INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1991

74HC/HCT594

FEATURES

- Synchronous serial input and output
- 8-bit parallel output
- Shift and storage register have independent direct clear and clocks
- 100 MHz (typ.)
- Output capability:
 - parallel outputs: bus driver
 - serial outputs: standard
- I_{CC} category: MSI

APPLICATIONS

- Serial-to parallel data conversion
- Remote control holding register

QUICK REFERENCE DATA

 $GND = 0 V: T_{amb} = 250 C; t_r = t_f = 6 ns.$

DESCRIPTION

The 74HC/HCT594 are high-speed, Si-gate CMOS devices, and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard No. 7A.

The 74HC/HCT594 contain an 8-bit, non-inverting, serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct overriding clears are provided on both the shift and storage registers. A serial output (Q_7) is provided for cascading purposes.

Both the shift and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register will always be one count pulse ahead of the storage register.

SVMDOL	DADAMETED	CONDITIONS	TYP		
STWIDOL	FARAMETER	CONDITIONS	HC	нст	
t _{PHL} /t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	SH _{CP} to Q ₇ '		13	15	ns
	ST _{CP} to Q _n		13	15	ns
	\overline{SH}_{R} to Q_{n}		11	14	ns
	\overline{ST}_R to Q_n		11	14	ns
f _{max}	maximum clock frequency SH_{CP} , ST_{CP}		100	100	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	84	89	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$, where:

 f_i = input frequency in MHz; f_o = output frequency in MHz;

 Σ (C_L × V_{CC}² × f_o) = sum of the outputs;

 C_L = output load capacitance in pF; V_{CC} = supply voltage in V.

2. For HC, the condition is $V_I = GND$ to V_{CC} ; for HCT, the condition is $V_I = GND$ to $V_{CC} - 1.5$ V.

ORDERING INFORMATION

	PACKAGES								
	PINS	PIN POSITION	MATERIAL	CODE					
PC74HC/HCT594P	16	DIL	plastic	SOT38C, P					
PC74HC/HCT594T	16	SO	plastic	SOT109A					

PINNING

SYMBOL	PIN	DESCRIPTION					
Q ₀ to Q ₇	15 & 1 to 7	parallel data outputs					
GND	8	ground (0 V)					
Q ₇ '	9	serial data output					
SH _R	10	shift register reset (active LOW)					
SH _{CP}	11	shift register clock input					
ST _{CP}	12	storage register clock input					
STR	13	storage register reset active (LOW)					
D _s	14	serial data input					
V _{CC}	16	supply voltage					

74HC/HCT594

FUNCTION TABLE

	INPUTS			OUTPUTS		OUTPUTS		S EUNCTION			
SH _{CP}	ST _{CP}	SHR	STR	Ds	Q ₇ '	Qn	FUNCTION				
Х	Х	L	Х	Х	L	NC	a LOW level on \overline{SH}_R only affects the shift registers.				
Х	Х	Х	L	Х	NC	L	a LOW level on \overline{ST}_R only affects the storage registers.				
Х	1	L	Н	Х	L	L	empty shift register loaded into storage register.				
↑ (Х	H	X	H	Q ₆ '	NC	logic HIGH level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q_6) appears on the serial output (Q_7).				
Х	<u>↑</u>	н	Н	Х	NC	Q _n '	contents of shift register stages (internal Q_n ') are transferred to the storage register and parallel output stages.				
↑	↑	Н	Н	X	Q ₆ n	Q _n '	contents of shift register shifted through. Previous contents of shift register transferred to the storage register and the parallel output stages.				

Note

1. H = HIGH voltage level

L = LOW voltage level \uparrow = LOW-to-HIGH transition NC = no change X = don't care.

74HC/HCT594

DC CHARACTERISTICS FOR 74HC

For the DC characteristics, see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: parallel outputs, bus driver; serial output, standard. I_{CC} category: MSI.

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER		+25		-40 1	to +85	-40 to	o +125	UNIT	V _{cc}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(V)		
t _{PHL} /t _{PLH}	propagation delay	-	44	150	_	185	-	225	ns	2.0	Fig.7	
	SH _{CP} to Q ₇ '	- -	16 14	30 26	- -	37 31	- -	45 38	ns ns	4.5 6.0		
	propagation delay ST _{CP} to Q _n	_ _ _	44 16 14	150 30 26	_ _ _	185 37 31	_ _ _	225 45 38	ns ns ns	2.0 4.5 6.0	Fig.8	
t _{PHL}	propagation delay \overline{SH}_R to Q_7 '	_ _ _	39 14 12	150 30 26	- - -	185 37 31	- - -	225 45 38	ns ns ns	2.0 4.5 6.0	Fig.11	
	propagation delay \overline{ST}_R to Q_n	_ _ _	39 14 12	125 25 21	_ _ _	155 31 26		185 37 31	ns ns ns	2.0 4.5 6.0	Fig.12	
t _W	shift clock pulse width HIGH or LOW	80 16 14	10 4 3	- - -	100 20 17	- - -	120 24 20	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.7	
	storage clock pulse width HIGH or LOW	80 16 14	10 4 3	- - -	100 20 17	- - -	120 24 20	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.8	
	shift and storage reset pulse width HIGH or LOW	80 16 14	14 5 4	- - -	100 20 17	- - -	120 24 20	- - -	ns ns ns	2.0 4.5 6.0	Fig.11 and Fig.12	
t _{su}	set-up time D _s to SH _{CP}	100 20 17	10 4 3	_ _ _	125 25 21	_ _ _	150 30 26	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.9	
	set-up time SH _R to ST _{CP}	100 20 17	14 5 4	_ _ _	125 25 21	- - -	150 30 26	- - -	ns ns ns	2.0 4.5 6.0	Fig.10	
	set-up time SH _{CP} to ST _{CP}	100 20 17	17 6 5	_ _ _	125 25 21	_ _ _	150 30 26	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.8	

				-	Γ _{amb} (°	C)				TEST CONDITIONS		
SYMBOL	PARAMETER		+25		-40 t	o +85	-40 to	o +125	UNIT	V _{cc}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(V)		
t _h	hold time D _s to SH _{CP}	25	-8	_	30	_	35	_	ns	2.0	Fig.9	
		5	-3	-	6	-	7	-	ns	4.5		
		4	-2	-	5	_	6	-	ns	6.0		
t _{rem}	removal time	50	-14	_	65	-	75	_	ns	2.0	Fig.11 and Fig.12	
	SH _R to SH _{CP} ,	10	-5	-	13	_	15	_	ns	4.5		
	ST _R to ST _{CP}	9	-4	-	11	-	13	-	ns	6.0		
f _{max}	maximum clock	6.0	30	-	4.8	_	4.0	_	MHz	2.0	Fig.7 and Fig.8	
	frequency	30	92	-	24	_	20	-	MHz	4.5		
	SH _{CP} or ST _{CP}	35	109	_	28	_	24	-	MHz	6.0		

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics, see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: parallel outputs, bus driver; serial output, standard.

I_{CC} category: MSI.

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the following table.

INPUT	UNIT LOAD COEFFICIENT
Ds	0.25
SH _R	1.50
SH _{CP}	1.50
ST _{CP}	1.50
STR	1.50

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$.

	T _{amb} (°C)									TEST CONDITIONS		
SYMBOL	PARAMETER		+25		- 40 t	to +85	-40 to	o +125	UNIT	Vcc	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(V)		
t _{PHL} /t _{PLH}	propagation delay SH_{CP} to Q_7 '	-	18	32	-	40	_	48	ns	4.5	Fig.7	
	propagation delay ST _{CP} to Q _n	-	18	32	-	40	-	48	ns	4.5	Fig.8	
t _{PHL}	propagation delay \overline{SH}_R to Q_7 '	-	17	30	-	38	-	45	ns	4.5	Fig.11	
	$\frac{\text{propagation delay}}{\text{ST}_{\text{R}}} \text{ to } \text{Q}_{\text{n}}$	_	17	30	-	38	_	45	ns	4.5	Fig.12	
t _W	shift clock pulse width HIGH or LOW	16	4	-	20	-	24	-	ns	4.5	Fig.7	
	storage clock pulse width HIGH or LOW	16	4	-	20	-	24	-	ns	4.5	Fig.8	
	shift and storage reset pulse width HIGH or LOW	16	6	_	20	-	24	_	ns	4.5	Fig.11 and Fig.12	
t _{su}	set-up time D_s to SH_{CP}	20	4	-	25	-	30	-	ns	4.5	Fig.9	
	set-up time SH _R to ST _{CP}	20	6	-	25	-	30	-	ns	4.5	Fig.10	
	set-up time SH _{CP} to ST _{CP}	20	7	-	25	-	30	-	ns	4.5	Fig.8	
t _h	hold time D_s to SH_{CP}	5	-3	-	6	-	7	-	ns	4.5	Fig.9	
t _{rem}	$\frac{\text{removal time}}{\text{SH}_{\text{R}} \text{ to SH}_{\text{CP}}},$ $\overline{\text{ST}}_{\text{R}} \text{ to ST}_{\text{CP}}$	10	-5	_	13	_	15	_	ns	4.5	Fig.11 and Fig.12	
f _{max}	maximum clock frequency SH _{CP} or ST _{CP}	30	92	_	24	-	20	_	MHz	4.5	Fig.7 and Fig.8	

74HC/HCT594

Fig.9 Waveforms showing the data set-up and hold times for the D_s input.

Fig.8 Waveforms showing the storage clock (ST_{CP}) to output (Q_n) propagation delays, the storage clock pulse width, maximum storage clock frequency and the shift clock to storage clock set-up time.

AC WAVEFORMS

74HC/HCT594

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А