLP20 RNC20, RVC20, RPC20, RLC20, RHC20 LTC1/10, FCC20, FHC20, FRC20, RCC20	TP	5,000		8.4		
3216	1206	RMC1/8, RGC1/8, FCR1/8 RNC32, RVC32, RPC32, RLC32, LTC1/8, FRC32, RCC32				8.8		
		RLP32, FCC32, FHC32, SBF32			_	10.0		
3225	1210	RMC1/4, FCR1/4, RPC35, RLC35				7.7		
5025	2010	RMC1/2, FCR1/2, RVC50, RPC50 RZC50, RLC50, RLS50	TE	4,000		8.0		
6332	2512	RMC1, FCR1, RVC63, RPC63, RZC63 RLC63, RLS63	IE	4,000	40	10.4		
		RLP63, MLP63				12.0		
		RAC102D, RAC101A	TH	10,000		6.0		
Chip Netv	works	RAC104D	IП	10,000	50	6.3		
Chip Atte	nuators	RAC164D, RAC168U	TP	5,000	50	7.7		
		RAC168D	I IP	3,300		8.6		5,000

^{**}Please contact Kamaya Sales department about bulk package of RLP16, RLP20, RLP32, RLP63, MLP63.


RC1/2U

● Features UL recognized component(UL1676) (File No.E151897). Reduce UL or CSA approval and maintenance cost. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

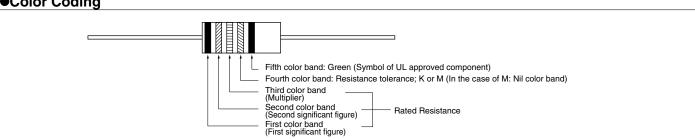
UL recognized component (UL1676) (File No.E151897)

Dimensions


					Unit : mm
Style	L	D	Н	d	*Unit weight/pc.
RC1/2U	9.5 +0.8	3.6±0.2	28±3	0.7 +0.07 -0.05	422mg

*Value for reference

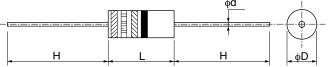
Ratings


Style	Rated Dissipation at 70°C W	Rated Voltage V	Rated Resistance Range	Tolerance on Rated Resistance and Perferred Number Series for Resistors.	Specified Line Voltage	Isolation Voltage V	Category Temperature Range °C
			1M ohm~10M ohm	K(±10%) E12	250Va.c. max.	500	-55~+125
RC1/2U	0.5	350	TW OTHER TOWN OTHER	M(±20%) E6	or 125Va.c. max.		
Note2. The nan	d characteristic perf ne of this, product is sfied, but the produc	granted as Co	nductive Path, but	and UL 1676. t UL1676 and the requirely the second that the second the second that the second	ements as Disc	harge Path sho	wn in CSA22, 2 f

Part Number Description

*Refer to Tape and Packaging information on pages 25.

●Color Coding



RC

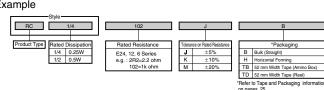
●Features

Improved pulse endurance characteristics compared to carbon-film devices. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

					Unit : mm
Style	L	D	Н	d	*Unit weight/pc.
RC1/4	6.3 ±0.7	2.4±0.1	30±3	0.6 ±0.05	222mg
RC1/2	9.5 +0.8 -0.7	3.6±0.2	28±3	0.7 +0.07 -0.05	422mg

*Values for reference

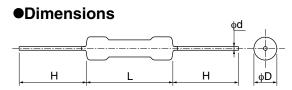

Ratings

	Rated Dissipation Limiting Element Rated Resistance		Dated Desistance	Combination of Rated Resistance Range and Temperature Coefficient of Resistance			Tolerance on Bated Resistance and	Isolation	Category Temperature
Style	at 10 C	Voltage	Range	Telliperature coeffici		I lated I legistatice	Perferred Number Series for Resistors	Voltage	Range
	W	V	riango	at -55 °C	at +125 °C	Range	Total Control Control (Control Control	V	°C
RC1/4	0.25	250	1 ohm~5.6M ohm	+6.5 ~0	0~-6	1 ohm ~ 1k ohm 1.1k ohm ~ 10k ohm	J (± 5%) : E24 K (± 10%)	100	
RC1/2	0.5	350	1 ohm-22M ohm	+13 ~0 +15 ~0 +20 ~0	0~-7.5 0~-10 0~-15	11k ohm ~100k ohm 110k ohm ~ 1M ohm 1.1M ohm ~ 22M ohm	: E12 M(± 20%) : E6	500	-55-+125

Note1. Rated Voltage = \((Rated Dissipation) \circ (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)
Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value
Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Part Number Description

Example



● Storage Temperature 20±15°C, Humidity 60%R.H. Max, Recommendation Storing Term 6 months after shipped from factory.

RH

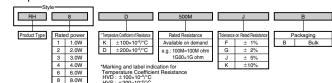
● Features Most suitable resistor for high-tension circuits in which high precision is required for example, the physical and chemical measurement equipment, X-ray apparatus, electron microscope, and etc.
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

*Dimension "L" should be measured between both side of D/2.

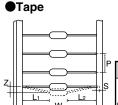
Note. Please contact KAMAYA for the details of marking.

●Ratings

					Combination of Temperature Coefficient of	f Resistance and rated Resistance Range	
Style			Voltage kV Range of F		Temperature Coefficient of Resistance 10 ⁴ /°C	Tolerance on Rated Resistance	
RH 1	1.0	1.5	4	4			
RH 2	2.0	5	12.5	7.5			F (± 1%)
RH 3	3.0	10	25	15	1≤R≤500	±100 ±200	G(± 2%)
RH 4	4.0	15	30	20	500 <r≤5,000< td=""><td>J (± 5%)</td></r≤5,000<>		J (± 5%)
RH 6	6.0	20	40	30			K (±10%)
RH 8	8.0	30	60	40			

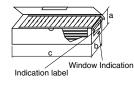

Note1. Rated Voltage= \(\frac{1}{2}\) (Rated Dissipation). (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)
Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value
Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

					Unit : mm
Style	L	D	Н	d	*Unit Weight/pc.
RH 1	14.5±1.0	4.0±1.0	38±3	0.8	950mg
RH 2	26.5±1.0	5.0±1.0	38±3	1.0	1,950mg
RH 3	39.0±2.0	5.0±1.0	38±3	1.0	2,410mg
RH 4	52.0±2.0	9.0±1.0	38±3	1.0	6,880mg
RH 6	77.0±2.0	9.0±1.0	38±3	1.0	9,290mg
RH 8	97.0±2.0	9.0±1.0	38±3	1.0	11.46g

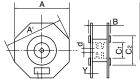

*Values for reference

●Part Number Description

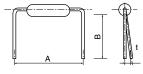
Example



Packaging for Leaded Resistors


								Unit : mm
'	Style	W	L1-L2	Т	t	Р	Z	S
	RC1/4 RC1/2 RC1/2U	52.4 ^{+1.6} _{-1.4}	1.0max.	6.0±0.5	0.5max.	5.08±0.38	1.0max.	3.2min.

Ammo Box


				Unit : mm
Style	Code	а	b	С
RC1/4	ТВ	60±5		275±5
RC1/2 RC1/2U	52mm Width Tape	65±5	75±5	455±5

●Tape & Reel (Code: TD)

Style	Code	Α	*A'	В	C ₁	C ₂	d	*Y
RC1/4 RC1/2 RC1/2U	TD	260±5	280	75±5	60.4±1	78±1	14.5±0.5	3
*Value for reference								

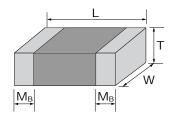
●Horizontal Forming (Code : H)

			Unit : mm	
Code	Α	В	t	
H60	10.0±0.5		1.5max.	
H62	12.5±0.5	5.0±0.5		
н	15.0±0.5		1.8max.	
	H60 H62	H60 10.0±0.5 H62 12.5±0.5	H60 10.0±0.5 H62 12.5±0.5 5.0±0.5	

Label indication															
		Тар	e & Reel				Am	mo Box				Bulk	Packaging		
Style	Otto /		Ou	ter Carto	n	Width of	Oltre /	Out	er Carto	IVI.P.Q.		Q'ty /	Outer Carton		n
Style	Q'ty / Reel (pcs.)	Reel Size (mm)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)	Taping (mm)	Q'ty / Box (pcs.)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)	(Q'ty / Plastic Bag pcs.)	Inner Carton (pcs.)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)
RC1/2U	3,000	260	24,000	13	0.04	52	2,000	30,000	16	0.05	500 (100×5)	5,000	30,000	13	0.04
RC1/2	3,000	260	24,000	13	0.04	52	2,000	30,000	16	0.05	500 (100×5)	5,000	30,000	13	0.04
RC1/4	5,000	260	40,000	12	0.04	52	2,000	30,000	10	0.03	1000 (200×5)	10,000	50,000	13	0.04

Unit: mm

Multilayer Ceramic Capacitor


Please see Catalog of Walsin Technology Corporation. (Website: http://www.passivecomponent.com/) for detail information.

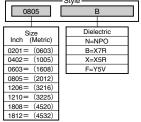
- Features 1. General purpose, Board of PC etc.
 - 2. Full support by Japanese Quality Assurance team.

Unit: mm

Dimensions

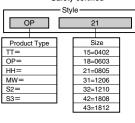

Metric	Inch	L	W	T/Symbol			M _B	Series
1005	0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	N		0.25±0.05/-0.1	General Purpose, High Capacitance, MW, HH
		1.6 ±0.1	0.8 ±0.1	0.8 ±0.07	s		0.4 ±0.15	General Purpose, High Capacitance, MW, HH
1608	0603	1.6+0.15/-0.1	0.8+0.15/-0.1	0.8+0.15/-0.1	X		0.4 ±0.15	General Purpose, High Capacitance
				0.6 ±0.1	A	Г	0.5 ±0.2	General Purpose, High Voltage
				0.8 ±0.1	В		0.5 ±0.2	General Purpose, High Capacitance, High Voltage
			1.25±0.1	0.8 ±0.1	P		0.4 ±0.2	OP
2012	0805	2.0 ±0.15		1.25±0.1	_	#	0.5 ±0.2	General Purpose, High Capacitance, High Voltage
							0.4 ±0.2	OP
			1.25±0.2	0.95max.		#	0.5 ±0.2	TT
		2.0 ±0.2		1.25±0.2		#		High Capacitance
1632	0612	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	В		0.13max.	Low Inductance
				0.8 ±0.1	В		0.6 ±0.2	General Purpose, High Voltage
					1-		0.5 ±0.2	OP
		3.2 ±0.15	1.6 ±0.15	0.95max.	T	#	0.6 ±0.2	TT
		0.2 20.13	1.6 ±0.15	0.95±0.1	lc		0.6 ±0.2	General Purpose, High Capacitance, High Voltage
				0.00=0.1	ĭ		0.5 ±0.2	OP
				1.15±0.15	١.		0.6 ±0.2	General Purpose
3216	1206	3.2 ±0.2	1.6 ±0.2		#	0.6 ±0.2	High Capacitance	
				1.25max.	_		0.6 ±0.2	TT
			1.6 ±0.15	1.25±0.1	П	#	0.6 ±0.2	General Purpose, High Capacitance, High Voltage
		3.2 ±0.15			۲	-"	0.5 ±0.2	OP
		0.2 =0.10	1.6 ± 0.2	1.6 ±0.2	G	#	0.6 ±0.2	General Purpose, High Capacitance, High Voltage
		00100/04			<u> </u>		0.5 ±0.2	OP
		3.2+0.3/-0.1	1.6+0.3/-0.1	1.6+0.3/-0.1		#	0.6 ±0.2	General Purpose, High Capacitance
				0.95max.	Т	#	0.75±0.25	TT
			05.100	0.95±0.1	lc	#	0.75±0.25	General Purpose, High Voltage OP
		3.2 ±0.3	2.5 ±0.2		Η.	⊢	0.5 ±0.25	
3225	1210			1.25±0.1	D	#	0.75±0.25	General Purpose, High Voltage OP
					\vdash	\vdash	0.5 ±0.25 0.75±0.25	General Purpose, High Voltage
		3.2 ±0.4	2.5 ±0.3	1.6 ±0.2	G	#	0.75±0.25 0.5 ±0.25	OP
		3.2 ±0.4	2.5 ±0.3	2.5 ±0.3	1.4	#		High Voltage
					1		0.75±0.25 0.5 ±0.25	S2. S3
			_	1.25±0.1	D	#	0.75±0.25	High Voltage
4520	1808	4.5 ±0.4	2.03±0.25		\vdash	\vdash	0.75±0.25	S2, S3
				2.0 ±0.2	ΙK	#	0.75±0.25	High Voltage
							0.75±0.25	General Purpose, S2, S3
l l				1.25±0.1	D	#	0.75±0.25 0.6 ±0.25	OP
4532	1812	4.5 ±0.4	3.2 ±0.3			.	0.75±0.25	General Purpose, S2, S3
I				2.0 ±0.2	١K	#	0.6 ±0.25	OP

Characteristic


#: Reflow soldering process only.

Application	Series	Dielectric		Size		Rated Voltage	Capacitance
Gonoral Purposo	General Purpose	NPO, X7R, Y5V	0402(1005) 0603(1608)	0805(2012) 1206(3216)	1210(3225) 1812(4532)	16V, 25V, 50V, 100V	0.5pF∼1uF
General Purpose	High Capacitance	X7R, X5R, Y5V	0402(1005) 0603(1608)	0805(2012) 1206(3216)	1210(3225) 1812(4532)	6.3V, 10V, 16V, 25V, 50V	1uF~100uF
Safety and Power supply control	Middle & High Voltage	NPO, X7R, Y5V	0805(2012) 1206(3216)	1210(3225) 1812(4532)		200V, 250V, 500V, 630V 1kV, 1.5kV, 2kV, 3kV	0.5pF~0.22uF

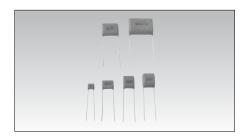
●Part Number Description


Middle & High Voltage Low Inductance

ı	10)4			ŀ	<
J						
	Capac	citance			To	lerance
	R47=	0.47pF		Α	=±	0.05pF
	0R5=	0.5pF		В	=±	0.1pF
	1R0=	1pF		С	=±	0.25pF
	100=	10pF		D	= ±	0.5pF
	101=	100pF		F	=±	1%
	102=	1000pF		G	=±	2%
	103=0	0.01uF		J	=±	5%
	104=0	0.1uF		K	=±	10%
	105=	1uF		М	=±	20%
	106=	10uF		Z	=-	20to+80%
	107=	100uF	l '			

	500	[С		Т
1	Rated Voltage	I٦	Electrode	ı	Package
1	6R3=6.3 Vdc	H	L = Ag/Ni/Sn	ı	B= Bulk
1	100=10 Vdc	H	C = Cu/Ni/Sn		C= Bulk case
]	160=16 Vdc	ľ			T= 7Inch width Reale
1	250=25 Vdc	ı			
1	500=50 Vdc				
1	101=100 Vdc	ı			
1	201=200 Vdc	ı			
]	251=250 Vdc				
1	501=500 Vdc	ı			
]	631=630 Vdc				
- 1	102=1000 Vdc	ı			

Example Low profile Open-mode Design High Q Low ESR Microwave Safety certified



152=1500 Vdc 202=2000 Vdc

Film Capacitors

- Dipped metallized film capacitors
- **OCR Units**

Film Capacitors Summary

Sum	mary	Style	Series Code	Features	Rated Voltage	Capacitance (µF)	Temp. Range (°C)
		[7]	FPB NEW	Small in size	250VDC 450VDC 630VDC	0.47~10 0.22~4.7 0.068~2.2	-40~ +85 (+105)
	Standard	- A44.	MDX	Standard	250VDC 450VDC 630VDC	0.01~10 0.01~4.7 0.01~2.2	-40~ +85 (+105)
	Standard	45	MDS	Standard	100VDC 250VDC 400VDC 630VDC	0.56~10 0.18~10 0.039~4.7 0.01~2.2	-40~ +85 (+105)
General use		in	MDD	• Lead pitch 5,7.5mm	50VDC 63VDC 100VDC 250VDC	0.1~2.2 0.1~1.0 0.047~0.47 0.01~0.15	-40~ +85 (+105)
General use	PFC circuit		FPA	Small in size High temperature proof Halogen-free	450VDC 550VDC	0.47~2.2	-40~ +85 (+110)
	in power		FPS3 FPS	Low Noise Needle flame test proof	450VDC	0.47~2.2	-40~+85 (+110) -40~+85 (+105)
	Large capacitance	\$50	MDL	Miniature and Large capacitance For high frequency and high ripple	35VDC 63VDC	4.7~22 10~22	-40~ +85 (+105)
	High voltage	27	MDD	High voltage series For AC and DC	1250VDC (500VAC)	0.0022~0.1	-40~ +85 (+105)
High fragues	av eirevit vee	WSF	FPD4	Standard	250VDC 450VDC 630VDC	0.01~10 0.01~3.3 0.01~2.2	-40~ +105
High frequent	by circuit use	200	FPD5	Small in size	450VDC	0.47~2.2	-40~ +105
Across- the- line use		150	CFD-N	For noise immunity test Standard	125VAC 250VAC	0.033~4.7 0.01~2.2	-40~ +85 (+105)
Surge absorber C-R units		<u> </u>	CR	• C-R Unit	125VAC 250VAC	0.1μF +120Ω 0.033μF +120Ω	-40~ +85
C-R units		4	CRKH	C-R Unit UL,VDE Safety Standard	250VAC (275VAC)	0.01~0.1μF 47, 100, 120Ω	-40~ +100

■Compliance with RoHS requirement

Our film capacitors (all products in the above list) comply with RoHS requirement.

About Nitsuko product, Please contact as follows.

Nitsuko Nitsuko Electronics Corporation http://www.nitsuko-ele.co.jp/

Development · Sales Department

2031-1, Ogawara, Suzaka-shi, Nagano-ken, Postcode 382-0071

TEL (+81) 26-246-6351 FAX (+81) 26-245-6239 E-Mail: ec@nitsuko-ele.co.jp

SMD Product handling manual

1. Scope

This product handling manual is applied to parts for the surface mounting that KAMAYA ELECTRIC CO., LTD. produce.

2. Storage

Consider the following four points for keeping the environment, the storage method, and the storage period to maintain the qualities of parts below.

- 2.1 Avoid storing in locations where corrosive gas is present (Sea breezes, Cl2, H2S, NH3, SO2, NO2, etc.) or in dusty and moist circumstances. Otherwise, it may result in deterioration of performance and adversely affect the soldering.
- 2.2 Avoid keeping goods in high temperature and direct sunlight. Otherwise, it may cause deformation of packing materials, and adherence of parts on packing materials.
- 2.3 Please enforce First-In & First-Out for the use of parts in consideration of the change in the environmental condition.
- 2.4 Store these products in the following environment.

Temperature: 5 to 35℃ Humidity: 25 to 75% Terms of guarantee: 2 years

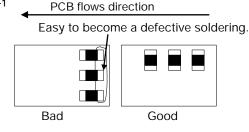
3. Pattern Design

To solder parts on the printed circuit board properly, it is necessary to take a careful attention in design stage.

It is necessary to consider the land pattern position by mounting equipment, method of soldering (flow or reflow), and material of print circuit board. Moreover, it is necessary to consider the position of adhesive and the array of parts at the flow soldering. Refer to Page 30 for recommended land pattern of Kamaya product

- 3.1 Strength of parts might decrease under the condition that the width or the shape of land pattern is too large, or the bend of the substrate occurs when gap of soldering position is generated or there are a lot of solder quantities.
- 3.2 Interval of parts should not narrow too much for the short-circuit prevention.

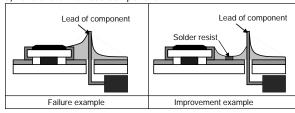
In general, it is safer to open more than 0.5mm from the positioning accuracy of mounting.


3.3 The resistor is a generation of heat source.

The pattern design that opens enough distance is necessary from other generation of heat parts.

Especially, please do enough derating of the rated dissipation for a high voltage circuit after considering the temperature rises of the adjoining generation of heat parts.

3.4 When the flow soldering is executed, soldering differs depending on the direction where the printed circuit board is thrown.


Figure-1

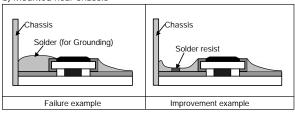
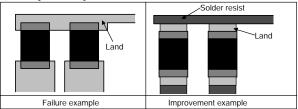
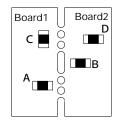

- 3.5 Examples of division of land pattern (Cross-sectional view)
 - a. Land share with lead component.
 - b. Mounted near Chassis.
 - c. Side by side array.

Figure-2


a) Land share with lead component

b) Mounted near chassis

c) Side by side array



- 3.6 Avoid the component placement to the following places.
 - 1) Near cutting line of print circuit board.
 - 2) Place where print circuit board is distorted and mechanical stress is received easily.

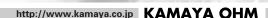
Figure-3

Layout of resistors near the cutting line of print circuit board.

Improper $A \rightarrow B \rightarrow C\&D \rightarrow Proper$

4. Print Circuit Board

Please consider following respects.


4.1 Thermal diffusivity (thermal conductivity)

Thermal diffusivity through the print circuit board is necessary for generation of heat from parts.

Especially, use the print circuit board with high thermal conductivity when the calorific value is large.

4.2 Resistance to soldering heat

Select a heatproof, good substrate to soldering parts. Because it often solders two or more times.

Information

SMD PRODUCT HANDLING MANUAL

4.3 Pull peel strength of land pattern Consider that the print circuit board corresponding to the land pattern size and sticking strength with the copper foil.

4.4 Bend strength

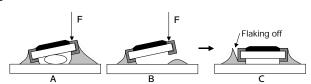
The stress in the electrodes and parts body, when the PCB bends by weight and external stress of parts, causes the joining electrode flaking off and the crack. Consider the bend ability of print circuit board.

5. Adhesive

When an adhesive is applied, the spread should be set corresponding to each part so that there are no overflow into the land or no dropout of the parts.

- 5.1 Strength of adhesive must be strong not to fall and move parts in the mounting process.
- 5.2 Stiffen at the low temperature as much as possible. Do not heat parts as the cure temperature.
- 5.3 Keep without stringy, slumping adhesion, and dewetting that solder can not adhere to parts.
- 5.4 After soldering, there must be no causticity.

6. Mounting


Please consider following to install parts in the printed circuit board.

- 1) Gap of installing position
- 2) Product floating from land pattern
- 3) Mechanical stress to overcoat of parts.
- 6.1 Do not touch with bare-handed in the electrode and wash it well with an organic solvent when the foreign body such as oils and fats adheres.
- 6.2 Mounting trouble of static electricity may occur when you touch or rub the part, packaging materials and the cover tape of the taping especially. When you deal with parts on the worktable, please execute the static electricity prevention measures (like the electrification prevention mat).

7. Soldering

- 7.1 The lead free is recommended in the solder paste. Select appropriate solder paste after executing the evaluations of soldering and strength of bond, etc.
- 7.2 Select flux without the causticity.
- 7.3 The conditions of temperature and time should be well considered in the soldering process so that any warp or twist in the printed circuit board may not grow. Moreover, the electrode might flake off when the substrate is bent after it solders or the high impact is given parts or around it.
- 7.4 In VPS Reflow, preheat well so that the difference of temperature may not big too much between parts and inside of furnace. A big difference of temperature cause drop out of parts.
- 7.5 Do not rub the electrodes of resistor with soldering iron. The electrode may flake off when the iron is pressed on the electrode. Do not raise the temperature of the soldering iron more than necessary when the side electrode of parts is formed with the Ag resin.

Figure-4

7.6 The overcoat and the main body may be chipped off when you hold the parts strongly with tweezers.

Do not use parts detached from the print circuit board once again.

7.7 Please refer to page 31 for our recommended soldering conditions.

8. Cleaning

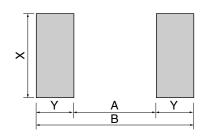
The remaining of the flux on print circuit board with part mounted may cause a bad effect on humidity resistance and corrosion resistance. Please use a rosin flux with low chlorine-containing, or alcoholic and hydrocarbon solvent.

9. Other Notes

- 9.1 The use of the products mentioned in this catalog refers to consumer applications that are available on the open market.
- 9.2 There are cases which high levels of reliability distinctive from consumer applications sold on the open market are necessary for electrical components which are used in equipment that could effect human life or create huge social loss owing to defect in medical equipment, space equipment, nuclear power-related equipment, vehicle mounted equipment, aircraft and other equipment. When you examine the use in the above-mentioned equipment or for uses not mentioned within this catalog, ensure that you consult with our sales department prior to deployment.
- 9.3 As the use of resistors and surface-mounted parts used in all electrical components, especially resistors used in high-voltage circuits and in circuits prescribed for safely regulations, will be greatly affected by the circuit used, the method of mounting, the material, and environmental conditions, ensure that you consult with our sales department prior to deployment when examining the viability of use in characteristic circuits, mounting methods, material and under characteristic environmental conditions.
- 9.4 Thoroughly verify performance and reliability when using under the following characteristic environmental conditions:
 - (1) Use within a liquid environment (Water, oil, liquid chemical, organic solution, etc.)
 - (2) Use in direct sunshine. Outdoors in heavy dew, in dusty environments, or where corrosive gas is present (Sea breezes, Cl₂, H₂S, NH₃, SO₂, NO₂, etc.)
 - (3) Use in environments with strong electrostatic or magnetic waves exists.
 - (4) Use nearby flammable substances.
 - (5) Use with the resistors coated in resin, etc.
 - (6) Use of water or water solution for flux cleaning after unwashed soldering or soldering.
 - (7) Use under environment of condensation
- 9.5 Ensure that the condition of the mounting is evaluated and verified on circuit boards when subjected to overloads in the form of pulses or surges, etc.
- 9.6 Take cares handling these products as they may be damaged and become defective if subject to impact, such as dropping.

SMD Product handling manual (RECOMMENDED LAND PATTERN)

Note: This land pattern is not supported by the mounting evaluation.

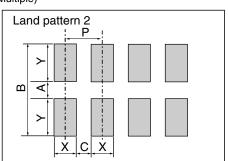

This is reference information only.

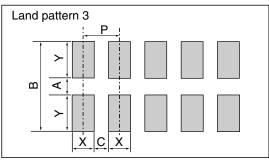
Application

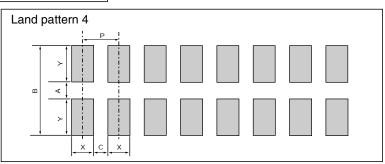
All KAMAYA Surface Mount Devices

Recommended land pattern (Reference)


1. Square chip type (No. of terminals: 2)




Si		Flow so	oldering		Reflow soldering				
Metric	Inch	A B X Y			Α	В	Х	Υ	
0402	01005					0.18	0.58	0.2	0.2
0603	0201		Not applied				0.9	0.3	0.3
1005	0402					0.5	1.3	0.5	0.4
1608	0603	1.0	2.6	0.8	8.0	1.0	2.0	8.0	0.5
2012	0805	1.3	3.1	1.25	0.9	1.3	2.7	1.25	0.7
3216	1206	2.2	4.3	1.6	1.05	2.2	3.9	1.6	0.85
3225	1210	2.2	4.3	2.5	1.05	2.2	3.9	2.5	0.85
5025	2010	3.9	6.3	2.5	1.2	3.9	5.9	2.5	1.0
6332	2512	5.2	7.6	3.2	1.2	5.2	7.2	3.2	1.0


*For RLP, MLP please refer to the page 8.

2. Chip network type (No. of terminal: Multiple)

Land nattons	Chalo	A Tarminals style P			F	ow solder	ing			Reflow soldering			
Land pattern	Style	Terminals style	Ρ	Α	В	С	Х	Υ	Α	В	С	Х	Υ
4	RAC10 2D		0.65							1.3	0.34	0.33	0.4
l l	RAC10 1A	С	0.65		Not applied				0.5	1.5	0.54	0.55	0.4
2	RAC10 4D		0.5							1.3	0.15	0.35	0.4
2	RAC16 4D	С	0.8	1.0	1.0 2.6 0.35 0.45 0.8				1.0	2.0	0.35	0.45	0.5
3	RAC16 8U	С	0.64		Not applied					2.0	0.32	0.32	0.5
4	RAC16 8D	С	0.5							2.0	0.2	0.3	0.5

Others

- (1) Please contact Kamaya Sales Dept. for other products and further details.
- (2) Please carry out an enough mounting evaluation when use these patterns.

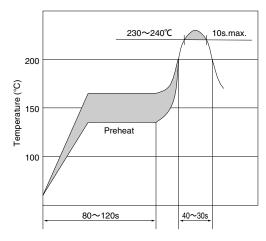
Information

http://www.kamaya.co.jp KAMAYA OHM

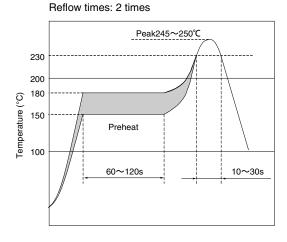
SMD Product handling manual (RECOMMENDED SOLDERING CONDITION)

Note: This soldering condition is not supported by the mounting evaluation.

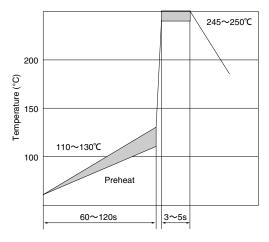
This is reference information only.


Application

All KAMAYA Surface Mount Devices


Recommended soldering condition (Reference)

- 1. Reflow soldering
 - 1.1 Recommended condition of Sn-Pb solder.


Reflow times: 2 times

1.2 Recommended condition of Sn solder

2. Flow soldering (Recommended condition of Sn solder and Sn-Pb solder)

- 3. Soldering Iron (Recommended condition of Sn solder and Sn-Pb solder)
 - (1) Temperature of soldering iron tip: 300°C, Duration: 10 s max.
 - (2) Temperature of soldering iron tip: 350°C, Duration: 3 s max.

●Others

- (1) Please contact Kamaya Sales department for further information.
- (2) Please carry out an enough mounting evaluation when use this profile.

Term Explanation

Resistors

Rated Dissipation

The maximum value of the electric power that can continuously be impressed to the resistor at the ambient temperature provided for within the category temperature range is indicated.

The derated values of dissipation for temperatures in excess of 70°C shall be indicated by the derating Curve.

Please note that the chip resistor networks provide for the rated dissipation of each element and each package when you use it.

Rated Voltage

The maximum value of the D.C or r.m.s. voltage that can continuously be impressed to the resistor at the ambient temperature provided for within the range of the category temperature range is indicated.

Rated Voltage = (Rated Dissipation) (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

However, Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Critical Resistance Value

Critical resistance value is the resistance value at which the rated voltage is equal to the limiting element voltage. Below critical resistance value, please use the rated voltage as the limiting element voltage.

Limiting Element Voltage

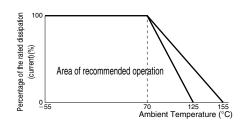
The maximum value of the d.c. or r.m.s. voltage that can continuously be impressed to the resistor and the resistive element is indicated. Limiting Element Voltage that provides for the kind and each shape is different.

Isolation Voltage

The maximum value of the d.c. voltage that can be impressed for 1 minute the one that the electrode (terminal) was lumped together and between the insulation exterior or substrates is indicated.

When the voltage that exceeds the isolation voltage is impressed for the electrode and the insulation exterior (substrate), the insulation exterior might be destroyed by generation of heat and the direct current electrolysis action by the leakage current.

Voltage proof


The r.m.s voltage is impressed for 1 minute the one that the electrode (terminal) was lumped together and between the insulation exterior or substrates, and the insulation exterior indicates the maximum value of the voltage that breakdown or flashover.

Category Temperature Range

The ambient temperature of the resistor that can continuously be used adding a regulated rated load (electric power) is shown. It is not a temperature of air outside of an electronic equipment, and it is necessary to compare it with the ambient temperature in the electronic equipment in which the resistor is built in.

Derating Curve

The derated values of dissipation for temperatures in excess of 70°C shall be indicated by the following Curve.

Variation of resistance with temperature (Temperature Coefficient of Resistance: TCR)

The change of resistance 1°C rate of the resistor within the range of the category temperature (category temperature range) is shown.

Temperature Coefficient of Resistance: TCR ($\times 10^{-6}$ /°C) = $\frac{R-R_0}{R_0} \times \frac{1}{T-T_0} \times 10^{-6}$

R :Measured resistance at T°C

Ro :Measured resistance at T°C

:Measured test temperature (°C)

To: Measured base temperature (°C)

Especially, because the resistance temperature coefficient tends the large dependence of the measurement resistance on the measuring method, RLC/RLS/RCC/RLP&MLP needs noting.

Term Explanation

Chip Fuses & Fusible Resistors

Joule Heat

It is the heat generated by the current.

The fuse melts inside by joule heat, and interrupts the current.

Fusible Characteristics

Relation between current (I) and fusion time (t) that flows to fuse. It shows for the fusible Resistors by the relation between an impressed electric power (W)

and the fusion time (W-t characteristic).

Rated Voltage

It shows maximum voltage value fuse can work properly.

It is the maximum voltage value in which the circuit can be safely interrupted after the fuse workings.

On selecting a fuse, it is necessary to confirm that the maximum rated voltage is less than rated voltage.

Interrupting Rating

It shows Maximum voltage(Rated voltage) and Maximum current for an interrupting circuit safely.

Maximum voltage and Maximum current should be applied below interrupting rating.

Working Temperature Range

It is temperature range fuse can works with specified condition,

Ambient temperature is to be within category temperature range.

Rated Current

A value of current which the fuse can be complied with, according to the test conditions.

It is different from the maximum current that applied to fuses, considering a long life span, the deratings are required.

Steady - State Current

It is current value at time that regularly flows to circuit regularly.

Deratings

1) Nominal Derating

It is derating value for rated current.

The reduction rate is depended on the type of fuse.

2) Temperature Derating

It is ambient temperature derating value for rated current.

The reduction rate is depended on the types of fuse and ambient temperature.

In-rush Current(Rush current)

Current that rapidly flows on circuit when power supply is turned on.

In many cases In-rush Current is bigger than Steady-state Current.

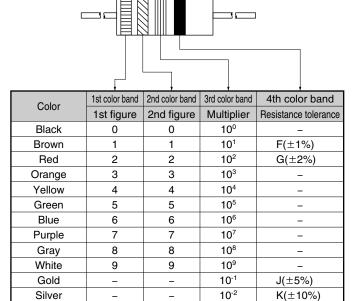
Chip fuses are confirmed to withstand In-rush Current.

Internal Resistance Value

An internal resistance values shown in this document include values in any materials of fuse,

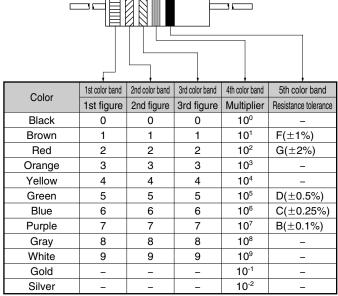
fuse element, outer terminations etc. Please refer to "section 10" for further information.

Additionally, resistance values are different depending on Temperature and Steady-state Current.

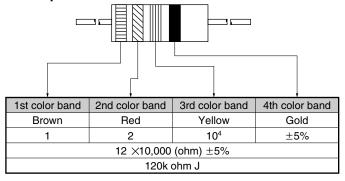

Maximum Open Circuit Voltage

Maximum open circuit voltage is the value of voltage applicable to both ends of resistors, when a resister is open condition in a circuit. This voltage shall be corresponding to 1,000 times the rated dissipation or maximum open circuit which is the less severe.

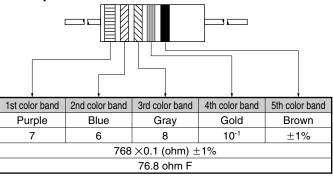
Product Marking


Color coding

• Three - color band or four - color band system


Not colored | - | - | - |
*For three-color band system the 4th color band is eliminated (Resistance tolerance is ±20%).

• Five - color band system



*RC1/2U: Please refer to page 24.

Example

Example

Rated resistance symbols

The symbols to indicate rated resistance are depicted in 3 characters (for the E6, E12, and E24 series) or 4 characters (for the E48, E96 and E192 series) as indicated below.

In the case of 3 characters, the first and second character represent the effective numeral, and the third character is the multiplier following the effective numeral. In the case of 4 characters, the first, second and third character represent the effective numeral, and the fourth character is the multiplier following the effective numeral. When a decimal point exists, the decimal point is represented by an R for all effective numerals.

• 3-Digit (example)

Rated resistance symbols	Resistance value
R15	0.15 ohm
1R5	1.5 ohm
150	15 ohm
151	150 ohm
152	1.5k ohm
153	15k ohm
154	150k ohm
155	1.5M ohm
156	15M ohm
157	150M ohm

• 4-Digit (example)

M(±20%)

Rated resistance symbols	Resistance value
R154	0.154 ohm
1R54	1.54 ohm
15R4	15.4 ohm
1540	154 ohm
1541	1.54k ohm
1542	15.4k ohm
1543	154k ohm
1544	1.54M ohm
1545	15.4M ohm
1546	154M ohm

Resistance values of 100M ohm and greater(example)

Rated resistance symbols	Resistance value
100M	100M ohm
1G00	1G ohm
10G0	10G ohm
100G	100G ohm

^{*}The letters M and G are used as multipliers for 10⁶ and 10⁹ respectively of the resistance value expressed in ohms.

Standard Resistance Values and Symbols

●Code Tolerances

Code	Tolerance on rated resistance
Н	±50%
N	±30%
М	±20%
K	±10%
J	±5%
G	±2%
F	±1%
D	±0.5%
С	±0.25%
В	±0.1%

●Temperature Characteristics Symbol Table

Code	Temperature coefficient of resistance
E	±25×10 ⁻⁶ /°C
С	±50×10 ⁻⁶ /°C
K	±100×10 ⁻⁶ /°C
D	±200×10 ⁻⁶ /°C
Α	±500×10 ⁻⁶ /°C
М	±1,000×10 ⁻⁶ /°C
N	±70×10 ⁻⁶ /°C

●Significant Figure of Resistance Value

● Sig	nifica	ant F	igure	of R	lesis	t
E6	E12	E24	E48	E96	E192	
10	10	10	100	100	100 101	
				102	102 104	
			105	105	105 106	
				107	107 109	
		11	110	110	110 111	
				113	113 114	
	12	12	115	115	115 117	
	'2	12		118	118 120	
			121	121	121 123	
				124	124 126	
			127	127	127 129	
		13		130	130 132	
			133	133	133	
				137	135 137 138	
			140	140	140 142	
				143	143 145	
			147	147	147 149	
15	15	15		150	150 152	
			154	154	154 156	
		16		158	158 160	
		.	162	162	162 164	
				165	165 167	
			169	169	169 172	
				174	174 176	
	18	18	178	178	178 180	
	.0	'0		182	182 184	
			187	187	187 189	
				191	191 193	
			196	196	196 198	
		20		200	200 203	
			205	205	205 208	
				210	210	

E6	E12	E24	E48	E96	E192
22	22	22	215	215	215 218
22	22			221	221 223
			226	226	226 229
				232	232
		0.4	237	237	234 237 240
		24		243	243 246
			249	249	249 252
				255	255 258
			261	261	261 264
	27	27		267	267 271
			274	274	274 277
				280	280 284
			287	287	287 291
		30	301	294	294 298
				301	301 305
				309	309 312
			316	316	316 320
33	33	33		324	324 328
		00	332	332	332 336
				340	340 344
			348	348	348 352
		36		357	357 361
		50	365	365	365 370
				374	374 379
	39	39	383	383	383 388
	39	39		392	392 397
			402	402	402 407
				412	412 417
		43	422	422	422 427
		40		432	432 437
			442	442	442 448
				453	453 459
rts.					

E6	E12	E24	E48	E96	E192
47	47	47	464	464	464 470
47	47	47		475	475 481
			487	487	487 493
		51		499	499 505
		0.	511	511	511 517
				523	523 530
			536	536	536 542
	56	56		549	549 556
			562	562	562 569
				576	576 583
			590	590	590 597
				604	604 612
	68	62	619	619	619 626
		68		634	634 642
			649	649	649 657
68			681 715	665	665 673
				681	681 690
				698	698 706
				715	715 723
				732	732 741
		75	750	750	750 759
	82			768	768 777
			787	787	787 796
		82		806	806 816
			825	825	825 835
				845	845 856
			866	866	866 876
				887	887 898
		91	909	909	909 920
				931	931 942
			953	953	953 965
				976	976 988

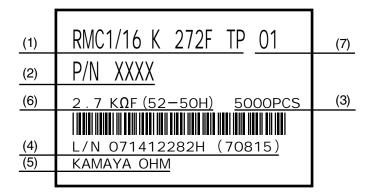
Numerical Symbols and Multipliers

Code	T(tera)	G(giga)	M(mega)	k(kilo)	m(milli)	μ(micron)	n(nano)	p(pico)
Multiplier	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²

Formula of Ohm's Law

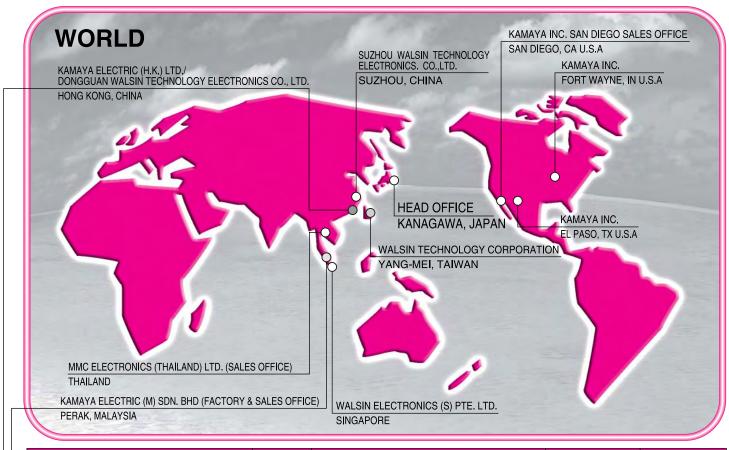
Direct Current	Power(P)		rrent Power(P) Voltage(E) Current(I)			Resistance(R)						
Calculating Formula	EI	l ² R	$\frac{E^2}{R}$	IR	√PR	<u>P</u>	E R	$\sqrt{\frac{P}{R}}$	P E	<u>E</u>	E ² P	P

^{*}Please refer to each page for standard values of each parts.

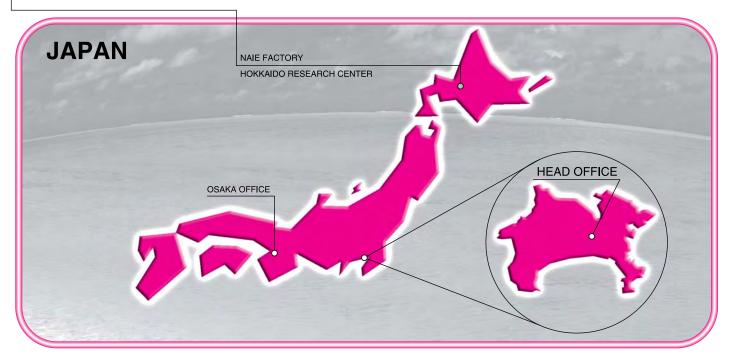


Kamaya Shipping Label

Kamaya products are put a shipping label on reel or other packaging. Refer to the sample of the shipping label as follows.


Example for chip resistors

RMC1/16K 272F TP 1608size, Fixed Thick Film Chip Resistor, 2.7k ohm $F(\pm 1\%)$



- (1)Product type(Style, Temperature coefficient of resistance, Rated resistance, Tolerance, Packaging)
- (2)Parts number from customer (P/N)
- (3)Quantity
- (4) Shipping Lot Number (L/N)
- (5)Manufacturer
- (6)Internal code 1
- (7)Internal code 2
- *There are cases in which (2) and (7) are not shown on Kamaya shipping label.
- *Please contact Kamaya sales department, if you need to confirm this label specification.

Kamaya Global Network

		Application Facilities	Standard	Certification Organization	Certification No.	Certificate Date
		NAIE Factory	ISO9001		2785613	Jul.28,1995
Г	JAPAN		ISO/TS16949	Bureau Veritas JapanCo.,Ltd	IATF 136837	Mar.22,2012
			ISO14001		2989282	May.9,2002
			ISO9001		22815	Aug.10,2007
+	- MALAYSIA	KAMAYA ELECTRIC(M)SDN, BHD.	ISO/TS16949	NQA Global Assurance	IATF 0106025	Jul.26,2007
			ISO14001		E3242	Jul.11,2007
			ISO9001	UL DQS Inc	20003508 QM08	May.21,1996
	- China	DONGGUAN WALSIN TECHNOLOGY	ISO/TS16949	OL DQS IIIC	IATF 0117277	Mar.25,2005
	(WALSIN Product)	ELECTRONICS CO., LTD.	ISO14001	CTI International Certification	04112E20082R3L	Aug.13,2003
	(OHSAS 18001	EICS	04111S18001R1L	Aug.14,2008

http://www.kamaya.co.jp

HEAD OFFICE

8-4-17 Fukayanaka, Ayase-shi, Kanagawa, 252-1107 Japan Tel: (+81) 467-71-0886 / Fax: (+81) 467-71-0910

E-mail: sales@kamaya.co.jp

Osaka Office 6th floor, Sin Nakajima Building, 1-9-20 Nishi Nakajima, Yodogawa-ku, Osaka-shi, Osaka, 532-0011

TEL:(+81)6-6304-5761 FAX:(+81)6-6306-0131

Naie Factory, Hokkaido 955-1 Naie, Aza, Naie-cho, Sorachi-gun, Hokkaido, 079-0397

Hokkaido Research Center TEL: (+81) 125-65-2171 FAX: (+81) 125-65-2177

U.S.A KAMAYA INC. (SALES OFFICE AND WAREHOUSE)

URL http://www.kamaya.com/

6407 Cross Creek Blvd. Fort Wayne, IN 46818 U.S.A.

Tel : (+1) 260-489-1533 / Fax : (+1) 260-489-2261 / E-mail : sales@kamaya.com

KAMAYA INC. (SAN DIEGO SALES OFFICE) 4163 Cleveland Ave #1 San Diego, CA 92103 U.S.A.

Tel: (+1)858-775-6050 / Fax: (+1)619-284-8749

KAMAYA INC. (EL PASO WAREHOUSE)

28-A Concord Street, El Paso, TX 79906 U.S.A.

Tel : (+1)915-779-7253 / Fax : (+1)915-779-7180 / E-mail : sales@kamaya.com

TAIWAN WALSIN TECHNOLOGY CORPORATION

566-1, Kao-shi Road Yang-mei, Taoyuan, 326, Taiwan, R.O.C.

Tel: (+886)3-4758711 / Fax: (+886)3-4756747

KAMAYA ELECTRIC (M) SDN. BHD. (1ST FACTORY AND SALES OFFICE) MALAYSIA

No. 2, Jalan Klebang 1/5 Zone, Perindustrian Bebas, Kinta Jalan Kuala Kangsar, 31200 Chemor, Perak, Malaysia.

Tel: (+60) 5-291-5522 / Fax: (+60) 5-291-2600 / E-mail: Kmy@kamaya.com.my

KAMAYA ELECTRIC (M) SDN. BND. (2ND FACTORY)

No. 17, Jalan Klebang 1/6 Zone, Perindustrian Bebas, Kinta Jalan Kuala Kangsar, 31200 Chemor, Perak, Malaysia.

HONG KONG KAMAYA ELECTRIC (H.K.) LTD. NO.638, Mei Jing West Road (523799) Xiniupo Administrative Zone

Dalang Town, Dong-Guan City, Guang Dong Province, China. Tel: (+86)769-8106-9331 / Fax: (+86)769-8895-3204

SUZHOU WALSIN TECHNOLOGY ELECTRONICS. CO.,LTD. CHINA

NO.369 Changyang Street, Suzhou Industrial Park, Jiangsu P.R. 215024 China. Tel: (+86)512-6283-6888 / Fax: (+86)512-6283-0886 / E-mail: kamayasales@kamaya.co.jp

SINGAPORE WALSIN ELECTRONICS (S) PTE. LTD.

8 Ubi View #04-01, Serial System Building, Singapore 408554.

Tel: (+65)6896-3868 / Fax: (+65)6861-3381

MMC ELECTRONICS (THAILAND) LTD. **THAILAND** 129/2 Moo17 Bangplee Industrial Estate, Bangsaothong,

Bangsaothong Sub-District Samutprakarn 10540 Thailand

Tel: (+66)2-705-1346 / Fax: (+66)2-315-1565 / E-mail: mmethsa@mmeth.co.th

Important

Product specifications contained in this catalogue are subject to change at any time without notice. Please confirm specifications with your order.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

<u>RGC1/16C5102DTP</u> <u>RGC1/16C1472FTP</u> <u>RGC1/16C6801DTP</u> <u>RGC1/16C3301FT</u> <u>RGC1/16C1072FTP</u> RGC1/16C1004FTP RGC1/16SC6813DTH

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А