

SECTION 6

REED RELAYS FOR PRINTED CIRCUIT BOARD APPLICATIONS 4 VA TO 100 VA COAXIAL RELAYS FOR R. F. SWITCHING

	PRINTED CIRCUIT BOARD REED RELAYS			
RELAY SERIES	117SIP Magnecraft W1175IP-1 W0112	107DIP	171DIP	
	L W H 0.290 x 0.280 x 0.750	L W H 0.275 X 0.300 X 0.750	L W H 0.275 X 0.300 X 0.750	
	 SPST - NO OR NC - EPOXY MOLDED CONSTRUCTION. 	 SPST - NO OR NC - EPOXY MOLDED CONSTRUCTION. 	 SPST - NO OR NC - EPOXY MOLDED CONSTRUCTION. 	
	• STANDARD 0.1 GRID SPACING.	• STANDARD 0.1 GRID SPACING.	• STANDARD 0.1 GRID SPACING.	
FEATURES	 AVAILABLE WITH OR WITHOUT SUPPRESSION DIODE ACROSS COIL. 	 4 HOOK- UP PINS TO COIL & 4 HOOK-UP PINS TO CONTACTS 	 AVAILABLE WITH OR WITHOUT SUPPRESSION DIODE ACROSS COIL. 	
		AVAILABLE WITH OPTIONAL ELECTROSTATIC SHIELD	 AVAILABLE WITH OPTIONAL ELECTROSTATIC SHIELD 	
CONTACT DATA CONTACT CONFIGURATION:	SPST-N. O., SPST-N. C.	SPST-N. O., SPST-N. C.	SPST-N. O., SPST-N. C.	
CONTACT MATERIAL:	RHODIUM	RHODIUM	RHODIUM	
CONTACT RESISTANCE:	100 MILLIOHMS (INITIAL)	100 MILLIOHMS (INITIAL)	100 MILLIOHMS (INITIAL)	
MAX. SWITCHING LOAD:	0.5 AMP, 200 VDC @ 10 VA	0.5 AMP, 100 VDC @ 10 VA	0.5 AMP, 100 VDC @ 10 VA	
CONTINUOUS CARRY CURRENT:	1.2 AMP	1.5 AMP	1.5 AMP	
COIL DATA STANDARD VOLTAGE DC:	5, 12, 24,	5, 12, 24,	5, 12, 24,	
NOMINAL COIL POWER WATTS:	50 - 290 mW MAX.	35 - 290 mW MAX.	35 - 290 mW MAX.	
GENERAL DATA AMBIENT TEMPERATURE OPERATING:	- 45°C TO + 85°C	- 40°C TO + 85°C	- 40°C TO + 85°C	
STORAGE:	- 45 C TO + 85 C	- 40°C TO + 105°C	- 40°C TO + 85°C	
DIELECTRIC STRENGTH:	500 V rms	1000 V rms	1000 V rms	
(COIL TO FRAME) LIFE EXPECTANCY				
ELECTRICAL: MECHANICAL:	50,000,000 OPERATIONS 100,000,000 OPERATIONS	50,000,000 OPERATIONS 100,000,000 OPERATIONS	50,000,000 OPERATIONS 100,000,000 OPERATIONS	
PAGE NUMBER 61	PAGE 7	PAGE 8	PAGE 9 - 10	

I

PRINTED CIRCUIT BOARD & MINIATURE REED RELAYS

MADOL	172DIP	(0075	
MRRDL LATCHING DIP	Magnecraft W172DIP 1470050Y	193RE	
L W H 0.275 X 0.300 X 0.750	L W H 0.275 X 0.300 X 0.750/0.338 X 0.393 X 0.750	L W H 0.355 X 0.4 TO 0.9 X 1.15	
 SPST - NO - EPOXY MOLDED CONSTRUCTION STANDARD 0.1 GRID SPACING DUAL OPERATE & RESET COIL MAINTAINS LAST SET CONTACT POSITION WITHOUT THE NEED FOR COIL POWER 	 SPDT - EPOXY MOLDED CONSTRUCTION. DPDT - ENCAPSULATED CONSTRUCTION. STANDARD 0.1 GRID SPACING. AVAILABLE WITH SUPPRESSION DIODE ACROSS COIL. AVAILABLE WITH OPTIONAL ELECTROSTATIC SHIELD 	 SPDT -NO, SPDT, DPST - NO & DPDT - DUST COVER STANDARD. ENCAPSULATED CONSTRUCTION OPTIONAL STANDARD 0.1 GRID OR OPTIONAL 0.15 GRID SPACING. UP TO 4PDT OR 6PST CONTACT ARRANGEMENTS. 	
SPST-N. O.	SPDT, DPDT	1 TO 4PDT, 1 TO 6PST	
RHODIUM	RHODIUM	RHODIUM	
100 MILLIOHMS (INITIAL)	100 MILLIOHMS (INITIAL)	200 MILLIOHMS (INITIAL)	
0.5 AMP, 100 VDC @ 10 VA	SPDT: 0.25 AMP, 100 VDC @ 4 VA DPDT: 0.5 AMP, 100 VDC @ 10 VA	MAX. SWITCHING 0.5 AMP OR 200 VDC @ 10 VA	
1.5 AMP	SPDT - 0.5 AMP, DPDT - 1.0 AMP	1,5 AMP	
5, 12, 24,	5, 12, 24,	12, 24,	
35 - 290 mW MAX.	35 - 290 mW MAX.	1030 mW MAX.	
- 40°C TO + 85°C	- 40°C TO + 85°C	- 40°C TO + 85°C	
- 40°C TO + 105°C	- 40°C TO + 105°C	- 40°C TO + 105°C	
1000 V rms	1000 V rms	500 V rms	
50,000,000 OPERATIONS 100,000,000 OPERATIONS	50,000,000 OPERATIONS 100,000,000 OPERATIONS	50,000 OPERATIONS 10,000,000 OPERATIONS	
PAGE 11	PAGE 12 - 14	PAGE 15 - 16 62	

	MINIATURE & HIGH VOLTAGE REED RELAYS/COAXIAL RELAYS			
RELAY SERIES	134 MPCX MERCURY WETTED	102VX & 102HVX	120 COAXIAL	
	L W H 2.90 X 1.53 X 1.40	L W H 0.65 X 0.76 X 2.67	L W H 1.73 X 0.703 X 1.62	
FEATURES	 SPDT & DPDT - DUST COVER STANDARD. ENCAPSULATED CONSTRUCTION OPTIONAL STANDARD 0.1 GRID OR OPTIONAL 0.15 SPACING AVAILABLE. POSITION SENSITIVE. VERTICAL MOUNTED. 	 SPST - NO EPOXY ENCAPSULATED HIGH VOLTAGE REED SWITCHING UP TO 10 MA @ 5,000 VDC 5 MA @10,000 VDC 	 SPDT - METAL CASE 150 WATT SWITCHING UP TO 470 MHz. RG58C/U CABLE, 12" LONG STANDARD. 50 OHM IMPEDANCE R.F. SWITCHING CONTACTS 	
CONTACT DATA CONTACT CONFIGURATION:	SPDT, DPDT	SPST- N. O.	SPDT	
CONTACT MATERIAL:	RHODIUM / MERCURY	TUNGSTEN	SILVER ALLOY GOLD FLASHED	
CONTACT RESISTANCE:	100 MILLIOHMS (INITIAL)	200 MILLIOHMS (INITIAL)	50 MILLIOHMS (INITIAL)	
MAX. SWITCHING LOAD:	MAX. SWITCHING 1.0 AMP OR 500 VDC @ 50 VA	VX-10 MA @ 5000VDC HVX-5 MA @ 10,000 VDC	150 WATTS, 85 Vrms	
CONTINUOUS CARRY CURRENT:		30 & 15 MILLIAMPS	150 WATTS	
COIL DATA STANDARD VOLTAGE DC:	5, 12, 24,	12, 24,	12	
NOMINAL COIL POWER WATTS:	620 mW MAX.	1.5 WATTS MAX.	1.44 WATTS MAX.	
GENERAL DATA AMBIENT TEMPERATURE OPERATING: STORAGE: DIELECTRIC STRENGTH: (COIL TO FRAME) LIFE EXPECTANCY ELECTRICAL: MECHANICAL:	- 37°C TO + 85°C - 40°C TO + 105°C 1000 V rms 40,000 OPERATIONS 10,000,000 OPERATIONS	- 40°C TO + 85°C - 40°C TO +105°C 12000 V rms 1,000,000 OPERATIONS 10,000,000 OPERATIONS	- 55°C TO + 65°C - 40°C TO +105°C 1500 V rms 5,000,000 OPERATIONS 100,000 OPERATIONS	
PAGE NUMBER 63	PAGE 17	PAGE 18	PAGE 19	

REED RELAYS

APPLICATION DATA

HOW REED RELAYS WORK

The term reed relay covers dry reed relays and mercurywetted contact relays, all of which use hermetically sealed reed switches. In both types, the reeds (thin, flat blades) serve multiple functions - as conductor, contacts, springs, and magnetic armatures.

DRY REED RELAYS

Dry reed relays have become an important factor in the relay field. They have the advantage of being hermetically sealed and resistant to atmospheric contamination. They have fast operate and release times and when operated within their rated contact loads, have very long life. A typical dry reed switch capsule is shown in Figure 1.

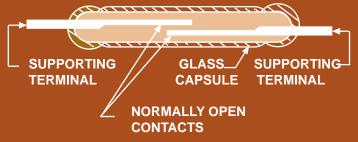


Figure 1. Construction of Switch Capsule of Typical Dry Reed switch (SPST-NO)

In the basic SPST-NO design, two opposing blades are sealed into a narrow glass capsule and overlapped at their free ends. The contact area is plated typically with rhodium to produce a low contact resistance when contacts are drawn together. The capsule is made of glass and filled with a dry inert gas and then sealed. The capsule is surrounded by an electromagnetic coil. When the coil is energized, the normally open contacts are brought together; when the coil voltage is removed, the blades separate by their own spring tension. Some reeds contain permanent magnets for magnetic biasing to achieve normally closed contacts (SPST-NC) or SPDT contact combinations. The current rating, which is dependent upon the size of the blade and the type and amount of plating, may range from low level to 1 amp. Effective contact protection is essential when switching loads other then dry resistive loads.

MERCURY-WETTED CONTACT RELAYS.

Mercury wetted contacts consist of a glass-encapsulated reed with its base immersed in a pool of mercury and the other end capable of moving between one or two stationary contacts. The mercury flows up the reed by capillary action and wets the contact surfaces of the moving end of the reed as well as the contact surfaces of the stationary contacts. A mercury to mercury contact is maintained in the closed position. The capsule is surrounded by an electromagnetic coil and operates in the same manner as a dry reed.

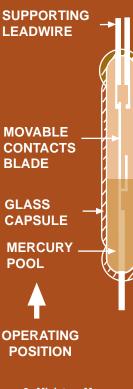


Figure 2. Miniature Mercury wetted contacts switch (SPST)

CONTACT COMBINATIONS.

Mercury wetted contacts are fast in operation and have relatively good load carrying capacity and long life. The mercury films are reestablished at each contact closure and contact erosion is eliminated. The mercury films are stretchable, there is no contact bounce and because it is a mercury contact, the contact resistance is very low and ideal for low level switching applications. The disadvantages of this type of reed relay are the freezing point of mercury (-38°C), poor resistance to shock and vibration and the need to mount the relay in a near vertical position. These relays are used for a variety of switching applications such as found in computers, business machines, machine tool control systems, and laboratory instruments.

The switches used in dry reed relays provide SPST-NO, SPST-NC, SPDT contact combinations. The SPST-NO corresponds with the basic switch capsule design (Fig.1).

The SPST-NC results from a combination of the SPST-NO switch and a permanent magnet strong enough to pull the contacts closed but able to open when coil voltage is applied to the relay coil.

In typical true SPDT designs, the armature is mechanically tensioned against the normally closed contact, and is moved to the normally open contact upon application of a magnetic field. The SPDT contact combination can also be achieved by joining a SPST-NO switch with an appropriately adjusted SPST-NC switch, and jumping one side of both switches together to form the movable contact system.

Latching contacts, defined as contacts which remain in the position to which they were driven, and stay in that position when coil power is removed from the relay coil.

Latching switches are manufactured by using a SPST-NO contact, and biasing it with a permanent magnetic that is strong enough to hold the contacts closed, but not strong enough to hold the contact closed when coil power is applied to the coil. The switching process is than reversed by simply reversing the relay coil polarity to close the switch, or by employing a second coil with a reverse field.

REED RELAYS

APPLICATION DATA

MAGNETIC FIELDS

Reed relays in general can be characterized as susceptible to the influences of external magnetic fields. It is important to keep reed relays at a proper distance from each other because of the possibility of magneticinteraction between them. Proper magnetic shielding must be used to contain stray magnetic fields. When installing reed relays into equipment, one should be aware of the devices within that equipment which can produce magnetic fields. The relays being installed into that equipment should be positioned as far away as possible from any stray magnetic fields and should be shielded to prevent false operations.

ELECTRICAL CHARACTERISTICS

SENSITIVITY:

The input power required to operate dry reed relays is determined by the sensitivity of the particular reed switch used, by the number of switches operated by the coil, by the permanent magnet biasing (if used), and the efficiency of the coil and the effectiveness of its coupling to the blades. Minimum input required to effect closure ranges from the very low milliwatt level for a single sensitive capsule to several watts for multipole relays.

OPERATE TIME:

The coil time constant, overdrive on the coil, and the characteristics of the reed switch determine operate time. With the maximum overdrive voltage applied to the coil, reed relays will operate in approximately the 200 microsecond range. When driven at rated coil voltage, usually the relays will operate at about one millisecond.

RELEASE TIME:

With the coil unsuppressed, dry reed switch contacts release in a fraction of a millisecond. SPST-NO contacts will open in as little as 50 microseconds. Magnetically biased SPST-NC and SPDT switches reclose from 100 microseconds to 1 millisecond respectively. If the relay coil is suppressed, release times are increased. Diode suppression can delay release times for several milliseconds, depending on coil characteristics, coil voltage, and reed release characteristics.

CONTACT BOUNCE

Dry reed contacts bounce on closure as with any other hard contact relay. The duration of bounce on a Dry reed switch is typically very short, and is in part dependent on drive level. In some of the faster devices, the sum of the operate time and bounce is relatively constant. As drive is increased, the operate time decreases with bounce time increasing. The normally closed contacts of a SPDT switch bounce more then the normally open contacts. Magnetically biased SPST-NC contacts exhibit essentially the same bounce characteristics as SPST-NO switches.

CONTACT RESISTANCE

The reeds (blades) in a dry reed switch are made of magnetic material which has a high volume resistivity, terminal-to-terminal resistance is somewhat higher than in some other types of relays. Typical specification limits for initial resistance of a SPST-NO reed relay is 0.200 ohms max (200 milliohms).

INSULATION RESISTANCE

A dry reed switch made in a properly controlled internal atmosphere will have an insulation resistance of 10¹² to 10^omms or greater. When it is assembled into a relay, parallel insulation paths reduce this to typical values of 10^omms. Depending on the particular manner of relay construction, exposure to high humidity or contaminating environments can appreciably lower final insulation resistance.

CAPACITANCE

Reed capsules typically have low terminal-to-terminal capacitance. However, in the typicall relay structure where the switch is surrounded by a coil, capacitance from each reed to the coil act to increase capacitance many times. If the increased capacitance is objectionable, it can be reduced by placing a grounded electrostatic shield between the switch and coil.

DIELECTRIC WITHSTAND VOLTAGE

With the exception of the High-Voltage dry reed switches (capsules that are pressurized or evacuated), the dielectric strength limitation of relays is determined by the ampere turn sensitivity of the switches used. A typical limit is 200 VAC. The dielectric withstand voltage between switch and coil terminals is typically 500 VAC.

REED RELAYS

APPLICATION DATA

THERMAL EMF

Since thermally generated voltages result from thermal gradients within the relay assembly, relays built to minimize this effect often use sensitive switches to reduce required coil power, and thermally conductive materials to reduce temperature gradients. Latching relays, which may be operated by a short duration pulse, are often used if the operational rate is not changed for longer periods of time because coil power is not required to keep the relay in the on or off position after the initial turn on or turn off pulse.

NOISE

Noise is defined as a voltage appearing between terminals of a switch for a few milliseconds following closure of the contacts. It occurs because the reeds (blades) are moving in a magnetic field and because voltages are produced within them by magnetostrictive effects. From an application standpoint, noise is important if the signal switched by the reed is to be used within a few milliseconds immediately following closure of the contacts. When noise is critical in an application, a peak-to-peak limit must be established by measurement techniques, including filters which must be specified for that particular switching application.

ENVIRONMENTAL CHARACTERISTICS

Reed relays are used in essentially the same environments as other types of relays. Factors influencing their ability to function would be temperature extremes beyond specified limits

VIBRATION

The reed switch structure, with so few elements free to move, has a better defined response to vibration than other relay types. With vibration inputs reasonably separated from the resonant frequency, the reed relay will withstand relatively high inputs, 20 g's or more. At resonance of the reeds, the typical device can fail at very low input levels. Typical resonance frequency is 2000 hz.

SHOCK

Dry reed relays will withstand relatively high levels of shock. SPST-NO contacts are usually rated to pass 30 to 50 g's, 11 milliseconds, half sign wave shock, without false operation of contacts. Switches exposed to a magnetic field that keep the contacts in a closed position, such as in the biased latching form, demonstrate somewhat lower resistance to shock. Normally closed contacts of mechanically biased SPDT switches may also fail at lower shock levels.

TEMPERATURE

Differential expansion or contraction of reed switches and materials used in relay assemblies can lead to fracture of the switches. Reed relays are capable of withstanding temperature cycling or temperature shock over a range of at least -50° C to $+100^{\circ}$ C. These limits should be applied to the application to prevent switch failure.

CONTACT PROTECTION

Tungsten lamp, inductive and capacitive discharge load are extremely detrimental to reed switches and reduce life considerably. Illustrated below are typical suppression circuits which are necessary for maximum contact life.

Figure 3

Initial cold filament turn-on current is often 16 times higher than the rated operating current of the lamp. A current limiting resistor in series with the load, or a bleeder resistor across the contacts will suppress the inrush current. The same circuits can be used with capacitive loads, as shown in Figure 3.

DC inductive loads call for either a diode or a thyristor to be placed across the load. These circuits are necessary to protect the contacts when inductive loads are to be switched in a circuit, as shown in Figure 4.

U. S. A.

TELEPHONE:	(843)393-5778	
FAX:	(843)393-4123	
WEBSITE:	www.magnecraft.com	
EMAIL:	info@magnecraft.com	

EUROPE

			у (
TELEPHONE:	4989 / 75080310	Y	1		
FAX:	4989/ 7559344	4			
WEBSITE:	www.magnecraft.com				
EMAIL:	renatesteinback@magne	eci	raft	.de	

SINGLE IN - LINE PACKAGE REED RELAY

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

SPST-N.O. OR N.C., 0.5 AMP

GENERAL SPECIFICATIONS

COIL

Pull-in Voltage:	85% of nominal voltage or less
Drop Out Voltage:	10% of nominal voltage or more
Max. Voltage:	110% of nominal voltage
Resistance:	±10% measured @ 25°C
Coil Power:	See chart
Duty:	Continuous

CONTACTS

Contact Material:	Rhodium
Contact Resistance:	200 milliohms max
Contact Rating:	0.5 amp 200 VDC (10VA)
	1.2 amps max. Continuous carry current
TIMING	
Operate time:	1 mS or less @ nominal voltage

Release time: 1 mS or less @ nominal voltage

DIELECTRIC STRENGTH

Across Open Contacts:	150 V rms
Between Mutually	
Insulation Points:	500 V rms
Insulation Resistance:	1000 megohms min. @ 500 VDC
Capacitance:	1.0 pf typical coil to contact

50 g's

TEMPERATURE

Operating: Storage:

-40°C to +85°C @ rated operation -40°C to +105°C

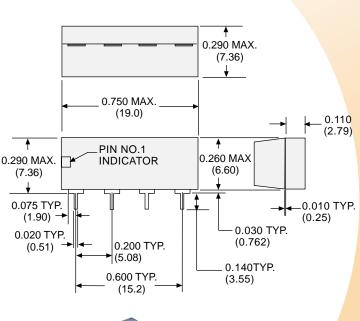
SHOCK RESISTANCE

Operating:

VIBRATION RESISTANCE

Operating:

LIFE EXPECTANCY	
Electrical:	50,000,000 operations
	@ 5-10 V @ 10 mA
Mechanical:	100,000,000 operations @ no load


20 g's, 40 Hz to 200 Hz

MISCELLANEOUS

Operating Position:	
Enclosure:	
Weight:	

Any Epoxy molded 1 gram approx.

WHEN SPACING SIP RELAYS, THE RELAYS **REQUIRE 1/2 INCH SPACING FROM THE SIDE** OF THE ADJACENT RELAYS.

WIRING		COIL MEASURED @ 25°C		
DIAGRAMS (TOP VIEWED)	DIAGRAMS STANDARD PART		NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
SPST - N. O.				
	W117SIP-1	5	500 Ω	50
	W117SIP-3	12	1000 Ω	144
$\begin{array}{c} \downarrow \downarrow \downarrow \\ 1 3 5 7 \end{array}$	W117SIP-5	24	2000 Ω	288
SPST - N.C.				
	W117SIP-22	5	500 Ω	50
	W117SIP-23	12	1200 Ω	120
$\begin{array}{c} \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ 1 3 \qquad 5 7 \end{array}$	W117SIP-24	24	2200 Ω	270
SPST - N. O. WITH CLAMPING DIODE				
	W117SIP-6	5	500 Ω	50
	W117SIP-8	12	1000 Ω	144
↓ ↓ ↓ ↓ 1 3+ 5-7	W117SIP-10	24	2000 Ω	288
SPST - N. C. WITH CLAMPING DIODE				
	W117SIP-18	5	500 Ω	50
	W117SIP-25	12	1200 Ω	120
♥ ♥ ♥ ♥ 1 3+ 5-7	W117SIP-26	24	2200 Ω	220

SPST-N.O., 0.5 AMP

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

GENERAL SPECIFICATIONS

COIL

Pull-in Voltage: Drop Out Voltage: Max. Voltage: Resistance: Coil Power: Duty:

CONTACTS

TIMING

85% of nominal voltage or less 10% of nominal voltage or more 110% of nominal voltage ±10% measured @ 25°C See chart Continuous

Operate time:

Reset time:

Contact Material:
Contact Resistance:
Contact Rating:

Rhodium 200 milliohms max. 0.5 amp 100 VDC (10VA) 1.5 amps max. Continuous carry current.

1 mS or less @ nominal voltage. 1 mS or less @ nominal voltage.

DIELECTRIC STRENGTH

Across Open Contacts: 200 V rms **Between Mutually** Insulation Points: Insulation Resistance: Capacitance:

1000 V rms 1000 megohms min. @ 500 VDC

2.0 pf typical contact to open contact

-40°C to +85°C @ rated operation

TEMPERATURE

Operating: Storage:

SHOCK RESISTANCE

VIBRATION RESISTANCE

Operating

Operating:

20 g's, 40 Hz to 200 Hz

-40°C to +105°C

50 g's

LIFE EXPECTANCY

Electrical:

Mechanical:

50,000,000 operations @ 5-10 V @ 10 mA 100,000,000 operations @ no load

MISCELLANEOUS

Operating Position: Enclosure: Weight:

Any Epoxy molded 1 gram approx.

WHEN SPACING DIP RELAYS, THE RELAYS **REQUIRE 1/2 INCH SPACING FROM THE** SIDE OF THE ADJACENT RELAYS.

14 0.100 TYP 1 (2.54).0.300 MAX. 0.750 MAX. (7.62)(19.0)0.275 MAX. (6.98) 0.020 TYP. 0.400 0.150 TYP. (0.51)(10.1)0.010 TYP. (3.81)(0.25) 0.020 TYP. (0.51)0.600 TYP (15.2)

WIRING		COIL	MEASURED	@ 25°C
(TOP VIEWED)	STANDARD PART NUMBERS	INPUT	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
SPST - N. O.				
14 13 9 8	W107DIP-1 W107DIP-3 W107DIP-4	5 12 24	500 Ω 1000 Ω 2000 Ω	50 144 288
SPST - N. O. WITH C		DE		
14 13 9 8 14 13 9 8 1 + 2 6 7	W107DIP-5 W107DIP-7 W107DIP-8	5 12 24	500 Ω 1000 Ω 2000 Ω	50 144 288

SEE END OF SECTION 6 FOR CROSS REFERENCE

SPST-N.O. OR N.C., DPST-N.O. 0.5 AMP

GENERAL SPECIFICATIONS

COIL

Pull-in Voltage: Drop Out Voltage: Max. Voltage: Resistance: Coil Power: Duty:

85% of nominal voltage or less 10% of nominal voltage or more 110% of nominal voltage ±10% measured @ 25°C See chart Continuous

CONTACTS

Contact Material:	Rhodium
Contact Resistance	200 milliohms max.
Contact Rating:	0.5 amp 100 VDC (10VA)
	1.5 amps max continuous carry current
TIMING	

Т

Operate time: Release time: 1 mS or less @ nominal voltage 1 mS or less @ nominal Voltage

DIELECTRIC STRENGTH

Across Open Contacts:	150 V rms
Between Mutually	
Insulation Points:	500 V rms
Insulation Resistance:	1000 megohms min. @ 100 VDC
Capacitance:	1.0 pf typical contact to contact

TEMPERATURE

Operating: Storage:

-40°C to +85°C @ rated operation -40°C to +105°C

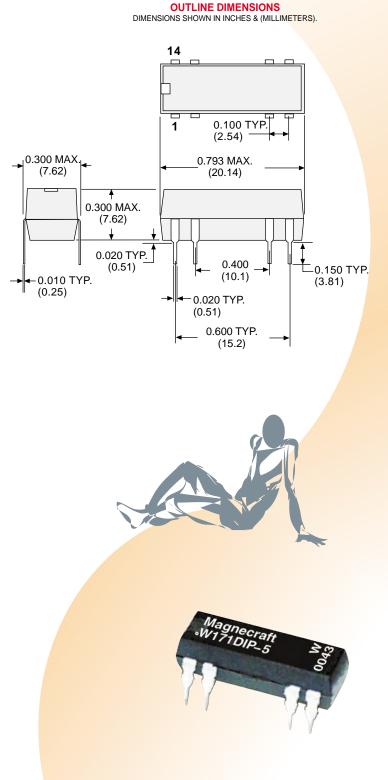
SHOCK RESISTANCE

50 g's

VIBRATION RESISTANCE

Operating:

Operating:


20 g's, 40 Hz to 200 Hz

LIFE EXPECTANCY

Electrical:	50,000,000 operations @ raeed load
Mechanical:	100,000,000 operations low level

MISCELLANEOUS

Operating Position:	Any
Enclosure:	Epoxy molded
Weight:	1 gram approx.

WHEN SPACING DIP RELAYS, THE RELAYS **REQUIRE 1/2 INCH SPACING FROM THE** SIDE OF THE ADJACENT RELAYS.

SPST-N.O. OR N.C., DPST-N.O. 0.5 AMP

	D @ 25°C			
WIRING DIAGRAMS (TOP VIEWED)	STANDARD PART NUMBERS	NOMINAL INPUT VOLTAGE	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
SPST - N.O.				
14 13 9 8 ▲ ▲ ▲ ▲	W171DIP-2	5	500 Ω	50
	W171DIP-4	12	1200 Ω	120
	W171DIP-5	24	2200 Ω	270
Image: Weight of the second				
SPST - N. O. WITH C 14 13 9 8	LAMPING DIODI	E		
† † † †	W171DIP-7	5	500 Ω	50
	W171DIP-9	12	1000 Ω	144
1 + 2 = 6 = 7	W171DIP-10	24	2200 Ω	270
SPST - N. C.				
14 13 9 8	W171DIP-12	5	200 Ω	50
	W171DIP-14	12	1200 Ω	120
	W171DIP-15	24	2200 Ω	270
↓ ↓ ↓ 1 2 6 7				
14 13 9 8	W171DIP-17	5	500 Ω	50
	W171DIP-19	12	1200 Ω	120
	W171DIP-20	24	2200 Ω	270
1 + 2 6 7				
DPST - N. O. 14 13 9 8				
	W171DIP-21	5	500 Ω	50
	W171DIP-23	12	1000 Ω	144
	W171DIP-24	24	2200 Ω	270
DPST - N. O. WITH C	LAMPING DIODI	E		
14 13 9 8				
	W171DIP-25	5	500 Ω	50
	W171DIP-27	12	1000 Ω	144
	W171DIP-28	24	2200 Ω	270

SEE END OF SECTION 6 FOR CROSS REFERENCE

DUAL COIL LATCHING REED RELAY

SPST - N.O., 0.5 AMP

GENERAL SPECIFICATIONS

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

COIL						
Pull-in Voltage:	85% of nominal voltage or less		1	4		
Drop Out Voltage:	10% of nominal voltage or more					
Max. Voltage:	110% of nominal voltage		H			
Resistance:	±10% measured @ 25°C					
Coil Power:	See chart			1 0.100 T (2.54) ⁻	YP.	
Duty:	Continuous	0.000 MA				
		→ 0.300 MA (7.62)	^{X.} + +	0.793 MAX. (20.14)	·	
CONTACTS				()		
Contact Material:	Rhodium		0.300 MAX.			
Contact Resistance:	200 milliohms max		(7.62)			
Contact Rating:	0.5 amp 100 VDC (10VA)			╷└─┤/────		
	1.5 amps max continuous carry c	urrent	0.020 TY <u>P.</u>	0.400		
TIMING		→ ← 0.010	(0.51) TYP	(10.1)	→ 0.150	0 TYP.
Operate time:	1 mS or less @ nominal voltage	(0.25)		← 0.020 TYP.	(0.01	
Release time:	1 mS or less @ nominal Voltage			(0.51)		
				0.6	00 TYP.	
DIELECTRIC STRENGT	гн		10	((15.2)	
Across Open Contacts	: 150 V rms	M	WRD			
Between Mutually			INDL II			
Insulation Points:	500 V rms		Cold Patron	1		
Insulation Resistance:	1000 megohms min. @ 100 VDC	R				
Capacitance:	1.0 pf typical contact to contact	- /)				
		1				
TEMPERATURE						
Operating:	-40°C to +85°C @ rated operation	า				
Storage:	-40°C to +105°C					
					N I I I I I I I I I I I I I I I I I I I	
SHOCK RESISTANCE						
Operating:	50 g's					
VIBRATION RESISTAN	CE				4	
	CE 20 g's, 40 Hz to 200 Hz					
VIBRATION RESISTAN						
Operating:						
Operating:	20 g's, 40 Hz to 200 Hz					
Operating: LIFE EXPECTANCY Electrical:	20 g's, 40 Hz to 200 Hz 50,000,000 operations	WIRING			MEASURED	
Operating:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load	WIRING DIAGRAMS	STANDARD PART	COIL NOMINAL INPUT	MEASURED NOMINAL RESISTANCE	@ 25°C Nominal Power
Operating: LIFE EXPECTANCY Electrical:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations			NOMINAL	NOMINAL	NOMINAL
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations	DIAGRAMS (TOP VIEWED) SPST - N. O.	PART	NOMINAL INPUT	NOMINAL RESISTANCE	NOMINAL POWER
Operating: LIFE EXPECTANCY Electrical: Mechanical:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level	DIAGRAMS (TOP VIEWED)	PART	NOMINAL INPUT	NOMINAL RESISTANCE	NOMINAL POWER
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS Operating Position: Enclosure:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level Any	DIAGRAMS (TOP VIEWED) SPST - N. O. RESET	PART NUMBERS	NOMINAL INPUT VOLTAGE	NOMINAL RESISTANCE	NOMINAL POWER
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS Operating Position:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level Any Epoxy molded	DIAGRAMS (TOP VIEWED) SPST - N. O. RESET	PART NUMBERS	NOMINAL INPUT	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS Operating Position: Enclosure:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level Any Epoxy molded	DIAGRAMS (TOP VIEWED) SPST - N. O. RESET	PART NUMBERS	NOMINAL INPUT VOLTAGE	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS Operating Position: Enclosure:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level Any Epoxy molded	DIAGRAMS (TOP VIEWED) SPST - N. O. RESET 9 8	PART NUMBERS MRRDL1AS8-5D MRRDL1AS8-12D	NOMINAL INPUT VOLTAGE	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
Operating: LIFE EXPECTANCY Electrical: Mechanical: MISCELLANEOUS Operating Position: Enclosure: Weight:	20 g's, 40 Hz to 200 Hz 50,000,000 operations @ rated load 100,000,000 operations low level Any Epoxy molded	DIAGRAMS (TOP VIEWED) SPST - N. O. 14 13 9 8	PART NUMBERS	NOMINAL INPUT VOLTAGE 5 12	NOMINAL RESISTANCE (OHMS) 750 / 750 Ω 1000 / 1000 Ω	NOMINAL POWER (mW) 35 145

OPERATE

END TO END.

BETWEEN ADJACENT RELAYS FROM

SPDT, 0.25 AMP

GENERAL SPECIFICATIONS

COIL

Pull-in Voltage: Drop Out Voltage: Max. Voltage: Resistance: Coil Power: Duty:

85% of nominal voltage or less 10% of nominal voltage or more 110% of nominal voltage ±10% measured @ 25°C See chart Continuous

CONTACTS

Contact Material: Contact Resistance: Contact Rating: Rhodium 200 milliohms max 0.25 amp 100 VDC (4 VA) 0.5 amps max continuous carry current

TIMING

Operate time: Release time: 1 mS or less @ nominal voltage 1 mS or less @ nominal Voltage

DIELECTRIC STRENGTH

Across Open Contacts: 1000 V rms Between Mutually Insulation Points: 500 V rms Insulation Resistance: 1000 mego Capacitance: 1.0 pf typica

500 V rms 1000 megohms min. @ 100 VDC 1.0 pf typical coil to contact

TEMPERATURE

Operating: Storage: -40°C to +85°C @ rated operation -40°C to +105°C

SHOCK RESISTANCE

VIBRATION RESISTANCE

Operating:

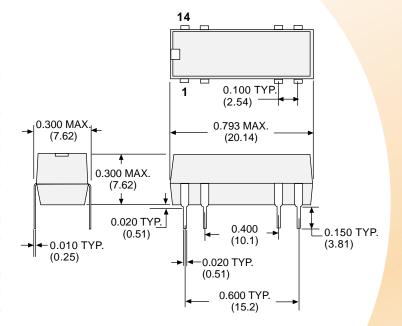
_

-20 g's, 40 Hz to 200 Hz

50 g's

LIFE EXPECTANCY

Electrical:


Mechanical:

Operating:

50,000,000 operations	
@ 50V/50mA	
80,000,000 operations low level 10V/10m	۱A

MISCELLANEOUS

Operating Position: Enclosure: Weight: Any Epoxy molded 1 gram approx.

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

WHEN SPACING DIP RELAYS, THE RELAYS REQUIRE 1/2 INCH SPACING FROM THE SIDE OF THE ADJACENT RELAYS.

SPDT, 0.25 AMP

COIL MEASURED @ 25°C

WIDINC			COIL MEASURED	
WIRING DIAGRAMS (TOP VIEWED)	STANDARD PART NUMBERS	NOMINAL INPUT VOLTAGE	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)
SPDT				
14 13 9 8				
	W172DIP-1	5	200 Ω	125
	W172DIP-3	12	500 Ω	300
$\begin{array}{c} 0 0 0 \\ 1 2 6 7 \end{array}$	W172DIP-4	24	2200 Ω	270
SPDT WITH CLAMPIN	G DIODE			
14 13 9 8				
	W172DIP-5	5	200 Ω	125
	W172DIP-7	12	500 Ω	300
	W172DIP-8	24	2200 Ω	270
SPDT				
14 13 9 8				
	W172DIP-31	5	200 Ω	125
	W172DIP-33	12	500 Ω	290
$\begin{array}{c}1\\ \bullet\\ 1\end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} $ \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c}0\\ \bullet\\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}	W172DIP-34	24	2200 Ω	270
SPDT WITH CLAMPIN	G DIODE		1	
14 13 9 8 ▲ ▲ ▲ ▲	W172DIP-35	5	200 Ω	125
	W172DIP-37	12	500 Ω	290
1 + 2 = 6 = 7	W172DIP-38	24	2200 Ω	270
SPDT				
14 13 9 8				
	W172DIP-141	5	200 Ω	125
	W172DIP-145	12	1000 Ω	144
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 6 & 7 \end{bmatrix}$	W172DIP-146	24	3200 Ω	180
SPDT WITH CLAMPIN	G DIODE			
14 13 9 8				
▲ ▲ ▲ ↑	W172DIP-147	5	200 Ω	125
	W172DIP-149	12	1000 Ω	144
1 + 2 = 6 = 7	W172DIP-150	24	3200 Ω	180

PIN NO.1

0.800 ±0.003

(20.32)

0.200 TYP.

0.600 TYP.

(15.2)

(5.08)

0.082 TYP.

(2.09)

LOCATION

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

> 0.400 MAX. (10.16)

0.125 TYP.

0.046 TYP.

(3.17)

(1.19)

DPDT, 1.0 AMP

0.400 MAX.

(10.16)

0.025 -(0.635)

0.3 ±0.003

(10.1)

GENERAL SPECIFICATIONS

COIL

Pull-in Voltage: Drop Out Voltage: Max. Voltage: Resistance: Coil Power: Duty:

85% of nominal voltage or less 10% of nominal voltage or more 110% of nominal voltage ±10 % measured @ 25°C See chart Continuous

CONTACTS

Contact Material:	F
Contact Resistance:	2
Contact Rating:	0

Rhodium 200 milliohms max. 0.25 amp 100 VDC (4 VA) 0.5 amps max continuous carry current.

TIMING

Operate time: Release time: 1 mS or less @ nominal voltage. 1 mS or less @ nominal Voltage.

DIELECTRIC STRENGTH

Across Open Contacts: 1000 V rms Between Mutually Insulation Points: 500 V rms Insulation Resistance: 1000 megohms min. @ 100 VDC Capacitance: 1.0 pf typical coil to contact

TEMPERATURE

Operating: Storage:

-40°C to +85°C @ rated operation -40°C to +105°C

SHOCK RESISTANCE

Operating:

50 g's

COIL MEASURED @ 25°C WIRING VIBRATION RESISTANCE NOMINAL NOMINAL STANDARD NOMINAL DIAGRAMS PART INPUT RE SISTANCE POWER Operating: 20 g's, 40 Hz to 200 Hz (TOP VIEWED) NUMBERS VOLTAGE (OHMS) (mW) DPDT LIFE EXPECTANCY 14 13 Electrical: 50,000,000 operations W172DIP-17 46 Ω 5 540 @ rated load Mechanical: 100,000,000 operations W172DIP-19 12 266 Ω 540 low level 0 1066 Ω W172DIP-20 24 540 MISCELLANEOUS **Operating Position:** Any 7 6 Enclosure: Epoxy molded **DPDT WITH CLAMPING DIODE** Weight: 1 gram approx. W172DIP-21 5 46 Ω 540 W172DIP-23 **266** Ω 12 540 ð W172DIP-24 1066 Ω 24 540 WHEN SPACING DUAL IN - LINE REED RELAYS, THE RELAYS REQUIRE 1/2 INCH SPACING

FROM THE SIDE OF THE ADJACENT RELAYS.

6...14

CLASS 193

DRY MINIATURE REED RELAYS

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

SPDT - NO, SPDT,

¥

0.355 MAX.

DPST-NO, DPDT, 0.5 AMP

1.15 MAX.

(29.2)

PIN SPACING OF 0.100" IS STANDARD. PIN SPACING OF 0.150 ISAVAILABLE ON SPECIAL ORDER. ALSO AVAILABLE ARE MODELS WITH ELECTROSTATIC SHIELDS. CONSULT FACTORY FOR PART NUMBERS. NONSTANDARD SCHEMATICS AND PIN-OUTS CAN ALSO BE PRODUCED FOR SPECIFIC CUSTOMER REQUIREMENTS.

ALSO BE PRODUCI	ED FOR SPECIFIC CUSTOMER REQU	JIREM	IENTS. 0	0.125 TYP.		0.355 N (9.0)	IAX.
	PECIFICATIONS		SIZE I	(3.2)	1.00 (15.4)		
	FECIFICATIONS	1	San Barrie Line		(15.4)		
COIL Pull-in Voltage:	85% of nominal voltage or less	-		_↓ Ξ		0.400 N (10.16)	
Drop Out Voltage:	10% of nominal voltage or more					(10.16)	
Max. Voltage:	110% of nominal voltage		1		D TYP.	Ť	
Resistance:	±10 % measured @ 25°C			(1	.27)		
Coil Power:	See chart		SIZE II				
Duty:	Continuous		Magnante 20.3			0.500 N (12.7)	1AX.
Duty.	Continuous	-	N. Sta			= (12.7)	
CONTACTS			NE S S	0.100) TYP.		
Contact Material:	Rhodium				54)		
Contact Resistance:	200 milliohms max.		U		_		
Contact Rating:	10 VA -SPST - NO. & SPDT		ں Spacing between	0.050 TYP. 0.100) TYP.		
Contact Mating.	4 VA -DPST - NO. & DPDT		filled in circles in		.54)		1
	0.5 amps max continuous carry current.		schematics are on	•			
TIMING	0.5 amps max continuous carry current.		0.100 grid patterns			🔪 / 🐔	
Operate time:	1 mS or less @ nominal voltage.		Pin omitted on	\sim			
Release time:	1 mS or less @ nominal Voltage.		unfilled circles.				
	i mo or less @ nominar voltage.						
DIELECTRIC STRENG	TH		WIRING			IEASURED	
Across Open Contact		CASE SIZE	DIAGRAMS	STANDARD PART	NOMINAL INPUT	NOMINAL RESISTANCE	NOMINAL POWER
Between Mutually		JIZL	(TOP VIEWED)	NUMBERS	VOLTAGE	(OHMS)	(mW)
Insulation Points	1000 VDC		SPST - N. O.				
Insulation Resistance			1 • • 2			100.0	050
Capacitance:	3 pf typical coil to contact	т	° ° 3 ← • 4	W193RE1A3-12G	12	420 Ω	350
		Ι	° ~ °	W193RE1A3-24G	24	2300 Ω	250
TEMPERATURE			5 • • • • 6				
Operating:	-40°C to +85°C @ rated operation		SPDT				
Storage:	-40°C to +105°C						
				W193RE1C3-12G	12	420 Ω	350
SHOCK RESISTANCE		Т	3 • 4	W193RE1C3-24G	24	2300 Ω	250
Operating:	50 g's	1	5 - 6				
5	9-		000				
VIBRATION RESISTA	NCE		DPST - N. O.				
Operating:	20 g's, 40 Hz to 200 Hz		1 o 2			000 0	-
1 5				W193RE2A3-12G	12	280 Ω	500
LIFE EXPECTANCY		Π	o 🔨 o	W193RE2A3-24G	24	1500 Ω	390
Electrical:	10,000,000 operations @ rated load	**					
Mechanical:	100,000,000 operations @ no load		7 • 8				
			DPDT				
MISCELLANEOUS				W4000 5000 400		000.0	500
Operating Position:	Any		3 • 4	W193RE2C3-12G	12	280 Ω	500
Enclosure:	Epoxy encapsulated	Π		W193RE2C3-24G	24	1500 Ω	390
	=_ 5.1, 0.100p00.000						

0

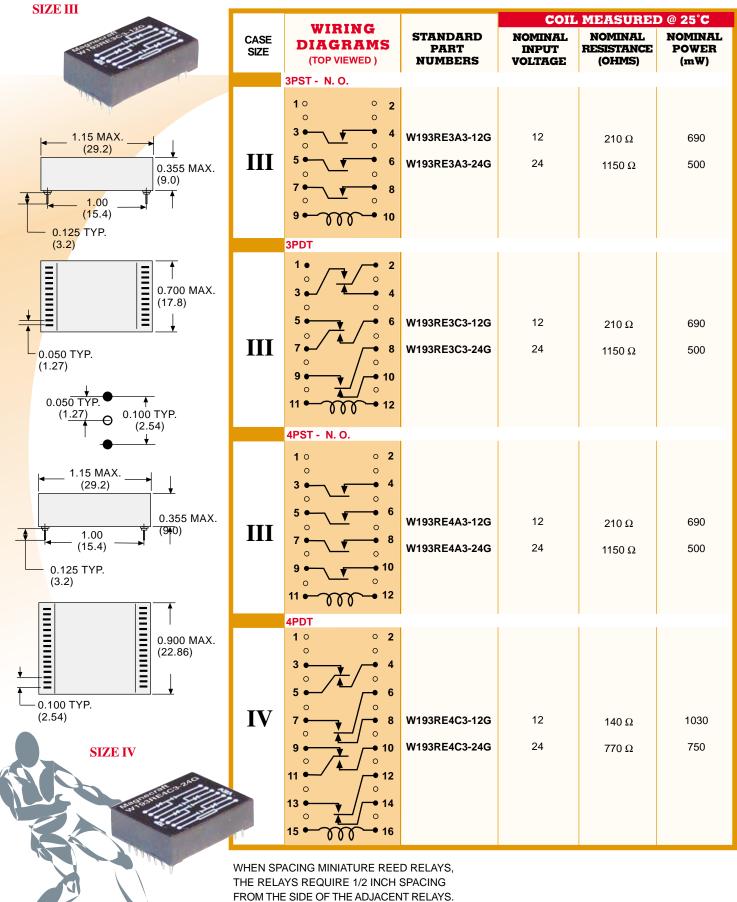
8

0

 \mathcal{M}

7 🔸

1 gram approx.


Weight:

6...15

^{CLASS}193

DRY MINIATURE REED RELAYS

3PST-N.O. 4PST- N.O, 3PDT & 4PDT., 0.5 AMP

CLASS 134

MERCURY REED RELAYS

SPDT & DPDT, 2 AMP

PIN SPACING OF 0.100" IS STANDARD. PIN SPACING OF 0.150 ISAVAILABLE ON SPECIAL ORDER. ALSO AVAILABLE ARE MODELS WITH ELECTROSTATIC SHIELDS. CONSULT FACTORY FOR PART NUMBERS. NONSTANDARD SCHEMATICS AND PIN-OUTS CAN ALSO BE PRODUCED FOR SPECIFIC CUSTOMER REQUIREMENTS.

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

SCHEMATICS AND P	FACTORY FOR PART NUMBERS. IN-OUTS CAN ALSO BE PRODUCE				▲ 1.15	5 MAX. 29.2)	¥
CUSTOMER REQUIR	EMENTS.			0.125 TYP.			355 MAX. .0)
GENERAL S	PECIFICATIONS		SIZE I	(3.2)	1 1 (1	.00 5.4)	T
COIL			aret 2		(.)	
Pull-in Voltage:	85% of nominal voltage or less		Par Januar		-	-	*
Drop Out Voltage:	10% of nominal voltage or more			T <u>+</u>	===		400 M <mark>AX.</mark> 0.16)
Max. Voltage:	110% of nominal voltage			Ī		I	▲
Resistance:	±10 % measured @ 25°C			L	– 0.050 TYP (1.27)		I
Coil Power:	See chart				(1.27)		
Duty:	Continuous		SIZE II				T I
,.			SIZE II			0.9	500 MAX.
CONTACTS			Decratty.8	2 m +	∃ ≣∣	0.8	2.7)
Contact Material:	Rhodium/Mercury		WI 3 AM	The second se			¥ 👘
Contact Resistance:	100 milliohms max.				- 0.100 TYP. (2.54)		
Contact Rating:	2 amp 500 VDC (50VA)				(2.04)		
Contact reating.	3 amps max continuous carry current.			• • • •	•		
TIMING			v	0.05 <mark>0 TY</mark> F (1 <u>.</u> 27)	0.100	ΓΥΡ.	
Operate time:	2.0 mS or less @ nominal voltage.			` 	-0 (2.54		
Reset time:	2.5 mS or less @ nominal Voltage.		Spacing betwee	n filled	• •		
Reset time.			in circles in sche				
DIELECTRIC STRENG	ти		are on 0.100 grid	d patterns.			
Across Open Contact			Pin omitted				
Between Mutually	1000 VDC		on unfilled circle	s.			N
Insulation Points:	1000 VDC						
				V			4
Insulation Resistance	-				COIL	MEASUREI	D @ 25°C
Capacitance:	2.0 pf typical coil to contact	CASE SIZE	WIRING DIAGRAMS	STANDARD PART	NOMINAL INPUT	NOMINAL RESISTANCE	NOMINAL POWER
TEMPERATURE			(TOP VIEWED)	NUMBERS	VOLTAGE	(OHMS)	(mW)
Operating:	-37°C to +85°C @ rated operation		SPDT MERCURY				
Storage:	-40°C to +105°C		$ \stackrel{6}{\bullet} \circ \stackrel{2}{\bullet} \circ \stackrel{2}{\circ} $				
		т		W134MPCX-2	12	330 Ω	435
SHOCK RESISTANCE		I					
Operating:	50 g's			W134MPCX-3	24	1400 Ω	410
			LIL				
VIBRATION RESISTAN			DPDT MERCURY				
Operating:	20 g's, 40 Hz to 200 Hz		8 2				
LIFE EXPECTANCY		Π	►\ ~ ►/ ~ UP	W134MPCX-8		000.0	
Electrical:	50,000,000 operations @ rated load	11		W134MPCX-8	12	230 Ω	620
Mechanical:	10,000,000 operations @ no load						
MISCELLANEOUS			DPDT MERCURY WIT	H CLAMPING D	ODE		
Operating Position:	Vertical ±15%		8 2 ○○●○●○●				
Enclosure:	Epoxy encapsulated						
Weight:	1 gram approx.	II		W134MPCX-11	12	230 Ω	620
V	HEN SPACING MINIATURE REED RELAYS,						
Т	HE RELAYS REQUIRE 1/2 INCH SPACING						

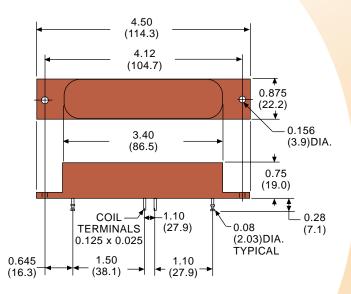
FROM THE SIDE OF THE ADJACENT RELAYS.

PHONE: (843) 393-5778 FAX: (843) 393-4123 EMAIL: info@magnecraft.com

CLASS 102VX & 102HVX HIGH VOLTAGE SWITCHING RELAY

SPST - N.O., 5 TO 10 MILLIAMPS

EPOXY ENCAPSULATED HIGH VOLTAGE REED. SPST-NO TUNGSTEN CONTACTS SWITCHES LOADS UP 10 MA @ 5000 VOLTS DC CLASS 102HV SAME AS ABOVE EXCEPT: SWITCHES 10,000 VOLTS WITH LOADS UP TO 5 mA DC


GENERAL SPECIFICATIONS

COIL

COIL	
Pull-in Voltage:	75% of nominal voltage or less
Drop Out Voltage:	10% of nominal voltage or more
Max. Voltage:	110% of nominal voltage
Resistance:	±10 % measured @ 25°C
Coil Power:	See chart
Duty:	Continuous
CONTACTS	
Contact Material:	Tungsten
Contact Resistance:	200 milliohms max
Contact Rating:	10 ma 5000 VDC
	5 ma @ 10,000 VDC
TIMING	
Operate time:	1 mS or less @ nominal voltage
Release time:	1 mS or less @ nominal Voltage
DIELECTRIC STRENG	TH
Across Open Contact	s: 12,000 VDC
Between Mutually	
Insulation Points	: 12,000 VDC
Insulation Resistance	: 1000 megohms min. @ 500 VDC
Capacitance:	5 pf typical coil to contact
TEMPERATURE	
Operating:	-40°C to +85°C @ rated operation
Storage:	-40°C to +105°C
SHOCK RESISTANCE	
Operating:	30 g's, 11 mS, 1/2 sine wave
VIBRATION RESISTAL	NCE
Operating:	10 g's, 10 Hz to 1000 Hz
LIFE EXPECTANCY	
Electrical:	1,000,000 operations @ rated load
Mechanical:	10,000,000 operations @ no load

MISCELLANEOUS

Operating Position: Enclosure: Weight: Any Epoxy encapsulated OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

Do not use wire heavier than #22 AWG. Excess stress on terminals could cause damage to internal components

	COIL MEASURED @ 25°C						
WIRING DIAGRAMS (TOP VIEWED)	STANDARD PART NUMBERS	INPUT	NOMINAL RESISTANCE (OHMS)	NOMINAL POWER (mW)			
	5,000 VOLTS NORMALLY OPEN						
••	W102VX-49	6 VDC	70 Ω	500 mW			
	W102VX-50	12 VDC	250 Ω	580 mW			
	W102VX-51	24 VDC	1000 Ω	580 mW			
000	10,000 VOLTS NORMALLY OPEN						
	W102HVX-3	24 VDC	400 Ω	1.5 Watts			

49 grams approx.

COAXIAL R.F. SWITCHING RELAY

OUTLINE DIMENSIONS DIMENSIONS SHOWN IN INCHES & (MILLIMETERS).

SPDT, 150 WATTS

PANEL MOUNT WITH RG58C/U CABLE (50 OHM) SWITCHING 150 WATTS UP TO 470 MHz

OIL Pull-in Voltage:						
-		RG58C/U ∑50 OHMS	(44.0)	RG58C		
	75% of nominal voltage or less				0.67	
Drop Out Voltage:	10% of nominal voltage or more				(17.)	5)
Max. Voltage:	110% of nominal voltage	12.0		4 12		
Resistance:	±10 % measured @ 25°C	(304.8)		(304	4.8)	
Coil Power:	See chart	$\left \sum_{i=1}^{n} \right $.120 DIA THRU HOLI 2 MOUNTING HOLES	ES S)		
Duty:	Continuous			- /		
		0.312(7.93)	\			
ONTACTS	Silver alloy		*		0.422	0.770
Contact Material:	50 milliohms max. & rated load				(10.71	
Contact Resistance:	150 watts 85 V rms	► 0.250 TYP. T		, ↓		<u> </u>
Contact Rating:		(6.35) 0.850			_0.093 (2.38)	
		(21.59) 		/		
Operate time:	15 mS or less @ nominal voltage.		1.28			
Reset time:	7 mS or less @ nominal voltage.		(32.5)			
IELECTRIC STRENGTH						
Across Open Contacts:	500 V rms					
Between Mutually					-17	
Insulation Points:	1000 V rms					
Insulation Resistance:	1000 megohms min. @ 500 VDC					
Capacitance:	30 pf maximum contact to open contact	5				
EMPERATURE						
Operating:	-55°C to +65°C @ rated operation					
Storage:	-55°C to +105°C					
					6	
IFE EXPECTANCY					1	and the second se
Electrical:	5,000,000 operations @ rated load		- And -	5375		
Mechanical:	100,000 operations @ no load				2	
			1			
	Any			E		
Operating Position:	Any Metal			COIL N	IEASURED	@ 25°C
Enclosure:		WIRING DIAGRAMS	STANDARD		NOMINAL	NOMINAL
Weight:	85 grams approx.	(SIDE VIEW COIL DOW	PART	INPUT	RESISTANCE	POWER
		SPDT	N) NUMBERS	VOLIAGE	(OHMS)	(mW)
		SPDI				
	MAC	2				
	MAGNECRAFT	¥	1			
	AFT 1	3	W120X-14	12 VDC	500 Ω	288
S.		✓ [−] 4				
7		چ ا				

6...19 PHONE: (843) 393-5778 FAX: (843) 393-4123 EMAIL: info@magnecraft.com

SECTION 6 CROSS REFERENCE GUIDE

MAGNECRAFT & STRUTHERS-DUNN	POTTER & BRUMFIELD	CLARE	сото	COTO SPARTIN	GORDOS	HAMLIN	MEDER
W117SIP-1	JWS-117-1	DSS41A05	90010500		741A-9	3621A0500	SIL05-1A75-71L
W117SIP-3	JWS-117-3	DSS41A12	90011201		741A-3	3621A1200	SIL12-1A75-71L
W117SIP-5	JWS-117-5	DSS41A24			741A-7	3621A2400	SIL24-1A75-71L
W117SIP-22	JWS-117-12	DSS41B05			741B-3		
W117SIP-23	JWS-117-14	DSS41B12			741B-5		
W117SIP-24	JWS-117-15	DSS41B24			741B-8		
W117SIP-6	JWS-117-6	DSS41A05B			741B-10	3621A0510	SIL05-1A75-71D
W117SIP-8	JWS-117-8	DSS41A12B			741A-4	3621A1210	SIL12-1A75-71D
W117SIP-10	JWS-117-110	DSS41A24B			741A-8	3621A2410	SIL24-1A75-71D
W117SIP-18	JWS-117-17	DSS41B05B			741B-4		
W117SIP-25	JWS-117-19	DSS41B12B			741B-6		
W117SIP-26	JWS-117-30	DSS41B24B			741B-8		
MAGNECRAFT	POTTER &	CLARE	СОТО	COTO SPARTIN	GORDOS	HAMILIN	MEDER
& STRUTHERS-DUNN					024 4 2		
W107DIP-1	JWD-107-1	PRMA10037			831A-3		DIP05-1A75-11L
W107DIP-3	JWD-107-3	PRMA10038			831A-5		DIP12-1A75-11L
W107DIP-4		PRMA10039			831A-7		DIP24-1A75-11L
W107DIP-5	JWD-107-5	PRMA10037B			831A-4		DIP05-1A75-11D
W107DIP-7	JWD-107-7	PRMA10038B			831A-6		DIP12-1A75-11D
W107DIP-8		PRMA10039B			831A-8		DIP24-1A75-11D
MAGNECRAFT & STRUTHERS-DUNN	POTTER & BRUMFIELD	CLARE	сото	COTO SPARTIN	GORDOS	HAMILIN	MEDER
W171DIP-2		PRMA1A05	80010500	8L01-05-001	831A-3	721A0500	DIP05-1A75-11L
W171DIP-4		PRMA1A12	80011200	8L01-12-001	831A-5	721A1200	DIP12-1A75-11L
W171DIP-5	JWD-171-5	PRMA1A24		8L01-24-001	831A-7	721A2400	DIP24-1A75-11L
W171DIP-7		PRMA1A05B	80010510	8L01-05-011	831A-4	721A0510	DIP05-1A75-11D
W171DIP-9		PRMA1A12B	80011210	8L01-12-011	831A-6	721A1210	DIP12-1A75-11D
W171DIP-10	JWD-171-10	PRMA1A24B		8L01-24-011	831A-8	721A2410	DIP24-1A75-11D
W171DIP-12	JWD-171-12	PRMA1B05	80210500	8L21-05-001	831B-3	721B0500	DIP05-1B75-11L
W171DIP-14	JWD-171-14	PRMA1B12	80211200	8L21-12-001	831B-5	721B1200	DIP12-1B75-11L
W171DIP-15	JWD-171-15	PRMA1B24		8L21-24-001	831B-7	721B2400	DIP24-1B75-11L
W171DIP-17	JWD-171-17	PRMA1B05B	80210510	8L21-05-011	831B-4	721B0510	DIP05-1B75-11D
W171DIP-19	JWD-171-19	PRMA1B12B	80211210	8L21-12-011	831B-6	721B1210	DIP12-1B75-11D
W171DIP-20	JWD-171-20	PRMA1B24B		8L21-24-011	831B-8	721B2410	DIP24-1B75-11D
W171DIP-21	JWD-171-21	PRMA2A05	80020500	8L02-05-001	832A-3	722A0500	DIP05-2A75-21L
W171DIP-23	JWD-171-23	PRMA2A12	80021200	8L02-12-001	832B-5	722A1200	DIP12-2A75-21L
W171DIP-24	JWD-171-24	PRMA2A24		8L02-24-001	832B-7	722A2400	DIP24-2A75-21L
W171DIP-25	JWD-171-25	PRMA2A05B	80020510	8L02-05-011	832B-4	722A0510	DIP05-2A75-21D
W171DIP-27	JWD-171-27	PRMA2A12B	80021210	8L02-12-011	832B-6	722A1210	DIP12-2A75-21D
W171DIP-28	JWD-171-28	PRMA2A24B		8L02-24-011	831B-8	722A2410	DIP24-2A75-21D
MAGNECRAFT & STRUTHERS-DUNN	POTTER & BRUMFIELD				GORDOS		
W172DIP-1	JWD-172-1				836C-1	721R0500	
W172DIP-3	JWD-172-3				836C-3	721R0300	
W172DIP-4	JWD-172-3				836C-5	721R1200	
W172DIP-5	JWD-172-4				836C-2	721R2400	
W172DIP-7	JWD-172-5 JWD-172-7				836C-2	721R0510	
W172DIP-8	JWD-172-7				836C-4	721R1210	
	0110-112-0	1					

THE CROSS REFERENCE IS INTENDED TO MATCH FOOT PRINT, INTERNAL WIRING, AND CONTACT LOAD RATINGS. CONSTRUCTION FEATURES AND GENERAL SPECIFICATIONS SHOULD BE COMPARED IF EXACT REPLACEMENT IS REQUIRED.

Magnecraft & Struthers-Dunn

Your Contact for Relays

SECTION 6 CROSS REFERENCE GUIDE

					1	
MAGNECRAFT & STRUTHERS-DUNN	POTTER & BRUMFIELD	GORDOS	HAMLIN	MEDER	CLARE	СОТО
W172DIP-17		835C-1				
W172DIP-19		835C-3				
W172DIP-20		835C-5				
W172DIP-21		835C-2				
W172DIP-23		835C-4				
W172DIP-24		835C-6				
W172DIP-141	JWD-172-155	831C-1	721C0500	DIP05-1C75-51L	PRMA1C05	80410500
W172DIP-145	JWD-172-157	831C-3	721C1200	DIP12-1C75-51L	PRMA1C12	80411200
W172DIP-146	JWD-172-158	831C-5	721C2400	DIP24-1C75-51L	PRMA1C24	
W172DIP-147	JWD-172-159	831C-2	721C0510	DIP05-1C75-51D	PRMA1C05B	80410510
W172DIP-149	JWD-172-161	831C-4	721C1210	DIP12-1C75-51D	PRMA1C12B	80411210
W172DIP-150	JWD-172-162	831C-6	721C2410	DIP24-1C75-51D	PRMA1C24B	
W172DIP-31		831C-1	721E0500			80510500
W172DIP-33		831C-3	721E1200			80511200
W172DIP-34		831C-5	721E2400			
W172DIP-35			721E0510			80510510
W172DIP-37			721E1210			80511210
W172DIP-38			721E2410			

THE CROSS REFERENCE IS INTENDED TO MATCH FOOT PRINT, INTERNAL WIRING, AND CONTACT LOAD RATINGS. CONSTRUCTION FEATURES AND GENERAL SPECIFICATIONS SHOULD BE COMPARED IF EXACT REPLACEMENT IS REQUIRED.

FOR REED RELAY APPLICATION ENGINEERING ASSISTANCE

Joseph Zintel, PRODUCT MANAGER FAX: (843) 395-8530 EMAIL: jzintel@magnecraft.com FAX ON DEMAND: 1-800-891-2957 DOCUMENT: 500

U. S. A. TELEPHONE: (843) 393-5778 FAX: (843) 393-4123 WEBSITE: www.magnecraft.com EMAIL: info@magnecraft.com

EUROPE

TELEPHONE:4989 / 75080310FAX:4989 / 7559344WEBSITE:www.magnecraft.comEMAIL:renatesteinback@magnecraft.de

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А