#### Is Now Part of # ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to Fairchild <a href="guestions@onsemi.com">guestions@onsemi.com</a>. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer July 2012 # FAN7390 High-Current, High & Low-Side, Gate-Drive IC #### **Features** - Floating Channels for Bootstrap Operation to +600V - Typically 4.5A/4.5A Sourcing/Sinking Current Driving Capability - Common-Mode dv/dt Noise Canceling Circuit - Built-in Under-Voltage Lockout for Both Channels - Matched Propagation Delay for Both Channels - Logic (V<sub>SS</sub>) and Power (COM) Ground +/- 7V Offset - 3.3V and 5V Input Logic Compatible - Output In-phase with Input ### **Applications** - PDP Sustain Driver - HID Lamp Ballast - SMPS - Motor Driver ### Description The FAN7390 is a monolithic high- and low-side gatedrive IC, which can drive high speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction. Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to $V_S$ =-9.8V (typical) for $V_{BS}$ =15V. The UVLO circuit prevents malfunction when $V_{DD}$ and $V_{BS}$ are lower than the specified threshold voltage. The high current and low output voltage drop feature make this device suitable for the PDP sustain pulse driver, motor driver, switching power supply, and high-power DC-DC converter applications. 8-SOP ### **Ordering Information** | Part Number | Package | Operating<br>Temperature Range | Packing Method | |-------------|---------|--------------------------------|----------------| | FAN7390MX | 8-SOP | -40°C ~ 125°C | Tape & Reel | | FAN7390M1X | 14-SOP | -40 C ~ 125 C | Tape & Reel | ### **Typical Application Circuit** Figure 1. Application Circuit for Half-Bridge (Referenced 8-SOP) Figure 2. Application Circuit for Half-Bridge (Referenced 14-SOP) ### **Internal Block Diagram** Figure 3. Functional Block Diagram (Referenced 8-SOP) Figure 4. Functional Block Diagram (Referenced 14-SOP) ## **Pin Configurations** Figure 5. Pin Assignments (Top View) ### **Pin Definitions** | 8-Pin | 14-Pin | Name | Description | | |-------|-----------------|-----------------|----------------------------------------------|--| | 1 | 1 | HIN | Logic Input for High-Side Gate Driver Output | | | 2 | 2 | LIN | Logic Input for Low-Side Gate Driver Output | | | | 3 | V <sub>SS</sub> | Logic Ground (FAN7390M1 only) | | | 3 | 5 | COM | Low-Side Driver Return | | | 4 | 6 | LO | Low-Side Driver Output | | | 5 | 7 | V <sub>DD</sub> | Low-Side and Logic Part Supply Voltage | | | 6 | 11 | V <sub>S</sub> | High-Voltage Floating Supply Return | | | 7 | 12 | НО | High-Side Driver Output | | | 8 | 13 | V <sub>B</sub> | High-Side Floating Supply | | | | 4, 8, 9, 10, 14 | NC | No Connect | | ### **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$ , unless otherwise specified. | Symbol | Characteristics | Min. | Max. | Unit | |-------------------------------------|------------------------------------------|----------------------|----------------------|------| | V <sub>S</sub> | High-Side Floating Supply Offset Voltage | V <sub>B</sub> -25 | V <sub>B</sub> +0.3 | V | | V <sub>B</sub> | High-Side Floating Supply Voltage | -0.3 | 625.0 | V | | V <sub>HO</sub> | High-Side Floating Output Voltage HO | V <sub>S</sub> -0.3 | V <sub>B</sub> +0.3 | V | | V <sub>DD</sub> | Low-Side and Logic Fixed Supply Voltage | -0.3 | 25.0 | V | | $V_{LO}$ | Low-Side Output Voltage LO | -0.3 | V <sub>DD</sub> +0.3 | V | | V <sub>IN</sub> | Logic Input Voltage (HIN and LIN) | V <sub>SS</sub> -0.3 | V <sub>DD</sub> +0.3 | V | | V <sub>SS</sub> | Logic Ground (FAN7390M1 only) | V <sub>DD</sub> -25 | V <sub>DD</sub> +0.3 | V | | dV <sub>S</sub> /dt | Allowable Offset Voltage Slew Rate | | 50 | V/ns | | P <sub>D</sub> <sup>(1)(2)(3)</sup> | Power Dissipation | 8-SOP | 0.625 | W | | PD: // // | Fower Dissipation | 14-SOP | 1.000 | - vv | | 0 | Thermal Desistance Junction to Ambient | 8-SOP | 200 | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance, Junction-to-Ambient | 14-SOP | 110 | C/VV | | T <sub>J</sub> | Junction Temperature | | +150 | °C | | T <sub>STG</sub> | Storage Temperature | | +150 | °C | #### Notes: - 1. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material). - 2. Refer to the following standards: - JESD51-2: Integral circuits thermal test method environmental conditions natural convection - JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages - 3. Do not exceed PD under any circumstances. ### **Recommended Operating Conditions** The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. | Symbol | Parameter | Min. | Max. | Unit | |-----------------|------------------------------------------|--------------------|--------------------|------| | V <sub>B</sub> | High-Side Floating Supply Voltage | V <sub>S</sub> +10 | V <sub>S</sub> +22 | V | | V <sub>S</sub> | High-Side Floating Supply Offset Voltage | 6-V <sub>DD</sub> | 600 | V | | $V_{HO}$ | High-Side Output Voltage | Vs | $V_{B}$ | V | | $V_{DD}$ | Low-Side and Logic Supply Voltage | 10 | 22 | V | | $V_{LO}$ | Low-Side Output Voltage | COM | $V_{DD}$ | V | | V <sub>IN</sub> | Logic Input Voltage (HIN and LIN) | V <sub>SS</sub> | $V_{DD}$ | V | | $T_A$ | Operating Ambient Temperature | -40 | +125 | °C | #### **Electrical Characteristics** $V_{BIAS}$ ( $V_{DD}$ , $V_{BS}$ )=15.0V, $V_{S}$ = $V_{SS}$ =COM, $T_{A}$ =25°C, unless otherwise specified. The $V_{IL}$ , $V_{IH}$ , and $I_{IN}$ parameters are referenced to $V_{SS}$ /COM and are applicable to the respective input signals HIN and LIN. The $V_{O}$ and $I_{O}$ parameters are referenced to COM and $V_{S}$ is applicable to the respective output signals HO and LO. | Symbol | Characteristics | Test Condition | Min. | Тур. | Max. | Unit | |------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|------|------|------|------| | POWER S | SUPPLY SECTION (V <sub>DD</sub> AND V <sub>BS</sub> ) | | | | | | | V <sub>DDUV+</sub><br>V <sub>BSUV+</sub> | V <sub>DD</sub> and V <sub>BS</sub> Supply Under-Voltage<br>Positive-going Threshold | | 8.0 | 8.8 | 9.8 | | | V <sub>DDUV-</sub><br>V <sub>BSUV-</sub> | V <sub>DD</sub> and V <sub>BS</sub> Supply Under-Voltage<br>Negative-going Threshold | | 7.4 | 8.3 | 9.0 | V | | V <sub>DDUVH</sub><br>V <sub>BSUVH</sub> | V <sub>DD</sub> and V <sub>BS</sub> Supply Under-Voltage<br>Lockout Hysteresis Voltage | | | 0.5 | | | | I <sub>LK</sub> | Offset Supply Leakage Current | V <sub>B</sub> =V <sub>S</sub> =600V | | | 50 | | | I <sub>QBS</sub> | Quiescent V <sub>BS</sub> Supply Current | V <sub>IN</sub> =0V or 5V | | 45 | 80 | μΑ | | I <sub>QDD</sub> | Quiescent V <sub>DD</sub> Supply Current | V <sub>IN</sub> =0V or 5V | | 75 | 110 | | | I <sub>PBS</sub> | Operating V <sub>BS</sub> Supply Current | f <sub>IN</sub> =20kHz, rms value | | 530 | 640 | μA | | I <sub>PDD</sub> | Operating V <sub>DD</sub> Supply Current | f <sub>IN</sub> =20kHz, rms value | | 530 | 640 | μΑ | | LOGIC IN | PUT SECTION (HIN, LIN) | | | | | | | V <sub>IH</sub> | Logic "1" Input Voltage | | 2.5 | | 9 | V | | $V_{IL}$ | Logic "0" Input Voltage | | | | 1.2 | V | | I <sub>IN+</sub> | Logic "1" Input Bias Current | V <sub>IN</sub> =5V | | 25 | 50 | | | I <sub>IN-</sub> | Logic "0" Input Bias Current | V <sub>IN</sub> =0V | | 1.0 | 2.0 | μA | | R <sub>IN</sub> | Input Pull-down Resistance | | 100 | 200 | | ΚΩ | | GATE DR | IVER OUTPUT SECTION (HO, LO) | | | | | | | V <sub>OH</sub> | High-level Output Voltage, V <sub>BIAS</sub> -V <sub>O</sub> | No Load | | | 1.0 | V | | V <sub>OL</sub> | Low-level Output Voltage, V <sub>O</sub> | No Load | | | 35 | mV | | I <sub>O+</sub> | Output High, Short-circuit Pulsed Current <sup>(4)</sup> | V <sub>O</sub> =0V, V <sub>IN</sub> =5V with PW<10µs | 3.5 | 4.5 | | А | | I <sub>O-</sub> | Output Low, Short-circuit Pulsed Current <sup>(4)</sup> | V <sub>O</sub> =15V, V <sub>IN</sub> =0V with<br>PW<10µs | 3.5 | 4.5 | | A | | Vs | Allowable Negative V <sub>S</sub> Pin Voltage for HIN Signal Propagation to HO | | | -9.8 | -7.0 | V | | V <sub>SS</sub> -<br>COM | V <sub>SS</sub> -COM/COM-V <sub>SS</sub> Voltage Endurability | | -7.0 | | 7.0 | V | #### Note: 4. This parameter guaranteed by design. ### **Dynamic Electrical Characteristics** V<sub>BIAS</sub> (V<sub>DD</sub>, V<sub>BS</sub>)=15.0V, V<sub>S</sub>=V<sub>SS</sub>=COM=0V, C<sub>L</sub>=1000pF and T<sub>A</sub>=25°C unless otherwise specified. | Symbol | Characteristics | Test Condition | Min. | Тур. | Max. | Unit | |------------------|-------------------------------------|--------------------|------|------|------|------| | t <sub>on</sub> | Turn-on Propagation Delay | V <sub>S</sub> =0V | | 140 | 200 | | | t <sub>off</sub> | Turn-off Propagation Delay | V <sub>S</sub> =0V | | 140 | 200 | | | MT | Delay Matching, HS & LS Turn-on/off | | | 0 | 50 | ns | | t <sub>r</sub> | Turn-on Rise Time | | | 25 | 50 | | | t <sub>f</sub> | Turn-off Fall Time | | | 20 | 45 | | ### **Typical Characteristics** 240 220 200 180 top 140 120 100 80 60 -40 -20 40 60 80 100 Temperature [°C] Figure 6. Turn-on Propagation Delay vs. Temperature Figure 7. Turn-off Propagation Delay vs. Temperature Figure 8. Turn-on Rise Time vs. Temperature Figure 10. Turn-on Delay Matching vs. Temperature Figure 11. Turn-off Delay Matching vs. Temperature ### Typical Characteristics (Continued) Figure 12. Quiescent V<sub>DD</sub> Supply Current vs. Temperature Figure 13. Quiescent V<sub>BS</sub> Supply Current vs. Temperature Figure 14. Operating V<sub>DD</sub> Supply Current vs. Temperature Figure 15. Operating V<sub>BS</sub> Supply Current vs. Temperature. Figure 16. V<sub>DD</sub> UVLO+ vs. Temperature Figure 17. V<sub>DD</sub> UVLO- vs. Temperature ### Typical Characteristics (Continued) Figure 18. V<sub>BS</sub> UVLO+ vs. Temperature Figure 19. $V_{BS}$ UVLO- vs. Temperature Figure 20. High-Level Output Voltage vs. Temperature Figure 21. Low-Level Output Voltage vs. Temperature Figure 22. Logic High Input Voltage vs. Temperature Figure 23. Low Input Voltage vs. Temperature ### Typical Characteristics (Continued) Figure 24. Logic Input High Bias Current vs. Temperature Figure 25. Allowable Negative V<sub>S</sub> Voltage vs. Temperature ### **Switching Time Definitions** Figure 26. Switching Time Test Circuit (Referenced 8-SOP) Figure 27. Input/Output Timing Diagram Figure 28. Switching Time Waveform Definitions Figure 29. Delay Matching Waveform Definitions ### **Physical Dimensions** Figure 30. 8-Lead Small Outline Package (SOP) Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. Figure 31. 14-Lead Small Outline Package (SOP) Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool™ F-PFS™ AccuPower™ FRFET® AX-CAP™\* Global Power Resource® BitSiC™ GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ DEUXPEED® Making Small Speakers Sound Louder Dual Cool™ and Better™ EcoSPARK® MegaBuck™ EfficientMax™ MICROCOUPLER™ ESBC™ MicroFET™ MicroPak™ MicroPak™ Fairchild<sup>®</sup> Fairchild Semiconductor<sup>®</sup> FACT Quiet Series™ FACT<sup>®</sup> FAST<sup>®</sup> FAST<sup>®</sup> FastvCore™ MillerDrive™ MotionMax™ mWSaver™ OptoHIT™ OPTOLOGIC® OPTOPLANAR® FETBench™ FlashWriter®\* PowerTrench® PowerXS™ Programmable Active Droop™ QFET<sup>®</sup> QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SUperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ ■ System ■ General® The Power Franchise® the period of t TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TriFault Detect™ TRUECURRENT®\* μSerDes™ UHC<sup>®</sup> Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM \* Trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### Definition of Terms | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. 162 ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: **ON Semiconductor:** FAN7390M FAN7390M1 FAN7390M1X FAN7390N FAN7390MX Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А