RENESAS

TW2851

4-Channel A/V Decoder with Multiplexer/VGA/LCD Display Processor for Security Applications

FN7743 Rev. 0.00 August 17, 2012

DATASHEET

The TW2851 is a fully integrated A/V decoder, multiplexer, and display processor chip. It has eight CVBS analog inputs fed into four internal high quality NTSC/PAL video decoders. It has four digital input ports supporting various type of input format, including four BT 656 inputs, two BT 601 inputs, or one 1120 playback input. It has one optional VGA display controller or LCD panel controller, two CVBS display, one digital SPOT output, two digital recorder outputs, and one digital display output. Every output has its associated graphic overlay function that displays bitmap for OSG, single box, 2D array box, borders, privacy mask, and mouse cursor.

The four built-in video decoders include four antialiasing filters, 10bit Analog-to-Digital converters, proprietary digital gain/clamp controller, and high quality Y/C separator to reduce cross-noise. Associated with each video decoder, there are builtin motion, blind, and night detectors to provide alarm signals, a noise reducer to reduce the impulse noise, and 3 sets of downscalers to provide proper video size into the display, record, and SPOT multiplexers.

The TW2851 MUX function selects video inputs from any video decoder/ digital inputs to any of recording / SPOT / VGA display / CVBS display outputs flexibly. The recording multiplexer supports frame / field and byte-interleaved multi-channel video streams in the format of BT 656, BT 1120 to interface with external video compression CODEC. The frame / field allocation of each channel can be flexibly configurable in the multi-channel video stream. The multi-channel video stream features built-in channel ID to identify channels of interest for the CODEC or playback module to properly demultiplex the multi-channel stream into single channel streams. The motion / night / blind detection information are also embedded as part of the channel ID.

The display multiplexer displays up to 8 video windows, with 4 for video decoders and 4 for either digital interface or video decoder interface to support pseudo 8 channel inputs. The location and size of each of the 8 display windows are flexibly configurable. The multiplexed display video is sent to both VGA / LCD and the CVBS output simultaneously. Before the VGA / LCD output, there is a 2D de-interlacer converting the interlaced video into progressive for any PC monitor / LCD panel with resolution up to WXGA+ (1440x900) resolution. The VGA interface provides RGB component with both analog output through 3 embedded DACs and digital TTL outputs. The LVDS interface provides single or dual channel output to drive various TFT LCD panels.

The SPOT multiplexer functions as a either SPOT display or a secondary record mux. It supports single D1 frame rate output. When used as display purpose, it is capable of supporting 1/4 windows in a fixed configuration. When used as record mux purpose, it is capable of supporting quad window or frame / field interleave multi-channel stream in single D1 frame rate.

There are two built-in video encoders features two 10-bit embedded DACs to provide 2 CVBS outputs. The two video encoders are flexibly configurable to output any two of the display, SPOT and record path video content.

The TW2851 also includes an audio CODEC with five audio Analog-to-Digital converters and one Digital-to-Analog converter. A built-in audio multiplexer generates digital outputs for recording / mixing and accepts digital input for playback.

TW2851 features a cascade function to allow up to 4 TW2851 chips to connect together to increase the total number of channels / windows supported in VGA display and SPOT display. With 4 chips cascaded together, the VGA display path can display up to 32 display windows, and the SPOT display can display up to 16 windows.

Analog Video Decoder

- 4 sets of video decoder accept all NTSC(M/N/4.43) / PAL (B/D/G/H/I/K/L/M/N/60) standards with auto detection
- 8 CVBS analog inputs for pseudo 8 channel support
- Integrated video analog anti-aliasing filters and 10 bit CMOS ADCs for each video decoder

- High performance adaptive 4H comb filters for all NTSC/PAL standards
- IF compensation filter for improvement of color demodulation
- Color Transient Improvement (CTI)
- Automatic white peak control
- Triple high performance scalers scale video input independently for each of display, recording and SPOT path
- Four built-in motion detectors with 16 X 12 cells, four blind and night detectors

Digital Input Ports

- Supports up to 4 BT. 656 ports, 2 BT. 601, 1 port RGB, or 1 port BT. 1120. The BT 1120 supports a 54 MHz channel with 4 D1 put together.
- Auto cropping / strobe for playback input using 2 built-in Analog / Digital Channel ID decoder for selecting 4 out of maximum of 16 channels from multi-channel input stream
- 4 built-in down scalers for displaying arbitrary size windows on the display output

Analog/Digital VGA Display

- Native Resolution of VGA, D1, SVGA, XGA, up to WXGA+ (1440x900), capable of displaying 4 D1 screens side by side without downscaling.
- Up-Scaler for ZOOM function and playback of full screen D1 image
- 3 Built-in DACs for analog VGA RGB output
- Digital RGB interface in 24-bit TTL output
- DDC channel interface to read the external monitor configuration
- Built-in 2D De-interlacer for progressive output
- Sharpness control with horizontal/vertical peaking
- Black/White Stretch
- Programmable hue, brightness, saturation, contrast
- Independent RGB gain and offset controls
- Programmable Gamma correction for each of RGB
- Built-in 2-layer 9-window bitmap OSG with 16-bit per pixel color
- Hardware OSG bitmap up-scaler to allow same content displayed on both VGA/LCD and CVBS output
- Additional OSG layers such as window border box, 2D motion box, Privacy Mask overlay, and Mouse Cursor support

- Programmable hue, saturation, contrast, brightness and sharpness
- Proprietary fast video locking system for non-realtime application
- Noise Reduction to remove impulse noise

TFT LCD Panel Support

- Supports panel with similar resolution as the VGA port
- Supports single or dual channel LVDS panel
- Supports Panel power sequencing.
- Supports DPMS for monitor power management

Display CVBS Output

- Display Output through one of the two built-in CVBS video encoder
- Built-in 2-layer 9-windows bitmap OSG with 16-bit per pixel color
- Additional OSG layers such as window border box, 2D motion box, mouse cursor, and Privacy Mask overlay

Display Multiplexer

- Displays 8 windows for 4 video decoder inputs plus 4 digital input channels or 8 video decoder channels to support pseudo 8-channel
- Either Live or Strobe capture mode for pseudo 8channel support
- Horizontal / Vertical mirroring for each window
- Last field / frame image captured when video-loss detected
- Simultaneous output to both VGA/LCD and CVBS output with the same video content

Record Multiplexer

- 2 ports of BT. 656, 1 port BT. 601, or 1 port of BT.1120-like digital Interface support up to 4 D1 real-time recording output to external CODEC
- Supports Frame/Field Interleaved mode with 8 picture types or byte interleaved stream for multichannel video output
- Either Live or Strobe capture mode for pseudo 8channel support
- Supports dynamic field / frame picture-type and channel allocation through a switching queue up to 2048 entries
- Horizontal / Vertical mirroring for each window
- 2 Built-in channel ID encoder carrying channel and motion / blind / night detection information of each field/frame in multi-channel stream

- Two built-in 8-window bitmap OSG with 16-bit per pixel color for each of the two record output ports
- Field switching capable OSG supports 4 different contents changing from field to field through switching queue
- Additional OSG layers such Privacy Mask overlay, and Mouse Cursor

SPOT Multiplexer

- Optionally configured as network output mode through a BT. 656 digital interface to support frame/field interleave feature similar to record path Switch mode
- SPOT analog output configurable through one of the two built-in CVBS video encoder
- LIVE capture mode in FULL D1, Quad CIF and 16 QCIF windows
- Strobe capture mode for pseudo 8-channel support
- Video window arrangement independent of the recording and display output
- Horizontal and Vertical Mirroring for each channel
- Built-in 8 windows bitmap OSGs with 16-bit per pixel color
- Additional OSG layers such as window border box, Privacy Mask overlay, and Mouse Cursor support

Dual Video Encoders

- Flexibly shared by Display, Record and SPOT
- Analog NTSC/PAL standards
- Programmable bandwidth of luminance and chrominance signal for each path
- Two 10-bit video CMOS DACs

Cascade Capability

- VGA display cascade mode displays up to 32 windows (16 video input and 16 playback input) on both VGA/LCD and CVBS output using 4 TW2851 chips
- SPOT display cascade support up to 16 channels at the D1 output

- Built-in 8 windows bitmap OSG with 16-bit per pixel color
- Additional OSG layers such as window border box, 2D motion box, mouse cursor, and Privacy Mask overlay

Audio CODEC

- Integrated five audio ADCs and one audio DAC providing multi-channel audio mixed analog output
- Supports a standard I2S interface for record output and playback input
- PCM 8/16 bit and u-Law/A-Law 8bit for audio word length
- Programmable audio sample rate that covers popular frequencies of 8/16/32/44.1/48kHz

External DDR SDRAM

- Single centralized external DDR SDRAM of 256 Mb (32 MB) capacity
- 16-bit wide data bus running at 166 MHz
- Auto-refresh

Host Interface

- MCU parallel interface with 8 / 16 bits data bus and 8 / 12-bit address bus for higher MCU interface throughput
- Supports both address / data separate or multiplexed mode
- Burst write for faster OSG bitmap upload
- Serial I²C interface
- PS2 mouse port support

System Clock

- Single 27 MHz external crystal clock input
- 3 built-in PLLs for internal clock generation

Package

• 352 BGA

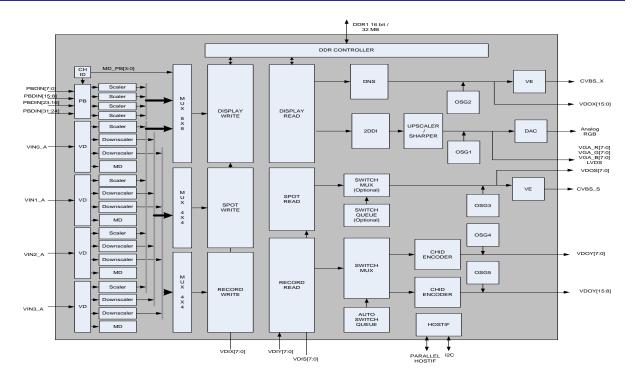


FIGURE 1.TW2851 4-CHANNEL A/V DECODER/MULTIPLEXER/DISPLAY PROCESSOR BLOCK-DIAGRAM

Ordering Information

PART NUMBER	PART	PACKAGE	PKG.				
(NOTE 1)	MARKING	(PB-FREE)	DWG. #				
TW2851-BB2-GR	TW2851 BB2-GR	352 LEAD BGA (27mmx27mm)	V352.27X27				

NOTE:

1. These Intersil Pb-free BGA packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAg -e2 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Table of Contents

Digital Input Ports	1
	2
Analog/Digital VGA Display	2
TFT LCD Panel Support	
Display CVBS Output	
Display Multiplexer	
Record Multiplexer	
SPOT Multiplexer	
Dual Video Encoders Cascade Capability	
Audio CODEC	
External DDR SDRAM	
Host Interface	
System Clock	
Package	
Ordering Information	
Table of Contents	
Table of Figures	
Table List	
Pin Diagram	
TW2851 (352 BGA)	
Pin Descriptions	11
Analog Interface	11
Digital VGA / LVDS Interface	12
Host Interface	14
Audio Digital Interface	15
Digital Input Interface	16
Digital Output Interface	
DDR SDRAM Interface	18
Misc Interface	
Power / Ground Interface	
Functional Description	
CVBS Video Input	
Formats	
Analog Front-End	
Decimation Filter	
AGC and Clamping	
Sync Processing	25
	05
Y/C Separation	
Color Decoding	25
Color Decoding Chrominance Processing	25 27
Color Decoding Chrominance Processing Luminance Processing	25 27 27
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels	25 27 27 28
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function	25 27 27 28 28
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction	25 27 27 28 28 29
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers	25 27 27 28 28 29 29 29
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection	25 27 27 28 28 28 29 29 29 29
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers	25 27 27 28 28 29 29 29 29 29 33
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Digital Video Input	25 27 27 28 28 29 29 29 29 29 33 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Digital Video Input	25 27 27 28 28 29 29 29 29 29 33 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 601 Digital Video Input Format	25 27 27 28 28 29 29 29 29 33 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Night Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 601 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format	25 27 28 28 29 29 29 29 33 34 34 34 34 36 36
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 601 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format	25 27 28 28 29 29 29 29 33 34 34 34 34 36 36 36
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 601 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Playback Input Channel De-multiplexer	25 27 28 28 29 29 29 29 33 34 34 34 36 36 36 38
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Multi-Channel Video Format Playback Input Channel De-multiplexer Channel ID Decoder	25 27 27 28 29 29 29 29 29 33 34 34 34 34 34 36 36 36 38 38
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 661 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function	25 27 28 28 29 29 29 29 29 33 34 34 34 34 34 34 34 36 36 36 38 36 36 36 36 36 36 36 36 36 36 36 36 36
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function	25 27 27 28 28 29 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control	25 27 27 28 28 29 29 33 34 34 34 34 34 34 36 36 36 36 38 38 40 40 40 41
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Blind Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Channel Video Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Read Control	25 27 27 28 28 29 29 33 34 34 34 34 34 34 36 36 36 38 38 38 40 40 40 41 41
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Video Multiplexers Capture Control Read Control Window Configuration	25 27 27 28 28 29 29 33 34 34 34 34 34 36 36 36 36 36 36 38 38 40 40 41 41 41 43 34 46
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection TU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Multi-Channel Video Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Window Configuration Video Window Control	25 27 27 28 28 29 29 29 33 34 34 34 34 34 34 36 36 36 36 36 36 36 40 40 41 41 43 34 46 46
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Night Detection ITU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Window Configuration Video Window Control Image Enhancement Processing	25 27 28 28 29 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Night Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Video Multiplexers Capture Control Read Control Window Configuration Video Window Control Image Enhancement Processing	25 27 27 28 29 29 29 29 29 29 33 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 666 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Video Multiplexers Capture Control Read Control Video Window Configuration Video Window Control Image Enhancement Processing Video Output Analog VGA/RGB Video Output	25 27 27 28 28 29 29 29 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Digital Video Input TTU-R BT. 656 Digital Video Input Format ITU-R BT. 666 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Itu-Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Read Control Video Window Configuration Video Window Configuration Video Window Control Image Enhancement Processing Video Output Analog VGA/RGB Video Output	25 27 27 28 28 29 29 29 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Digital Video Input ITU-R BT. 656 Digital Video Input Format ITU-R BT. 656 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Channel Video Format Playback Input Channel De-multiplexer Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Read Control Window Configuration Video Window Control Image Enhancement Processing Video Output Analog VGA/RGB Video Output CVBS Video Output	25 27 27 28 28 29 29 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34
Color Decoding Chrominance Processing Luminance Processing Pseudo 8 Channels Cropping Function Noise Reduction Downscalers Motion Detection Blind Detection Digital Video Input TTU-R BT. 656 Digital Video Input Format ITU-R BT. 666 Digital Video Input Format ITU-R BT. 610 Digital Video Input Format ITU-R BT. 1120 Digital Video Input Format Itu-Channel ID Decoder Cropping and Scaling Function Video Multiplexers Capture Control Read Control Video Window Configuration Video Window Configuration Video Window Control Image Enhancement Processing Video Output Analog VGA/RGB Video Output	25 27 27 28 28 29 29 33 34 34 34 34 34 34 34 34 34 34 34 34

Display Path	
SPOT Path	-
Channel ID	
Channel ID Types	
Channel ID Encoding Setting Channel ID Decoding Setting	
Digital Channel ID Format	
OSG	
Video Border Layer	
2-Dimensional Arrayed Box	67
Bitmap Layer	
Single Box	71
Mouse Pointer	
Audio Codec	73
Audio Clock Master/Slave mode	74
Audio Detection	
Audio Multi-Chip Cascade	
Serial Audio Interface Audio Clock Slave Mode Data Output Timing	/8
ACLKP/ASYNP Slave Mode Data Output Timing	
Audio Clock Generation	
Audio Clock Oeneraton	
Host Interface	
Serial Interface	
Parallel Interface	
VGA DDC I2C Master Interface	93
PS2 Mouse Interface	
Interrupt Interface	94
Burst Interface to DDR SDRAM	
External DRAM Interface	
Chip Reset / Initiation	
Frequency Synthesizer Setup	96
Register Description By Function CVBS Video Input	
Video Decoder	97
Video Decoder Internal Pattern Generator	97 120
Video Decoder Internal Pattern Generator Noise Reduction	97 120 121
Video Decoder Internal Pattern Generator Noise Reduction Downscaler	97 120 121 123
Video Decoder Internal Pattern Generator Noise Reduction	97 120 121 123 126
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection	97 120 121 123 126 131
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface	97 120 121 123 126 131 131 136
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping	97 120 121 123 123 126 131 131 136 144
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers	97 120 121 123 123 126 131 131 136 144 146
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers	97 120 121 123 126 131 131 136 144 146 147
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers. Video Multiplexers Record Control	97 120 121 123 126 131 136 134 144 146 147
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Switch Queue	97 120 121 123 126 131 136 134 144 146 147 150
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Switch Queue Record CHID Encoder	97 120 121 123 126 131 131 136 144 146 147 147 150 152
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Switch Queue Record CHID Encoder Display Control	97 120 121 123 126 131 136 136 144 146 147 150 152 154
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Control Record CHID Encoder Display Control SPOT Control	97 120 121 123 126 131 131 136 144 147 150 152 154 161
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Control Record Switch Queue Record CHID Encoder Display Control SPOT Control SPOT Control	97 120 121 123 126 131 136 144 146 147 150 152 154 161 164
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Comprise Playback Downscalers Video Multiplexers Record Control. Record Control. Record Switch Queue. Record CHID Encoder. Display Control. SPOT Control SPOT Switch Queue. SPOT Switch Queue. SPOT ChID Encoder.	97 120 121 123 126 131 136 144 146 147 150 152 154 164 164
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Control Record Switch Queue Record CHID Encoder Display Control SPOT Control SPOT Control	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Control Record Switch Queue. Record CHID Encoder. Display Control SPOT CONTROL	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers. Video Multiplexers Record Control Record Control Record Control Record CHID Encoder Display Control SPOT Control SPOT Control SPOT Control SPOT Control SPOT Control SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL Display CVBS Processing Down-Scaling Up-Scaling	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers. Video Multiplexers Record Control Record Control Record Control Record CHID Encoder Display Control SPOT Control SPOT Control SPOT Switch Queue SPOT Control SPOT Control SPOT Control SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT Switch Queue SPOT CONTROL SPOT CONTROL SPOT Switch Queue SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT CONTROL SPOT Switch QUEUE SPOT CONTROL SPOT Switch QUEUE SPOT CONTROL SPOT Switch QUEUE SPOT CONTROL SPOT SPON SPOT CONTROL SPOT SPON SPOT SPON SPOT SPON SPOT SPON SPOT SPON SPON SPON SPON SPON SPON SPON SPON SPON SPO	97 120 121 123 126 131 131 131 134 144 146 147 150 152 154 164 169 169 174 174 174
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Cropping Playback Downscalers. Video Multiplexers Record Control Record Control Record Control Record CHID Encoder Display Control SPOT CONT CONTROL SPOT	97 120 121 123 126 131 131 134 146 147 147 150 152 154 164 164 169 169 174 175 175
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port. CHID Decode / Strobe Playback Cropping Playback Downscalers. Video Multiplexers Record Control Record Switch Queue Record Switch Queue Record Switch Queue Record CHID Encoder Display Control SPOT Control SPOT Control SPOT Control SPOT CHID Encoder Display CVBS Processing Down-Scaling Down-Scaling Display VGA / LCD Processing Qamma Table 2D De-interface	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler Motion / Blind / Night Detection Digital Input Interface 656 / 601 / RGB Port CHID Decode / Strobe Playback Cropping Playback Downscalers Video Multiplexers Record Control Record Switch Queue. Record Switch Queue. Record Switch Queue. SPOT Control SPOT Control SPOT Control SPOT Control SPOT Control SPOT CONTRO SPOT CHID Encoder Display CVBS Processing Down-Scaling Down-Scaling Qamma Table. 2D De-interface Image Enhancement Video Output Record CVBS Timing SPOT CVBS Timing	
Video Decoder Internal Pattern Generator Noise Reduction Downscaler	

OSD Bitmap Read	
1D Box Control	
2D Box Control	
Cursor Control	
Audio CODEC	214
Host Interface	
VGA DDC Interface Control	
PS2 Mouse Interface Control	
Interrupt	
DDR Burst	231
DDR Memory Controller	
Misc Control	234
Register Description By Address	
Page 0: 0x000 ~ 0x0FE	
Page 1: 0x100 ~ 0x1FE	

Page 2: 0x200 ~ 0x2FE	292
Page 3: 0x300 ~ 0x3FE	323
Page 4: 0x400 ~ 0x4FE	328
Page 5: 0x500 ~ 0x51F	340
Page 6: 0x600 ~ 0x620, 0x640 ~ 0x65F, 0x690 ~ 0x6FE	343
Page 9: 0x9C0 ~ 0x9DF	353
Page M: 0xM21 ~ 0xM3F, 0xM60 ~ 0xM8F, where M = 5 ~ 9	355
Page E : 0xE00 ~ 0xEFE	367
AC Timing	. 373
Parametric Information	. 376
AC/DC Electrical Parameters	376
Package Outline Drawing	. 379
Life Support Policy	. 380
Revision History	. 380

Table of Figures

Figure 1. TW2	2851 4-Channel A/V Decoder/Multiplexer/Display Processor Block Diagram	4
	2851 Pin Diagram (Bottom View) 1	
Figure 3. TW2	2851 front-end modules 2	2
	frequency response of the video input anti-aliasing filter 2	
	characteristic of Decimation Filter 2	
Figure 6. The	characteristics of Luminance Notch Filter for NTSC and PAL 2	6
Figure 7. The	characteristics of Chrominance Band-Pass Filter for NTSC and PAL 2	6
Figure 8. The	characteristics of Chrominance Low-Pass Filter Curves	7
Figure 9. The	Characteristic of Luminance Peaking filter 2	8
Figure 10. Moti	tion mask and Detection Cell	1
Figure 11. The	e relationship between current and reference field when MD_REFFLD = "0"	2
Figure 12. The	e relationship between current and reference field when MD_REFFLD = "1"	3
Figure 13. Timi	ing diagram of ITU-R BT. 656 format	5
Figure 14. The	e VSYNC/HSYNC Timing in BT. 601 Interface 3	6
Figure 15. Mult	ti-channel Picture Types supported by TW28513	7
	yback Input De-multiplexer	
	ck diagram of video controller	
	e sequence to change display window configuration	
	e video output block diagram	
-	izontal and vertical timing control	
-	aracteristics of luminance filter	
•	aracteristics of chrominance Filter	
•	ample of reconstruction filter	
	2851 Cascade in Display / SPOT paths	
	scade in Display path only	
	e example of auto channel ID for various record output formats	
	e related registers for channel ID encoding	
	e related registers for channel ID decoding	
-	e illustration of the Motion digital channel ID in VBI period	
-	e illustration of the AUTO/DETECTION/USER digital channel ID in VBI period	
-	e overlay priority of OSG layers	
-	2 2D arrayed box in table mode and motion display mode	
-	ck Diagram of Audio Codec	
-	dio Decimation Filter Response	
-	commended Clock Master cascade mode system with ACLKRMASTER = 1; ASYNROEN = 0; PB_MASTER=0;	
	commended Clock Slave Sync Slave cascade mode system with ACLKRMASTER=0; ASYNROEN=1;	
g	PB_MASTER=0	7
Figure 37. Tim	ning Chart of Serial Audio Interface 7	8
Figure 38. Tim	ning Chart of Multi-channel Audio Record7	9
Figure 39. Auc	dio Record Falling Edge Triggered Input/Output Timing, ACLKMASTER=0, RM_SYNC=08	1
Figure 40. Auc	dio Record Falling Edge Triggered Input/Output Timing, ACLKMASTER=0, RM_SYNC=18	1
Figure 41. Aud	dio Record Rising Edge Triggered Input Timing, ACLKMASTER=0, RM_SYNC=0, ASTBROEN=1	1
Figure 42. Aud	dio Record Rising Edge Triggered Input Timing, ACLKMASTER=0, RM_SYNC=1, ASTBROEN=1	2
Figure 43. Aud	dio Playback Falling Edge Triggered Input Timing, RM_SYNC=0, PB_MASTER=0, ADATPDLY=0	2
Figure 44. Aud	dio Playback Falling Edge Triggered Input Timing, RM_SYNC=1, PB_MASTER=0, ADATPDLY=0	2
Figure 45. Aud	dio Playback Falling Edge Triggered Input Timing, RM_SYNC=0, PB_MASTER=0, ADATPDLY=18	2
Figure 46. Aud	dio Playback Falling Edge Triggered Input Timing, RM_SYNC=1, PB_MASTER=0, ADATPDLY=18	3
Figure 47. Aud	dio Playback Rising Edge Triggered Input Timing, RM_SYNC=0, PB_MASTER=0, ADATPDLY=1	3
Figure 48. Aud	dio Playback Rising Edge Triggered Input Timing, RM_SYNC=1, PB_MASTER=0, ADATPDLY=1	3
-	dio Playback Rising Edge Triggered Input Timing, RM_SYNC=0, PB_MASTER=0, ADATPDLY=0	
-	dio Playback Rising Edge Triggered Input Timing, RM_SYNC=1, PB_MASTER=0, ADATPDLY=0	
Figure 51. The	e serial interface for the case of slave address. (Read : "0x085", Write : "0x084")	9

Figure 52. Write timing of serial interface	89
Figure 53. Read timing of serial interface	89
Figure 54. Write timing of parallel interface with address/data multiplexing mode	90
Figure 55. Read timing of parallel interface with address / data multiplexing mode	90
Figure 56. Write timing of parallel interface with separate address / data bus	91
Figure 57. Read timing of parallel interface with separate address / data bus	92
Figure 58. The window ID of the 16 window configuration	168
Figure 59. Cascade Interface Timing Diagram	374
Figure 60. Playback Interface Timing Diagram	375
Figure 61. Digital Video Output Timing Diagram	376

Table List

Table 1.	Video Input Formats Supported by the TW2851	23
Table 2.	ITU-R BT.656 SAV and EAV code sequence	35
Table 3.	Playback Input Configurations	38
Table 4.	Capture Modes support of display/SPOT/record paths	42
Table 5.	Display Channel Configuration	43
Table 6.	Switch Queue Entry Definition of Record Path	45
Table 7.	Switch Quene Entry Definition of SPOT Path	45
Table 8.	Analog output video standards	50
Table 9.	Digital Record Output Port Configuration	54
Table 10.	ITU-R BT.656 SAV and EAV code sequence	55
Table 11.	SP_CC_EN Setting for the Record Path Cascade	58
Table 12.	The Detection channel ID information	59
Table 13.	Auto channel ID Byte 0 through Byte 3 (For 4 regions)	60
Table 14.	The Picture Type Code	
Table 15.	Sequence of Multi-channel Audio Record	
Table 16. A	udio frequency 256xfs mode: AIN5MD = 0, AFS384 = 0	85
Table 17. A	udio frequency 320xfs mode: AIN5MD = 1, AFS384 = 0, 44.1/48 KHz not supported	85
Table 18. A	udio frequency 384xfs mode: AIN5MD = 0, AFS384 = 1, 44.1/48 KHz not supported	86
Table 19.	Pin assignments for serial and parallel interface	87
Table 20.	Timing parameters of parallel interface with address / data multiplexing mode	91
Table 21.	Timing parameters of parallel interface with separate address / data bus	92
Table 22.	Cascade Clock Timing Parameters	73
Table 23.	Playback Interface Timing Parameters	74
Table 24.	Digital Video Output Timing Parameters	76
Table 25.	Characteristics	76

Pin Diagram TW2851 (352 BGA)

26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
\circ	\bigcirc	\circ	A																							
\circ	\bigcirc	В																								
\circ	\bigcirc	С																								
\circ	\bigcirc	D																								
\circ	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	E
\circ	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	F
\circ	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	G
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	н
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	J
\circ	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	ĸ
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	L
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	M
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc								Т	W	28	51								\bigcirc	\bigcirc	\bigcirc	\bigcirc	N
$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	P
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	R
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	Т
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	U
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	V
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	W
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	Y
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	AA
	\bigcirc	\bigcirc	\bigcirc																			\bigcirc	\bigcirc	\bigcirc	\bigcirc	AB
	\bigcirc	AC																								
	\bigcirc	0	0	0	\bigcirc	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	\bigcirc	AD
$ $ \circ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	AE
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	AF

FIGURE 2.TW2851 PIN DIAGRAM (BOTTOM VIEW)

Pin Descriptions

Analog Interface

NAME	PIN #	TYPE	DESCRIPTION
VIN1A	M2	Α	Composite video input A of channel 1.
VIN1B	M3	А	Composite video input B of channel 1.
VIN2A	N2	А	Composite video input A of channel 2.
VIN2B	N3	А	Composite video input A of channel 2.
VIN3A	P2	А	Composite video input A of channel 3.
VIN3B	P3	Α	Composite video input B of channel 3.
VIN4A	R2	Α	Composite video input A of channel 4.
VIN4B	R3	Α	Composite video input B of channel 4.
AIN1	U2	Α	Audio input of channel 1.
AIN2	U3	Α	Audio input of channel 2.
AIN3	V1	Α	Audio input of channel 3.
AIN4	V2	Α	Audio input of channel 4.
AIN5	V3	Α	Audio input of channel 5.
AINN	T3	Α	AINN
AOUT	T2	Α	Audio mixing output.
VAOX	W2	Α	Display CVBS analog video output.
VAOS	W3	Α	SPOT CVBS analog video output.
VAOXR	AA2	Α	Display output R signal
VAOXG	AA3	Α	Display output G signal
VAOXB	AB2	Α	Display output B signal
RTERM	Y4	Α	R Termination

RENESAS

Digital VGA / LVDS Interface

	PIN	l #		DESCRIPTION			
NAME	VGA	LCD	TYPE				
VGA_VS	AF2	n/a	0	VSYNC for VGA output This pin is also used as a power up strap pin to to determine the data bus width of the parallel host interface. Pull Up: 16 bit mode, Pull Down: 8 bit mode			
VGA_HS	AE2	n/a	0	HSYNC for VGA output			
VGA_DE	AD2	n/a	I/0	Data Enable bit for VGA / RGB data output			
VGA_CLK	AF1	n/a	I/0	Clock output for VDOUTX (27, 54, or up to 106.25 MHz)			
DDC_CLK	AC3	n/a	0	DDC channel clock Output low active, otherwise tri-state Need external pull up			
DDC_DATA	AC2	n/a	I/0	DDC channel data Output low active, otherwise tri-state Need external pull up			
MPP_VD0 / VDOX [15:8] / VGA_B[7:0]	AD7, AC8, AD9, AC1 AD	0, AD10,	0	When register 0xEC0 bit [5] is set to 0, these pins are used as VDOX[15:8]. Otherwise these pins Are used as VGA B component output. VDOX[15:8] is used as display data output in 601 Format as Y component for driving external VGA/ de-interlacer chips. Depending on the display Resolution, these signals are running from 27MH to 110 MHz			
LVDS_A0B / VGA_R[0]	AE:	14	0	Negative differential LVDS 0 th channel data output or VGA Red Color Bit 0			
LVDS_A0 / VGA_R[1]	AF:	14	0	Positive differential LVDS 0 th channel data output or VGA Red Color Bit 1			
LVDS_A1B / VGA_R[2]	AE:	13	0	Negative differential LVDS 1 st channel data output or VGA Red Color Bit 2			
LVDS_A1/ VGA_R[3]	AF:	13	0	Positive differential LVDS 1 st channel data output or VGA Red Color Bit 3			
LVDS_A2B / VGA_R[4]	AE12		AE12		0	Negative differential LVDS 2 nd channel data output or VGA Red Color Bit 4	

NAME	PIN	1#	ТҮРЕ	DESCRIPTION			
NAME	VGA	LCD	1176	DESCRIPTION			
LVDS_A2 / VGA_R[5]	AF	12	0	Positive differential LVDS 2 nd channel data output or VGA Red Color Bit 5			
LVDS_CKOB	n/a	AE11	0	Negative differential LVDS O th though 3 rd channel clock output			
LVDS_CKO	n/a	AF11	0	Positive differential LVDS 0 th though 3 rd channel clock output			
LVDS_A3B VGA_R[6]	AE	10	0	Negative differential LVDS 3 rd channel data output or VGA Red Color Bit 6			
LVDS_A3 / VGA_R[7]	AF	10	0	Positive differential LVDS 3 rd channel data output or VGA Red Color Bit 7			
LVDS_A4B / VGA_G[0]	AE	9	0	Negative differential LVDS 4 th channel data output or VGA Green Color Bit 0			
LVDS_A4 / VGA_G[1]	AF	9	0	Positive differential LVDS 4 th channel data output or VGA Green Color Bit 1			
LVDS_A5B / VGA_G[2]	AE	8	0	Negative differential LVDS 5 th channel data output or VGA Green Color Bit 2			
LVDS_A5 / VGA_G[3]	AF	8	0	Positive differential LVDS 5 th channel data output or VGA Green Color Bit 3			
LVDS_A6B / VGA_G[4]	AF	7	0	Negative differential LVDS 6 th channel data output or VGA Green Color Bit 4			
LVDS_A6 / VGA_G[5]	AE	7	0	Positive differential LVDS 6 th channel data output or VGA Green Color Bit 5			
LVDS_CK1B	n/a	AF6	0	Negative differential LVDS 4 th though 7 th channel clock output			
LVDS_CK1	n/a	AE6	0	Positive differential LVDS 4 th though 7 th channel clock output			
LVDS_A7B / VGA_G[6]	AF	5	0	Negative differential LVDS 7 th channel data output or VGA Green Color Bit 6			
LVDS_A7 / VGA_G[7]	AE	5	0	Positive differential LVDS 7 th channel data output or VGA Green Color Bit 7			
FPPWC	n/a	AD3	0	Power on/off control for flat panel display			
FPBIAS	n/a	AE3	0	Panel bias control			
FPPWM	n/a	AF3	0	PWM control for panel backlight			

Host Interface

NAME	PIN#	TYPE	DESCRIPTION		
HSP[1:0]	B16, D20	I	Host Interface Configuration 00: Address / Data Mux, with ALE high active 01: I2C interface 10: Address / Data Mux, with ALE low active 11: Address Data separate, with 12 bit address		
HCSB	E24	I	Parallel Interface: Chip Select signal Serial Interface: Slave address bit 0		
HALE / SCLK	D23	I	Address line enable for parallel interface. Serial clock for serial interface / Clock for I2C Bus		
HRDB	C21	Ι	Read enable for parallel interface. VSSO for serial interface.		
HWRB	D25	I	Write enable for parallel interface. VSSO for serial interface.		
HDAT[6:0]	A24, C25, B25, A25, C26, B26, A26	I/0	Parallel Interface: Data bus bit 6:0 Serial Interface: HDAT[6:1] is slave address bit 6:1		
HDAT[7] / SDAT	B24	I/0	Parallel Interface: Data bus bit 7 Serial Interface: Data bit for I2C bus		
HDAT[15:8]	B21, A21, B22, A22, B23, A23, D24, C24	I/0	Data bus for parallel interface used in 16-bit data bus mode		
HADDR[11:0]	C17, B17, A17, C18, B18, A18, C19, B19, A19, C20, B20, A20	I	The Host Address Bus in Address / Data Separate Mode (HSP == 3'b11)		
HWAITB	E25	0	Wait signal to the external MCU. This signal is low active, and tri-state otherwise. Needs external pull-up resister.		
IRQ	C16	0	Interrupt request signal. This signal is low active, and tri-state otherwise. Needs external pull-up resistor.		
PS2_CK	E26	I/0	PS2 mouse interface clock signal Output low active, otherwise tri-state. Need external pull up		
PS2_D	D26	I/0	PS2 Mouse Interface data signal Output low active, otherwise tri-state. Need external pull up		

Audio Digital Interface

NAME	PIN#	TYPE	DESCRIPTION			
ACLKR	AC26	I/0	Audio I2S serial clock input/output of record			
ASYNR	AD24	I/0	Audio I2S serial sync input/output of record			
ADATR	AB25	0	Audio I2S serial data output of record			
ADATM	AD25	0	Audio I2S serial data output of mixing			
ACLKP	AD26	I/0	Audio I2S serial clock input/output of playback.			
ASYNP	AC24	I/0	Audio I2S serial sync input/output of playback.			
ADATP	AB26	I	Audio I2S serial data input of playback.			
ALINKO	AC25	0	Link signal for multi-chip connection serial output			
ALINKI	D13	Ι	Link signal for multi-chip connection serial input			

Digital Input Interface

NAME	PIN #	TYPE	DESCRIPTION				
PB0_DIN[7:0]	B2, C3, B3, A3, C4, B4, A4, D5	I	Video data of playback port 0 input in BT. 656, Video data of playback port 0 input in BT. 601, or Video data of playback port 0 input in RGB				
PB0_CLK	A2	I	Clock of playback input BT 656 port 0				
PB1_DIN[7:0]	C2, D2, E2, D3, E3, D4, E4, F4	I	Video data of playback port 1 input in BT. 656, Video data of playback port 0 input in BT. 601, or Video data of playback port 0 input in RGB				
PB1_CLK	E1	I	Clock of playback input BT 656 port 1				
PB2_DIN[7:0]	H3, H2, G3, G2, G1, F3, F2, F1	I	Video data of playback port 2 input in BT. 656, Video data of playback port 1 input in BT. 601, or Video data of playback port 0 input in RGB				
PB2_CLK	H1	I	Clock of playback input BT 656 port 2				
PB3_DIN[7:0]	L3, L2, K3, K2, K1, J3, J2, J1	I	Video data of playback port 3 input in BT. 656, Video data of playback port 1 input in BT. 601				
PB3_CLK	L1	I	Clock of playback input BT 656 port 3				
PB0_VS	B1	I	Playback VSYNC for 601 port 0				
PB0_HS	A1	I	Playback HSYNC for 601 port 0				
PB1_VS	C1	I	Playback VSYNC for 601 port 1				
PB1_HS	D1	I	Playback HSYNC for 601 port 1				

Digital Output Interface

NAME	PIN#	TYPE	DESCRIPTION
VDOX[7:0]	AC12, AD12, AD13, AC14, AD14, AD15, AE15, AF15	0	VDOX[7:0] is used as display data output in 656 or 601 output as U/V components for use as cascade output, or used to drive external VGA/de-interlacer chips. Depending on display output resolution, these signals are running from 27 MHz up to 110 MHz max
CLKOX	AD16	0	CLKOX is used as display clock output
VDIX[7:0]	C5, B5, A5, B6, A6, C7, B7,A7	I	Lower 8 bits of display path cascade input
CLKIX	C6	I	Display path clock input
VDOY [7:0]	AD19, AC19, AF20, AE20, AC20, AF21, AE21, AF22		Digital video data output for record path in BT. 656 port 1, or U/V of BT. 601.
VDOY[15:8]	AF16, AE16, AF17, AE17, AF18, AE18, AC18, AF19	0	Digital video data output for record path in BT. 656 port 2 or Y of BT 601.
CLKOY (CLKOYO)	AC21	0	Clock output for record path (27, 54 or 108 MHz)
CLKOYB (CLKOY1)	AE19	0	Clock output for record path 1 (27, 54 or 108 MHz) or the Reverse Clock Output for record path. The CLKOYB signal can be set to the reverse of CLKOY with adjustable delay used for byte interleave record output sampling.
HSOY	AE22	0	HSYNC output if the record output is in ITU-R BT. 601 format
VSOY	AD21	0	VSYNC output if the record output is in ITU-R BT. 601 format
VDIY[7:0]	C8, B8, A8, C9, B9, A9, B10, A10	I	Lower 8 bits of record path cascade input
CLKIY	D9	I	Record path clock input
VDOS[7:0]	AD22,AC22,AF23, AE23, AF24, AE24, AF25, AE25	0	Digital video data output for SPOT/Network Port
CLKOS	AF26	0	Clock of the SPOT/network output port
VDIS[7:0]	B11, A11, B12, A12, C13, B13, A13, B14		SPOT path cascade data input
CLKIS	C11	I	SPOT path cascade clock input

DDR SDRAM Interface

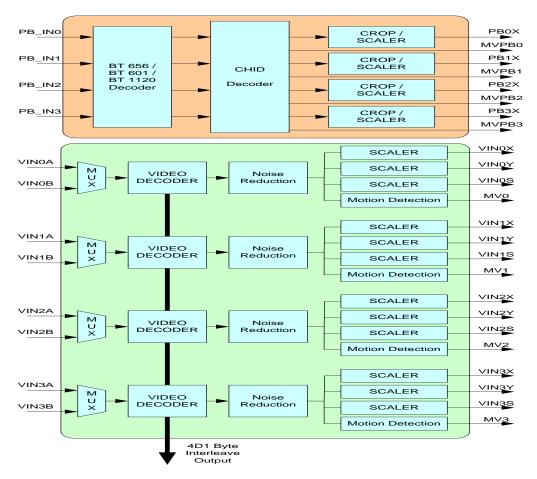
NAME	PIN#	TYPE	DESCRIPTION				
DQ[15:0]	F26, F25, F24, G26, G24, H26, H24, J26, K26, K24, L26, L25, L24, M26, M25, M24	I/O	DDR DRAM data bus.				
ADDR[12:0]	U26, U25, U24, V26, V25, V24, W26, W24, Y26, Y25, Y24, AA26, AA24	0	DDR DRAM address bus				
DQS[1:0]	H25, K25	I/0	DDR DRAM Data Strobe				
DM[1:0]	J24, N24	0	Byte Mask				
BA1	T26	0	DDR DRAM bank1 selection.				
BAO	T24	0	DDR DRAM bank0 selection.				
RASB	R26	0	DDR DRAM row address selection.				
CASB	R25	0	DDR DRAM column address selection.				
WEB	P25	0	DDR DRAM write enable.				
MCLK	P26	0	DDR DRAM Clock Output				
MCLKB	N26	0	DDR DRAM Clock Output				
CKE	P24	0	Clock Enable				

Misc Interface

NAME	PIN#	TYPE	DESCRIPTION			
EXT_PCLK	A16	I/0	EXT_PCLK pin is used for internal testing only. This pin should be left open			
EXT_MCLK	A14	I/0	EXT_MCLK pin is used for internal testing only. This pin should be left open			
XTI (27 MHz)	B15	I	Crystal (27 MHz) Clock Input			
хто	A15	0	Crystal Clock Output			
TP1	C15	I/O Test Pin 1. For internal testing only. This pin should be left open.				
TEST_EN	J4	I	Test mode enable. For internal use only. Normally tied to 0			
RSTB	AB3	I	System reset. Active low.			

Power / Ground Interface

NAME	PIN #	TYPE	DESCRIPTION
VDDO	D7, D12, D22, G4, AB23, AC7, AC13, AC16, AD1, AD6, AD17, AD20	Ρ	Digital power for output driver 3.3V
VDDI	D6, D10, D11, D19, E23, L4, AC1, AC5, AC6, AC17, AE1, AE26, C22	Ρ	Digital power for internal logic 1.2V
VSS	C10, C12, C23, D8, D21, F23, H4, K4, AA4, AB4, AC4, AC11, AC15, AC23, AD4, AD5, AD18, AD23,	G	Core/Pad Ground
VDDVADCO	M1	Ρ	Power for Video ADC0 3.3V
VDDVADC1	N1	Р	Power for Video ADC1 3.3V
VDDVADC2	P1	Р	Power for Video ADC2 3.3V
VDDVADC3	R1	Р	Power for Video ADC3 3.3V
VSSVADCO	M4	G	Ground for Video ADCO
VSSVADC1	N4	G	Ground for Video ADC1
VSSVADC2	P4	G	Ground for Video ADC2
VSSVADC3	R4	G	Ground for Video ADC3
VDDDVDAC	W1	Ρ	Digital power for Video CVBS DACs 3.3V
VDDAVDAC	Y1	Р	Analog power for Video CVBS DACs 3.3V
VSSDVDAC	V4	G	Digital ground for Video CVBS DACs
VSSAVDAC	W4	G	Analog ground for Video CVBS DACs
VDDARGB	AA1	Р	Analog power for RGB DACs 3.3V
VDDDRGB	AB1	Р	Digital power for RGB DACs 3.3V
VSSARGB	Y3	G	Analog ground for RGB DACs
VSSDRGB	Y2	G	Digital ground for RGB DACs
VDDAADC	U1	Р	Power for Audio ADC 3.3V
VDDADAC	T1	Р	Power for Audio DAC 3.3 V
VSSAADC	U4	G	Ground for Audio ADC
VSSADAC	T4	G	Ground for Audio DAC
VDDMPLL	D16	Р	Power for Memory Clock PLL +1.2V
VSSMPLL	D15	G	Ground for Memory Clock PLL
VDDPPLL	D17	Р	Power for Display Clock PLL +1.2V
VSSPPLL	D18	G	Ground for Display clock PLL



NAME	PIN #	TYPE	DESCRIPTION
VDDSPLL	C14	Ρ	Power Internal 108 MHz clock PLL +3.3V
VSSSPLL	D14	G	Ground Internal 108 MHz clock PLL
VDDDLL	R23	Р	DLL Power +1.2V
VSSDLL	R24	G	DLL Ground
VREFSSTL	L23, V23	Р	SSTL Reference Voltage (1.25 V)
VSSRSSTL	M23, U23	G	SSTL Reference Ground
VDDPSSTL	G23, H23, K23, N23, T23, W23, AA23	Р	SSTL I/O Power +2.5V
VSSPSSTL	G25, J25, N25, W25, AA25	G	SSTL I/O Ground
VDDSSTL	J23, P23, Y23	Р	SSTL Power +1.2V
VSSSSTL	T25, AB24	G	SSTL Ground
LVDDO	AF4	0	LVDS Pad VDD +3.3V
LVSSO	AE4	0	LVDS Pad Ground

Functional Description

The TW2851 has 12 input interfaces consisting of 8 analog composite video inputs and 4 digital video inputs. The 8 analog video inputs go through 4 analog multiplexers to select 4 out of 8 video inputs to feed to the 4 built-in video decoders. The video decoders feature with 10-bit ADC and luminance/chrominance processor to convert the analog video signal into digital video streams. The four digital inputs for playback application are decoded by internal ITU-R BT656, ITU-R BT601, Component RGB, or ITU-R BT1120 decoders, through the channel ID decoder, and fed to display multiplexer. When using the BT 1120, the playback interface is capable of supporting 4 D1 pictures in one single port.

FIGURE 3. TW2851 FRONT-END MODULES

Each built-in video decoder has one motion detector, one noise reduction processor, and three scalers – one for the display path, one for the SPOT path, and one for the record path. The digital video input has four scalers, one for each of the four de-multiplexed video channels. The video input front-end module is shown in Figure 3.

CVBS Video Input

FORMATS

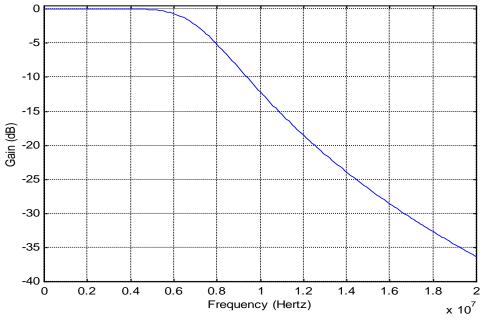
The TW2851 has build-in automatic standard discrimination circuitry. The circuit uses burst-phase, burstfrequency and frame rate to identify NTSC, PAL or SECAM color signals. The standards that can be identified are NTSC (M), NTSC (4.43), PAL (B, D, G, H, I), PAL (M), PAL (N), PAL (60) and SECAM (M). Each standard can be included or excluded in the standard recognition process by software control. The exceptions are the base standard NTSC and PAL, which are always enabled. The identified standard is indicated by the Standard Selection (SDT) register. Automatic standard detection can be overridden by software controlled standard selection.

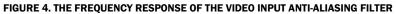
TW2851 supports all common video formats as shown in Table 1.

FORMAT LINES		FIELDS	FSC	COUNTRY		
NTSC-M	525	60	3.579545 MHz	U.S., many others		
NTSC-Japan (1)	525	60	3.579545 MHz	Japan		
PAL-B, G, N	625	50	4.433619 MHz	Many		
PAL-D	625	50	4.433619 MHz	China		
PAL-H	625	50	4.433619 MHz	Belgium		
PAL-I	625	50	4.433619 MHz	Great Britain, others		
PAL-M	525	60	3.575612 MHz	Brazil		
PAL-CN	625	50	3.582056 MHz	Argentina		
SECAM	625	50	4.406MHz 4.250MHz	France, Eastern Europe, Middle East, Russia		
PAL-60	525	60	4.433619 MHz	China		
NTSC (4.43)	525	60	4.433619 MHz	Transcoding		

TABLE 1 VIDEO INPUT FORMATS SUPPORTED BY THE TW2851

NOTE:


NTSC-Japan has 0 IRE setup. 2.


The analog front-end converts analog video signals to the required digital format. There are total of 4 analog front-end channels. Every channel contains analog anti-aliasing filter, clamping circuit and 10-bit ADCs. It allows the support of CVBS input signals. Every channel contains the analog clamping circuit, variable gain amplifier and high speed ADCs. It allows three separate inputs to be connected simultaneously. A built-in line locked PLL is used to generate the sampling clock for various inputs.

ANALOG FRONT-END

The TW2851 contains four 10-bit ADC (Analog to Digital Converters) to digitize the analog video inputs. The ADC can be put into power-down mode by the V_ADC_PD (0xEC4) register. The TW2851 also contains an anti-aliasing filter to prevent out-of-band frequency in analog video input signal. Therefore, there is no need for external components in the analog input pin except for an AC coupling capacitor and termination resistor. 0 shows the frequency response of the anti-aliasing filter.

DECIMATION FILTER

The digitized composite video data are over-sampled to simplify the design of analog filter. The decimation filter is required to achieve optimum performance and prevent high frequency components from being aliased back into the video image when down-sampled. O shows the characteristic of the decimation filter.

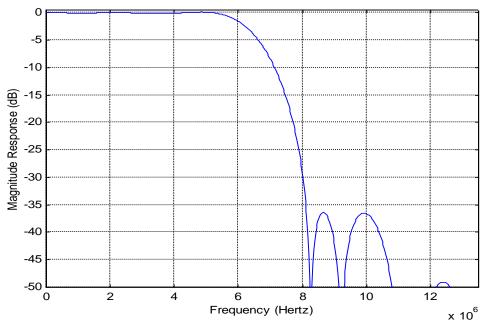


FIGURE 5. THE CHARACTERISTIC OF DECIMATION FILTER

AGC AND CLAMPING

All four analog channels have built-in clamping circuit that restores the signal DC level. The Y channel restores the back porch of the digitized video to a level of 60. This operation is automatic through internal

feedback loop. The Automatic Gain Control (AGC) of the Y channel adjusts input gain so that the sync tip is at a desired level. Programmable white peak protection logic is included to prevent saturation in the case of abnormal signal proportion between sync and white peak level.

SYNC PROCESSING

The sync processor of TW2851 detects horizontal synchronization and vertical synchronization signals in the composite video signal. The processor contains a digital phase-locked-loop and decision logic to achieve reliable sync detection in stable signal as well as in unstable signals such as those from VCR fast forward or backward.

The vertical sync separator detects the vertical synchronization pattern in the input video signals. In addition, the actual sync determination is controlled by a detection window to provide more reliable synchronization. An option is available to provide faster responses for certain applications. The field status is determined at vertical synchronization time. The field logic can also be controlled to toggle automatically while tracking the input.

Y/C SEPARATION

The color-decoding block contains the luminance/chrominance separation for the composite video signal and multi-standard color demodulation. For NTSC and PAL standard signals, the luminance/chrominance separation can be done either by comb filter or notch/band-pass filter combination. For SECAM standard signals, adaptive notch/band-pass filter is used. The default selection for NTSC/PAL is comb filter.

In the case of comb filter, the TW2851 separates luminance (Y) and chrominance (C) of a NTSC/PAL composite video signal using a proprietary 4H adaptive comb filter. The filter uses a four-line buffer. Adaptive logic combines the upper-comb and the lower-comb results based on the signal changes among the previous, current and next lines. This technique leads to excellent Y/C separation with small cross luminance and cross color at both horizontal and vertical edges

Due to the line buffer used in the comb filter, there are always two lines processing delay at the output except for the component input mode which has only one line delay. If notch/band-pass filter is selected, the characteristics of the filters of luminance notch filter is shown in 0 for both NTSC and PAL system.

COLOR DECODING

Chrominance Demodulation

The color demodulation for NTSC and PAL standard is done by first quadrature mixing the chrominance signal to the base band. A low-pass filter is then used to remove carrier signal and yield chrominance components. The low-pass filter characteristic can be selected for optimized transient color performance. For the PAL system, the PAL ID or the burst phase switching is identified to aid the PAL color demodulation.

For SECAM, the color information is FM modulated onto different carrier. The demodulation process therefore consists of FM demodulator and de-emphasis filter. During the FM demodulation, the chrominance carrier frequency is identified and used to control the SECAM color demodulation.

The sub-carrier signal for use in the color demodulator is generated by direct digital synthesis PLL that locks onto the input sub-carrier reference (color burst). This arrangement allows any sub-standard of NTSC and PAL to be demodulated easily with single crystal frequency.

0 and 0 show the frequency response of Chrominance Band-Pass and Low-Pass Filter Curves.

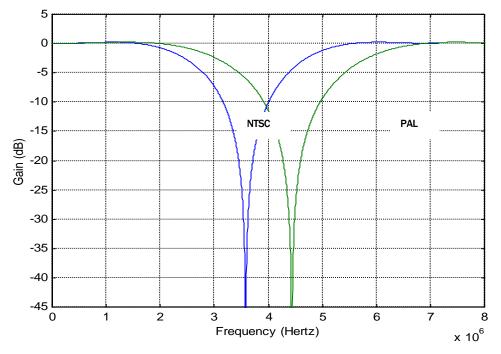


FIGURE 6. THE CHARACTERISTICS OF LUMINANCE NOTCH FILTER FOR NTSC AND PAL

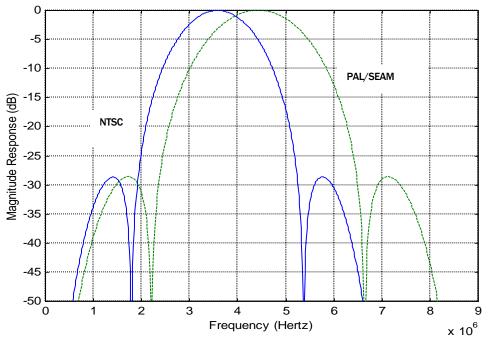


FIGURE 7. THE CHARACTERISTICS OF CHROMINANCE BAND-PASS FILTER FOR NTSC AND PAL

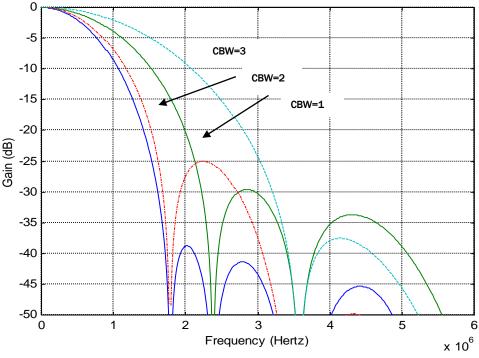


FIGURE 8. THE CHARACTERISTICS OF CHROMINANCE LOW-PASS FILTER CURVES

ACC (Automatic Color gain control)

The Automatic Chrominance Gain Control (ACC) compensates the reduced amplitudes caused by highfrequency loss in video signal. In the NTSC/PAL standard, the color reference signal is the burst on the back porch. It is measured to control the chrominance output gain. The range of ACC control is -6db to +24db.

CHROMINANCE PROCESSING

Chrominance Gain, Offset and Hue Adjustment

When decoding NTSC signals, TW2851 can adjust the hue of the chrominance signal. The hue is defined as a phase shift of the subcarrier with respect to the burst. This phase shift of NTSC decoding can be programmed through a control register. For the PAL standard, the PAL delay line is provided to compensate any hue error; therefore, there is no hue adjustment available. The color saturation can be adjusted by changing the gain of Cb and Cr signals for all NTSC, PAL and SECAM formats. The Cb and Cr gain can be adjusted independently for flexibility.

CTI (Color Transient Improvement)

The TW2851 provides the Color Transient Improvement function to further enhance the image quality. The CTI enhance the color edge transient without any overshoot or under-shoot.

LUMINANCE PROCESSING

The TW2851 adjusts brightness by adding a programmable value (in register BRIGHTNESS) to the Y signal. It adjusts the picture contrast by changing the gain (in register CONTRAST) of the Y signal.

The TW2851 also provide programmable peaking function to further enhance the video sharpness. The peaking control has built-in coring function to prevent enhancement of noise.

The 0 shows the characteristics of the peaking filter for four different gain modes and different center frequencies.

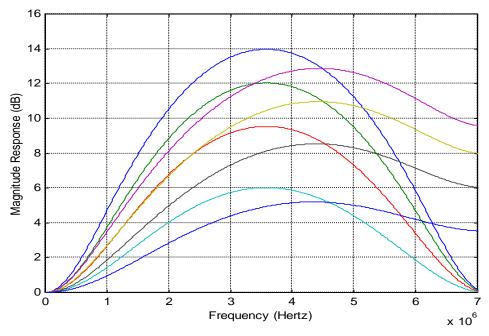


FIGURE 9. THE CHARACTERISTIC OF LUMINANCE PEAKING FILTER

PSEUDO 8 CHANNELS

The TW2851 has 2 CVBS analog inputs for each video decoder. With the control from MCU, it is possible to support non-real-time 8-channel videos by toggling the analog switch back and forth using register ANA_SW1 ~ ANA_SW4 (0x057). The MCU switches the analog multiplexer, and wait for a period of time until the picture from video decoder is stable, then issues a strobe signal to capture a field/frame to one of the display / record / SPOT video buffer. Once the field/frame is captured, the strobe signal is self-cleared, and the MCU can switch the analog mux again to change to the other analog input signal. The result of this analog mux toggling is being able to support two analog inputs with a single video decoder and appearing as having 8 video decoders. This practically increases the analog channel number of TW2851 from 4 to 8, except each channel is non-real-time. In order to support the pseudo 8 channels, the display/record/SPOT path needs to be set to the strobe mode to capture the field/frame properly. See the description for each of these paths for details.

CROPPING FUNCTION

The cropping function crops a video image into a smaller size. The active video region is determined by the HDELAY, HACTIVE, VDELAY and VACTIVE registers (0x002 ~ 0x006, 0x012 ~ 0x016, 0x022 ~ 0x026, 0x032 ~ 0x036). The first active line is defined by the VDELAY register and the first active pixel is defined by the HDELAY register. The VACTIVE register can be programmed to define the number of active lines in a video field, and the HACTIVE register can be programmed to define the number of active pixels in a video line. The horizontal delay register HDELAY are set to crop out unwanted pixels from horizontal blank interval. The horizontal active register HACTIVE determines the number of active pixels in a cropped line. The HACTIVE is typically set to 720 for both NTSC and PAL system for full screen. Note that these values are referenced to the pixel number before scaling. Therefore, even if the scaling ratio is changed, the active video region used for scaling remains unchanged as set by the HDEALY and HACTIVE register. In order for the cropping to work properly, the following equation should be satisfied.

HDELAY + HACTIVE < Total number of pixels per line

Where the total number of pixels per line is 858 for NTSC and 864 for PAL

The vertical delay register VDELAY determines the number of lines cropped at the upper side of the image. The vertical active register (VACTIVE) determines the number of active lines in the cropped. These values are

referenced to the incoming scan lines before the vertical scaling. In order for the vertical cropping to work properly, the following equation should be satisfied.

VDELAY + VACTIVE < Total number of lines per field

Where the total number of lines per field is 262 for NTSC and 312 for PAL

To process full size region, the VDELAY should be set to 0 and VACTIVE set to 240 for NTSC and the VDELAY should be also set to 0 and VACTIVE set to 288 for PAL.

NOISE REDUCTION

Behind the 4 video decoders are four sets of automatic noise reduction filters. The focus of the noise filter is on Gaussian white noise and spot noise which is commonly generated by signal pick-up in the camera or in analog channels, especially under poor lighting conditions. The Gaussian white noise is usually low amplitude (low noise energy) and can be reduced by linear filter.

The automatic noise filter consists of a noise estimation module and a noise filtering module. Before the noise filtering, a noise estimation process is performed to detect whether the incoming video signal is corrupted and how strong the noise is. The noise estimated includes short-term and long-term noise level. The estimated result is passed to the noise reduction filter to turn on/off the noise filter and/or set the strength of filtering. Using the noise estimation module, the automatic noise reduction can intelligently detect the noise, the edge, and the motion of the video picture. It turns on the noise filtering only when the noise is detected. The noise filtering will turn off automatically at the edge of objects or while the object is moving, in order to preserve the highest sharpness as possible. The automatic adjustment can also be turned off by setting a force mode control register. The noise filter is based on a variant of sigma nearest neighbor selection filter using IIR implementation. This noise filter can work on the range between 40 dB to 30 dB in 2 steps of 5 dB.

The output of the noise reduction is fed through three downscalers and eventually used for displaying in display / record / SPOT path. The TW2851 allows the noise reduction be independently turned on/off for each the display / record / SPOT path using registers 0x305 and 0x306.

DOWNSCALERS

The TW2851 has total of twelve downscalers in the analog video input path, with three downscalers associated with each of the video decoder / noise reduction output. The three downscalers are used for display, record, and SPOT respectively. The three downscalers can be configured independently using different scaling factor. The way of configuring the scaling factor is through specifying the source video size (scaler input size), and the target video size (scaler output size). The source sizes are specified in register $0x387 \sim 0x38B$, $0x397 \sim 0x39B$, $0x347 \sim 0x3AB$, and $0x3B7 \sim 0x3BB$. The target size are specified in register $0x380 \sim 0x385$, $0x390 \sim 0x395$, $0x3A0 \sim 0x3A5$, and $0x3B0 \sim 0x3B5$.

Note that the display downscalers are free scaler. That is, the video size can be downscaled to various size freely. While the record / SPOT downscalers are fix downscaler. They can only be downscaled to scaling factor of 1, $\frac{1}{2}$, $\frac{1}{4}$ in either horizontal or vertical direction. Scaling factors between 1 and $\frac{1}{2}$ are not allowed.

MOTION DETECTION

The TW2851 supports a motion detector for each of the 4 video decoders. The built-in motion detection algorithm uses the difference of luminance level between current and the reference field.

To detect motion properly according to situation needed, the TW2851 provides several sensitivity and velocity control parameters for each motion detector. The TW2851 supports manual strobe function to update motion detection so that it is more appropriate for user-defined motion sensitivity control.

When motion is detected in any video inputs, the TW2851 provides the interrupt request to host via the IRQ pin. Through which the host processor can read the motion information by accessing the motion status from register $0x6F1 \sim 0x6F4$, and $0x690 \sim 0x6EF$.

Mask and Detection Region Selection

The motion detection algorithm utilizes the full screen video data and detects individual motion of 16x12 cells. This full screen for motion detection consists of 704 pixels and 240 lines for NTSC and 288 lines for PAL. Starting pixel in horizontal direction can be shifted from 0 to 15 pixels using the MD_PIXEL_OS (0x61B) register.

Each cell can be masked via the MD_MASK (0x690 ~ 0x6EF) registers as illustrated in 0. If the mask bit in specific cell is set, the related cell is ignored for motion detection. The MD_MASK register has different function for reading and writing mode. For writing mode, setting MD_MASK register to "1" inhibits the specific cell from detecting motion. For reading mode, the MD_MASK register provides three different kinds of information depending on the MDn_MASK_SEL (0x616) register. With MDn_MASK_SEL = "0", the state of MD_MASK register read back the result of VIN_A motion detection, with "1" denoting motion detected and "0" no motion detected in the cell. With MDn_MASK_SEL = "1", the MD_MASK register shows the results of VIN_B motion detection. With MDn_MASK_SEL = "2", the state of MD_MASK register shows the masking information of cell of VIN_A. And with MDn_MASK_SEL = "3", it shows the masking information of cell of VIN_B.

	704 Pixels (44 Pixels/Cell)															
(III)	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
Lines/C	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1	MASK1
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
(24	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2	MASK2
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
for 50Hz	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
Lines fo	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
288	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5	MASK5
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
s/Cell),	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
(20 Lines/C	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
60Hz (2	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
for	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
O Lines	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_ MASK10 [7]	MD_							
240	MD_ MASK11 [0]	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_						

FIGURE 10. MOTION MASK AND DETECTION CELL

Sensitivity Control

The motion detector has 4 sensitivity parameters to control threshold of motion detection such as the level sensitivity via the MD_LVSENS (0x61C) register, the spatial sensitivity via the MD_SPSENS (0x61E) and MD_CELSENS (0x61D) register, and the temporal sensitivity parameter via the MD_TMPSENS (0x61B) register.

Level Sensitivity

In built-in motion detection algorithm, the motion is detected when luminance level difference between current and reference field is greater than MD_LVSENS value. Motion detector is more sensitive for the smaller MD_LVSENS value and less sensitive for the larger. When the MD_LVSENS is too small, the motion detector may be weak in noise.

Spatial Sensitivity

The TW2851 uses 192 (16x12) detection cells in full screen for motion detection. Each detection cell is composed of 44 pixels and 20 lines for NTSC and 24 lines for PAL. Motion detection using only luminance level difference between two fields is very weak for pictures with spatial random noise. To remove the fake motion detected from the random noise, the TW2851 supports a spatial filter via the MD_SPSENS register which defines the number of detected cell to decide motion detection in full size image. The large MD_SPSENS value increases the immunity of spatial random noise.

Each detection cell has 4 sub-cells. The actual motion detection result of each cell comes from comparison of 4 sub-cells in it. The MD_CELSENS defines the number of detected sub-cell to decide motion detection in cell. That is, the large MD CELSENS value increases the immunity of spatial random noise in detection cell.

Temporal Sensitivity

Similarly, temporal filter is used to remove the fake motion detection from the temporal random noise. The MD_TMPSENS regulates the number of taps in the temporal filter to control the temporal sensitivity so that the large MD_TMPSENS value increases the immunity of temporal random noise.

Velocity Control

A motion has various velocities. That is, in a fast motion an object appears and disappears rapidly between the adjacent fields while in a slow motion it is to the contrary. As the built-in motion detection algorithm uses only the luminance level difference between two adjacent fields, a slow motion is harder to detect than a fast motion. To compensate this weakness, the current field is compared with a previous field up to 64-field time interval before. The MD_SPEED (0x61D) parameter adjusts the field interval in which the luminance level is compared. Thus, for detection of a fast motion a small value is needed and for a slow motion a large value is required. The parameter MD_SPEED value should be greater than MD_TMPSENS value.

Additionally, the TW2851 has 2 more parameters to control the selection of reference field. The MD_FIELD (0x61C) register is a field selection parameter such as odd, even, any field or frame.

The MD_REFFLD (0x61C) register is used to control the updating period of reference field. For MD_REFFLD = "0", the interval from current field to reference field is always same as the MD_SPEED. It means that the reference field is always updated every field. The 0 shows the relationship between current and reference field for motion detection when the MD_REFFLD is "0".

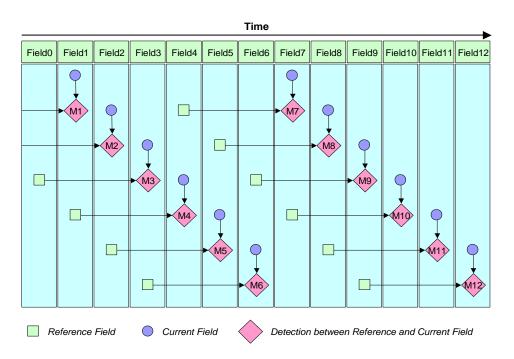


FIGURE 11. THE RELATIONSHIP BETWEEN CURRENT AND REFERENCE FIELD WHEN MD_REFFLD = "0"

The TW2851 can update the reference field only at the period of MD_SPEED when the MD_REFFLD is high. For this case, the TW2851 can detect a motion with sense of a various velocity. The 0 shows the relationship between current and reference field for motion detection when the MD_REFFLD = "1".

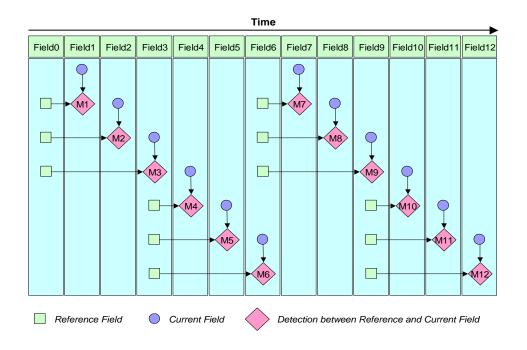


FIGURE 12. THE RELATIONSHIP BETWEEN CURRENT AND REFERENCE FIELD WHEN MD_REFFLD = "1"

The TW2851 also supports the manual detection timing control of the reference field/frame via the MD_STRB_EN and MD_STRB (0x61A) register. For MD_STRB_EN = "0", the reference field/frame is automatically updated and reserved on every reference field/frame. For MD_STRB_EN = "1", the reference field/frame is updated and reserved only when MD_STRB = "1". In this mode, the interval between current and reference field/frame depends on user's strobe timing. This mode is very useful for a specific purpose like non-periodical velocity control and very slow motion detection.

The TW2851 also provides dual detection mode for non-real-time application such as pseudo-8ch application via MD_DUAL_EN (0x61A) register. For MD_DUAL_EN = 1, the TW2851 can detect dual motion independently for VIN_A and B Input which is defined by the ANA_SWn (n=0~3) at 0x057 register. In this case, the MD_SPEED is limited to 31.

BLIND DETECTION

The TW2851 supports a blind detection for each of the 4 analog video inputs and generated an interrupt to the host when a blind condition is detected. A blind condition is detected when a camera is shaded / blocked by some unknown object and the video level in wide area of a field is almost equal to average video level of the field.

The TW2851 has two sensitivity parameters to detect blind input such as the level sensitivity via the BD_LVSENS (0x61E) register and spatial sensitivity via the BD_CELSENS (0x61A) register.

The TW2851 uses total 768 (30x224) cells in full screen for blind detection. The BD_LVSENS parameter controls the threshold of level between cell and field average. The BD_CELSENS parameter defines the number of cells to detect blind. For BD_CELSENS = "0", the number of cell whose level is same as average of field should be over than 60% to detect blind, 70% for BD_CELSENS = "1", 80% for BD_CELSENS = "2", and 90% for BD_CELSENS = "3". That is, the large value of BD_LVSENS and BD_CELSENS makes blind detector less sensitive.

The TW2851 also supports dual detection mode for non-real-time application such as pseudo-8ch application via the MD_DUAL_EN (0x61A) register. The host can read blind detection information for both VIN_A and VIN_B input via MCU interrupt. When blind input is detected in any video inputs, the host processor can read the information by accessing the INTERRUPT_VECT2 (0x1D2) register. This status information is updated in the vertical blank period of each input.

NIGHT DETECTION

The TW2851 supports night detection for each of the 4 analog video inputs and generates an interrupt to the host when a night condition is detected. If an average of a field video level is very low, this input is interpreted as night. Otherwise, the input is treated as day.

The TW2851 has two sensitivity parameters to detect night input such as the level sensitivity via the ND_LVSENS (0x61F) register and the temporal sensitivity via the ND_TMPSENS (0x61F) register. The ND_LVSENS parameter controls threshold level of day and night. The ND_TMPSENS parameter regulates the number of taps in the temporal low pass filter to control the temporal sensitivity. The large value of ND_LVSENS and ND_TMPSENS makes night detector less sensitive.

The TW2851 also supports dual detection mode for non-real-time application such as pseudo-8ch application via the MD_DUAL_EN (0x61A) register. The host can read night detection information for both VIN_A and VIN_B input via the MCU interrupt. When night input is detected in any video inputs, the TW2851 provides the interrupt request to host via the IRQ pin. The host processor can read the information of night detection by accessing the INTERRUPT_VECT1 (0x1D1) register. This status information is updated in the vertical blank period of each input.

Digital Video Input

The TW2851 supports digital video input in 8-bit ITU-R BT.656, 16-bit BT.601, and 16-bit BT.1120 standards. It has built-in ITU-R BT 656/601/1120 decoders. The digital video input can be used to display single-channel video from any source, or to display a multi-channel video stream generated from a decompression engine. In the multi-channel stream case, there will be channel ID information embedded in the video stream to allow the downstream modules to de-multiplex the video stream. When using the digital video input in BT.1120 format, TW2851 only supports single channel video.

ITU-R BT. 656 DIGITAL VIDEO INPUT FORMAT

When receiving video input in the BT. 656 format, TW2851 is capable of running at up to 4X clock rate of 108 MHz. With this a multi-channel field interleaved video stream of 8 half D1 field rate can be received through a single 8-bit digital interface. TW2851 is able to de-multiplex the single video stream, extracts 4 channels, and perform cropping/scaling function on each channel independently. The timing of BT. 656 digital video input is illustrated in Figure 13.

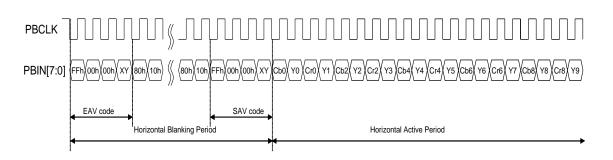
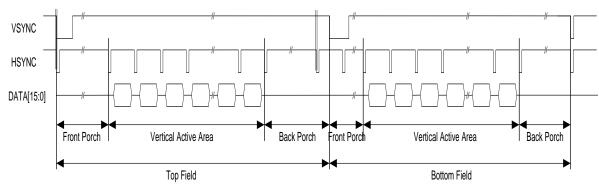


FIGURE 13. TIMING DIAGRAM OF ITU-R BT. 656 FORMAT


TW2851 has a built-in BT. 656 decoder with error correction for decoding SAV/EAV information. The SAV and EAV sequences are shown in Table 2.

	CONDITIO	N	656 FVH VALUE			SAV/EAV CODE SEQUENCE				
FIELD	VERTICAL	HORIZONTAL	F	v	Η	FIRST	SECOND	THIRD	FOURTH	
EVEN	Blank	EAV	1	1	1	OxFF	0x00	0x00	0xF1	
EVEN	DIAIIK	SAV	Т		0				OxEC	
EVEN	EN Active	EAV	1	0	1				OxDA	
EVEN	Active	SAV	-		0				0xC7	
ODD	Blank	EAV	0	1	1				0xB6	
	DIAITK	SAV	0	-	0				OxAB	
ODD	Active	EAV	0	0	1				0x9D	
	Active	SAV	0	0	0				0x80	

TABLE 2. ITU-R BT.656 SAV AND EAV CODE SEQUENCE

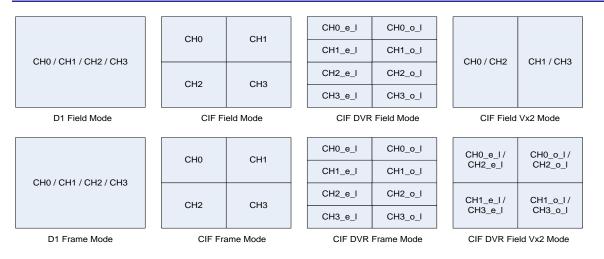
ITU-R BT. 601 DIGITAL VIDEO INPUT FORMAT

The digital video input can also take 16-bit ITU-R BT.601 standard. Additional signals such as HSYNC and VSYNC are used for video timing control. The BT. 601 interface is able to run up to 4X clock rate (54 MHz) as well. With this a multi-channel field/frame interleaved video stream of 4 D1 frame rate can be received through a single 16-bit digital interface. Again, the TW2851 is able to de-multiplex this single video stream into 4 channels, and perform cropping/scaling function on each channel independently.

The timing of BT. 601 digital video input is illustrated in

FIGURE 14. THE VSYNC/HSYNC TIMING IN BT. 601 INTERFACE

Note that there is no field ID input. The field information is derived from the leading edge of the VSYNC signal. If this leading edge falls into a window (say, +/- N clock cycles) around the leading edge of HSYNC signal, then the following field is top field. If it does not fall into such window, then the following field is bottom field. The leading edge of the the VSYNC signal is the timing the field signal toggles.


ITU-R BT. 1120 DIGITAL VIDEO INPUT FORMAT

The digital video input can also take video streams in 16-bit ITU-R BT.1120 format. The BT. 1120 format supports 1920x1125 (60 Hz) or 1920x1250 (50 Hz) resolution with a clock rate up to 74.25 MHz. The BT.1120 input channel is a single channel video interface. There is no multi-channel interleaving or channel ID support. Similar to the BT. 656 stream, the timing control signals are embedded in the data stream through EAV/SAV header, defined the same way as BT. 656 in Table 2.

MULTI-CHANNEL VIDEO FORMAT

The video stream generated by TW2851 carries multi-channel video stream, which consists of multiple video channels interleaved in one video stream. The multiple channels can be time interleaved in unit of a field (or a frame when running at 27 MHz), or space multiplexed (in unit of CIF picture). The time/space multiplexed format can vary flexibly from field/frame to field/frame. The "Picture Type" specifies how the multiple channels are put together in each field/frame. There are total of 8 possible ways, as listed in the following figure. Note that there are 4 channels at most in each field. The auto-channel ID in the VBI carries up to 4 channel IDs as well. The first channel ID will be CH_0. The second, third and forth being CH_1, CH_2, and CH_3 correspondingly. Figure 15 shows how the 4 channel IDs are mapped into each field. Note that the "Picture Type" automatically defines the picture size of each channel. The Auto-Channel ID in the VBI specifies the location of each channel. When there are 4 channels, the size of each channel is evenly divided from the full size of the picture. These various picture types are provided to allow external CODEC to make use the stream as easy as possible. The CODEC can pick whatever is most fit into the design of their chip. Out of the many types planned, the current TW2851 revB2 only supports field interleaving (type 0/2/) at 108/54/27 MHz, and frame interleaving (type 1/3) at 27 MHz.

FIGURE 15. MULTI-CHANNEL PICTURE TYPES SUPPORTED BY TW2851

D1 Field Mode ("Picture Type" = 0)

When the "Picture Type" specified in the channel ID is 0, the field succeeds the channel ID consists of 1 single channel. A "Field Mode" means the source channel uses only a field out of a frame for recording/display. How this single field is used at the display or compression CODEC depends on their implementation.

D1 Frame Mode ("Picture Type" = 1)

When the "Picture Type" specified in the channel ID is 1, the 2 field (1 frame) succeeds the channel ID consists of 1 single channel. A "Frame Mode" means both Odd/Even fields of the original channel are used for recording/display. At the display, the Odd field is used as the Odd field output, and the Even field is used as the Even field output. No interpolation is needed in this case.

CIF Field Mode ("Picture Type" = 2)

When the "Picture Type" specified in the channel ID is 2, it represents a Field Mode (as defined previously in D1 Field mode) with video of CIF size. Since each video is CIF, up to 4 channels can be allocated into a single D1 field. Note that in Field Mode, Even and Odd fields carry different channels. So total of 8 channels can be allocated.

CIF Frame Mode ("Picture Type" = 3)

When the "Picture Type" specified in the channel ID is 3, it represents a Frame Mode (as defined previously in D1 Frame Mode) with video of CIF size. This time, up to 4 channels can be allocated into a single D1 frame.

CIF DVR Field Mode ("Picture Type" = 4)

When the "Picture Type" specified in the channel ID is 4, it represents a CIF DVR Field Mode. The CIF DVR Field mode is very similar to the CIF Field Mode, except that the arrangement of pixel data of each CIF video on a D1 field is different. The CIF Field Mode arranges 4 channels at 4 corners. The CIF DVR Field Mode arranges 4 channels from top to bottom on a D1 field. The pixel data of each channel are arranged that the odd lines are at the left and the even lines are at the right. With this, the DVR mode generates continuous video stream for each channel such that the external CODEC only need to handle one channel at a time. See Figure 15 for the example of the CIF DVR Field Mode format compared with CIF Field Mode.

CIF DVR Frame Mode ("Picture Type" = 5)

When the "Picture Type" specified in the channel ID is 5, it represents the CIF DVR Frame Mode. Similar to CIF DVR Field Mode, the CIF DVR Frame Mode rearrange each CIF field/frame such that the Odd Lines are at the left, and the Even Lines are at the right. See Figure 15 for the example of the CIF Frame Mode format.

CIF Vx2 Field Mode ("Picture Type" = 6)

When the "Picture Type" specified in the channel ID is 6, it represents a CIF Vx2 Field Mode. The Vx2 mode means captures 2X of vertical lines of the field size to be display. With 2X of lines, the Odd lines are used for Odd field, and the Even lines are used for Even field. This mode is intended to capture a single field while used as a Frame at the output without interpolation. See Figure 15 for the CIF Vx2 Field Mode format.

CIF Vx2 DVR Field Mode ("Picture Type" = 7)

When the "Picture Type" specified in the channel ID is 7, it represents a CIF Vx2 DVR Field Mode. This mode is a combination of Vx2, DVR, and Field Mode. See Figure 15 for the CIF Vx2 Field Mode format.

4D1 Frame Mode ("Picture Type" = 9)

Picture Type 9 is very similar to Picture Type 3, except the frame size is 4 times bigger. The Picture Type 3 uses a D1 frame to carry 4 CIF channels, while the Picture Type 9 uses a BT 1120 frame to carry 4 D1 channels. To use this type, the input PB port is configured as BT. 1120 port, and the VACTIVE / HACTIVE size are configured to 4D1 rather than 1D1.

PLAYBACK INPUT CHANNEL DE-MULTIPLEXER

TW2851 supports up to four playback digital input ports (PB0 ~ PB3), each carries multiple channels within the video stream. The PB0 ~ PB3 can be in either of 8-bit, 16-bit or 24-bit playback interfaces in BT. 656, BT. 601, BT. 1120, or component RGB format. There are total of 32 PB data input pins which can be flexibly configured in various input configurations, as shown in Table 3.

PB0_TYPE	PB1_TYPE	PB PORT 0	PB PORT 1	PB PORT 2	PB PORT 3
0	0	PB0_DIN[7:0]	PB1_DIN[15:8] BT. 656	PB2_DIN[23:16] BT. 656	PB3_DIN[31:24] BT. 656
	1	BT. 656			
	0	U / V = PB0_DIN[7:0]		PB2_DIN[23:16] BT. 656	PB3_DIN[31:24] BT. 656
1	1	Y = PB1_DIN[7:0] BT. 601	U / V = PB2_DIN[7:0] Y = PB3_DIN[7:0] BT. 601		
	0	U / V = PB0_DIN[7:0]		PB2_DIN[23:16] BT. 656	PB3_DIN[31:24] BT. 656
2	1	Y = PB1_DIN[7:0] BT. 1120	U / V = PB2_DIN[7:0] Y = PB3_DIN[7:0] BT. 601		
3	х	R / V = PB2_DIN[7:0] G / Y = PB1_DIN[7:0] B / U = PB0_DIN[7:0]			PB3_DIN[31:24] BT. 656

TABLE 3. PLAYBACK INPUT CONFIGURATIONS

RENESAS

The playback interface matches the desired channel number set in PB_CHNUM (0x160, 0x170, 0x180, 0x190) with the channel IDs embedded within the video stream from each of the 4 ports, and generates up to 4 matched single-channel video streams (PB_CH0 ~ PB_CH3). Each of the PB_CH0 ~ PB_CH3 are single channel that can be cropped / scaled individually before writing into the DDR memory. The matching process generates the control signals PB_PORT_SEL0 ~ PB_PORT_SEL3 to select one of the 4 physical ports PB0 ~ PB3 for each of the PB_CH0 ~ PB_CH3 channel. The automatic matching result PB_PORT_SEL0 ~ PB_PORT_SEL3 can be read from register 0x101. Figure 16 shows how the input video streams from PB0 ~ PB3 are each checked against the PB_CHNUM, and de-multiplexed into 4 single channels PB_CH0 ~ PB_CH3.

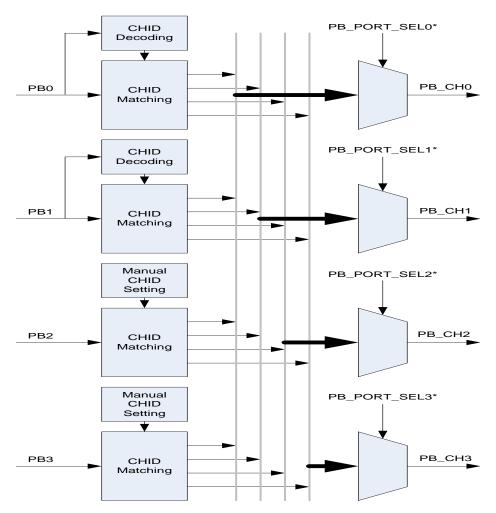


FIGURE 16. PLAYBACK INPUT DE-MULTIPLEXER

CHANNEL ID DECODER

In a multi-channel video stream, the channel ID information associated with each field / frame is embedded in the video vertical blanking area right before the active field in order to identify the channels of pictures in that active field. A channel ID decoder extracts and provides this information, including "channel IDs", "Picture Type", to the crop / scale module to separate the multi-channel video stream into multiple singlechannel video streams. In addition, an auto strobe signal is generated if the decoded channel ID matches the PB_CHNUM in 0x160, 0x170, 0x180, and 0x190. This signal is sent along with the separated single-channel video streams to the write control module to capture the picture automatically into the external video buffer.

The first two digital input ports (PB0, PB1) are equipped with a channel ID decoder and channel ID matching module to match and de-multiplex the multiple video streams automatically. In addition, a manual channel ID setting can be used to replace the result from channel ID decoder. All 4 PB ports have the manual channel ID setting through the registers in $0x120 \sim 0x123$, $0x130 \sim 0x133$, $0x140 \sim 0x143$, and $0x150 \sim 0x153$. The manual channel ID setting is enabled by setting PBm_MAN_STRB_EN (0x120 / 0x130 / 0x140 / 0x150) to "1". The manual channel ID is useful if the incoming video stream does not carry any channel ID information in its VBI. Note, however, that when the manual channel IDs are used, it cannot vary from field to field. Those picture types with channel ID changing from field to field cannot be supported.

With 4 playback input ports, there are a maximum of 16 channels embedded in the incoming streams. The playback path is designed to extract 4 out of the 16 channels. There are 4 sets of channel ID registers PB_CHNUMO ~ PB_CHNUM3 (0x160, 0x170, 0x180, 0x190) used for the matching module of each port. Each port will generate up to 4 channels. The PB_CHNUM is a 5 bit ID, including the 2-bit chip ID (in cascade case), 2-bit port ID, and 1-bit of analog ID that needs to be matched with the PB_ANAx (0x160, 0x170, 0x180, 0x190) to support Pseudo 8 channel application. If there are same Channel IDs extracted from more than 1 port, only the channel from the lowest playback port number is used. For details of Channel ID information embedded in VBI, please refer to the section on page 56.

CROPPING AND SCALING FUNCTION

The TW2851 supports the cropping and scaling function at the output of channel de-multiplexer behind the digital input port. There are 4 cropping / scaling modules which use the decoded channel ID to automatically crop the multi-channel stream into multiple single-channel streams and match the input Picture Type / size automatically.

Cropping

Similar to the cropping function in the analog CVBS path, the digital video input interface provides a cropping function to crop video into a smaller size as required by application. The active video region is determined by the HDELAY, HACTIVE, VDELAY and VACTIVE registers (0x124 ~ 0x129, 0x134 ~ 0x139, 0x144 ~ 0x149, 0x154 ~ 0x159). The first active line is defined by the VDELAY register and the first active pixel is defined by the HDELAY register. The VACTIVE register can be programmed to define the number of active pixels in a video field, and the HACTIVE register can be programmed to define the number of active pixels in a video line.

The cropping feature is also used for input video streams with multiple channel of video on the same field (e.g. PIC_TYPE 2 or 3) to separate out the intended channel from others. In this case, however, the HDELAY, VDELAY, HACTIVE, VACTIVE settings refer to the whole size of the field, instead of the size of each channel. The cropping function will automatically do additional cropping based on the PIC_TYPE information to separate out the single channel.

Scaling

The scaling function in digital input path is similar to the downscalers in the video decoder path. A setting of source and target video size are specified through register $0x162 \sim 0x165$, $0x172 \sim 0x175$, $0x182 \sim 0x185$, and $0x192 \sim 0x195$. The scalers used here are downscalers that can down scale freely to any size in multiple of 16-pixel steps. In case of CIF input that needs to be upscaled to D1, the TW2851 also provides a simple upscaler that can upscale the input at a fixed 2X scaling factor. This is set through PB_H2X_EN in registers 0x161, 0x171, 0x181, 0x191, and DP_RD_V_2Xn (n= 0 ~ 3) in registers 0x250, 0x258, 0x260, and 0x268. The use of downscaler and upscaler can be turned on simultaneously to achieve scaling factor up to 2X the original size horizontally and vertically.

Video Multiplexers

The TW2851 has three sets of video multiplexers, one for display, SPOT and record path each. All three multiplexers utilize a centralized external 256 Mbits DDR DRAM through a 16-bit data bus interface. The control of multiplexers are through the way the video are captured and read back to / from the external DDR SDRAM. The TW2851 supports 8-channel inputs for display path, 4-channel for SPOT path, and 4-channel for record path. The block diagram of video controller is shown in Figure 17.

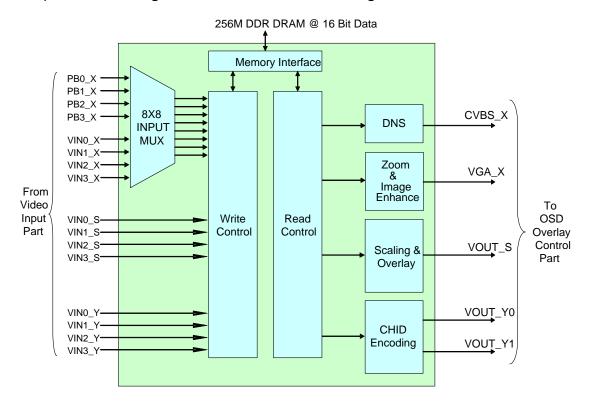


FIGURE 17. BLOCK DIAGRAM OF VIDEO CONTROLLER

CAPTURE CONTROL

Each of the Display / Record / SPOT paths supports video capturing in two different ways: LIVE mode and STROBE mode. In LIVE mode, every incoming video is updated into the video buffer to show up at the output. In STROBE mode, the incoming video is updated only if a strobe signal is issued either internally on the chip or externally from the MCU.

There are two different strobe modes supported. One is the AUTO STROBE mode, one is the MANUAL STROBE mode. The video streams from the playback interface can run at the AUTO STROBE mode, where a strobe signal is generated on chip automatically through channel ID decoding and matching circuit. The video streams from the video decoder only runs at MANUAL STROBE mode. Each channel can be independently

operated in its own mode, either LIVE or STROBE mode. Table 4 shows the modes supported on each of the display / SPOT / record path.

	LIVE MODE	STROBE MODE
DISPLAY / VD	YES	MANUAL
DISPLAY / PB	YES	AUTO
SPOT	YES	MANUAL
RECORD	YES	MANUAL

TABLE 4. CAPTURE MODES SUPPORT OF DISPLAY/SPOT/RECORD PATHS

Display Capture Modes

The display path capture mode is controlled by the DP_FUNC_MD (0x250 ~ 0x288).

Live Mode (DP_FUNC_MD = 0)

The LIVE mode captures every incoming field / frame into the video buffer into the external DDR memory. For inputs from video decoder, the input is always frame based. Every frame is updated and shown as a real-time video stream. For inputs from playback input, the capture mode is usually Auto Strobe Mode. However, playback LIVE mode can be forced on if PB_FORCE_LIVE (0x123, 0x133, 0x143, 0x153) is set to '1'. Under this mode, the incoming video stream always shows up independently of the PB_CHNUM setting. The PB_FORCE_LIVE = 1 only take D1 frame mode. So the PBn_MAN_PIC_TYPE has to be set to 0x01 in this type.

The LIVE mode capturing can be over-ruled with a freeze control by setting DP_FREEZEm register (0x250/0x258/0x260/0x268/0x270/0x278/0x280/0x288) to 1. In this case, the incoming video will no longer been captured until this bit is cleared.

Auto Strobe Mode (DP_FUNC_MD = 0)

For playback digital inputs, a strobe can be provided automatically if there is a matching of PB_CHNUM with the channel ID from VBI or from the manual mode setting. The TW2851 provides a channel ID matching mechanism to strobe only at the valid field / frame that matches the channel ID. The auto strobe mode capturing can also be over-ruled by a freeze control by setting DP_FREEZEm register (0x250/0x258/0x260/0x268/0x270/0x278/0x280/0x288) to 1. In this case, the incoming video will no longer been captured even though there is a channel ID match, until this bit is cleared.

Manual Strobe Mode (DP_FUNC_MD = 1)

The strobe mode of display path is mainly used to support the pseudo 8 channel mode. When the video decoder is switching between VINA and VINB, the MCU is responsible for the timing of switching the multiplexer. After switching, the MCU wait for a certain amount of delay time until the video picture is stable, then issue the DP_STRB_REQ (0x24F) signal. The display path then captures a field/frame depending on the setting of DP_STRB_FLD (0x250 ~ 0x288). Once the capture is completed, the display module clears the DP_STRB_REQ signal. The MCU poll the DP_STRB_REQ signal, and perform the switching all over again.

Record/SPOT Capture Modes

The record/SPOT path also supports either LIVE and STROBE mode individually for each port. The mode is controlled by RP_FUNC_MD_n (0x210 ~ 0x213, 0x2A0 ~ 0x2A3). Each port can be configured to LIVE mode or STROBE mode individually using the FUNC_MD.

Live Mode (RP_FUNC_MD_n = 0)

In LIVE mode, the capture module captures every received field/frame into the video buffer into the external DDR memory. Depending on the RP_PIC_TYPE / SP_PIC_TYPE (0x215, 0x2A5), the captured field/frame is updated either per frame or per field. In addition to the existing picture type defined, the SPOT path also supports an additional picture type that allows all 16 channels QCIF to cascade onto one single output.

Strobe Mode (RP_FUNC_MD_n = 1)

The strobe mode captures a field / frame each time a strobe request is issued by the MCU. This allows the MCU to control the timing of capturing a field/frame, and is useful in supporting pseudo 8 channel. In pseudo 8 channel mode, the MCU switches the analog multiplexer from VINA to VINB, waits for a certain amount of time till the picture is stable, and issues a strobe signal to RP_STROBE_n / SP_STROBE_n (0x214, 0x2A4). Once a field/frame is captured, the strobe signal is cleared automatically. The MCU can poll this bit for capture completion, and starts the switching process all over again.

READ CONTROL

The read control arranges the input channels at the output port in terms of both temporal control and spatial control. The spatial control specifies the location and the channel of each enabled window at the output. The temporal control specifies how the multiple channels are temporally interleaved to share the frame rate efficiently. Therefore each field / frame can carry video from different channels. For display path, every enabled window shows up all the time. No temporal control is involved. For record / SPOT path, the channels can be field / frame interleaved.

The control of temporal / spatial configurations is through either static register, or dynamic switch queue. The static control specifies the spatial / temporal control through a set of registers. The switch queue specifies the spatial / temporal control through a switch queue, with each entry of the queue determine the control in a field / frame.

Display Read Control

For display path, the output channel does not change from field to field. So there is no temporal control. Spatially, the display path can show up to 8 video windows on the output monitor. In implementation, the window 0 has highest priority, and window 7 has lowest priority. Window 0 always stays on top, and covers other windows. Every video window is flexibly configurable in terms of size and location and is controlled by DP_PICHLm (0x252, 0x25A, 0x262, 0x26A, 0x272, 0x27A, 0x282, 0x28A), DP_PICHRm (0x253, 0x25B, 0x263, 0x26B, 0x273, 0x27B, 0x283, 0x28B), DP_PICVTm (0x254, 0x26C, 0x264, 0x26C, 0x274, 0x27B, 0x284, 0x28B), and DP_PICVBm (0x255, 0x25D, 0x265, 0x26D, 0x275, 0x27D, 0x285, 0x28D) for the left, right, top, bottom of each window.

The display path supports 8 input channels to fill into the 8 video windows. Channel $0 \sim 3$ take inputs from either playback channel $0 \sim 3$, or video decoder port $0 \sim 3$ with analog selection 0 or 1. Channel $4 \sim 7$ take inputs from video decoders $0 \sim 3$ with analog selection 0 or 1. The Table 5 shows the input selections the display channel can support. Note that DP_PBVD_SEL is 4 bits. It controls each of channel $0 \sim 3$ separately.

DISPLAY CHANNEL #	PLAYBACK WITH 4 VD CHANNELS DP_PBVD_SEL = 0	PSEUDO 8 CHANNELS DP_PBVD_SEL = 1
0	PB_CH0	VD_0 (A/B)
1	PB_CH1	VD_1 (A/B)
2	PB_CH2	VD_2 (A/B)
3	PB_CH3	VD_3 (A/B)
4	VD_0 (A/B)	VD_0 (A/B)
5	VD_1 (A/B)	VD_1 (A/B)
6	VD_2 (A/B)	VD_2 (A/B)
7	VD_3 (A/B)	VD_3 (A/B)

TABLE 5. DISPLAY CHANNEL CONFIGURATION

The display path display supports cascade function, allowing 4 chips of TW2851 to be connected together and merge all the windows into one single VGA / CVBS output. With 4-chip cascade, the display output can

FN7743 Rev.0.00 August 17, 2012

support up to 32 windows in total. The priority of all video windows will be the downstream chips cover the upstream chips.

Record/SPOT Static Control (RP_SM_EN / SP_SM_EN = 0)

To run the record / SPOT path at static mode, the RP_SM_EN / SP_SM_EN register (0x215, 0x2A5 for SPOT) is set to "0". Instead of arranging all windows flexibly as in the display path, the Record / SPOT path read control is less flexible. It uses the pre-specified configuration, described as picture types, shown in Figure 15, with each window either full screen or 1/4 of the whole screen. The windows cannot be overlapped in record / SPOT path.

The picture type of record / SPOT path in static mode is controlled by the RP_PIC_TYPE / SP_PIC_TYPE (0x215, 0x295) register. For each of the picture type, the windows are arranged as follows.

- PIC_TYPE of 0 / 1: The record / SPOT module output 1 field/frame from each of the channel specified by CHNUM0 ~ CHNUM3 (0x21D, 0x21E for record, and 0x2AD, 0x2AE for SPOT). There is a control CH_CYCLE (0x215 for record, 0x2A5 for SPOT) used to control how many ports are interleaved. A CH_CYCLE setting of m allows m channels to be interleaved as specified in CHNUM0 ~ CHNUMm-1. The CHNUMm through CHNUM3 will be ignored. A CH_CYCLE "0" represents m=4.
- PIC_TYPE of 2/3/4/5: The record captures 4 channels to form a 4-window screen with CHNUMO represents the upper left window, CHNUM1 represents the upper right window, CHNUM2 represents the lower left window, and CHNUM3 represents the lower right window. CH_CYCLE should be set to 1 for these types.
- PIC_TYPE of 6/7: The record path captures 2 channels to from a 2-window screen, with CHNUM0/2 representing the left window, and the CHNUM1/3 representing the right window. The CH_CYCLE can be set to 2 to interleave 4 channels into 2 fields.

An additional SPOT path 16-window QCIF mode allows all 16 ports of the 4 chip cascade configuration to be shown on a single output with 16 QCIF window size on the SPOT output. In this case, the channels are static from field to field, just like display path. To use this mode, the user set the SP_16 register (0x2C0) to 1, and specify the location of the output windows with SP_16_WINNUM0 ~ SP_16_WINNUM3 (0x2C1, 0x2C2) for each of the port 0 ~ 3.

Record/SPOT Switch Control (SM_EN = 1)

Switch Queue

The dynamic switch mode is designed to allow multiple channels to share the output frame rate through flexible way of frame/field interleaving of "Picture Type" described previously at the "Multi-channel Video Format" section. The "Picture Type" can be one of the 8 types in Figure 15 and can change from field / frame to field / frame. To achieve this, an internal Switch Queue (1024 entries in the record path and 16 entries in the SPOT path) is used to specify the "Picture Type", "Channel IDs", the Capturing Field (Odd or Even) of each field/frame. The input videos are multiplexed according to the Switch Queue to generate the output multi-channel video stream. The Switch Queue read pointer increments once per field for "Picture Type" of the Field Mode type, and increment once per frame when the "Picture Type" being one of the Frame Mode type. The definition of a switch queue entry is shown in Table 6 for record path and Table 7 for SPOT path.

TABLE 6. SWITCH QUEUE ENTRY DEFINITION OF RECORD PATH			
SWITCH QUEUE ENTRY BIT RANGE	FUNCTION		
3:0	CHNUMO (upper left window) CHIP_ID + PORT_ID		
7:4	CHNUM1 (upper right window) CHIP_ID + PORT_ID		
11:8	CHNUM2 (lower left window) CHIP_ID + PORT_ID		
15 : 12	CHNUM3 (lower right window) CHIP_ID + PORT_ID		
19 : 16	CHANNEL DISABLE		
22 : 20	PICTURE_TYPE		
23	STROBE_FIELD		
27 : 24	Record OSG0 Control		
31 : 28	Record OSG1 Control		

TABLE 7. SWITCH QUENE ENTRY DEFINITION OF SPOT PATH

SWITCH QUEUE ENTRY BIT RANGE	FUNCTION
3:0	CHNUMO (upper left window) CHIP_ID + PORT_ID
7:4	CHNUM1 (upper right window) CHIP_ID + PORT_ID
11:8	CHNUM2 (lower left window) CHIP_ID + PORT_ID
15 : 12	CHNUM3 (lower right window) CHIP_ID + PORT_ID
19:16	CHANNEL DISABLE
22 : 20	PICTURE_TYPE
23	STROBE_FIELD

With the switch queue defined, the output video can change configuration from field / frame to field / frame. For example, the first field can be a whole screen channel (e.g. picture type 0), the second field can be a quad-CIF screen (e.g. picture type 2), while the third/fourth fields being picture type 5. A switch queue size register RP_SQ_SIZE / SP_SQ_SIZE (0x20E, 0x20F for record and 0x29E for SPOT) specifies the length of the queue. The use of the switch queue will loop from the first entry to the SQ_SIZE entry and starts over again.

Switch Queue Configuration

To write an entry in the Switch Queue, the MCU configures the RP_SQ_ADDR (0x20D/0x20F) for record, SP_SQ_ADDR (0x29D) for SPOT, RP_SQ_SIZE (0x20E/0x20F) for record, RP_SQ_SIZE (0x29F), set a "1" to RP_SQ_WR (0x208) for record, SP_SQ_WR (0x298) for SPOT, Then write a queue entry data to RP_SQ_DATA (0x209/0x20A/0x20B/0x20C) for record, SP_SQ_DATA (0x299/0x29A/0x29B) for SPOT. Once all these are

done, the MCU sets a "1" to RP_SQ_CMD (0x208) for record, or SP_SQ_CMD (0x298) for SPOT. The RP_SQ_CMD/SP_SQ_CMD bit will be cleared automatically after updating queue. A queue entry can be read similarly, except setting set a "0" to RP_SQ_WR (0x208) for record, SP_SQ_WR (0x298). Once the RP_SQ_CMD/SP_SQ_CMD is issued, the MCU will read back the queue entry data from RP_SQ_DATA/SP_SQ_DATA registers.

WINDOW CONFIGURATION

Display Window Configuration

Display path involves many different modes, and requires a lot of configuration / setting through registers. Whenever there is a change in setting, some procedures need to be followed in order to make sure the pictures shown are correct. Figure 18 below shows the sequence to change the display mode window configuration. Before any change is made in register $0x250 \sim 0x28F$, always set the channel enable to '0' for the corresponding window in 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280, 0x288. Proceed to change the configuration in $0x250 \sim 0x28F$. Once all the change are made, turn the channel enable bit to '1' to resume the window display.

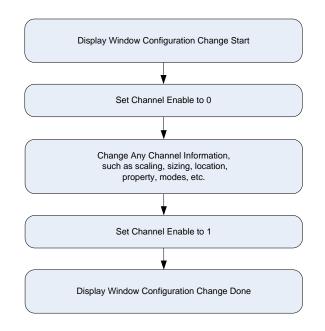


FIGURE 18. THE SEQUENCE TO CHANGE DISPLAY WINDOW CONFIGURATION

Record/SPOT Path Configuration Change

Record / SPOT paths also support various types of modes, and there are a lot of configuration registers to set in order to change the mode. The record / SPOT path have a little bit different way of handling configuration change. To make any mode change, simply change whatever configuration registers of the windows, such as switch queue change, scaling change, channel number change, etc. After all the changes are done, the MCU should issue a CONFIG_DONE signal (0x208 for record, 0x298 for SPOT). The record/SPOT control will resume normal operation.

VIDEO WINDOW CONTROL

In addition to the window size / location configuration, there are other controls and image enhancement features in display / record / SPOT path.

Background Control

The union of all active channel regions can be called as active region and the rest region except active region is defined as background region. The TW2851 supports background overlay with the overlay color controlled via the DP_BGND_COLR (0x230) registers for display, RP_BGND_COLR (0x201) for record, and SP_BGND_COLR (0x291) for SPOT.

Border Control

The TW2851 display path can overlay channel boundary on each channel region using the DP_BORDER_EN (0x24E). The boundary color of a channel can be selected through the DP_BORDER_COLR (0x24C) register. The border can be blinked via the DP_BORDER_BLINK (0x23A) register when DP_BORDER_EN is high. The border color will change between the DP_BORDER_COLR and the background color (DP_BGND_COLR) when the DP_BORDER_BLINK is set. The blink period is controlled through a blinking timer in register BLINK_PERIOD at 0x620.

The SPOT path also supports the border through SP_BORDER_EN at register 0x291 and SP_BORDER_COLR at register 0x292.

Blank Control

Each channel can be blanked with specified color when NOVIDEO signal is detected for the channel. The content when the NOVIDEO is detected is determined by auto blank registers (RP_BLNK_DIS at 0x201 for record, and SP_BLANK_MODE at 0x291 for SPOT). For display, this can be either a fixed blank color, the last captured image, or last capture image with blink border. For record and SPOT, this can be either the last captured image or a fixed blank color. The blank color is determined by the blank color registers (DP_BLANK_COLR at 0x230 for display path, RP_BLANK_COLR at 0x201 for record path, and SP_BLANK_COLR at 0x291 for SPOT). The video window can be forced to blank color even though the NOVIDEO signal is 0. This is done by RP_BLNK_n (0x210 ~ 0x213) for record, and SP_BLNK_n (0x2A0 ~ 0x2A3 for SPOT).

Display Freeze Control

In Freeze Mode, the write control stop writing any field / frame into the external DDR DRAM. With the read control circuit still reading the latest picture in the DRAM, the result is a frozen still picture. Both display and SPOT paths support freeze mode. The display path controls the freeze through 0x250, 0x258, 0x260, 0x268, etc., for each window. The SPOT path controls the freeze mode through 0x2A0, 0x2A1, 0x2A2, and 0x2A3.

Horizontal / Vertical Mirroring

The TW2851 supports image-mirroring function for horizontal and/or vertical direction. The horizontal mirroring is achieved via the DP_MIR_V_n / DP_MIR_H_n (0x251, 0x259, 0x260, 0x269, etc.) for display, RP_MIR_V_n / RP_MIR_H_n (0x210, 0x211, 0x212, 0x213) for record, and SP_MIR_V_n / SP_MIR_H_n (0x2A0, 0x2A1, 0x2A2, 0x2A3) for SPOT. It is useful for a reflection image in the horizontal and vertical direction from dome camera or car-rear vision system.

IMAGE ENHANCEMENT PROCESSING

2D De-interlacing

The TW2851 has a built-in 2D de-interlacer to process interlaced video inputs to generate progressive video from each incoming field before sending out to the VGA and LCD interface. The frame rate is doubled after the de-interlacing. A proprietary low angle compensation circuitry adaptively corrects the interpolation process to result in smooth video rendering.

Most of the de-interlacing control registers are fine tuned, and should be kept as the default value. The 2D de-interlacer control registers are located at 0x490 ~ 0x49C.

VGA Up-scaling Function

The TW2851 supports high performance up-scaling function in the vertical and horizontal direction for the display VGA path. The TW2851 provides high quality up-scaling characteristics using a high performance

interpolation filter and image enhancement technique. The upscaler control registers are located at $0x4A0 \sim 0x4AE$. The up-scaler may scale up the input from a selected area (zooming area) within the whole active video frame. With this, a zoom function is achieved. The zooming area is configured by using registers from $0x240 \sim 0x245$.

Adaptive Black / White Stretch

This feature expands the dynamic range of the input image based on the video frame statistics and creates more vivid image impression.

Sharpness Control

TW2851 provides both horizontal and vertical sharpening circuit to provide clear images on the panel.

RGB Gamma Correction

TW2851 has built-in independent RGB 10-bit Gamma RAM for the purpose of table lookup Gamma correction.

Video Output

TW2851 supports both analog and digital video outputs. Analog outputs include: display VGA output, two CVBS output shared by display, record, and spot path. The digital outputs include: display RGB output, display cascade output, display BT1120 output, record output 1 and 2 in 656 format, and SPOT output in 656 format.

FIGURE 19. THE VIDEO OUTPUT BLOCK DIAGRAM

ANALOG VGA/RGB VIDEO OUTPUT

The TW2851 incorporate 3 higher performance DACs to provide analog RGB component output for display VGA interface. In addition to the RGB component, the VGA VS / HS signal is also generated. The VGA output supports various resolutions from VGA (640x480), SVGA (800x600), XGA (1024x768), SXGA (1280x1024), and WXGA (1440x900). The VGA output video went through an on-chip 2D de-interlacer module to convert the interlaced video signal into progressive and an up-scaler function to scale the internal 4D1 resolution video into a screen size larger than 4D1.

CVBS VIDEO OUTPUT

The TW2851 supports analog video output using two built-in video encoders, which generates composite video with a 10 bit DAC. The sources of the video encoder inputs are flexibly selectable from display and SPOT path by setting VE_SEL (0x2D7, 0x2D8). Whatever the incoming video sources are, they have to be running at 27 MHz in order to use the video encoder for CVBS output. The incoming digital video are adjusted for gain and offset according to NTSC or PAL standard. Both the luminance and chrominance are band-limited and interpolated to 27MHz sampling rate for digital to analog conversion. The NTSC output can be selected to include a 7.5 IRE pedestal. The TW2851 also provides internal test color bar generation.

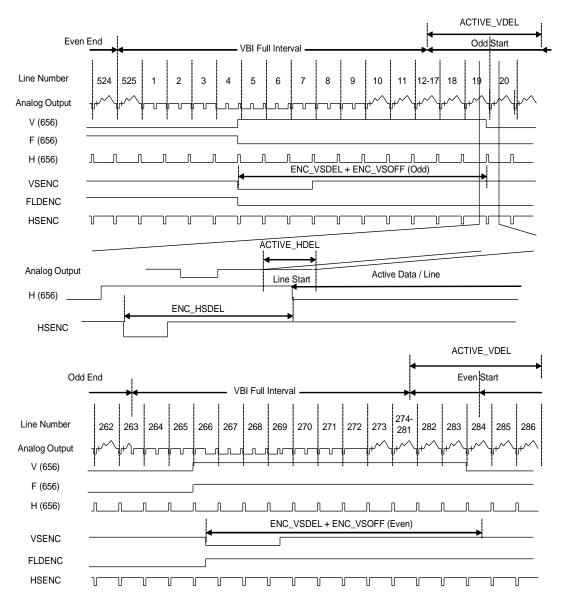
Output Standard Selection

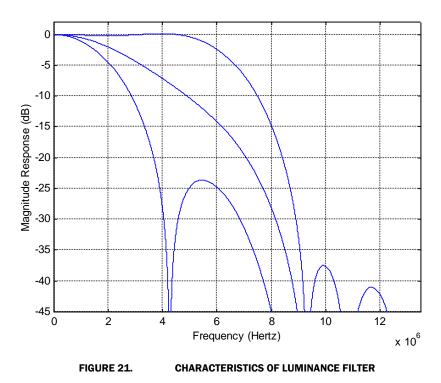
The TW2851 on-chip video encoders support various video standard outputs via the VE_PAL_NTSC and VE_FSCSEL (0x2D0), VE_PHALT, VE_PED (0x2D1) registers as described in the following Table 8.

	:	SPECIFICATIO	N	REGISTER			
FORMAT	LINE/FV (HZ)	FH (KHZ)	FSC (MHZ)	PAL_NTSC	ENC_ FSC	ENC_PHALT	ENC_PED
NTSC-M	525/59.94	15.734	3.579545	0	0	0	1
NTSC-J	525/59.94	15.754	3.579545	0	0	0	0
NTSC-4.43	525/59.94	15.734	4.43361875	0	1	0	1
NTSC-N	625/50	15.625	3.579545	1	0	0	0
PAL-BDGHI	625/50	15.625	4.43361875	1	1	1	0
PAL-N	025/50	15.025	4.43301873	1	1	1	1
PAL-M	525/59.94	15.734	3.57561149	0	2	1	0
PAL-NC	625/50	15.625	3.58205625	1	3	1	0
PAL-60	525/59.94	15.734	4.43361875	0	1	1	0

TABLE 8. ANALOG OUTPUT VIDEO STANDARDS

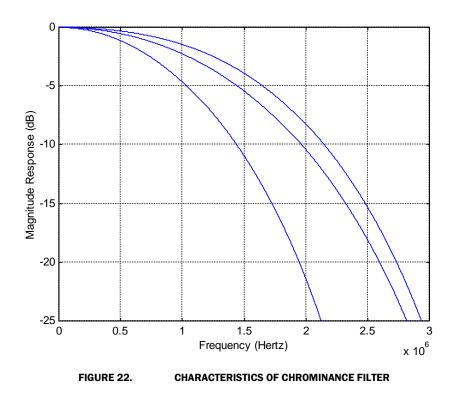
If the VE_FDRST (0x2D1) register is set to "1", phase alternation can be reset every 8 field so that phase alternation keeps same phase every 8 field. The polarity of horizontal, vertical sync and field flag can be controlled by the VE_HSPOL, VE_VSPOL and VE_FLDPOL (0x2D1) registers respectively. The TW2851 can detect field polarity from vertical sync and horizontal sync via the VE_FLD (0x2D0) register or can detect vertical sync from the field flag via the VE_VS (0x2D0) register. The detailed timing diagram is illustrated in Figure 20.




FIGURE 20. HORIZONTAL AND VERTICAL TIMING CONTROL

TW2851 has the VE_HSDEL (0x2D2), VE_VSDEL and VE_VSOFF (0x2D3) registers to control the related signal timing as shown in the above figure. Likewise, by controlling the VE_ACTIVE_VDEL (0x2D4) and VE_ACTIVE_HDEL (0x2D5) registers, the active video period can be shifted on horizontal and vertical direction independently. The shift of active video period produces the cropped video image because the timing signal is not changed even though active period is moved. So this feature is restricted to adjust video location in monitor for example.

Luminance Filter


The bandwidth of luminance signal can be selected via the VE_YBW (0x2D7, 0x2D8) register as shown in Figure 21.

Chrominance Filter

The bandwidth of chrominance signal can be selected via the VE_CBW (0x2D7, 0x2D8) register as shown in Figure 22.

Digital-to-Analog Converter

The digital video data from video encoder is converted to analog video signal by DAC (Digital to Analog Converter). A simple reconstruction filter is required externally to reject noise as shown in the Figure 23.

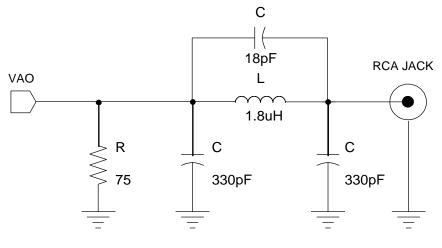


FIGURE 23.

EXAMPLE OF RECONSTRUCTION FILTER

DIGITAL OUTPUT

The TW2851 display digtal format includes the RGB output, YUV output and cascade output output, etc.

Display RGB Output

The Display VGA RGB output supports various resolutions from VGA (640x480), SVGA (800x600), XGA (1024x768), SXGA (1280x1024), and WXGA (1440x900). The VGA output video went through a on-chip 2D de-interlacer module to convert the interlaced video signal into progressive. When in digital format, the RGB data is 24 bit wide. The HS / VS signals are generated together with the 24 bit data.

Display YUV Output

The display YUV output is a 422 YUV interface of 16 bit wide digital interface. The YUV output video does not go through de-interlacer. The output resolution is programmable, and can support up to 1080I resolution. This allows the user to use external 3D de-interlacer if a higher picture quality is needed. The HS / VS signals are generated, even though a BT1120 SAV/EAV timing signal is also embedded in the video data stream.

Display Cascade Output

The display cascade output is an 8-bit bus with built-in SAV/EAV timing control similar to the BT. 656 format, however running at either 27 MHz or 108 MHz. With this, the display cascade path is able to support either 1 D1 (720x480 / 576) or 4 D1 (1440x960) display size. This allows the cascade path to run the native display buffer resolution of supporting 4 D1 without downscaling and sacrifice the picture quality.

Record BT 656 / 601 Output in Field Interleave Format

The record path can support up to 2 656 digital output ports, 1 port 601, or 1 port BT. 1120-like format. . The BT. 1120-like output is very similar to 656, except it is 16-bit wide and the resolution is 1440 x 960 rather than 720x480 / 720x576. TW2851 supports all these formats with the configuration as shown in the Table 9 below. When using 1 output port of BT. 656, the frequency can run up to 54MHz to carry 2 times D1 frames rates. If 2 port BT. 656, 601, format are used, only up to 27 MHz each port is supported. If BT. 1102 format is used, the port frequency is always 54 MHz. The record clock is set by register RP_CLK_SEL at 0x200. Note that when 2 BT. 656, 601, or 1120 formats are used, always set the RP_CLK_SEL register to be twice the frequency of the port frequency. E.g., in order to setup a 27 MHz output frequency at the output port, the RP_CLK_SEL should be set to 54 MHz whenever RP_2_656 is "1". The internal circuit in the record path will divide the clock down to 54 MHz at the output.

PORT TYPE	PORT NUMBER	MAX FIELD RATE PER PORT	PORT FREQUENCY	RP_CLK_SEL
BT. 656	1	120	27 ~ 54	1~2
BT. 656	2	60	27	1~2
BT. 601	1	120	13.5 ~ 27	1~2
BT. 1120-like	1	60	54	3

TABLE 9. DIGITAL RECORD OUTPUT PORT CONFIGURATION

The active video level of the ITU-R BT.656 can be limited to $1 \sim 254$ via the RP_LIM_656 (0x202) register. In case that channel ID is located in active video period, the RP_LIM_656 should be set to low for proper digital channel ID operation.

The following Table 10 shows the ITU-R BT.656 SAV and EAV code sequence.

	TABLE 10. ITU-R BT.656 SAV AND EAV CODE SEQUENCE												
	LINE CONDITION		N		FVH	FVH SAV/EAV CODE SEQUENCE			NCE				
	FROM	то	FIELD	VERTICAL	HORIZONTAL	F	v	н	FIRST	SECOND	THIRD	FOURTH	
-	523	3	EVEN	Blank	EAV	1	1	1				0xF1	
	(1 *1)	J		Diality	SAV	-	-	0				OxEC	
	4	19	ODD	Blank	EAV	0	1	1				0xB6	
	т	10	000	Diality	SAV	U	-	0				OxAB	
nes)	20	259	ODD	Active	EAV	0	0	1				0x9D	
60Hz (525Lines)	20	(263*1)	000	Active	SAV	U	Ŭ	0	OxFF	0x00	0x00	0x80	
Iz (5:	260	265	ODD	Blank	EAV	0	1	1	UNIT	0,00	0,00	0xB6	
60Н	(264*1)	200	000	Diality	SAV	U	-	0				OxAB	
	266	282	EVEN	Blank	EAV	1	1	1				0xF1	
	200	202		Diality	SAV	-		0				OxEC	
	283	522	EVEN	Active	EAV	1 0	0	1				OxDA	
	200	(525*1)			SAV		Ű	0				0xC7	
	1	22	ODD	Blank	EAV	0	1	1				0xB6	
	-		000	Biaint	SAV	Ũ	_	0				OxAB	
	23	310	ODD	Active	EAV	0	0	1				0x9D	
	20	010	000	Active	SAV	Ū	Ŭ	0				0x80	
nes)	311	312	ODD	Blank	EAV	0	1	1				0xB6	
50Hz (625Lines)	011	012	000	Diality	SAV	Ū	-	0	OxFF	0x00	0x00	OxAB	
lz (6:	313	335	EVEN	Blank	EAV	1	1	1	UXI I	0,00	0,00	0xF1	
501	010	000		Biann	SAV		-	0				OxEC	
	336 623	623	EVEN	N Active	EAV	1	0	1				OxDA	
		020			SAV	-		0				0xC7	
	624	625	EVEN	Blank	EAV	1	1	1				0xF1	
	624 625	024 62	020		Blank	SAV	±	-	0				OxEC

TABLE 10.ITU-R BT.656 SAV AND EAV CODE SEQUENCE

When 601 or 1120-like format is used, only 1 port is supported. The frequency can run up to 54 Mhz. In either 656 / 601, the channel ID information is embedded in the VBI area that can be extracted by the external CODEC, or by the playback channel ID decoder.

Record BT 656 Output in Byte-Interleave Format

The TW2851 byte-interleave output runs at 54 MHz, such that each of the VDOY0 and VDOY1 carry 2 D1 output. With this, a total of 4 D1 output directly from video decoder is available to the external CODEC. When byte interleave is used, the CLKOY0 polarity can be set to be the reverse of CLKOY1 using CLKOY0_POL, CLKOY1_POL (0x2FB) such that one video channel can be latched with the rising edge of CLK, and the other channel from falling edge of CLK. The delay of CLKOY0, CLKOY1 can be adjusted with CLKOY0_DLY and CLKOY1_DLY (0x2FE).

SPOT 656 Output

The SPOT path can support one 656 digital output port at 27 MHz. This output can be used for both external CODEC, or used as the SPOT cascade output to the next TW2851 chip.

TFT PANEL SUPPORT

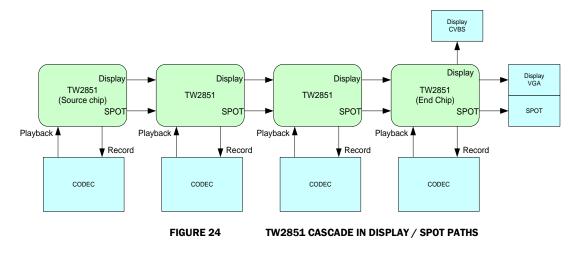
The TW2851 supports varieties of active matrix TFT panels with single / dual channel LVDS as well. It supports panel with resolution up to 1366x768 or WXGA resolution.

Dithering

If the color depth of the input data is larger than the LCD panel color depth, the TW2851 can be set to dither the image. Up to four bits of apparent color depth can be added with the internal dithering ability of the TW2851. This allows LCD panels with 4, 6 or 8 bits per color per pixel to display up to 16.8 million colors and LCD panels with 3 bits per color per pixel to can display up to 2.1 million colors.

The TW2851 has both spatial and frame modulation dithering. When dithering with the least significant 4bits of input data the TW2851 uses spatial modulation with 4x4 blocks of pixels. When dithering with the least significant 1 to 3 bits of input data, the TW2851 uses either spatial modulation with 2x2 pixel blocks, or frame modulation.

Power Management


The TW2851 supports panel power sequencing. Typical TFT panels require different parts of the panel power to be applied in the right sequence to avoid premature damage to the panel. Pins are provided to control the panel backlight generator, digital circuitry and panel driver, separately. The TW2851 controls the power up and power down sequence for the LCD panels. The time lapses between different stages of the sequence are independently programmable to meet various power sequencing requirements.

The TW2851 also supports VESA™ DPMS for monitor power management. It can detect the DPMS status from input sync signals and automatically change into On/Off mode. To support the power management, the TW2851 has three operating modes: Power On mode, Power Off mode, and Panel Off mode. All the DPMS power saving mode will be covered by the Power Off mode.

Video Cascade

TW2851 supports cascade feature that allows up to 4 TW2851 chips to connect together and extend the port number up to 16 ports. Both the VGA / SPOT display modes supports cascade features. The cascade feature of each of the path can be individually turned on/off, depending on the user requirement. Figure 24 and Figure 25 show various way of cascade configuration of TW2851.

Each of the 4 chips cascaded together got assigned a unique chip ID (at 0x2F1). There is no special requirement on the sequence of chip ID as long as they are unique.

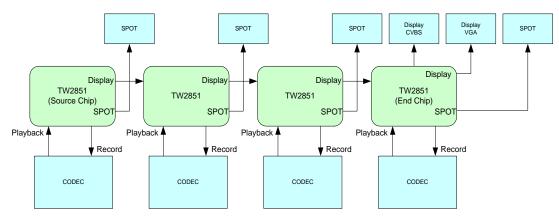


FIGURE 25. CASCADE IN DISPLAY PATH ONLY

DISPLAY PATH

The TW2851 display cascade output goes through the VDOX bus using a 656 format. This cascade bus has clock CLKOX running at either 27 MHz or 108 MHz to carry video resolution of either single D1 (720 x 480) or 4 D1 (1440 x 960) pictures. The CLKOX frequency is selected by the DP_CLK_CSCD_SEL register in 0x2F8. It can be 27 MHz, 108 MHz, or any clock from the PPLL output. The PPLL output is intended such that the VDOX bus output can also be used to drive external VGA / De-interlacer chip when the on-chip VGA is not to be used.

The cascade input is the VDIX / CLKIX bus connected to the VDOX[7:0] / CLKOX outputs of the previous stage.

SPOT PATH

The TW2851 SPOT cascade output shared the pins of regular SPOT 656 output port. The clock output is the CLKOS, and is always 27 MHz. The VDOS[7:0] and CLKOS output drives the VDIS and CLKIS input pins of the next stage.

In order to enable SPOT path cascade, it is required to configure the SP_CC_EN (0x290[4:3]) register based on the location of the chip in the cascade chain. When a chip is not cascaded, SP_CC_EN is set to 0. When a chip is located at the source (or beginning) of the chain (most upstream one that outputs video and clock to next chip in the cascade), the SP_CC_EN is set to 10. When the chip is in the middle of the chain, SP_CC_EN is set to 11, and with the chip is at the end of the chain (most downstream one that outputs the CVBS SPOT video), the SP_CC_EN is set to 01. See Table 11 for a summary.

	TABLE 11. SP	_CC_EN SETTING FOR THE	RECORD PATH CASCADE	
PORT TYPE	CASCADE SOURCE CHIP	CASCADE MIDDLE CHIPS	CASCADE END CHIP	NON-CASCADE
SP_CC_EN	10	11	01	00

The SP_CC_EN can be set to 00 as in Figure 25, even though the display path is cascaded together.

Channel ID

There are two channel ID encoders in the record path, and four channel ID decoders in the playback path. The channel ID CODEC follows the format as defined in this section.

CHANNEL ID TYPES

The TW2851 supports four different channel IDs: User channel ID, Detection channel ID, auto channel ID and motion channel ID. The channel ID is composed of 8 bytes of User channel ID, 8 bytes of Detection channel ID, 8 bytes of Auto channel ID and 96 bytes of Motion Channel ID.

User Channel ID

The User channel ID is used for customized information like system information and date. Its content and format is defined by user and may be used for system information, date and so on. It is provided by the MCU through on-chip registers.

Detection Channel ID

The Detection channel ID is used for the detected information of current live input such as video loss state, blind and night detection information. The Detection channel ID consists of 2 bytes per chip with each channel of 4 bits for as is described in the following table. For cascaded application, there are 8 bytes of detection channel ID information reserved for all 16 channels. The order of those channel IDs is determined by the cascaded CHIP ID via the CHIP_ID register in 0x2F1. That is, the master chip information (CHIP_ID = "0") is output first and the slave chip information (CHIP_ID = "3") output last. In pseudo 8 channel case, the motion detection information of channel n is shared by the VIN_A and VIN_B of channel n. The detection information is updated whenever a valid field/frame is output through the recording output.

BIT	NAME	FUNCTION
3	NOVID	Video loss Information (0 : Video is Enabled, 1 : Video loss)
2	MOTN_DET	Motion Information (0: No Motion, 1: Motion)
1	BLIND_DET	Blind Information (0 : No Blind, 1 : Blind)
0	NIGHT_DET	Night Information (0 : Day, 1 : Night)

TABLE 12.	THE DETECTION CHANNEL ID INFORMATION
-----------	--------------------------------------

Auto Channel ID

In the Auto channel ID, there are 4 sets of 1-Byte data that contains 4 regions in a QUAD split image. The four bytes of Auto channel IDs are distinguished by their order. The first byte corresponds to the upper left region. The second byte corresponds to the upper right region. The third byte corresponds to the lower left region, and the forth byte corresponds to the lower right region. Note that the 4 bytes of channel ID corresponds to the lower right region. Note that the 4 bytes of channel ID corresponds to the 4 regions in a field. It does not correspond to CH0, CH1, CH2, and CH3 of the 8 picture types in Figure 10.

The 1-byte Auto channel ID data is used to identify the current picture configuration. Its format is described in the following Table 13.

	TABLE 13.	AUTO CHANNEL ID BYTE 0 THROUGH BYTE 3 (FOR 4 REGIONS)
BIT	NAME	FUNCTION
7	PIC_TYPE[n]	Picture Type bit n, located at bit 7 of byte n in auto channel ID bytes
6	STROBE	STROBE represents a valid data in the specified channel window.
5	FLDMODE	Sequence Unit (0: Frame, 1: Field) – Backward compatibility only
4	ANAPATH	Analog switch information
[3:2]	CASCADE	Cascaded Stage Information – Backward compatibility only
[1:0]	VIN_PATH	Video Input Path Number

The bit 7 of auto-channel ID byte n is the bit n of PIC_TYPE. The PIC_TYPE is a code representing the picture type described in Figure 1. The coding of PIC_TYPE[3:0] for each mode is shown in Table 14 below. The bit 6 is a STROBE used to denote the information update of each quad split area. If it is set to 1, then the video data in the quad split area is valid to be used in CODEC or playback path. Otherwise, the quad split area is to be ignored. The FLDMODE is used to denote the channel in the quad-split area is captured in either field or frame format. This piece of information is redundant to the PIC_TYPE and can be derived from PIC_TYPE, as shown in Table 14. The ANAPATH is used to identify the analog switch information of the channel in the quad split area. The ANAPATH information is required for pseudo 8channel MUX application using analog switch. The CASCADE is used to indicate the cascaded stage (chip ID) in chip-to-chip cascaded application. The VIN_PATH information is used to indicate the video input channel.

CODE	DESCRIPTION	FLDMODE
0	D1 Field Mode	1
1	D1 Frame Mode	0
2	CIF Field Mode	1
3	CIF Frame Mode	0
4	CIF DVR Field Mode	1
5	CIF DVR Frame Mode	0
6	CIF Field Vx2 Mode	1
7	CIF DVR Vx2 Mode	1
8	Reserved	n/a
9	4D1 Frame Mode	0
10 ~ 15	Reserved	n/a

RENESAS

D1 Field Mode			CIF Field Mo	-	CIF DVR	Field Mode		CIF Field	Vx2 Mode	
	Auto Channel ID			Auto Channel ID A0 =" 1110 0000	CH0	CH0	Auto Channel ID			Auto Channel ID
	A0 =" 1110_0000	CH0	CH1	_	CH1	CH1	A0 =" 1110_0000			A0 =" 1110_0001
CH0	A1 =" 1110_0000			A1 =" 1110_0001		-	A1 =" 1110_0001	CH1	CH2	A1 =" 1110_0010
	A2 =" 1110_0000	CH2	СНЗ	A2 =" 1110_0010	CH2	CH2	A2 =" 1110_0010			A2 =" 1110_0001
	A3 =" 1110_0000	OTIZ	0110	A3 =" 1110_0011	CH3	CH3	A3 =" 1110_0011			A3 =" 1110_0010
		·					_			
D1 Frame Mode		CIF F	rame Mode		CIF DVR F	rame Mode		CIF DVR	Field Vx2 M	ode
	Auto Channel ID A0 = 1100 0000	0.10		Auto Channel ID	СН0	CH0	Auto Channel ID			Auto Channel ID
	A1 = 1100_0000	CH0	CH1	A0 =" 1100_0000	CH1	CH1	A0 =" 1100_0000	CH0	CH0	A0 =" 1110_0000
CH0	AT = 1400_0000			A1 =" 1100_0001		0111	A1 =" 1100_0001			A1 =" 1110_0000
				A2 =" 1100 0010	CH2	CH2				
	A2 = 1.100_0000	CH2	СНЗ	A2 = 1100_0010	0112	0112	A2 =" 1100_0010	CH3	CH3	A2 =" 1110_0011
	A2 = 1100_0000 A3 = 1100_0000	CH2	СНЗ	A2 = 1100_0010 A3 =" 1100_0011	CH3	СНЗ	A2 =" 1100_0010 A3 =" 1100_0011	CH3	CH3	A2 =" 1110_0011 A3 =" 1110_0011

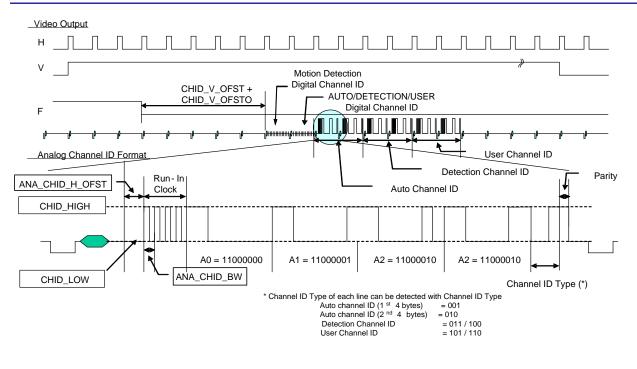
The following figure shows the example of Auto channel ID for various recording picture types.

FIGURE 26. THE EXAMPLE OF AUTO CHANNEL ID FOR VARIOUS RECORD OUTPUT FORMATS

Motion Channel ID

The Motion Channel ID is used to carry 4 sets of the 16x12 motion flags (192 bits, or 24 bytes) for each quad split regions on the field/frame picture. Similarly to the 4-byte of auto-channel ID, the first set of motion channel ID corresponds to the upper left region, the second set upper right, the third set lower left, and the fourth set lower right region. Total of 96 bytes of data are reserved in a motion channel ID. The motion channel ID is sent through a digital type channel ID in the VBI only. The analog type does not carry motion channel ID.

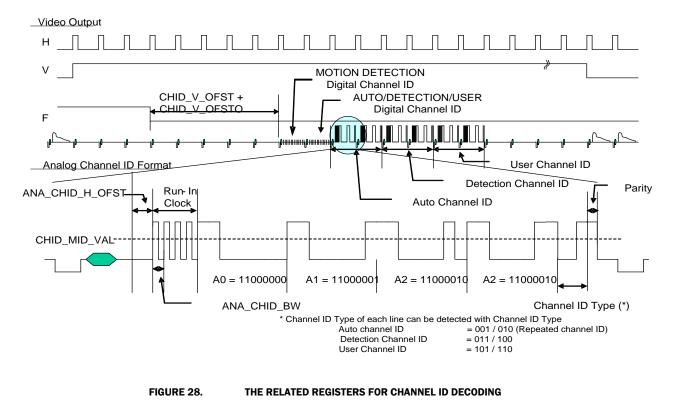
CHANNEL ID ENCODING SETTING


The TW2851 has several channel ID encoders to put the channel ID into the VBI of the multi-channel video streams. The four types of channel IDs are embedded in the vertical blanking area in both analog and/or digital formats. The digital format is mainly used for video compression CODEC connected through the recording digital interface. The analog format is used if the recording device is an analog device such as a VCR.

The use of the digital channel ID has priority over analog channel ID. The analog channel ID format encoding is enabled via the ANA_ID_EN register and the digital type channel ID format encoding is operated via DIG_ID_EN register. The motion channel information is enabled by MOTN_ID_EN. Within the analog channel ID, each of the ID can be separately controlled by AUTO_ID_EN, DET_ID_EN, USER_ID_EN, ANA_RPT_EN, etc. All these registers are at address 0x216 and 0x2A6.

In addition, there are registers used to control the format/location of the channel ID within the VBI. The registers include the ANA_CHID_H_OFST (0x217, 0x2A7) to define horizontal start offset, the CHID_V_OFSTE and CHID_V_OFSTO (0x21A, 0x21B, 0x2AA, 0x2AB) to define line offset between odd and even field, the CHID_V_OFST (0x21A, 0x2AA) to define line offset for channel ID, and the ANA_CHID_BW (0x21B, 0x2AB) to define pulse width for 1 bit data of analog channel ID. The magnitude of each bit is defined by the ANA_CHID_HIGH / ANA_CHID_LOW (0x218, 0x219, 0x2A8, 0x2A9) register.

Figure 27 shows the relationship between channel ID and register setting in channel ID encoder.



THE RELATED REGISTERS FOR CHANNEL ID ENCODING

CHANNEL ID DECODING SETTING

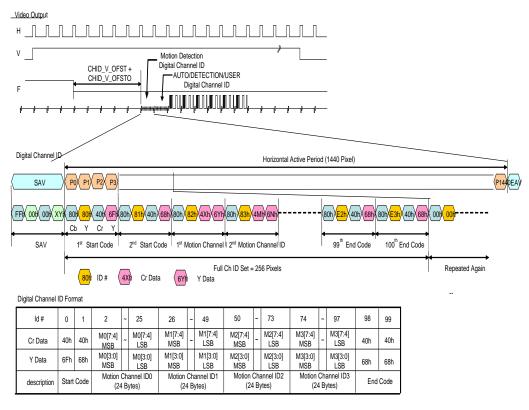
The TW2851 supports the channel ID decoder to detect/decode the digital/analog channel ID format during VBI period. The decoding/detection of each channel ID detection can be enabled via the PBm_DID_EN, PBm_AID_EN, and PBm_AUTO_CHID_DET registers at 0x12A ~ 0x13A.

In order to provide accurate detection of analog channel ID decoder against noises from analog device such as a VCR source, the channel ID LPF can be enabled via the PB_FLT_EN (0x12A, 0x13A) register. The registers PB_CHID_MID_VAL (0x12E, 0x13E) are used to define the threshold level between high and low for analog channel ID.

TW2851 channel ID decoder supports both automatic and manual channel ID detection modes to detect the analog channel ID. In the automatic channel ID detection mode, the channel ID decoder identifies the analog channel ID through a run-in clock embedded in the playback stream. The run-in clock insertion can be specified via the PBm_RIC_EN (0x12A, 0x13A) registers. In the manual channel ID detection mode, the decoder also use some preconfigured registers to specify the location of the analog channel ID, no matter the playback stream has a run-in clock embedded or not. These registers include the PB_CHID_H_OFST (0x12C, 0x13C) to define horizontal start offset, the PB_CHID_FLD_OS (0x12A, 0x13A) to define line offset between odd and even field, the PB_CHID_V_OFST (0x12B, 0x13B) to define line offset for channel ID, the PB_CHID_LINE_SIZE (0x12B, 0x13B) to define how many lines of channel ID is inserted, and the PB_ANA_CHID_BW (0x12D, 0x13D) to define pulse width for 1 bit data.

This decoded channel ID information can be read through the PB_CHID_TYPE (0x1A5) or PB_CHID_STATUS registers ($0x1A8 \sim 0x1AF$). The PB_CHID_TYPE register specifies different types such as the Auto channel ID (CHID_TYPE = "0"), or the detection/user channel ID (CHID_TYPE = "1"). The PB_CHn_AUTO_VLD (0x1A1), DET_CHID_VLD, USER_CHID_VLD, MOTION_CHID_VLD (0x1A2) registers can be used to indicate whether the auto channel ID, detection channel ID, user channel ID, and motion channel IDs are valid or not. In automatic channel ID detection mode, the line size and bit width can be read through the PB_CHID_LINE_SIZE_DET and PB_ANA_CHID_BW_DET (0x1A3) register. Figure 50 shows the relationship between channel ID and register setting.

DIGITAL CHANNEL ID FORMAT


The four types of channel IDs are embedded in the vertical blanking area in both analog and/or digital formats. The use of the digital channel ID has priority over analog channel ID. It is useful for DSP applications to decode and extract the channel ID in digital format in just two lines of VBI. The digital channel ID is located before the six analog channel ID lines.

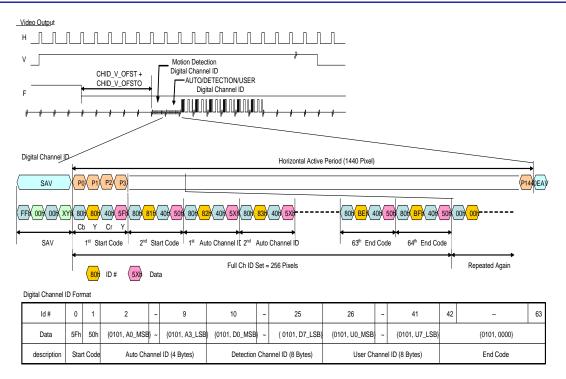
There are two lines of digital channel ID defined in TW2851. The first line is for motion channel ID. It is used to carry the motion detection flags of each channel. The second line is for auto/detection/user channel ID. Its format is compatible with TW2835/TW2837 digital channel ID format. The two lines of digital channel ID are located right before the analog channel ID. The register VIS_LINE_OS is used to determine the starting line of the first line of digital channel ID. The analog channel lines is right after the second digital channel ID line.

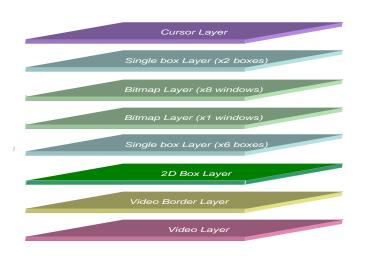
The First Digital Channel ID Line

The motion detection digital channel ID carries up to 4 channels of motion flags (16x12 bits or 24 bytes each) within 1 digital channel ID line. Each channel corresponds to a quad split area on the window as was the case of auto-channel ID. There are total of 96 bytes of motion flags information.

The Second Digital Channel ID Line

The AUTO/DETECTION/USER digital channel ID is inserted in Y data in ITU-R BT.656 stream and composed of ID # and channel information. The ID # indicates the index of digital type channel ID including the Start code, Auto/Detection/User channel ID and End code. The ID # has $0 \sim 63$ index and each channel information of 1 byte is divided into 2 bytes of 4 LSB that takes "50h" offset against ID # for discrimination. The Start code is located in ID# $0 \sim 1$ and the first 4 bytes of Auto channel ID is situated in ID# $2 \sim 9$. The Detection channel ID is located in ID # $10 \sim 25$ and the User channel ID is situated in ID # $26 \sim 41$. The End code occupies the others. The digital channel ID is repeated more than 5 times during horizontal active period. The following figure shows the illustration of the digital channel ID.




FIGURE 30. THE ILLUSTRATION OF THE AUTO/DETECTION/USER DIGITAL CHANNEL ID IN VBI PERIOD

OSG

The TW2851 provides 5 OSG engines to overlay OSG contents on every output of the display, record, and SPOT path individually. The OSG engines have up to 7 layers of overlays on top of the video streams. The 7 layers are shown in Figure 11. The display OSGs (CVBS / VGA) have support all 7 layers. The Record OSGs do not support 2D box layer and the video border layer. However, the record OSGs have an additional feature allowing the OSG to switch from field to field so that the overlay content can be in sync with the field interleaving video content. The SPOT OSG does not support 2D layer either.

The configuration registers of all OSGs are arranged the same way to simplified the programming, except that they are in different page. The register page 5 are for VGA display OSG, page 6 for CVBS display OSG, page 7 for record port 0 OSG, page 8 for record port 1 OSG, and page 9 for SPOT OSG.

Each layer will be described in detail in the following sections.

FIGURE 31. THE OVERLAY PRIORITY OF OSG LAYERS

VIDEO BORDER LAYER

The video border layer is supported by the display CVBS / VGA OSG, as well as the SPOT OSG at the picture type 0, 1, 2, 3, and 16-window mode outputs.

For display path, the border is controlled by register DP_BORDER_EN (0x24E) to turn on/off the border. In addition, the border can start blinking (DP_BORDER_BLINK at 0x23A) when the NO-VIDEO signal of the corresponding channel is detected. The border color is controlled by DP_BORDER_COLR at register 0x24C.

For SPOT path, the border is turned on/off by register SP_BORDER_EN (0x291). The blink color is controlled by SP_BORDER_COLR (0x292). The border will blink when NO-VIDEO is detected when the register SP_BLANK_MODE (0x291) is set to "2".

The SPOT output is optionally used for network output port. In that case, the picture output is not meant for display purpose, and the video border does not apply. The SP_BORDER_EN should be turned off for those cases.

2-DIMENSIONAL ARRAYED BOX

The 2D arrayed boxes are mainly used to display the motion information, so the 2D boxes are available only in the display VGA/CVBS output path. Corresponding to the 8 video windows in the display path, there are eight 2D arrayed boxes to show the motion in the video windows. The 2D box OSG is tightly coupled with the motion detection circuit in the front-end video decoder.

Since there are 8 2D-boxes, the configuration of each individual 2D-box is done through an indirect write mechanism. The configuration register is applied to a specific 2D box if the corresponding bit in MDCH_SEL is set to 1. For example, by setting MDCH_SEL[0] to 1, a write to MDBOX_EN at 0xm75 will turn on the MDBOX_EN bit for the first 2D box. If MDCH_SEL is 0xFF, then a write to MDBOX_EN at 0xm75 will be set to all 2D boxes simultaneously.

The 2D boxes can be used to make table menu or display motion detection information. The mode is set by MDBOX_MODE (0xm84). In order to turn on a 2D box, a global MDBOX_EN at 0xm75 should be set to enable the 2D box OSG. In addition, a register bit MDBOXn_EN (0xm85) is set to enable the specific 2D box out of the 8 boxes. The 2D arrayed boxes have programmable number of row and column cells up to 16 x 16. It is defined via the MDBOX_HCELL and MDBOX_VCELL (0xm8F). The horizontal and vertical location of left top is controlled by the MDBOX_HOS and MDBOX_VOS (0xm87 ~ 0xm89). The horizontal and vertical size of each cell is defined by the MDBOX_HW and MDBOX_VW (0xm8A ~ 0xm8C). The total size of 2D arrayed box will be the same as the sum of cells in row and column. The border of 2D arrayed box can be enabled by the MDBOX_BNDEN (0xm8D) register to show a color controlled via the MD_BNDRY_COLR (0xm8D) register which selects one of 4 colors such as 0% black, 25% gray, 50% gray and 75% white.

The 2D arrayed box a mask plane and a detection plane. The mask plane is used to show the "masking" area where the motion detection was not enabled. The detection plane represents the motion detected cell excluding the mask cells among whole cells. Both the masking information and the motion information are from the front-end motion detection circuit. The mask plane is enabled by the MDMASK_EN (0xm85) register and the detection plane is enabled by the MDDET_EN (0xm85) register. The color of mask plane is controlled by the MDMASK_COLR (0xm86) register and the color of detection plane is defined by the MDDET_COLR (0xm86) register which selects one out of 12 fixed colors or 4 user defined colors using the CLUT (0xm78 ~ 0xm83) registers. The plane can be transparently blended with video data by the MDBOX_MIX (0xm85) and the alpha blending level is controlled as 25%, 50%, and 75% via the MDBOX_ALPHA (0xm75) register. Even in the horizontal / vertical mirroring mode, the video data and motion detection result can be matched via the MDBOX_HINV and MDBOX_VINV (0xm85) registers.

TW2851 provides a special function to indicate cursor cell inside 2D arrayed box. The cursor cell is enabled by the MDCUR_EN (0xm85) register and the displayed location is defined by the MDCUR_HPOS and MDCUR_VPOS (0xm8E) registers. Its color is a reverse color of cell boundary. It is useful function to control motion mask region. The Figure 32 shows an example of 2D arrayed box in both table mode and motion display mode.

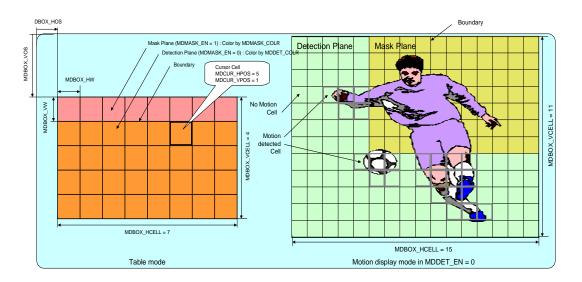


FIGURE 32. THE 2D ARRAYED BOX IN TABLE MODE AND MOTION DISPLAY MODE

BITMAP LAYER

Bitmap Buffer Structure

The TW2851 reserves a big space in the external DDR SDRAM for use by the bitmap layer. The bitmap buffer is specified by a starting OSG_BASE address. For OSG write side, the base address is specified by OSG_WRBASE_ADDR (0x641). At the read side, each of the 5 OSGs (display VGA, display CVBS, record, SPOT, etc) has its own based address at 0xm36. The unit of the base addresses is 64 Kbytes. To avoid confusion, all of these base addresses should be set to the same value. The bitmap buffer also has a register OSG_MEM_WIDTH (0x640) to specify the bitmap buffer width, with the unit of 64 pixels. In this way, the bitmap buffer is organized in a 2-dimensional space such that all the burst fill / burst move can be done with respect to a 2-dimensional area, instead of a linear memory address. The internal format of bitmap buffer is in either the 444 RGB format (565), or the 422 YUV format. The 444 RGB format is used only in the VGA / LVDS path OSG. The 422 YUV format can be used in all OSGs, including display VGA/CVBS, record, spot, etc.

The use of bitmap buffer can be designed flexibly by the user. For example, some area can be assigned to be used by VGA OSG, other area by record OSG, and yet other area used as scratch area for storing re-usable font, logo, etc.

OSG Bitmap Preparation

The TW2851 provides various acceleration functions to allow the external MCU to upload/manipulate the bitmap in the bitmap buffer efficiently.

Bitmap Burst Fill

The MCU can unload the bitmap into the bitmap buffer by specifying an area in the bitmap buffer, and continuously write the pixel data into a register until the whole area is filled. To perform a bitmap burst fill, the MCU will follow the procedure below.

Check whether there is a previously unfinished burst command by checking the OSG_OP_START register (0x64F). If it is "1", then the MCU will wait until it is cleared, i.e., previous command finished.

Set the OSG_OPMODE (0x642) to 0, which mean the bitmap burst fill mode.

Set the destination burst fill area in the bitmap buffer by setting OSG_DST_SV / OST_DST_SH (0x64B ~ 0x64D) for the upper left corner, and OSG_DST_EV / OSG_DST_EH (0x648 ~ 0x64A) for the right lower corner.

Set the OSG_OP_START to "1" to start a burst fill.

Write a 64-byte of pixel data into data register (In either 8-bit or 16-bit per write, depending on the parallel host interface data bus width)

Check the OSG_BMWR_BUSY (0x64F). If it is "1", then repeat this step after a certain delay time.

Repeat (5) to (6) until the whole area is filled. After the whole burst fill is finished, the OSG_OP_START will be cleared automatically to "0".

Note that if the MCU supports the WAIT signal through the host interface, then step (6) is not needed. The WAIT signal will automatically keep the MCU hardware interface waiting until the internal buffer is available for MCU to fill 64 bytes of data.

Block Move

The MCU can move the bitmap from one area to another in the bitmap buffer by following the procedure below.

Check whether there is a previously unfinished burst command by checking the OSG_OP_START register (0x64F). If it is "1", then the MCU will wait until it is cleared, i.e., previous command finished.

Set the OSG_OPMODE (0x642) to 1, which mean the bitmap block move mode.

Set the source location by setting the OSG_SRC_SH / OSG_SRC_SV in 0x645 ~ 0x647.

Set the destination block move area by setting OSG_DST_SV / OST_DST_SH (0x64B ~ 0x64D) for the upper left corner, and OSG_DST_EV / OSG_DST_EH (0x648 ~ 0x64A) for the right lower corner.

Set the OSG_OP_START to "1" to start a block move. When the block move finishes, the OSG_OP_START bit is self cleared to "0".

<u>Block Fill</u>

The MCU can update a rectangular area of a single color by doing the following procedure.

Check whether there is a previously unfinished burst command by checking the OSG_OP_START register (0x64F). If it is "1", then the MCU will wait until it is cleared, i.e., previous command finished.

Set the OSG_OPMODE (0x642) to 2, which mean the bitmap burst fill mode.

Set the destination block move area by setting OSG_DST_SV / OST_DST_SH (0x64B ~ 0x64D) for the upper left corner, and OSG_DST_EV / OSG_DST_EH (0x648 ~ 0x64A) for the right lower corner.

Set the color of the pixel in OSG_FILL_COLR ($0x654 \sim 0x657$). This is a 2-pixel data due to the use of 422 format in bitmap buffer.

Set the OSG_OP_START to "1" to start a block fill. When the block fill finishes, the OSG_OP_START bit is self cleared to "0"

Color Conversion

TW2851 can convert a specific pixel data to another one during the bitmap fill, block move, block fill, and upscaling operation. A color conversion table can be configured to specify 4 sets of source pixel data value and destination pixel data value. Whenever a pixel data matches an entry in the color conversion table, its pixel value is converted to the output pixel data before writing into the bitmap buffer. In order to do this, simply turn on the color conversion by setting OSG_COLR_CON (0x642) to "1" before issuing the OSG_OP_START in each of the operation.

TW2851 uses an indirect read/write mechanism to access internal color table. To access the color conversion table,

Set the indirect target OSG_SELOSG (0x64E) to 0 to choose color conversion table

Set the OSG_IND_ADDR (0x650) to the entry index to be accessed

Write the OSG_IND_WRDATA with the target data.

Issue OSG_INDRD / OSG_INDWR to read / write an entry. These bits are self-cleared after done. The address will be auto-incremented. To continue write more entries, simply repeat step step (2) to (5).

The color conversion table has 4 entries of 8 bytes each. For the nth entry, $(n = 0 \sim 3)$, the table address and content is as follows

Byte 8*n + 0	input U
Byte 8*n + 1	input Y1
Byte 8*n + 2	input V
Byte 8*n + 3	input Y2
Byte 8*n + 4	output U
Byte 8*n + 5	output Y1
Byte 8*n + 6	output V
Byte 8*n + 7	output Y2

Bitmap Windows

The TW2851 OSG can display the content from any location/size in the bitmap buffer to any location on the output video stream. The TW2851 supports two layers of bitmap OSG. One layer supports a single window up to full screen size. Another layer supports 8 smaller non-overlapping windows. Each layer can be turned on/off through register OSD_WINMAIN_ON and OSD_WINSUB_ON register in 0xm34. The bitmap pixel format of YUV or RGB is also controlled in this register.

Each of the 9 windows can be further configured separately by first selecting the window number with OSD_WINSEL in 0xm31. The OSD_WINSEL 0 ~ 7 are for the 8 windows of the multi-window layer, and 8 is the window for the single window layer. Through this selection, the configuration changes are done by first writing the configuration data in 0xm37 ~ 0xm3F, OSD_BLINK_EN (0xm30), and OSD_WIN_EN (0xm35), and then issue a write command by setting OSD_WINSET bit to 1 in 0xm35. Through this, the configuration data of each window is stored internally.

The setting of each window allows the bitmap layer controller to read an area of bitmap data from the external DDR SDRAM, and display at a specified destination location on the screen. To do this, the source OSG location is specified by OSD_SRC_SV and OSD_SRC_SH (0xm37 ~ 0xm39). There is a limitation on the OSD_SRC_SH that it has to be at the 64 pixel boundary in order to display the OSG window correctly.

The destination area is specified by the upper left corner (OSD_DST_SV, OSD_DST_SH) and the lower right corner (OSD_DST_EV, OSD_DST_EH) in register 0xm3A ~ 0xm3F, and also enable the window by setting the enable bit OSD_WIN_EN (0xm35) to 1. Note that the implementation of TW2851 does not allow the 8 windows in the multi-window layer to overlap each other on the destination screen.

In addition to simply block read from the DDR SDRAM, each window also has the following features.

Transparent Blending

Each layer has its own transparent blending alpha so that the video / layer 1 and layer 2 can all be blended together. The single window layer is control by OSD_GLOBAL_ALPHA1 (0xm32). The 8 windows in the 8-window layer share another one OSD_GLOBAL_ALPHA2 (0xm33). The priority of the two layers can be swapped, i.e., single window layer can be on top or bottom of the multi-window layer, by using the OSD_BLEND_OPT at 0xm34.

Blinking

The 9 windows support the blinking feature independently. This is done by setting the OSD_BLINK_EN (0xm30), and the bitmap will blink by switching on and off the bitmap window using a timer set by OSD_BLINK_TIME (0xm35).

Dynamic Field Switching

The recording path OSG features a dynamic field switching feature that allows the OSG windows be controlled to turn on and off from field to field through the record switch queue entries. This mode is turned on by setting OSD_WINSWITCH to 1. When this is set, the window enable signal is controlled by the record switch queue entry. Bit 23 ~ 27 controls the lower 4 windows of OSG for record port 0, and bit 28 ~ bit 31 controls the lower 4 windows in the OSG of record port 1. When the switch queue entry changes from field to field, the OSG windows enabled also changed. This allows an OSG window to lock on a particular channel in the field interleaving case, and put on channel specific information. The upper 4 windows of the recording path OSG are not affected by this setting.

SINGLE BOX

The TW2851 provides 8 single boxes that can be used for picture masking or drop down menu. The 8 single boxes are separated into two layers. The first 2 windows are above the bitmap OSG layer, while the other 6 windows are below the bitmap OSG layer. Each of the layer can be turned on / off through the BOX1D_EN[1:0] in 0xm67. Each layer can be programmed to blend transparently through BOX1D_ALPHA0 and BOX1D_ALPHA1 in 0xm64. Usually the single box is single color. When used as a picture privacy masking box, however, the single box can be programmed to show mosaic blocks using two different colors. The two colors are programmed through MOSAIC_COLOR_SEL0 and MOSAIC_COLOR_SEL1 at 0xm66.

Similar to the bitmap and 2D box layer, the 8 single boxes are programmed through indirect write by using the MDCH_SEL in 0xm76. The configuration register is applied to a specific 1D box if the corresponding bit in MDCH_SEL is set to 1. For example, by setting MDCH_SEL[0] to 1, a write to MOSAIC_EN at 0xm68 will turn on the MOSAIC_EN bit for the first 1D box. If MDCH_SEL is 0xFF, then a write to MOSAIC_EN at 0xm67 will be turn on the mosaic in all 2D boxes simultaneously.

The single box has configuration registers in register 0xm68 ~ 0xm6F. The BOX1D_HL is the horizontal location of box with 2-pixel unit and the BOX1D_HW is the horizontal size of box with 2-pixel unit. The BOX1D_VT is the vertical location of box with 1 line unit and the BOX1D_VW is the vertical size of box with 1 line unit. The BOX1D_BDR_EN and BOX1D_INT_EN (0xm68) registers turn on the border and interior display of the 1D Box using the colors defined by BOX1D_COLR and BOX1D_BDR_COLR in 0xm69. The BOX1D_COLR register selects one out of 12 fixed colors or 4 user defined colors specified with the CLUT (0xm78 ~ 0xm83). The BOX1D_BDR_COLR selects one out of the 4 gray level colors.

In case that several boxes have same region, there will be a conflict of what to display for that region. Generally the TW2851 defines that box 0 has priority over box 3. So if a conflict happens between more than 2 boxes, box 0 will be displayed first as top layer and box 1 to box 3 are hidden beneath.

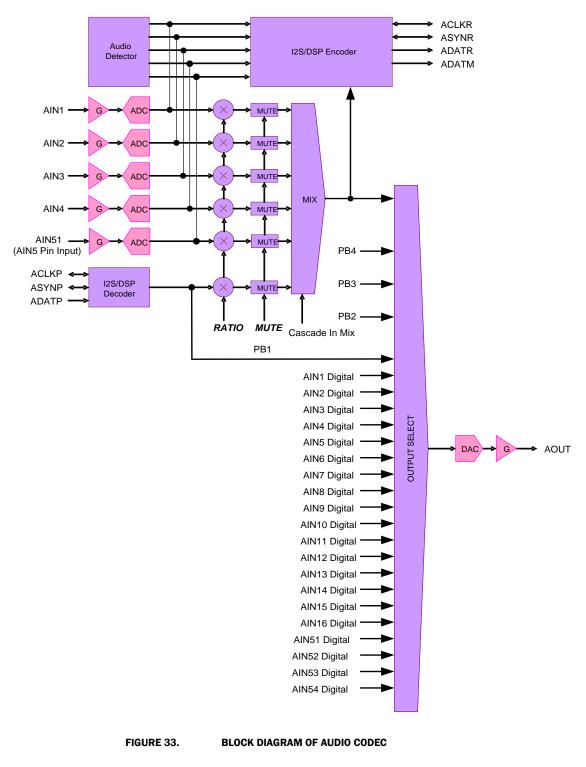
MOUSE POINTER

The TW2851 supports the mouse pointers on all the 5 OSGs for display, record, and SPOT. However, only one of them should be turned on at a time. This is through the CUR_EN in 0x65B. The mouse cursor supports features such as reverse color, blinking, hollow shape, different size, or even custom cursor shape, all through register 0x65C. The location of the cursor is at CUR_X, CUR_Y at 0x65D ~ 0x65F.

TW2851 supports customized cursor. The user can upload as many different cursor bitmaps as possible into the external DDR memory through the DDR burst write through the host interface. Please refer to the Host Interface section on page 87. The memory space used can be any area in the bitmap buffer, even though it is not actually used by the bitmap OSG layer. The custom cursor is a bitmap of 48 x 48 pixels, with each pixel represented in 2 bits. There will be total of 576 bytes of data for one customized cursor. The pixel arrangement in the 576 bytes is big endian in rasterscan format. I.e., the first pixel is the bit [7:6] of byte 0, second pixel is the bit [5:4] of byte 0, etc.,etc. The pixel data coding is as follows:

- 0 Transparent
- 1 border pixel (always black)
- 2 white pixel for interior

3 black pixels for interior


Once all the cursors are uploaded in the DDR SDRAM, they can be read back on the fly into an on-chip cursor RAM for use whenever needed. This is also done through the AUX interface.

- (1) Enable the CUR_CUSTOM_LD bit to '1'
- (2) Read the cursor content by setting the DDR AUX interface with size of 576 bytes. (Refer to the Host Interface section on page 87.) The content will be burst read from the DDR to On-Chip cursor SRAM. Note that with the setting of CUR_CUSTOM_LD in (1), the host burst interface automatically read back the whole cursor bitmap continuously without CPU intervention. The MCU does not need to read burst data like normal AUX read.
- (3) Turn off the CUR_CUSTOM_LD by setting to '0'
- (4) Set the CUR_SEL in 0x65C to 2 to use this custom cursor.

Audio Codec

The audio codec in the TW2851 is composed of five audio Analog-to-Digital converters, 1 Digital-to-Analog converter, audio mixer, digital serial audio interface and audio detector shown as the Figure 33. The TW2851 can accept 5 analog audio signals and 1 digital serial audio data and produce 1 mixing analog audio signal and 2 digital serial audio data.

The level of analog audio input signal AIN1 ~ AIN5 can be adjusted respectively by internal programmable gain amplifiers that are defined via the AIGAIN1, AIGAIN2, AIGAIN3, AIGAIN4, and AIGAIN5 registers and then sampled by each Analog-to-Digital converters. Figure 34 shows the audio decimation filter response. The digital serial audio input data through the ACLKP, ASYNP and ADATP pin are used for playback function. To record audio data, the TW2851 provides the digital serial audio output via the ACLKR, ASYNR and ADATR pin.

The TW2851 can mix all of audio inputs including analog audio signal and digital audio data according to the predefined mixing ratio for each audio via the MIX_RATIO1 ~ MIX_RATIO5 and MIX_RATIOP registers. This mixing audio output can be provided through the analog and digital interfaces. The ADATM pin supports the digital mixing audio output and its digital serial audio timings are provided through the ACLKR and ASYNR pins that are shared with the digital serial audio record timing pins.

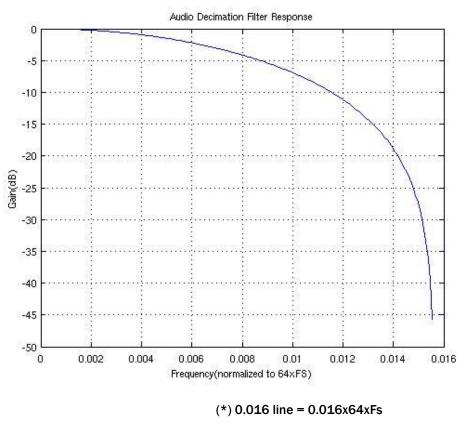


FIGURE 34. AUDIO DECIMATION FILTER RESPONSE

AUDIO CLOCK MASTER/SLAVE MODE

The TW2851 has two types of Audio Clock modes. If ACLKRMASTER register is set to 1, the audio sample rate 256xfs is processed from an internal audio clock generator ACKG. In this master mode, ACLKR/ASYNR pins are output mode. ASYNROEN register for ASYNR pin should be set to 0 (output enable mode). If ACLKRMASTER register is set to 0, audio sample rate is processed from external audio clock through the ACLKR pin input. A 256xfs, 320xfs, or 384xfs external audio clock should be connected to ACLKR pin from external master clock source in this slave mode. ASYNR pin can be input or output by external Audio clock master in slave mode. ASYNR signal should change per fs audio sample rate in both master and slave mode. AIN5MD and AFS384 register setup audio fs mode with the following table.

REGI	STER	FS MODE
AIN5MD	AFS384	rs mode
0	0	256xfs
1	0	320xfs
0	1	384xfs

AUDIO DETECTION

The TW2851 has an audio detector for each individual of 5 channels. There are 2 kinds of audio detection method defined by the ADET_MTH. One is the detection of absolute amplitude and the other is of differential amplitude. For both detection methods, the accumulating period is defined by the ADET_FILT register and the detecting threshold value is defined by ADET_TH1 ~ ADET_TH5 registers. The status for audio detection is read by the STATE_AVDET register and it also makes the interrupt request through the IRQ pin with the combination of the status for video loss detection.

AUDIO MULTI-CHIP CASCADE

TW2851 can output 16 channel audio data on ACLKR/ASYNR/ADATR output simultaneously. Therefore, up to 4 chips can be connected on most Multi-Chip application cases. ALINKI pin is the audio cascade serial input, and ALINKO pin is the audio cascade serial output.

Each stage chip can accept 5 analog audio signals so that four cascaded chips will be 16-channel audio controller as default AIN5MD=0. The first stage chip provides 16ch digital serial audio data for record. Even though the first stage chip has only 1 digital serial audio data pin ADATR for record, the TW2851 can generate 16 channel data simultaneously using multi-channel format. Also, each stage chip can support 4 channel record outputs that are corresponding with analog audio inputs. This first stage chip can also output 16 channels mixing audio data by the digital serial audio data and analog audio signal. The last stage chip accepts the digital serial audio data for playback. The digital playback data can be converted to analog signal by Digital-to-Analog Converter in the last stage chip.

In Multi-Chip Audio operation mode, one same Oscillator clock source (27 MHz) needs to be connected to all TW2851 XTI or TW2851 CLKI pins.

Several Master/Slave mode configurations are available. The Figure 35 shows the most recommended and demanded system with Clock Master mode (ACLKRMASTER=1). Figure 36 is the most recommended system with Clock Slave Sync Slave mode (ACLKRMASTER=0, ASYNCR_OEN=1). Other system combinations are also pissible if the application needs. The two cascade modes shown are typical systems.

In each of the following figures, Mix1-16-51-54/Pb1 means Mix output of AIN1-16, AIN51-AIN54, and Playback1. AIN1-16-51-54/Pb1 means one selected Audio output in AIN1-16-51-54/Pb1.

If one TW2851 uses AIN5MD=1, all other cascaded TW2851 chips must set up AIN5MD=1 also. Generally, 4 audio input mode (AIN5MD=0) are most used in this cascade system.

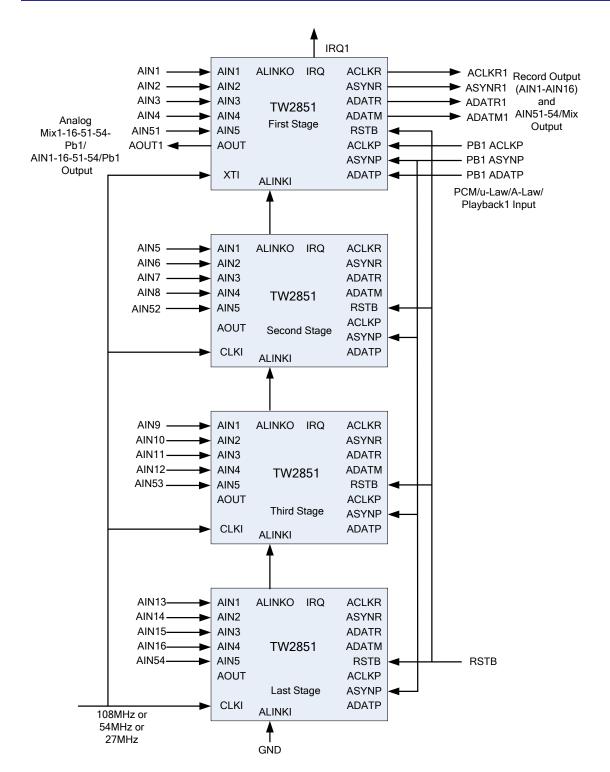


FIGURE 35. RECOMMENDED CLOCK MASTER CASCADE MODE SYSTEM WITH ACLKRMASTER = 1; ASYNROEN = 0; PB_MASTER=0

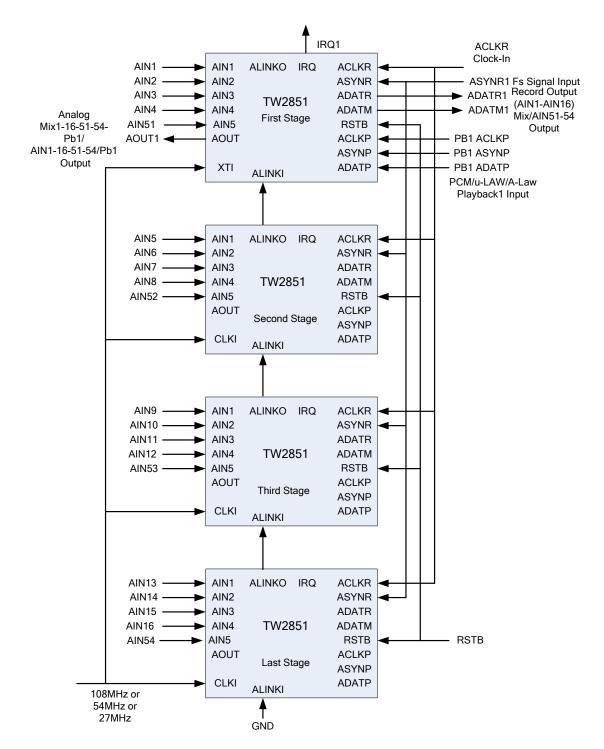
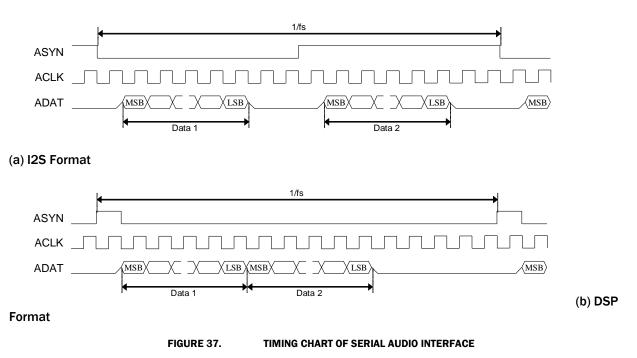



FIGURE 36. RECOMMENDED CLOCK SLAVE SYNC SLAVE CASCADE MODE SYSTEM WITH ACLKRMASTER=0; ASYNROEN=1; PB_MASTER=0

SERIAL AUDIO INTERFACE

There are 3 kinds of digital serial audio interfaces in the TW2851, the first is a recording output, the second is a mixing output and the third is a playback input. These 3 digital serial audio interfaces follow a standard I2S or DSP interface as shown in the Figure 37.

Playback Input

The serial interface using the ACLKP, ASYNP and ADATP pins accepts the digital serial audio data for the playback purpose. The ACLKP and ASYNP pins can be operated as master or slave mode. For master mode, these pins work as output pin and generate the standard audio clock and synchronizing signal. For slave mode, these pins are input mode and accept the standard audio clock and synchronizing signal. The ADATP pin is always input mode regardless of operating mode. One of audio data in left or right channel should be selected for playback audio by the PB_LRSEL.

Record Output

To record audio data, the TW2851 provides the digital serial audio data through the ACLKR, ASYNR and ADATR pins. Sampling frequency comes from 256xfs, 320xfs, or 384xfs audio system clock setting. Even though the standard I2S and DSP format can have only 2 audio data on left and right channel, the TW2851 can provide an extended I2S and DSP format which can have 16-channel audio data through ADATR pin. The R_MULTCH defines the number of audio data to be recorded by the ADATR pin. ASYNR signal is always fs frequency rate. One ASYNR period is always equal to 256xACLKR clock length with AIN5MD=0. Figure 38 shows the digital serial audio data organization for multi-channel audio.

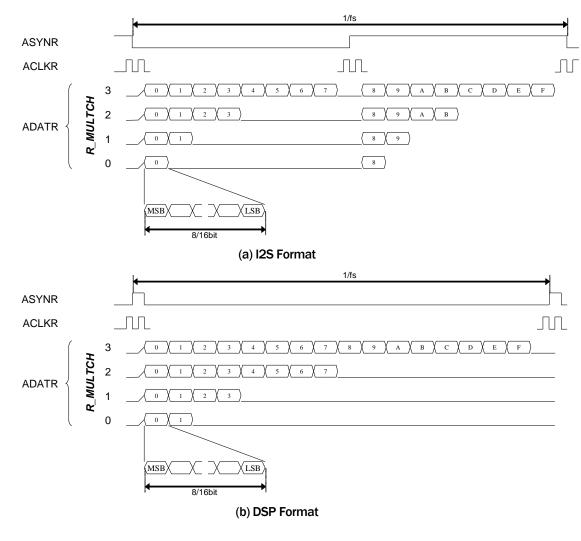


FIGURE 38.

TIMING CHART OF MULTI-CHANNEL AUDIO RECORD

The following table shows the sequence of audio data to be recorded for each mode of the R_MULTCH register. The sequences of $0 \sim F$ do not mean actual audio channel number but represent sequence only. The actual audio channel should be assigned to sequence $0 \sim F$ by athe R_SEQ_0 ~ R_SEQ_F register. When the ADATM pin is used for record via the R_ADATM register, the audio sequence of ADATM is showed also in Table 15.

R_MULTCH	Pin		Left Channel									R	ight C	Chann	el		
0	ADATR	0								8							
U	ADATM	F								7							
1	ADATR	0	1							8	9						
-	ADATM	F	E							7	6						
2	ADATR	0	1	2	3					8	9	Α	В				
2	ADATM	F	E	D	С					7	6	5	4				
3	ADATR	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
3	ADATM	F	E	D	C	В	Α	9	8	7	6	5	4	3	2	1	0

TABLE 15. SEQUENCE OF MULTI-CHANNEL AUDIO RECORD (A) I2S FORMAT

(B) DSP FORMAT

R_MULTCH	Pin		Left/Right Channel														
0	ADATR	0	1														
U	ADATM	F	Е														
1	ADATR	0	1	2	3												
-	ADATM	F	E	D	С												
2	ADATR	0	1	2	3	4	5	6	7								
2	ADATM	F	E	D	С	В	Α	9	8								
3	ADATR	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
5	ADATM	F	Ε	D	С	B	Α	9	8	7	6	5	4	3	2	1	0

Mix Output

The digital serial audio data on the ADATM pin has 2 different audio data which are mixing audio and playback audio. The mixing digital serial audio data is the same as analog mixing output. The sampling frequency, bit width and number of audio for the ADATM pin are same as the ADATR pin because the ACLKR and ASYNR pins are shared with the ADATR and ADATM pins.

AUDIO CLOCK SLAVE MODE DATA OUTPUT TIMING

TW2851 always output ASYNR/ADATR/ADATM by ACLKR falling edge triggered timing. ADATR/ADAMT output data are always changing at the next ACLKR falling edge triggered timing after ASYNR signal changes. If ASYNR is output, ADATR/ADATM outputs are always fixed to one ACLKR falling edge timing. But if ASYNR is input, ADATR/ADATM output timing changes by ASYNR input timing.

ASYNR is ACLKR Falling Edge Triggered Input/output

If ASYNR is input and ASYNR input is ACLKR falling edge triggered input as ASYNR input signal is changing after ACLKR falling edge, or if ASYNR is output, TW2851 output ADATR/ADATM by ACLKR falling edge triggered timing as shown on following figures. ASYNR signal is changing during ACLKR = 0. TW2851 output ADATR/ADATM data after next ACLKR falling edge triggered timing with more than half ACLKR clock delay.

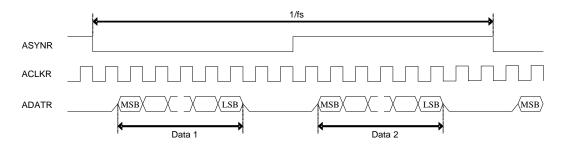
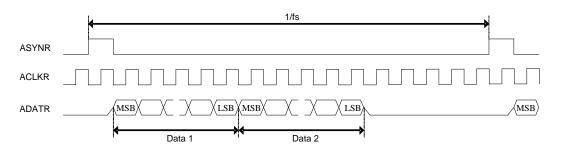



FIGURE 39.

AUDIO RECORD FALLING EDGE TRIGGERED INPUT/OUTPUT TIMING, ACLKMASTER=0, RM_SYNC=0

ASYNR is ACLKR Rising Edge Triggered Input

If ASYNR is input and ASYNR input is ACLKR rising edge triggered input as ASYNR input signal is changing after ACLKR rising edge, TW2851 output ADATR/ADATM by ACLKR falling edge triggered timing as shown on following figures. ASYNR signal is changing during ACLKR = 1. TW2851 output ADATR/ADATM data after next ACLKR falling edge triggered timing with less than half ACLKR clock delay.

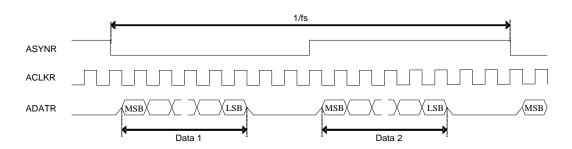


FIGURE 41. AUDIO RECORD RISING EDGE TRIGGERED INPUT TIMING, ACLKMASTER=0, RM_SYNC=0, ASTBROEN=1

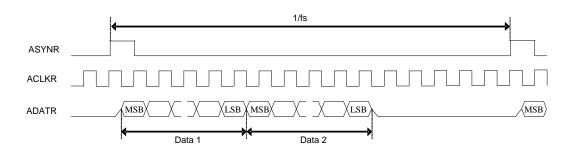
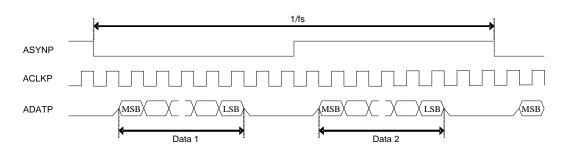
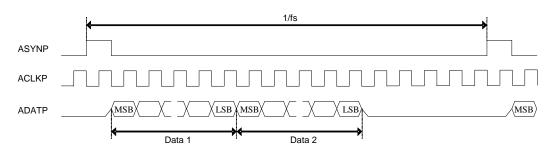
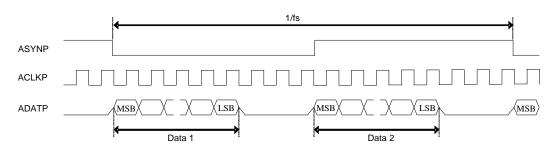



FIGURE 42. AUDIO RECORD RISING EDGE TRIGGERED INPUT TIMING, ACLKMASTER=0, RM_SYNC=1, ASTBROEN=1


ACLKP/ASYNP SLAVE MODE DATA OUTPUT TIMING

The following 8 data input timing figures are supported. The ADATPDLY register needs to be set up according to the difference of ADATP data input timings. Data1 is only used as default. MSB bit is the first input bit as default PBINSWAP=0. If PBINSWAP=1, LSB bit is the first input bit.



ASYNP is ACLKP Falling Edge Triggered Input

FIGURE 43. AUDIO PLAYBACK FALLING EDGE TRIGGERED INPUT TIMING, RM_SYNC=0, PB_MASTER=0, ADATPDLY=0

FIGURE 44. AUDIO PLAYBACK FALLING EDGE TRIGGERED INPUT TIMING, RM_SYNC=1, PB_MASTER=0, ADATPDLY=0

FIGURE 45. AUDIO PLAYBACK FALLING EDGE TRIGGERED INPUT TIMING, RM_SYNC=0, PB_MASTER=0, ADATPDLY=1

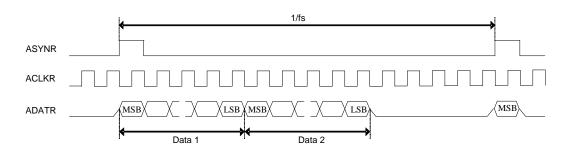
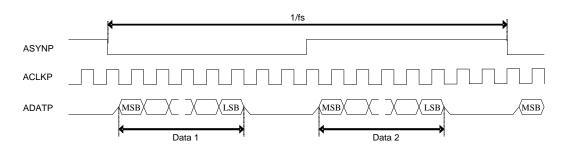
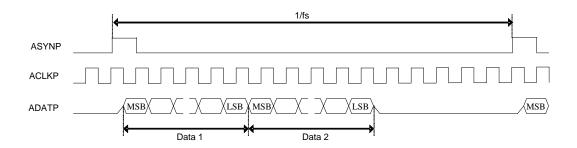




FIGURE 46. AUDIO PLAYBACK FALLING EDGE TRIGGERED INPUT TIMING, RM_SYNC=1, PB_MASTER=0, ADATPDLY=1

ASYNP is ACLKP Rising Edge Triggered Input

FIGURE 47. AUDIO PLAYBACK RISING EDGE TRIGGERED INPUT TIMING, RM_SYNC=0, PB_MASTER=0, ADATPDLY=1

FIGURE 48. AUDIO PLAYBACK RISING EDGE TRIGGERED INPUT TIMING, RM_SYNC=1, PB_MASTER=0, ADATPDLY=1

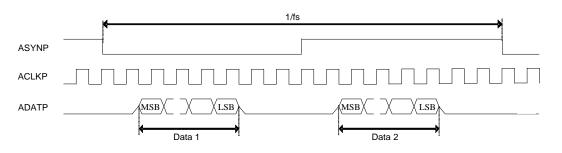


FIGURE 49. AUDIO PLAYBACK RISING EDGE TRIGGERED INPUT TIMING, RM_SYNC=0, PB_MASTER=0, ADATPDLY=0

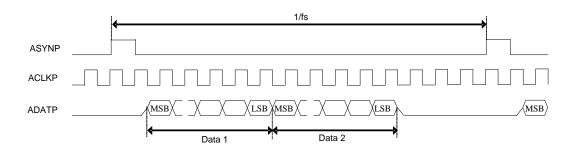


FIGURE 50. AUDIO PLAYBACK RISING EDGE TRIGGERED INPUT TIMING, RM_SYNC=1, PB_MASTER=0, ADATPDLY=0

AUDIO CLOCK GENERATION

TW2851 has built-in field locked audio clock generator for use in video capture applications. The circuitry will generate the same predefined number of audio sample clocks per field to ensure synchronous playback of video and audio after digital recording or compression. The audio clock is digitally synthesized from the crystal clock input. The master audio clock frequency is programmable through ACKN and ACKI register based following two equations.

ACKN = round(F AMCLK / F field), it gives the Audio master Clock Per Field.

ACKI = round(F AMCLK / F 27MHz * 2^23), it gives the Audio master Clock Nominal increment.

Following table provides setting example of some common used audio frequency assuming Video Decoder system clock frequency of 27MHz. If ACLKRMASTER register bit is set to 1, following AMCLK is used as audio system clock inside TW2851.

If Slave Playback-in lock mode is required, ACKN=00100hex and PBREFEN=1 needs to be set up. The number of AMCLK clock per one ASYNP input cycle is locked(fixed) to 256 in this mode.

Frequency equation is "AMCLK(Freq) = 256 x ASYNP(Freq)".

TABLE 16. AUDIO FREQUENCY 256XFS MODE: AIN5MD = 0, AFS384 = 0													
AMCLK(MHZ)	FIELD[HZ]	ACKN [DEC]	ACKN [HEX]	ACKI [DEC]	ACKI [HEX]								
256 X 48 kHz													
12.288	50	245760	3-C0-00	3817749	3A-41-15								
12.288	59.94	205005	3-20-CD	3817749	3A-41-15								
256 X 44.1 kHz													
11.2896	50	225792	3-72-00	3507556	35-85-65								
11.2896	59.94	188348	2-DF-BC	3507556	35-85-65								
256 X 32 kHz													
8.192	50	163840	2-80-00	2545166	26-D6-0E								
8.192	59.94	136670	2-15-DE	2545166	26-D6-0E								
256 X 16 kHz													
4.096	50	81920	1-40-00	1272583	13-6B-07								
4.096	59.94	68335	1-0A-EF	1272583	13-6B-07								
256 X 8 kHz													
2.048	50	40960	A0-00	636291	9-B5-83								
2.048	59.94	34168	85-78	636291	9-B5-83								

TW2851

TABLE 16. AUDIO FREQUENCY 256XFS MODE: AIN5MD = 0. AFS384 = 0

TABLE 17. AUDIO FREQUENCY 320XFS MODE: AIN5MD = 1, AFS384 = 0, 44.1/48 KHZ NOT SUPPORTED

AMCLK(MHZ)	FIELD[HZ]	ACKN [DEC]	ACKN [HEX]	ACKI [DEC]	ACKI [HEX]
320 X 32 kHz					
10.24	50	204800	3-20-00	3181457	30-8B-91
10.24	59.94	170838	2-9B-56	3181457	30-8B-91
320X16 kHz					
5.12	50	102400	1-90-00	1590729	18-45-C9
5.12	59.94	85419	1-4D-AB	1590729	18-45-C 9
320 X 8 kHz					
2.56	50	51200	C8-00	795364	С-22-Е4
2.56	59.94	42709	A6-D5	795364	С-22-Е4

AMCLK(MHZ)	FIELD[HZ]	ACKN [DEC]	ACKN [HEX]	ACKI [DEC]	ACKI [HEX]
384 X 32 kHz					
12.288	50	245760	3-C0-00	3817749	3A-41-15
12.288	59.94	205005	3-20-CD	3817749	3A-41-15
384X16 kHz					
6.144	50	122880	1-E0-00	1908874	1D-20-8A
6.144	59.94	102503	1-90-67	1908874	1D-20-8A
384 X 8 kHz					
3.072	50	61440	F0-00	954437	E-90-45
3.072	59.94	51251	C8-33	954437	E-90-45

TABLE 18. AUDIO FREQUENCY 384XFS MODE: AIN5MD = 0, AFS384 = 1, 44.1/48 KHZ NOT SUPPORTED

AUDIO CLOCK AUTO SETUP

If ACLKRMASTER=1 audio clock master mode is selected, and AFAUTO register is set to "1", TW2851 set up ACKI register by AFMD register value automatically.ACKI control input in ACKG module block is automatically set up to the required value by the condition of AIN5MD and AFS384 register value.

AFAUTO	AFMD	ACKG MODULE ACKI CONTROL INPUT VALUE
1	0	8kHz mode value by each AIN5MD/AFS384 case.
1	1	16kHz mode value by each AIN5MD/AFS384 case.
1	2	32kHz mode value by each AIN5MD/AFS384 case.
1	3	44.1kHz mode value by each AIN5MD/AFS384 case.
1	4	48kHz mode value by each AIN5MD/AFS384 case.
0	Х	ACKI register set up ACKI control input value.

Host Interface

The TW2851 provides both serial and parallel interfaces that can be selected by HSP[1:0] pins. When HSP = 01, the I2C serial interface is selected. Else the parallel host interface is selected. There are three different host interface mode: the address / data mux mode with ALE high active (HSP = 00), the address / data mux mode with ALE low active (HSP = 10), and the address data separate mode (HSP = 11).

Some of the interface pins serve a dual purpose depending on the working mode. The pins HALE and HDAT [7] in parallel mode become SCLK and SDAT pins in serial mode and the pins HDAT [6:1] and HCSB in parallel mode become slave address in serial mode respectively. See Table 19 for pin assignment details of each of the mode.

	TABLE 19. PIN AS	SIGNMENTS FOR SERIAL	AND PARALLEL INTERFA	CE
PIN NAME	SERIAL MODE (HSP = 01)	HIGH ACTIVE ALE		A / D SEPARATE (HSP = 11)
HALE	SCLK	ALE	ALE	Not Used
HRDB	Not Used (VSSO)	RENB	RENB	RENB
HWRB	Not Used (VSSO)	WENB	WENB	WENB
HCSB	Slave Address[0]	CSB	CSB	CSB
HDAT[0]	Not Used (VSSO)	PDATA [0] / PADDR[0]	PDATA[0] / PADDR[0]	PDATA[0]
HDAT[6:1]	Slave Address[6:1]	PDAT [6:1] / PADDR[6:1]	PDAT [6:1] / PADDR[6:1]	PDATA[6:1]
HDAT[7]	SDAT	PDATA[7] / PADDR[7]	PDATA[7] / PADDR[7]	PDATA[7]
HDAT[15:8]	Not Used	PDATA[15:8]	PDATA[15:8]	PDATA[15:8]
HADDR[7:0]	Not Used	Not Used	Not Used	PADDR[7:0]
HADDR[11:8]	Not Used	Not Used	Not Used	PADDR[11:8]

In serial interface mode and the A/D mux mode, the TW2851 has 8 bits of address. In order to access all the internal registers, an additional 4-bit address is used as page index. All the registers are organized into 16 page of 256 byte register each. The page index register is specified in a register at address 0xFF of each page. By setting the page index first, the following accesses are directed to the corresponding page. In cases of address / data separate mode, the page index is derived from PADDR[11:8]. The page index register at 0xFF is not used. For detailed description of registers, please refer to the

Register Description section on page 97.

In parallel bus case, the data bus width can be set to either 8-bit wide or 16-bit wide. This is controlled by a power up strapping of the status of VGA_VS pin. If the VGA_VS pin is pull-up with an external resister, the parallel interface data bus is 16-bit wide. If it is pull-down, then the data bus is 8-bit. All registers on TW2851 runs with 8-bit mode data bus only, except the OSD bitmap upload data register (0x652). This register can be written 8-bit or 16-bit. Note that in some MCU running in 16-bit mode data bus, the addresses used to access the registers on TW2851 need to be left shifted by 1 bit.

SERIAL INTERFACE

HDAT [6:1] and HCSB pins define slave address in serial mode. Therefore, any slave address can be assigned for full flexibility. The Figure 51 shows an illustration of serial interface for the case of slave address (Read : "0x085", Write : 0x084").

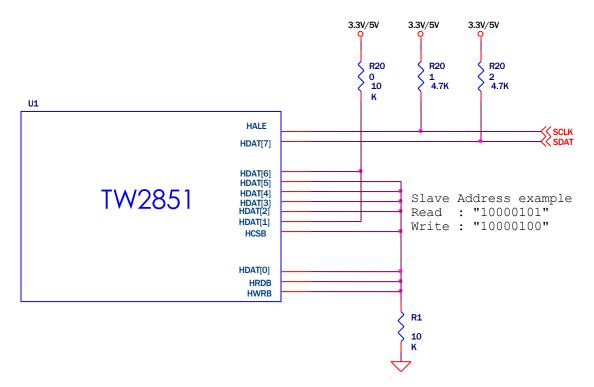
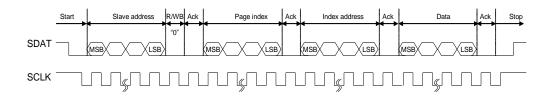



FIGURE 51. THE SERIAL INTERFACE FOR THE CASE OF SLAVE ADDRESS. (READ : "0X085", WRITE : "0X084") The detailed timing diagram is illustrated in Figure 52 and Figure 53.

FIGURE 52. WRITE TIMING OF SERIAL INTERFACE

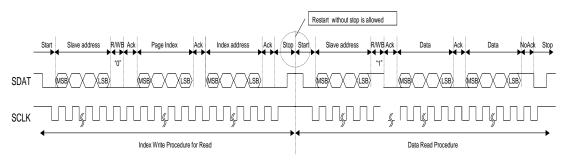
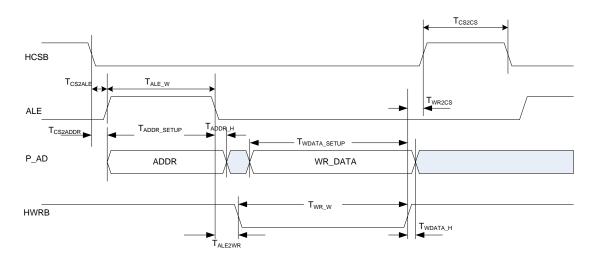
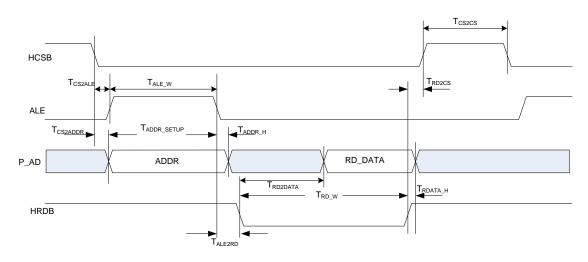



FIGURE 53. READ TIMING OF SERIAL INTERFACE


PARALLEL INTERFACE

For A/D Muxed parallel interface mode (HSP = 00 or 10), the address and data are multiplexed to share the same bus pins. The writing and reading timing is shown in the Figure 54 and Figure 55 respectively. The detail timing parameters are in Table 20.

WRITE TIMING OF PARALLEL INTERFACE WITH ADDRESS/DATA MULTIPLEXING MODE

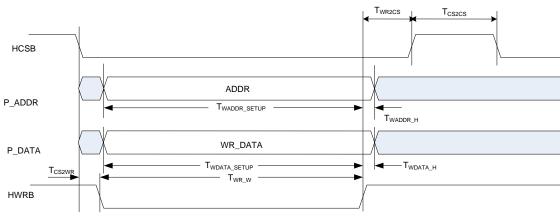

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS
HCSB Setup Until ALE Active	T _{CS2ALE}	> 0			ns
HCSB Setup Until ADDR Valid	T _{CS2ADDR}	> 0			ns
ALE Active Pulse Width	Tale_w	1 CPU_CLK (Note 1)			ns
ADDR Valid Until Inactive of ALE	TADDR_SETUP	10			ns
ADDR Hold After ALE Inactive	T _{ADDR_H}	> 0			ns
ALE Inactive to HRDB Active	T _{RD_W}	T _{RD2DATA}			ns
ALE Inactive to HWRB Active	Twr_w	1 CPU_CLK (Note 1)			ns
Read DATA Hold After HRDB Inactive	T _{RDATA_H}	> 0			ns
Write Data Hold After HWRB Inactive	Twdata_h	> 0			Ns
HRDB Active Till Valid Read DATA	T _{RD2DATA}			30	ns
Write DATA Setup Before HWRB Active	TWDATA_SETUP	10			
HRDB Inactive Before HCSB Inactive	T _{RD2CS}	> 0			
HWRB Inactive Before HCSB Inactive	T _{WR2CS}	1 CPU_CLK (Note 1)			
HCSB Inactive Before HCSB Active	Tcs2cs	1 CPU_CLK (Note 1)			ns

 TABLE 20.
 TIMING PARAMETERS OF PARALLEL INTERFACE WITH ADDRESS / DATA MULTIPLEXING MODE

NOTE:

1. The TW2851 internal CPU_CLK is 54 MHz

For the mode with HSP = 11, the address and data bus are separate. The ALE signal is not used. The read / write timing of separate address/data bus is shown in Figure 56 and Figure 57.

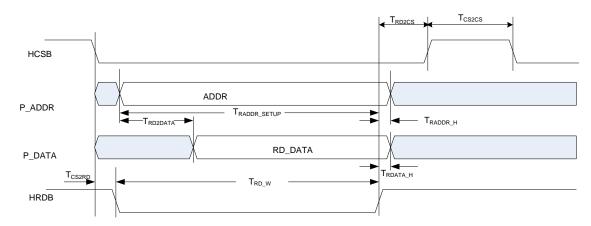


FIGURE 57.

READ TIMING OF PARALLEL INTERFACE WITH SEPARATE ADDRESS / DATA BUS

TABLE 21. TIMING PARAMETERS OF PARALLEL INTERFACE WITH SEPARATE ADDRESS / DATA BUS											
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS						
HCSB Setup Until HWRB/HRDB Active	Tcs2rd Tcs2wr	> 0			ns						
Write ADDR Valid Until HWRB Inactive	Twaddr_setup	10			ns						
Write ADDR Valid Until HRDB Inactive	TRADDR_SETUP	30			ns						
Write ADDR Hold After HWRB inactive	T _{WADDR_H}	> 0			ns						
Read ADDR Hold After HRDB Inactive	Traddr_h	> 0			ns						
HRDB Active Pulse Width	T _{RD_W}	Trd2data			ns						
HWRB Active Pulse Width	Twr_w	1 CPU_CLK (Note 1)			ns						
Read DATA Hold After HRDB Inactive	T _{RDATA_H}	> 0			ns						
Write DATA Hold After HWRB inactive	Twdata_h	> 0			ns						
Write DATA Setup Before HWRB Inactive	Twdata_setup	10			ns						
Read DATA Valid after ADDR Valid and HRDB Active	Trd2data			1 CPU_CLK + 30 (Note 1)	ns						
HRDB / HWRB Inactive Before HCSB Inactive	T _{RD2CS} Twr2cs	> 0			ns						
HCSB Active After HCSB Inactive	Tcs2cs	1 CPU_CLK (Note 1)			ns						

NOTE:

1. The TW2851 internal CPU_CLK is 54 MHz

VGA DDC I2C MASTER INTERFACE

The TW2851 provides an I2C master interface as DDC channel for the VGA interface. It allows the CPU to read/write the DDC registers on the VGA monitors through this I2C interface. The DDC interface signals DDC_CLK and DDC_DATA needs to be externally pulled up on the board. The DDC channel control registers are at 0x9C0 ~ 0x9CF.

Before performing any of the I2C write/read operation, first program the DDC_CLK frequency by setting the DDC_FREQ_DIV register (0x9C0 ~ 0x9C1). The DDC_CLK frequency is derived from an internal 54 MHz clock divided by this parameter.

Write Operation

To write an I2C device through this I2C master interface,

- 1. Set the I2C slave device address and write command in DDC_WR_DATA register (0x9C2)
- 2. Write command 0x96 into register 0x9C4 DDC_COMMAND register. It will kick off the I2C Start operation, and output the slave device address onto the DDC_DATA bus.
- 3. Wait for the ACK signal from I2C slave through the interrupt bit set in 0x9C4 DDC_STATUS register.
- 4. Clear the interrupt by writing 0x0F into DDC_COMMAND register (0x9C4)
- 5. Set the I2C slave register address in DDC_WR_DATA register (0x9C2)
- 6. Write command 0x16 to the DDC_COMMAND register (0x9C4) to put the address into SDA bus
- 7. Wait for the ACK signal as in (4)
- 8. Clear the interrupt as in (5)
- 9. Write the data to be written to I2C slave register in DDC_WR_DATA register (0x9C2)
- 10. Write command 0x16 to the DDC_COMMAND register (0x9C4) to put the data into SDA bus
- 11. Wait for ACK signal as in (4)
- 12. Clear the interrupt as in (5), and done with the I2C write operation

Read Operation

To read a register in I2C device through this I2C interface,

- 1. Write the I2C slave device address and read command into DDR_WR_DATA register (0x9C2)
- 2. Write 0x96 to DDC_COMMAND register to initiate the I2C Start operation, and put the slave device address onto DDC_DATA bus
- 3. Wait for I2C slave ACK through the interrupt bit set in 0x9C4 DDC_STATUS register.
- 4. Clear the interrupt by writing 0x0F into DDC_COMMAND register (0x9C4)
- 5. Write the I2C slave register address into DDR_WR_DATA register (0x9C2)
- 6. Write 0x16 to DDC_COMMAND register to put the slave register address to DDC_DATA bus
- 7. Wait for I2C slave ACK as in (3)
- 8. Clear the interrupt as in (4)

- 9. Write 0x26 into DDC_COMMAND register to urge the I2C slave to output the register data onto DDC_DATA bus
- 10. Wait for the interrupt flag
- **11**. Read the DDR_RD_DATA register 0x9C3 and finish the read operation

PS2 MOUSE INTERFACE

The TW2851 provides a PS2 interface for mouse support. With this, the CPU can receive interrupts whenever the PS2 has events such as click, double click, cursor location change, etc. The PS2 interface signals PS2_CK and PS2_D should be pulled up on the board. The PS2 control registers are at register 0x9D0 ~ 0x9DF.

INTERRUPT INTERFACE

The TW2851 provides the interrupt request function via an IRQ pin. Any video loss, motion, blind, and night detection, status change, etc., will make IRQ pin low. There are total of 64 interrupt sources in TW2851, with the INTERRUPT_VECT shown in register 0x1D0 to 0x1D7. Each bit of these registers represents one interrupt source. To simplify the host polling effort, every 8 sources are further summarized in a second interrupt status at register 0x1E0. In this status, if bit m is "1", it means there are at least one source in 0x1Dm triggered the IRQ pin. In order to clear the interrupt vector, simply write a "1" into the corresponding bit location of the source into the INTERRUPT_VECT.

Associated with the 64 bit INTERRUPT_VECT, there are also 64 bit INTERRUPT_VECT_MASK that can be set to "0" to mask out the interrupt source from triggering the IRQ pin. Note that this masking does not reset the INTERRUPT_VECT. The host can still read the status of the masked sources from INTERRUPT_VECT.

For the list of interrupt sources corresponding to each of the INTERRUPT_VECT bit, please refer to the description in the register description section.

BURST INTERFACE TO DDR SDRAM

TW2851 provides a burst circuit to allow CPU to burst read/write data from host interface to the external DDR memory. This is useful for testing the external DDR memory. It is also used in writing the customized cursor bitmap into DDR or reading the bitmap from DDR into the on-chip cursor SRAM.

To write data to DDR, do the following.

- 1. Write 0x2E0 / 0x2E1 / 0x2E2 with the DDR address to be accessed. The DDR address here is in units of 2 bytes.
- 2. Write 0x2E3 / 0x2E4 with DMA length. This length can be 1 byte up to 1024 bytes. Internally, the DDR burst is done 64 bytes by 64 bytes until it reaches the length specified here. The last burst can be less than 64 bytes. The number of times the CPU writes in the last burst has to be exactly as specified by this length. Note the DDR interface burst length is in unit of 4 bytes. So if the last DDR burst length is not multiple of 4 bytes, the DDR still burst up to multiple of 4 bytes. Some garbage data up to 3 bytes can be written into the DDR in the last DDR burst.
- 3. Write an AUX_DDR_WR command at 0x2E4 bit 0. This bit will be self cleared after done.
- 4. If the CPU parallel interface has P_WAIT signal, go ahead to start writing the 0x2DF address with the data for AUX_DDR_LENGTH bytes. (This can be performed by the DMA engine at the CPU side).
- 5. If the CPU parallel interface has no P_WAIT signal, poll the AUX_FIFO_EMPTY bit at 0x2E4 bit 3. Wait until this bit is set.
- 6. Repeat (4) or (5) as needed until total bytes up to the number specified previously in DMA length in register 0x2E3/0x2E4. The last burst may be less than 64 bytes. After the last burst, the AUX_DDR_WR command at 0x2E4 will be self-cleared. Note that before a full length is written, the

CPU should not switch from write to read. Do not read 0x2DF until the burst write transaction is done.

To read data from DDR, do the following:

- 1. Write 0x2E0 / 0x2E1 / 0x2E2 with the DDR address to be accessed. The DDR address here is in units of 2 bytes.
- 2. Write 0x2E3 / 0x2E4 with DMA length. This length can be 1 byte up to 1024 bytes. Internally, the DDR burst is done 64 bytes by 64 bytes until it reaches the length specified here. The last burst can be less than 64 bytes. The number of times the CPU read in the last DDR burst has to exactly as specified by this length.
- 3. Write an AUX_DDR_RD command at 0x2E4 bit 1. This bit will be self cleared after done.
- 4. If the CPU parallel interface has P_WAIT signal, go ahead to start reading the 0x2DF address with the data for AUX_DDR_LENGTH bytes. (This can be performed by the DMA engine at the CPU side).
- 5. If the CPU parallel interface has no P_WAIT signal, poll the AUX_FIFO_FULL bit at 0x2E4 bit 2. Wait until this bit is set, and proceed to read either 64 bytes (before the last DDR burst), or a length in the last DDR burst consistent with the DMA length set in register 0x2E3/0x2E4.
- 6. Repeat (4) or (5) as needed.

Note that before a full length is read, the CPU should not switch from read to write. Do not write 0x2DF until the burst read transaction is done.

External DRAM Interface

TW2851 uses a unified external DDR SDRAM for various functions, such as video buffers, bit-mapped OSG, customized cursor bitmap, etc. The memory controller of the TW2851 supports 16bit data width up to 166 MHz clock rate. The memory capacity is 32 Mbytes.

When the chip is powered up, the CPU is responsible for setting all the on-chip configuration registers for DDR memory configuration. Once the registers are set, the CPU releases the software reset signal, then the DDR memory controller initializes the DDR memory configuration using the parameters in the registers. After the initialization is done, the DDR memory is ready for use. After the initialization, the memory controller does the memory refresh automatically.

Chip Reset / Initiation

TW2851 uses two reset signals: a hardware reset pin RST_N, and a software reset SOFT_RSTN register. (0x2F0 bit 7). When the hardware reset RST_N pin is asserted, the whole chip is reset. When the software reset register is asserted, the whole chip except all the on-chip configuration registers are reset. The content in the on-chip register is not cleared by software reset. With this, TW2851 allows the micro-controller to first release the hardware reset, and start configuring all the registers, and then release the software reset to start normal operation.

In addition to the software reset, there is another register bit used for on-chip DLL reset. (0x2F0 bit 6) This allows the CPU to control the on-chip DLL used by the DDR memory controller.

The programming sequence is as follows:

- After PCB powered on, the hardware reset is released by hardware.
- Initially the chip is in reset state. SOFT_RSTN (0x2F0 bit 7) is 0, DLL_RST (0x2F0 bit 6) is 1.
- Release the DLL_RST afterward (Set DLL_RST to 1'b0).
- Start configuring all the registers, especially the DDR configuration.

- Then released the SOFT_RSTN (Set SOFT_RSTN to 1'b1). After SOFT_RSTN is released, the DDR controller start configuring the external DDR memory based on the setting in the register.
- The chip is ready for normal operation.

Frequency Synthesizer Setup

There are three frequency synthesizers on TW2851. One is for DDR memory clock, one is for the VGA / LCD panel clock, and the other is for generating the system clocks of 108 MHz. All the frequency synthesizers use the same input clock (crystal or oscillator) of 27 MHz.

The frequency synthesizer for DDR memory clock generates a DDR clock of 166 MHz. The VGA clock depends on the VGA resolution as defined in the VESA standard. The LCD panel clock depends on the make of the LCD panel.

From the 27 MHz, an output clock frequency can be generated with the following equation.

Clock Frequency = <u>27 MHz x 2 x F [7:0]</u>

R * NO

The Panel Clock configuration registers are at 0xEB0 ~ 0xEB2. The Memory Clock configuration registers are at 0xEB4 ~ 0xEB6.

The third frequency synthesizer is a simpler one that only enhances the clock by 4X into 108 MHz. Other video clocks such as 54 MHz, 27MHz, and 13.5 MHz are derived from 108 MHz.

Register Description by Function CVBS Video Input VIDEO DECODER

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[O]				
0	0x000												
1	0x010	VDLOSS*	HLOCK*	SLOCK*	FLD*	VLOCK*	NOVIDEO*	MONO*	DET50*				
2	0x020	VDL035	HLOOK"	SLOUN	FLD	VLOCK	NOVIDEO		DEISO				
3	0x030												
		* Read or	nly bits										
		VDLOSS		1			is not detects specified by						
				0	Video detec	•		,	-8)				
		HLOCK		1	Horizontal s source.	ync PLL is lo	cked to the	incoming vio	leo				
				0	Horizontal s	ync PLL is n	ot locked.						
		SLOCK		1	Sub-carrier PLL is locked to the incoming video source.								
				0	Sub-carrier PLL is not locked.								
		FLD		1	Even field is								
				0	Odd field is	being decod	ed.						
		VLOCK		1	Vertical logi	c is locked to	o the incomi	ng video sou	irce.				
				0	Vertical logi	c is not lock	ed.						
		NOVIDEO		Reserve	d for TEST.								
		MONO		1	No color bui	rst signal de	tected.						
				0	Color burst	signal detec	ted.						
		DET50		0	60Hz source								
				1	50Hz source								
					ual vertical d invoked.	scanning fi	requency de	pends on t	he current				

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x001								
1	0x011	VCR*	WKAIR*	WKAIR1*	VSTD*	NINTL*		VSHP	
2	0x021		WIGHT		VOID			Voini	
3	0x031								
		* Read only	y bits						
		VCR		VCR sign	al indicator				
	WKAIR Weak signal indicator 2.								
		WKAIR1		Weak sig	gnal indicat	or controlle	d by WKTH		
		VSTD			Standard si Non-standa	-			
		NINTL			Non-interlacinterlacing				
	VSHP Vertical Sharpness Control 0 = None (default) 7 = Highest **Note: VSHP must be set to '0' if COMB = 0								

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x006								
1	0x016	0	0	VACTIVE_	VDELAY_		E_XY[9:8]	HDELAY	VV[0-9]
2	0x026	U	0	XY[8]	XY[8]	HACHIVL		HULLAI	_/1[3.0]
3	0x036								
0	0x002								
1	0x012				HDELAY				
2	0x022				HUELAI				
3	0x032								

HDELAY_XY

This 10bit register defines the starting location of horizontal active pixel for display / record path. A unit is 1 pixel. The default value is 0x00F for NTSC and 0x00A for PAL.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x006								
1	0x016	0	0	VACTIVE_	VDELAY_		E_XY[9:8]		_XY[9:8]
2	0x026	U	0	XY[8]	XY[8]	HACHIVE		HDELAT	_^1[9.0]
3	0x036								
0	0x003								
1	0x013					_XY[7:0]			
2	0x023								
3	0x033								

HACTIVE_XY

This 10bit register defines the number of horizontal active pixel for display / record path. A unit is 1 pixel. The default value is decimal 720.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x006						-		
1	0x016	0	0	VACTIVE_	VDELAY_		E_XY[9:8]		VVI0.01
2	0x026	U	0	XY[8]	XY[8]	HACHIVI		HUELAI	_XY[9:8]
3	0x036								
0	0x004								
1	0x014					XY[7:0]			
2	0x024				VDELAT	_^1[7.0]			
3	0x034								

VDELAY_XY

This 9bit register defines the starting location of vertical active for display / record path. A unit is 1 line. The default value is decimal 6.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x006						=		
1	0x016	0	0	VACTIVE_	VDELAY_		E_XY[9:8]		VVI0.01
2	0x026	U	0	XY[8]	XY[8]	HACHIVI		HDELAT,	_XY[9:8]
3	0x036								
0	0x005								
1	0x015					VV[7.0]			
2	0x025				VACIIVE	_XY[7:0]			
3	0x035								

VACTIVE_XY

This 9bit register defines the number of vertical active lines for display / record path. A unit is 1 line. The default value is decimal 240.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x007								
1	0x017				н	IE			
2	0x027				п	JE			
3	0x037								

HUE

These bits control the color hue as 2's complement number. They have value from +36° (7Fh) to -36° (80h) with an increment of 2.8°. The 2 LSB has no effect. The positive value gives greenish tone and negative value gives purplish tone. The default value is 0° (00h). This is effective only on NTSC system. The default is 00h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x008									
1	0x018	SCURVE	VSF	СТІ		SHARPNESS				
2	0x028	SCORVE	VSF				JIAN	-NL33		
3	0x038									

SCURVE	This bit controls the center frequency of the peaking filter. The corresponding gain adjustment is HFLT.0Low1center
VSF	This bit is for internal used. The default is 0.
СТІ	CTI level selection. The default is 1. O None 3 Highest
SHARPNESS	These bits control the amount of sharpness enhancement on the luminance signals. There are 16 levels of control with '0' having no effect on the output image. 1 through 15 provides sharpness enhancement with 'F' being the strongest. The default is 1.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x009								
1	0x019				CNT	рст			
2	0x029				CIVI	NJI			
3	0x039								

CNTRST

These bits control the luminance contrast gain. A value of 100 (64h) has a gain of 1. The range adjustment is from 0% to 255% at 1% per step. The default is 64h.

VIN	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x00A								
1	0x01A				BRI	сит			
2	0x02A				DRI	GHI			
3	0x03A								

BRIGHT

These bits control the brightness. They have value of -128 to 127 in 2's complement form. Positive value increases brightness. A value 0 has no effect on the data. The default is 00h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x00B								
1	0x01B				SA	r 11			
2	0x02B				JA	1_0			
3	0x03B								

SAT_U

These bits control the digital gain adjustment to the U (or Cb) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. A value of 128 (80h) has gain of 100%. The default is 80h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x00C								
1	0x01C				SA	тν			
2	0x02C				JA	1_V			
3	0x03C								

SAT_V

These bits control the digital gain adjustment to the V (or Cr) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. A value of 128 (80h) has gain of 100%. The default is 80h.

							r	r					
#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0	0x00D												
1	0x01D	SF*	PF*	FF*	KF*	CSBAD*	MCVSN*	CSTRIPE*	CTYPE2*				
2	0x02D	Эг"	FF"	FF	NF "	C3DAD.	IVICV3IN"	WIRIFE"	CHIFEZ				
3	0x03D												
		* Read only	y bits										
		SF		This bit i	s for interna	al use							
		PF		This bit i	This bit is for internal use								
		FF		This bit i	This bit is for internal use								
		KF		This bit i	This bit is for internal use								
		CSBAD		1	1 Macrovision color stripe detection may be un-reliable								
		MCVSN		1	Macrovisio	AGC nulse	detected						
					Not detecte	-							
		CSTRIPE											
		CTYPE2			This bit is valid only when color stripe protection is detected, i.e. CSTRIPE=1.								

- Type 2 color stripe protection Type 3 color stripe protection 1
- 0

			101			101	101	141	101			
#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0	0x00E											
1	0x01E	DETSTUS*		STDNOW*		ATREG		STANDARD				
2	0x02E	52.0.00		0.2.1011		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		01/11/2/11/2				
3	0x03E											
	* Read only bits											
		DETSTUS		0	Idle							
				1	detection in progress							
STDNOW Curr 0 1 2 3 4 5 6 7 7 ATREG 1 0				0 1 2 3 4 5 6 7	standard inv NTSC(M) PAL (B,D,G, SECAM NTSC4.43 PAL (M) PAL (CN) PAL 60 Not valid Disable the Enable VAC depending	H,I) shadow re TIVE and H	DELAY shad		s value			
		STANDARD		Standar 0 1 2 3 4 5 6 7	dard selection NTSC(M) PAL (B,D,G,H,I) SECAM NTSC4.43 PAL (M) PAL (CN) PAL 60 Auto detection (Default)							

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x00F										
1	0x01F	ATSTART	PAL60EN	PALCNEN	PALMEN	NTSC44EN	SECAMEN	PALBEN	NTSCEN		
2	0x02F										
3	0x03F										
ATSTART				1	Writing 1 to this bit will manually initiate the auto format detection process. This bit is a self-clearing bit						
					Manual initiation of auto format detection is done. (Default)						
		PAL60EN		1 0	Enable reco Disable rec	-	PAL60 (Defa	ault)			
	PALCNEN			1 0	Enable recognition of PAL (CN). (Default) Disable recognition						
		PALMEN		1 0	Enable recognition of PAL (M). (Default) Disable recognition						
		NTSC44EN		1 0	Enable recognition of NTSC 4.43. (Default) Disable recognition						
	SECAMEN			1 0	Enable recognition of SECAM. (Default) Disable recognition						
	PALBEN			1 0	Enable recognition of PAL (B,D,G,H,I). (Default) Disable recognition						
		NTSCEN		1 0	Enable recognition of NTSC (M). (Default) Disable recognition						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x045	0	0	VSMODE	FLDPOL	HSPOL	VSPOL	DECVSMODE	DECFLDPOL		
	VSMODE		Control the VS and field flag timing 0 VS and field flag is aligned with vertical sync of incoming video (Default) 1 VS and field flag is aligned with HS							
	FLDPOL		Select the FLD polarity 0 Odd field is high 1 Even field is high (Default)							
	HSPOL			Select the HS polarity 0 Low for sync duration (Default) 1 High for sync duration						
	VSPOL			Select the VS polarity 0 Low for sync duration (Default) 1 High for sync duration						
	DECVSM	IODE	0	Default						
	DECFLD	POL	0	Default						

Address	[7]	[6]	[5]] [4] [3] [2] [1] [0]							
0x046	AGCEN4	AGCEN3	AGCEN2	AGCEN1	AGCGAIN4[8] AGCGAIN3[8] AGCGAIN2[8]	AGCGAIN1[8]			
0x047				А	GCGAIN1[7:0]						
0x048				Α	GCGAIN2[7:0]						
0x049					GCGAIN3[7:0]						
0x04A				AGCGAIN4[7:0]							
	AGCEN	١n	0	 Select Video AGC loop function on VIN of channel n AGC loop function enabled (recommended for most application cases) (default). AGC loop function disabled. Gain is set by AGCGAINn 							
	AGCGA	AINn		-	ers control fault value	-	of channel n	when AGC loc			
Address	[7]	[6]	[5	5]	[4] [3] [2]	[1]	[0]			
0x04B	PD_BIA	S	V_ADC	_SAVE		0 0	0	YFLEN			
PD_BIAS V_ADC_SAVE			1 0 Pe 0 7	 Do not power down the bias Power Saving Mode Selection. Most Power Consuming 							
	IREF VREF			 0 Internal current reference 1 for Video ADC (default) 1 Internal current reference increase 30% for Video ADC. 							
				 Internal voltage reference for Video ADC (default) Internal voltage reference shut down for Video ADC 							
	YFLEN				g Video CH1/CH2/CH3/CH4 anti-alias filter control Enable(default) Disable						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x04D	TST_ADC_VD1		ADC_SEL1		0	0	0	0
	TST_ADC_	VD1	0	Default				
ADC_SEL1			0	Default				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x04E	TST_ADC_VD	2	ADC_SEL	2	0	0	0	0
	TST_ADC_	VD2	0	Default				
ADC_SEL2		0	Default					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x04F FRM			YN	NR	CLN	1D	PS	6P
FRM YNR			0 2 3	n mode cor Auto(defa Default to Default to Dise reduction None(defa Smallest Small Medium	ult) 60Hz 50Hz on			
CLMD			Clampi 0 1 2 3	ng mode co Sync top Auto(defa Pedestal N/A				
	PSP		Slice le 0 1 2	evel control Low Medium(d High	efault)			

Address

[7]

[6]

[5]

0x050		HF	LT2		HFLT1						
0x051		HF	LT4		HFLT3						
	HFLTn		HFLTn purpos	controls the se.	e peaking fu	inction of c	hannel n. R	eserved for			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x052	CTEST	YCLEN	0	AFLTEN	GTEST	VLPF	CKLY	CKLC			
	CTEST		•	lamping control for debugging use. (Test purpose only) lefault 0)							
	YCLEN		1 0								
	AFLTEN		1 0								
	GTEST		1 0								
	VLPF		Clamp	ing filter co	ntrol (defau	lt 0)					
	CKLY		Clamp	ing current	control 1 (d	efault 0)					
	CKLC		Clamp	ing current	control 2 (d	efault 0)					

[4]

[3]

[2]

[1]

[0]

0x053 NT502 NT501	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0x053	NT502	NT501						

NT501	1 0	Force the Video Decoder 1 to a special NTSC 50 Hz format Do not force to NTSC 50 Hz format
NT502	1	Force the Video Decoder 2 to a special NTSC 50 Hz format
	0	Do not force to NTSC 50 Hz format

		-	-	1		n	· · · · · ·			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x054	NT504	NT503	DIV_RST	DOUT_RST	ACALEN	N AADC_SAVE				
	NT503		1	· · · · · · · · · · · · · · · · · · ·						
			0	format 0 Do not force to NTSC 50 Hz format						
	NT504			Force the format	Video Deco	der 4 to a s	special NTSC	50 Hz		
				0 Do not force to NTSC 50 Hz format						
	DIV_RST		Audio	Audio ADC divider reset. This bit must be set to 0 again after rese						
	DOUT_RS	т		Audio ADC digital output reset for all channel. This bit must setup up to 0 again after reset.						
	ACALEN			Audio ADC Calibration control. This be must be set up to 0 agair after enabled.						
	AADC_SAVE			Audio ADC Power Saving Mode. 7 is most power saving.						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x055		FL	D*			VA	AV*			
	FLD			of the field	-	. –	channel (R	ead only)		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
			0 1	Vertical bl Vertical ac	anking tim ctive time	e		
	VAV			of the vertion of the vertion of the vertion of the vertice of the		0		0
			0 1			OL (0x045) POL (0x045)		
			FLD[3:	0] are FIELD				, , , , , , , , , , , , , , , , , , ,

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x057		SHO	COR		ANA_SW4	ANA_SW3	ANA_SW2	ANA_SW1			
	SHCOR		These (defau	bits provid It 3h)	de coring	function fo	or the sha	rpness cor	ntrol		
	ANA_SWr	ı	Contro O 1								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x058	PBW	DEM	PALSW	SET7	COMB	HCOMP	YCOMB	PDLY
	PBW		1 0		oma BPF BV hroma BPF	· · ·		
	DEM		Reserv	ed (Default	1)			
	PALSW		1 0		h sensitivity h sensitivity		efault)	
	SET7		 The black level is 7.5 IRE above the blank level. The black level is the same as the blank level (Determine the blank level) 					
	СОМВ		 Adaptive comb filter for NTSC and PAL (Recommended). This setting is not for SECAM (Det 0 Notch filter. For SECAM, always set to 0. 					
	HCOMP		1 0	Operation Mode 0	mode 1 (R	ecommend	ed) (Default	t)
	YCOMB		1 0	••	omb filter w s (Default)	/hen no bur	st presence	
	PDLY		0 1		AL delay line AL delay lin			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x059	GMEN	CK	CKHY		CKHY HSDLY					
	GMEN		Reserv	ed (Default	0)					
	СКНҮ		Color killer hysteresis.							
			0	Fastest (D	efault)					
			1	Fast						
			2	Medium						
			3	Slow						
	HSDLY		Reserv	ed for test						

Address	[7]	[6]	151	[4]	[0]	[0]	141	101	
Address 0x05A	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0] 21F	
0x05A	СТС	UR		OR	VC			۶F	
	CTCOR		These	bits control	the coring f	or CTI (Defa	ult 1h)		
	CCOR			These bits control the low level coring function for the Cb/Cr output (Default 0h)					
	VCOR		These (Defau	bits control It 1h)	the coring f	unction of v	ertical pea	king	
	CIF		These 0 1 2 3	bits control None(def 1.5dB 3dB 6dB		ensation le	vel.		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x05B		CLP	END			CLI	PST		
	CLPEND CLPST		should These	be larger th	nan the valu	e of CLPST e of the cla	(Default 5	pulse. Its va n) is referencec	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x05C		NMC	GAIN			WPGAIN		FC27	
	NMGAIN		These (Defau		the normal	AGC loop i	naximum	correction va	
	WPGAIN		Peak A	Peak AGC loop gain control (Default 1h)					
	FC27		1 0						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x05D				PEA	KWT				

These bits control the white peak detection threshold. Setting 'FF can disable this function (Default D8h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x05E	CLMPLD		CLMPL							
	CLMPLD		 Clamping level is set by CLMPL Clamping level preset at 60d (Default) 							
	CLMPL		These bits determine the clamping level of the Y channel (De 3Ch)							
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
Address 0x05F	[7] SYNCTD	[6]	[5]	[4]	[3] SYNCT	[2]	[1]	[0]		
		[6]	[5] 0 1	Reference	SYNCT	[2] itude is set itude is pres	by SYNCT			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0C0		BGN	IDEN		BGNDCOL	AUTO_BGND	LIM_656	0

BGNDEN[n]	 Enable the background color for channel n for byte-interleave video decoder output. 0 Background color is disabled (Default) 1 Background color is enabled
BGNDCOL	Select the background color when BGNDEN = "1" or when AUTO_BGND = "1" and Video Loss is detected 0 Blue color (Default) 1 Black color
AUTO_BGND	Select the decoder background mode for byte-interleave videodecoder output.0Manual background mode (Default)1Automatic background mode when No-video is detected
LIM_656	 Clamp the Y and C value in the video stream Maximum of Y is 254, Minimum of Y is 1 Maximum of C is 254, Minimum of Y is 1 Maximum of Y is 235, Minimum of Y is 16 Maximum of Y is 240, Minimum of Y is 16

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
				TST_EHAV_BLK		[2] 0	0	0		
0x0C1				 Testing purpose only 1 Force the Y value to be 0 when HAV is high. 0 Normal Operation Enable the channel ID format in the horizontal blanking period of Record Bypass byte interleaving BT 656 stream 0 Disable the channel ID format (default) 1 Enable the channel ID format The lowest 4 bits of Y and C pixel value during horizontal blanking is Bit 3 Video Loss Bit 2 Analog Mux A/B Bit 1-0 Port ID 						
	SAV_CHID			s byte interle Disable th	eaving BT65 le channel I le channel I nat is FF, 00 s enabled, ti	66 stream D format (d D format , 00, XX	efault)	ader in Rec		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0E7	HASYNC		OFDLY		DECOUTMD	0	0	0		
	HASYNC 1			register			p and fixed	-		

0	The length of SAV to EAV is setup and fixed by
	HACTIVE registers

OFDLY	FIELD output delay
	Oh OH line delay FIELD output (601 mode only) 1h~6h 1H ~ 6H line delay FIELD output
	7h Reserved
DECOUTMD	Default 1

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ſ	0x0E8				HB	LEN			

HBLEN

These bits are effective when HASYNC bit is set to 1. These bits setup the length of EAV to SAV code when HASYNC bit is 1. Normal value is (Total pixel per line – HACTIVE) value.

NTSC/PAL-M(60Hz)8Ah = 858 - 720PAL/SECAM(50Hz)90h = 864 - 720

If register 0x00E[3] (ATREG for CH1) is set to 0, this value changes into 8Ah or 90h at audio video format detection initial time automatically according to CH1 video detection status.

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Γ	0x0E9	CKLM		YDLY		0	0	0	0

CKLM

Color Killer mode.

0 Normal (Default)

1 Fast (For special application)

TDLY

Luma delay fine adjustment. This 2's complement number provides –4 to +3 unit delay control (Default 3h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0EA	0	0	ADECRST	0	VDEC4RST	VDEC3RST	VDEC2RST	VDEC1RST

ADECRST A 1 written to this bit resets the audio portion to its default state but all register content remains unchanged. This bit is self-cleared.

VDECnRST A 1 written to this bit resets the VINn path Video Decoder portion to its default state but all register content remain unchanged. This bit is self cleared.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0EB		MISSCNT				HS	WIN	

MISSCNTThese bits set the threshold for horizontal sync miss count
threshold (Default 4h)HSWINThese bits determine the VCR mode detection threshold (Default

 4h)

 Address
 [7]
 [6]
 [5]
 [4]
 [3]
 [2]
 [1]
 [0]

PCLAMP

PCLAMP These bits set t

These bits set the clamping position from the PLL sync edge (Default 2Ah)

Ox0EC

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0ED	VLO	CKI	VLC	СКО	VMODE	DETV	AFLD	VINT	
VLCKI			Vertica 0 : 3	:					
			Vertica 0 : 3						
	VMODE		 This bit controls the vertical detection window 1 Search mode 0 Vertical countdown mode (Default) 						
	DETV		1 0		ended for sp sync logic (E		cation only		
	AFLD		Auto fi O 1						
VINT			Vertica 1 0						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0EE		BSHT				VSHT			

BSHT	Burst PLL center frequency control (Default Oh)
VSHT	Vsync output delay control in the increment of half line length (Default Oh)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0EF	CKILLMAX				CKIL	LMIN		

CKILLMAX	These bits control the amount of color killer hysteresis. The
	hysteresis amount is proportional to the value (Default 1h)

CKILLMIN These bits control the color killer threshold. Larger value gives lower killer level (Default 28h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0F0	COMBMD		HTL			v	ΓL	

COMBMD	0 Adaptive mode (Default)1 Fixed comb
HTL	Adaptive Comb filter threshold control 1 (Default 4h)
VTL	Adaptive Comb filter threshold control 2 (Default Ch)

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ľ	0x0F1	HPLC	EVCNT	PALC	SDET	0	BYPASS	0	0

HPLC	Reserved for internal use (Default 0)				
EVCNT	 Even field counter in special mode Normal operation (Default) 				
PALC	Reserved for future use (Default 0)				
SDET	ID detection sensitivity. A '1' is recommended (Default 1)				
BYPASS	It controls the standard detection and should be set to '1' in normal use (Default 1) $% \left(1-\frac{1}{2}\right) =0$				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0F2	Н	PM	A	ACCT SPM			CI	ЗW
	НРМ		0 1 2 3	ntal PLL acc Normal Auto2 Auto1 (De Fast me constan No ACC Slow	fault)	ie.		
	SPM		2 Medium (Default) 3 Fast Burst PLL control 0 Slowest 1 Slow (Default) 2 Fast 3 Fastest					
	CBW		Chrom (Defau	a low pass t It 1)	filter bandw	ridth control	l. Refer to f	ilter curves

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0F3	NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST
	NKILL		1	Enable no (Default)	isy signal co	olor killer fu	Inction in N	ISC mode
			0	Disabled				
	PKILL		1 0	Enable au (Default) Disabled	tomatic noi	sy color kill	er function	in PAL mode
	SKILL		1		itomatic noi	sy color kill	er function	in SECAM
			0	Mode (De Disabled	fault)			
	CBAL		0 1		utput (Defau utput mode.			
	FCS		1 0	Force dec Disabled (value dete	rmined by C	CS
	LCS		1	when vide	eo loss is de		alue indicate	ed by CCS
			0	Disabled ((Default)			
	CCS				two colors o		ition is dete be selected	cted when L
	BST		1 0	Enable bli Disabled (

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x0F4	0	0		MONITOR							
0x0F5				HREF*							

These registers are for test purpose only. The MONITOR is used to select the HREF status of a certain video decoder port in Reg0x0F5 HREF

MONITOR Value

Select video decoder port for register 0x0F5

- 00h VINO Video Decoder Path HREF[9:2] value
- 10h VIN1 Video Decoder Path HREF[9:2] value
- 20h VIN2 Video Decoder Path HREF[9:2] value
- 30h VIN3 Video Decoder Path HREF[9:2] value

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0F6	0		CVSTD1*		CVFMT1					
0x0F7	0		CVSTD2*		CVFMT2					
0x0F8	0		CVSTD3*		CVFMT3					
0x0F9	0		CVSTD4*			CVF	MT4			

CVSTDn CVFMTn

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxOFA	ID)	X1	NSEN1/SSEN1/PSEN1/WKTH1							
0x0FB	ID)	X2	NSEN2/SSEN2/PSEN2/WKTH2							
OxOFC	ID)	X3		NSEN3/SSEN3/PSEN3/WKTH3						
0x0FD	ID)	X4	NSEN4/SSEN4/PSEN4/WKTH4							

NSENn/SSENn/PSENn/WKTHn shared the same 6 bits in the register. IDXn is used to select which of the four parameters is being controlled. The write sequence is a two steps process unless the same register is written. A write of {ID,000000} selects one of the four registers to be written. A subsequent write will actually write into the register. (Default 0h)

 IDXn
 0
 Controls the NTSC color carrier detection sensitivity (NSENn) (Default 1Ah)

 1
 Controls the SECAM ID detection sensitivity (SSENn) (Default 20h)

 2
 Controls the PAL ID detection sensitivity (PSENn) (Default 1Ch)

3 Controls the weak signal detection sensitivity (WKTHn) (Default 2Ah)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0FE			DEV_ID *			REV_ID *				
	* Read or	Read only								
	DEV_ID	DEV_ID The TW2851 product ID code is 01000								
	REV_ID		The rev	ision numb/	er is Oh					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x340		VDLOS	IS_TH1		VDLOSS_TH0				
0x341		VDLOS	IS_TH3			VDLOS	S_TH2		

VDLOSS_THn	Adjust the video loss signal presented to the backend modules
	from video decoder 0, 1, 2, and 3.
	0 The backend video loss signal is the same as the video

- Ine backend video loss signal is the same as the video decoder video loss signal.
- 1 14 The backend video loss signal is asserted only when video decoder video loss signal is asserted for more than VDLOSS_THx fields.
- 15 The backend video loss signal is never asserted regardless of the Video decoder video loss signal.

INTERNAL PATTERN GENERATOR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x303	0	1	PTRN_LIM_656	PTRN_SMALL	PTRN_	CHIP_ID	PTRN_PAL	PTRN_EN			
	PTRN_LIN	M_656									
	PTRN_SM	1ALL	Interna only	Internal pattern generator generates small frame. For simulation only							
	PTRN_CH	IIP_ID	Specify	Specify the chip ID of this chip							
	PTRN_PA	L	1 0	-	-	rator genera rator genera					
	PTRN_EN	l		deo decode Enable the	-		ace the vide	o stream			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x304	0	0	0	0		PTRN_VID	DEO_LOSS	

PTRN_VIDEO_LOSS

Generate the video loss signal from the internal pattern generator

- 1 Video Loss
- 0 Video detected

NOISE REDUCTION

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x305	0	BP_NR_2S	BP_NR_2Y	BP_NR_2X	0	BP_NR_1S	BP_NR_1Y	BP_NR_1X
0x306	0	BP_NR_4S	BP_NR_4Y	BP_NR_4X	0	BP_NR_3S	BP_NR_3Y	BP_NR_3X
	BP_NF	R_nX	Bypass 1 0	s the noise i Bypass Do not b		display pat	h for port n	
	BP_NF	R_nY	Bypass 1 0	s the noise i Bypass Do not b		record patl	n for port n	
	BP_NF	₹_nS	Bypass 1 0	s the noise i Bypass Do not b		SPOT path	for port n	
dress	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ľ	0x350	NR2_SML_THD	NR2_FR2	NR2_FR1	NR2_FR0	NR1_SML_THD	NR1_FR2	NR1_FR1	NR1_FR0
	0x351	NR4_SML_THD	NR4_FR2	NR4_FR1	NR4_FR0	NR3_SML_THD	NR3_FR2	NR3_FR1	NR3_FR0

NRn_FR0	Force port n noise reduction to level 0 – Disable noise reduction
NRn_FR1	Force port n noise reduction to level 1 – weak
NRn_FR2	Force port n noise reduction to level 2 – strong
NRn_SML_THD	Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x352	0	0	0	0	NR4_RST_DET	NR3_RST_DET	NR2_RST_DET	NR1_RST_DET

NRn_RST_DET

Reset the noise reduction detection for port n

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x356		NR_DET_	OUT_THD				NR_DET_	REF_VAR
	NR_D	ET_OUT_THE	D Defai	ult 6				

NR_DET_REF_VAR Default 1

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x357		NR_DET_NOISE_1L											
0x358		NR_DET_NOISE_1H											
0x359		NR_DET_NOISE_2L											
0x35A		NR_DET_NOISE_2H											
0x35B				NR_DET_	NOISE_CL								
0x35C				NR_DET_	NOISE_CH								
0x35D		NR_DET_SKIP_L											
0x35E				NR_DET	_SKIP_H								

NR_DET_NOISE_1L	Lower bound of pixel distance for noise level 1 Default: 3
NR_DET_NOISE_1H	Higher bound of pixel distance for noise level 1 Default: 10
NR_DET_NOISE_2L	Lower bound of pixel distance for noise level 2 Default: 5
NR_DET_NOISE_2H	Higher bound of pixel distance for noise level 2 Default: 15
NR_DET_NOISE_CL	Lower bound of pixel distance for chroma noise level Default: 4
NR_DET_NOISE_CH	Higher bound of pixel distance for chroma noise level Default: 10
NR_DET_SKIP_L	Pixels with value below this threshold will not be processed Default: 25
NR_DET_SKIP_H	Pixels with value above this threshold will not be processed Default: 240

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x35F	NRDET4_LVL*		NRDET	3_LVL*	NRDET2_LVL*		NRDET	NRDET1_LVL*	

*Read only

NRDETn_LVL

Detected noise level for channel n

- 0 Disable noise
- 1 Weak noise reduction
- 2 Strong noise reduction

DOWNSCALER

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x301	0	BP_SCL_2S	BP_SCL_2Y	BP_SCL_2X	0	BP_SCL_1S	BP_SCL_1Y	BP_SCL_1X	
0x302	0	BP_SCL_4S	BP_SCL_4Y	BP_SCL_4X	0	BP_SCL_3S	BP_SCL_3Y	BP_SCL_3X	
	BP_SCL_i	١X	Bypass the down scaler of display path for port n 1 Bypass 0 Do not bypass						
	BP_SCL_nY			the down s Bypass Do not by		ord path fo	r port n		
	BP_SCL_i	ıS	Bypass 1 0	the down s Bypass Do not by		OT path for	port n		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x380			HSCL_DISP_TARG_1							
0x390			HSCL_DISP_TARG_2							
0x3A0			HSCL_DISP_TARG_3							
0x3B0			HSCL_DISP_TARG_4							

HSCL_DISP_TARG_n The display down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x381				VSCL_DISP_TARG_1							
0x391			VSCL_DISP_TARG_2								
0x3A1			VSCL_DISP_TARG_3								
0x3B1					VSCL_DIS	P_TARG_4					

VSCL_DISP_TARG_n The display down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x382			HSCL_REC_TARG_1							
0x392			HSCL_REC_TARG_2							
0x3A2			HSCL_REC_TARG_3							
0x3B2			HSCL_REC_TARG_4							

HSCL_REC_TARG_n

The record down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x383			VSCL_REC_TARG_1							
0x393			VSCL_REC_TARG_2							
0x3A3			VSCL_REC_TARG_3							
0x3B3			VSCL_REC_TARG_4							

VSCL_REC_TARG_n The record down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x384				HSCL_SPOT_TARG_1								
0x394			HSCL_SPOT_TARG_2									
0x3A4				HSCL_SPOT_TARG_3								
0x3B4				HSCL_SPOT_TARG_4								

HSCL_SPOT_TARG_n The SPOT down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x385				VSCL_SPOT_TARG_1						
0x395				VSCL_SPOT_TARG_2						
0x3A5				VSCL_SPOT_TARG_3						
0x3B5					VSCL_SPO	T_TARG_4				

VSCL_SPOT_TARG_n The SPOT down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x387				HSCL_DISP_SRC_1						
0x397				HSCL_DISP_SRC_2						
0x3A7				HSCL_DISP_ SRC _3						
0x3B7					HSCL_DIS	P_SRC_4				

HSCL_DISP_SRC_n The display down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x388				VSCL_DISP_SRC_1						
0x398					VSCL_DIS	P_SRC_2				
0x3A8				VSCL_DISP_SRC_3						
0x3B8				VSCL_DISP_SRC_4						

VSCL_DISP_SRC_n

The display down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x389			HSCL_REC_SRC_1							
0x399			HSCL_REC_SRC_2							
0x3A9				HSCL_REC_SRC_3						
0x3B9					HSCL_RE	C_SRC_4				

HSCL_REC_SRC_n The record down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38A				VSCL_REC_SRC_1						
0x39A				VSCL_REC_SRC_2						
0x3AA				VSCL_REC_SRC_3						
0x3BA					VSCL_REC	C_SRC_4				

VSCL_REC_SRC_n The record down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38B				HSCL_SPOT_SRC_1						
0x39B				HSCL_SPOT_SRC_2						
0x3AB				HSCL_SPOT_SRC_3						
0x3BB					HSCL_SPC	T_SRC_4				

HSCL_SPOT_SRC_n The SPOT down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38C				VSCL_SPOT_SRC_1						
0x39C				VSCL_SPOT_SRC_2						
0x3AC				VSCL_SPOT_SRC_3						
0x3BC					VSCL_SPC	T_SRC_4				

VSCL_SPOT_SRC_n The SPOT down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x386						FLDPOL_1S	FLDPOL_1Y	FLDPOL_1X
0x396						FLDPOL_2S	FLDPOL_2Y	FLDPOL_2X
0x3A6						FLDPOL_3S	FLDPOL_3Y	FLDPOL_3X
0x3B6						FLDPOL_4S	FLDPOL_4Y	FLDPOL_4X

FLDPOL_nX	The display downscaler field polarity control for port n
FLDPOL_nY	The record downscaler field polarity control for port n
FLDPOL_nS	The SPOT downscaler field polarity control for port n

MOTION / BLIND / NIGHT DETECTION

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x616	MD3_MA	MD3_MASK_SEL		ASK_SEL	MD1_M/	ASK_SEL	MD0_MASK_SEL	

MDn_MASK_SEL Decide the read out of M

Decide the read out of MD_MASKS in $0x690 \sim 0x6EF$

- 0 Read the detected motion of port n VINA
- 1 Read the detected motion of port n VINB
- 2 Read the mask of port n VINA
- 3 Read the mask of port n VINB

MDn_MASK_SEL also decide the write MD_MASKS in 0x690 \sim 0x6EF

- 0 Write the mask for port n VINA
- 1 Write the mask for port n VINB

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x617		I	VID_BASE_ADDR[4:0					
0x618							_ADDR[8:5]	

MD_BASE_ADDR The base address of the motion detection buffer. This address is in unit of 64K bytes. The generated DDR address will be {MD_BASE_ADDR, 16'h0000}. The default value should be 9'h0CF

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x619							MD_PALNT	MD_TEST_EN
	MD_PA	LNT			ecoder PAL x020, and (be pull fror e fixed)	n bit 0 of

MD_TEST_EN Enable test pattern (not implemented)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x61A			MD_DIS	MD_DUAL_EN	MD_STRB	MD_STRB_EN	BD_CE	LISENS	
0x61B		MD_TN	IPSENS			MD_PI	KEL_OS		
0x61C	MD_REFFLD	MD_I	FIELD		MD_LVSENS				
0x61D	MD_CE	LSENS			MD_SPEED				
0x61E		MD_S	PSENS		BD_LVSENS				
0x61F		ND_TN	IPSENS		ND_LVSENS				

Register 0x61A ~ 0x61F are used to control the motion detection of 8 inputs (A / B inputs of 4 video decoders). In order to select the specific input to control, set the corresponding bit of MDCH_SEL in 0x676.

Disable	the motion and blind detection.
0	Enable motion and blind detection (default)
1	Disable motion and blind detection
Enable	pseudo 8 channel for motion detection
Reques	t to start motion detection on manual trigger mode
0	None Operation (default)
1	Request to start motion detection
Select t	he trigger mode of motion detection
0	Automatic trigger mode of motion detection (default)
1	Manual trigger mode for motion detection
0	the threshold of cell for blind detection. Low threshold (More sensitive) (default)
3	High threshold (Less sensitive)
Control	the temporal sensitivity of motion detector.
0	More Sensitive (default)
15	Less Sensitive
Adjust t	the horizontal starting position for motion detection
0	O pixel (default)
:	:
15	15 pixels
Control	the updating time of reference field for motion detection.
O	Update reference field every field (default)
1	Update reference field according to MD_SPEED
Select t	he field for motion detection.
0	Detecting motion for only odd field (default)
1	Detecting motion for only even field
2	Detecting motion for any field
3	Detecting motion for both odd and even field
Control	the level sensitivity of motion detector.
0	More sensitive (default)
:	:
31	Less sensitive
	the threshold of sub-cell number for motion detection.
	0 1 Enable Reques 0 1 Select t 0 1 Define t 0 1 Select t 0 Select t 0 Select t 0 Select t 3 Select t 0 Select t 3 Select t 0 Select t 3 Select t Select

	0 1 2 3 sensitiv	Motion is detected if 1 sub-cell has motion (More sensitive) (default) Motion is detected if 2 sub-cells have motion Motion is detected if 3 sub-cells have motion Motion is detected if 4 sub-cells have motion (Less re)
MD_SPEED	Large v	the velocity of motion detector. alue is suitable for slow motion detection. DUAL_EN = 1, MD_SPEED should be limited to 0 ~ 31. 1 field intervals (default) 2 field intervals : 62 field intervals 63 field intervals Not supported
MD_SPSENS	Control 0 : 15	the spatial sensitivity of motion detector. More Sensitive (default) : Less Sensitive
BD_LVSENS	Define 0 : 15	the threshold of level for blind detection. Low threshold (More sensitive) (default) : High threshold (Less sensitive)
ND_TMPSENS	Define 0 : 15	the threshold of temporal sensitivity for night detection. Low threshold (More sensitive) (default) : High threshold (Less sensitive)
ND_LVSENS	Define 0 : 15	the threshold of level for night detection. Low threshold (More sensitive) (default) : High threshold (Less sensitive)

0			onding input									
Address	[7]	[7] [6] [5] [4] [3] [2]										
0x690		MD0_MASK0[7:0]										
0x691				MD0_MA	SK0[15:8]							
0x692				MD0_MA	SK1[7:0]							
0x693				MD0_MA	SK1[15:8]							
0x694				MD0_MA	SK2[7:0]							
0x695				MD0_MA	SK2[15:8]							
0x696				MD0_MA	ASK3[7:0]							
0x697				MD0_MA	SK3[15:8]							
0x698		MD0_MASK4[7:0]										
0x699				MD0_MA	SK4[15:8]							

Registers $0x690 \sim 0x6EF$ are used to control the motion detection mask of input A / B of each video decoder. To access the corresponding inputs, set the corresponding MDn_MASK_SEL in 0x616.

MD0_MASK5[7:0]

MD0_MASK5[15:8]

MD0_MASK6[7:0]

MD0_MASK6[15:8]

MD0_MASK7[7:0]

MD0_MASK7[15:8]

MD0_MASK8[7:0]

MD0_MASK8[15:8]

MD0_MASK9[7:0]

MD0_MASK9[15:8]

MD0_MASK10[7:0]

MD0_MASK10[15:8]

MD0_MASK11[7:0]

MD0_MASK11[15:8]

[1]

[0]

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x6A8	MD1_MASK0[7:0]												
0x6A9	MD1_MASK0[15:8]												
0x6AA		MD1_MASK1[7:0]											
0x6AB				MD1_MA	SK1[15:8]								
0x6AC				MD1_MA	ASK2[7:0]								
0x6AD				MD1_MA	SK2[15:8]								
0x6AE				MD1_MA	ASK3[7:0]								
0x6AF				MD1_MA	SK3[15:8]								
0x6B0				MD1_MA	ASK4[7:0]								
0x6B1				MD1_MA	SK4[15:8]								
0x6B2				MD1_MA	ASK5[7:0]								
0x6B3				MD1_MA	SK5[15:8]								
0x6B4				MD1_M/	ASK6[7:0]								
0x6B5				MD1_MA	SK6[15:8]								
0x6B6				MD1_M/	ASK7[7:0]								
0x6B7				MD1_MA	SK7[15:8]								
0x6B8				MD1_M/	ASK8[7:0]								
0x6B9				MD1_MA	SK8[15:8]								
0x6BA				MD1_M/	ASK9[7:0]								
0x6BB				MD1_MA	SK9[15:8]								
Ox6BC				MD1_MA	SK10[7:0]								
0x6BD				MD1_MAS	SK10[15:8]								
0x6BE				MD1_MA	SK11[7:0]								

TW2851

0x69A

0x69B

0x69C

0x69D

0x69E

0x69F

0x6A0

0x6A1

0x6A2

0x6A3

0x6A4

0x6A5

0x6A6

0x6A7

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x6BF		MD1_MASK11[15:8]									

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x6C0		MD2_MASK0[7:0]											
0x6C1				MD2_MA	SK0[15:8]								
0x6C2		MD2_MASK1[7:0]											
0x6C3				MD2_MA	SK1[15:8]								
0x6C4				MD2_MA	ASK2[7:0]								
0x6C5				MD2_MA	SK2[15:8]								
0x6C6				MD2_MA	ASK3[7:0]								
0x6C7				MD2_MA	SK3[15:8]								
0x6C8				MD2_MA	ASK4[7:0]								
0x6C9				MD2_MA	SK4[15:8]								
0x6CA				MD2_MA	ASK5[7:0]								
0x6CB				MD2_MA	SK5[15:8]								
0x6CC				MD2_MA	ASK6[7:0]								
0x6CD				MD2_MA	SK6[15:8]								
0x6CE				MD2_MA	ASK7[7:0]								
0x6CF				MD2_MA	SK7[15:8]								
0x6D0				MD2_MA	ASK8[7:0]								
0x6D1				MD2_MA	SK8[15:8]								
0x6D2				MD2_MA	ASK9[7:0]								
0x6D3				MD2_MA	SK9[15:8]								
0x6D4		MD2_MASK10[7:0]											
0x6D5				MD2_MAS	SK10[15:8]								
0x6D6		MD2_MASK11[7:0]											
0x6D7				MD2_MAS	SK11[15:8]								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x6D8		MD3_MASK0[7:0]											
0x6D9	MD3_MASK0[15:8]												
0x6DA		MD3_MASK1[7:0]											
0x6DB				MD3_MA	SK1[15:8]								
0x6DC				MD3_M/	ASK2[7:0]								
0x6DD				MD3_MA	SK2[15:8]								
0x6DE				MD3_M/	ASK3[7:0]								
0x6DF				MD3_MA	SK3[15:8]								
0x6E0				MD3_M/	ASK4[7:0]								
0x6E1				MD3_MA	SK4[15:8]								
0x6E2				MD3_M/	ASK5[7:0]								
0x6E3				MD3_MA	SK5[15:8]								
0x6E4				MD3_M/	ASK6[7:0]								
0x6E5				MD3_MA	SK6[15:8]								
0x6E6				MD3_M/	ASK7[7:0]								
0x6E7				MD3_MA	SK7[15:8]								
0x6E8				MD3_M/	ASK8[7:0]								
0x6E9				MD3_MA	SK8[15:8]								
0x6EA				MD3_M/	ASK9[7:0]								
0x6EB		MD3_MASK9[15:8]											
Ox6EC				MD3_MA	SK10[7:0]								

0	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x6ED				MD3_MA	SK10[15:8]				
0x6EE 0x6EF					SK11[7:0] SK11[15:8]				
	MDx_M/	ASK	Define the motion Mask/Detection cell for VIN x. MD_MASK[1 right end and MD_MASK[0] is left end of column.						
			In writing mode 0 Non-masking cell for motion detection (default) 1 Masking cell for motion detection						
			In rea 0 1	Motion i	when MDn_ s not detect s detected f	ed for cell	. = "0"		
			In rea O 1		when MDn_ sked cell cell	MASK_SEL	. = "1"		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x6F0						MD_STI	RB_DET*		
	MD_STF	RBn	1		be has been	-			
Addross	_		0	MD stro	be has not y	et been per	formed at o	channel n	
Address	[7]	[6]	0 [5]	MD stro [4]	be has not y [3]	et been per [2]	formed at o	[0]	
Address 0x6F1 0x6F2	_		0	MD stro	be has not y	et been per	formed at o	channel n	
0x6F1	[7] NOVID_DET_0B*	[6] MD_DET_0B*	0 [5] BD_DET_08*	MD stro [4] ND_DET_0B*	[3] NOVID_DET_0A*	[2] MD_DET_0A*	formed at o [1] BD_DET_OA*	[0] ND_DET_0A*	
0x6F1 0x6F2	[7] NOVID_DET_08* NOVID_DET_18*	[6] MD_DET_0B* MD_DET_1B*	0 [5] BD_DET_08* BD_DET_18*	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A*	[2] MD_DET_0A* MD_DET_1A*	formed at ([1] BD_DET_0A* BD_DET_1A*	[0] ND_DET_0A* ND_DET_1A*	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read c	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* only bits	0 ED_DET_08* BD_DET_18* BD_DET_28* BD_DET_38*	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A*	Et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_1A* MD_DET_3A*	formed at ([1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A*	[0] ND_DET_0A* ND_DET_1A* ND_DET_2A* ND_DET_3A*	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read C NOVID_I	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B*	0 ED_DET_08* BD_DET_18* BD_DET_28* BD_DET_38* NO_V	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A*	(2) MD_DET_0A* MD_DET_1A* MD_DET_1A* MD_DET_3A* rt m, analo	formed at ([1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (re	IO] ND_DET_0A* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only)	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read C NOVID_I	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* only bits DET_mA DET_mB	0 [5] BD_DET_08* BD_DET_18* BD_DET_28* BD_DET_38* NO_V NO_V	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A*	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analo, rt m, analo,	formed at ([1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (re g path B (re	IO] ND_DET_OA* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only) ad only)	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read c NOVID_I NOVID_I	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* Only bits DET_mA DET_mB [_mA	0 [5] BD_DET_08* BD_DET_18* BD_DET_28* BD_DET_38* NO_V NO_V Motic	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A* exted from po exted from po	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analog rt m, analog pa	formed at ([1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (re g path B (re ath A (read	IO] ND_DET_OA* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only) ad only) only)	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read C NOVID_I NOVID_I NOVID_I MD_DET	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* only bits DET_mA DET_mB [_mB	0 [5] BD_DET_08* BD_DET_18* BD_DET_28* BD_DET_38* NO_V NO_V NO_V Motic	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A* Sted from po cted from port n	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analog rt m, analog pa n, analog pa	formed at o [1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (read g path B (read ath B (read	IO] ND_DET_0A* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only) ad only) only)	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read c NOVID_1 NOVID_1 MD_DET MD_DET BD_DET BD_DET	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* only bits DET_mA DET_mB f_mB f_mA f_mB	0 [5] BD_DET_0B* BD_DET_1B* BD_DET_2B* BD_DET_3B* NO_V NO_V NO_V Motic Blind Blind	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A* etted from poot cted from port n from port n, rom port m, rom port m,	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analog rt m, analog path analog path analog path	formed at o [1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (read g path B (read ath B (read or h B (read or h B (read or	(0) ND_DET_0A* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only) ad only) ad only) only)	
0x6F1 0x6F2 0x6F3	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* *Read C NOVID_I NOVID_I MD_DET MD_DET BD_DET BD_DET ND_DET	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* Only bits DET_mA DET_mB [_mA [_mB mA mB	0 [5] BD_DET_0B* BD_DET_1B* BD_DET_2B* BD_DET_3B* NO_V NO_V NO_V Motic Blind Blind Night	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A* cted from po cted from port n from port n, rom port m, rom port m, rom port m,	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analog rt m, analog pat n, analog pat analog pat analog pat	formed at o [1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (re g path B (re ath A (read ath B (read or h A (read or h A (read or h A (read or h A (read or	(0) ND_DET_0A* ND_DET_1A* ND_DET_2A* ND_DET_3A* ad only) ad only) ad only) only)	
0x6F1 0x6F3 0x6F4	[7] NOVID_DET_0B* NOVID_DET_1B* NOVID_DET_2B* NOVID_DET_3B* *Read c NOVID_1 NOVID_1 MD_DET MD_DET BD_DET BD_DET	[6] MD_DET_0B* MD_DET_1B* MD_DET_2B* MD_DET_3B* only bits DET_mA DET_mB [_mA mB mA mB	0 [5] BD_DET_0B* BD_DET_1B* BD_DET_2B* BD_DET_3B* NO_V NO_V NO_V Motic Blind Blind Night	MD stro	[3] NOVID_DET_0A* NOVID_DET_1A* NOVID_DET_2A* NOVID_DET_3A* etted from poot cted from port n from port n, rom port m, rom port m,	et been per [2] MD_DET_0A* MD_DET_1A* MD_DET_2A* MD_DET_3A* rt m, analog rt m, analog pat n, analog pat analog pat analog pat	formed at o [1] BD_DET_0A* BD_DET_1A* BD_DET_2A* BD_DET_3A* g path A (re g path B (re ath A (read ath B (read or h A (read or h A (read or h A (read or h A (read or	inly)	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

0x100	0	0	LIM_PB _656	656_PB_EC _BYPASS	PB_CH_NO_VIDEO*				
	* Read or	nly							
	LIM_PB_6	656	Specify 1 0	maximum	ing mode for PB input data at BT 656 mode 1 235, minimum 16 1 254, minimum 1				
	656_PB_	EC_BYPASS	Bypass 1 0 wrong	0 Do not bypass error correction when the parity check					
	PB_CH_N	O_VIDEO[n]	NO_VII	DEO Status	of Playback channel n (Read Only)				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x101	PB_PORT_SEL3*		PB_PORT_SEL2*		PB_PORT_SEL1*		PB_PORT_SEL0*	

* Read only

PB_PORT_SELn The playback channel n mux selection of the physical playback input port number (read only) 0 Channel n has input from Playback port 0 1

- Channel n has input from Playback port 1
- 2 Channel n has input from Playback port 2
- 3 Channel n has input from Playback port 3

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x102	PB1_VS_ POL	PB1_HS_ POL	PB1_TYPE	PB0_ WIDTH	PB0_VS_ POL	PB0_HS_ POL	PB0_	TYPE	
	PB1_VS_P(DL	Playbac 1 0	Reverse t	SYNC signa he polarity verse the p		ontrol		
	PB1_HS_POL PB1_TYPE		Playback Port 1 HSYNC signal polarity control 1 Reverse the polarity 0 Do not reverse the polarity						
	PB1_TYPE		Playback Port Type Control 1 – Refer to Table 3 for PB1, setting associated with PB0_TYPE 0 BT 656 mode 1 BT 601 mode						
	PB0_WIDTH		Playback Port 0 Data Width when used as component inpu(PB0_TYPE == 2'b11)124 bits (R/V at PB2[7:0], G/Y at PB1[7:0], B/V at PE016 bit mode (R/V at {PB1[1:0], PB0[7:5]}, G/Y at PE						
	PB0_VS_P	DL		Reverse t	SYNC signa he polarity verse the p		ontrol		
	PB0_HS_P	Playback Port 0 HSYNC signal polarity control 1 Reverse the polarity 0 Do not reverse the polarity							
	PB0_TYPE			Playback Port Type Control 0 - Refer to Table 3 for PB0_1setting associated with PB1_TYPE0BT 6561BT 6012BT 11203Component (RGB/YUV) input					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x103	PB0_PROG	PB0_RGB	PB_FLD	_DET_MD		PB_FL	.D_POL			
	PB0_PR0(G	Port PB 1 0	here a						
	PB0_RGB		 Input is in RGB format Input is in YUV format 							
	PB_FLD_D	 PB_FLD_DET_MODE[m] LD Detection Mode when input port is 601 format for Port m Field ID is derived by sample the HSYNC signal leading edge of VSYNC Field ID is derived by checking the distance between leading edge of HSYNC and VSYNC. If the distance is larger than the VS_HS_LAG_TH specified in register 0x104 or 0x105, then this video field is an odd field. Otherwise it is even field. 								
	PB_FLD_P	OL[m]	Field Po 1 0	· · · · · · · · · · · · · · · · · · ·						
Addrees	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x104		PB0_VS_HS_LAG_TH							
0x105				PB1_VS_H	S_LAG_TH				

PB_VS_HS_LAG_THUse the VS to HS distance to determine the field ID. When this
distance is larger than this threshold, it is odd field (field ID = 1'b0).
Else it is even field (field ID = 1'b1). Used 8'hFF when
PB_FLD_DET_MODE in 0x103 is set to 0.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x106				PB0_HA	_ST[7:0]			
0x107				PB0_HA_LE	ENGTH[7:0]			
0x108	0	PB0_	HA_LENGTH[10:8]	0	PI	B0_HA_ST[10:	8]

PB0_HA_ST Specify the starting pixel of each line if PB port 0 is in BT 601 mode

PB0_HA_LEN Specify the horizontal active length if PB port 0 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x109		PB0_VA1_ST[7:0]							
0x10A		PB0_VA2_ST[7:0]							
0x10B				PB0_VA	LEN[7:0]				
0x10C	0	0	PB0_VA_	LEN[9:8]	PB0_VA2	_ST[9:8]	PB0_VA1	L_ST[9:8]	

PB0_VAx_ST Specify the starting line if PB port 0 is in BT 601 mode PB0_VA1_ST: The starting line of even field PB0_VA2_ST: The starting line of odd field

PB0_VA_LEN Specify the vertical active length if PB port 0 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x10D		PB1_HA_ST[7:0]							
0x10E				PB1_HA_	LEN[7:0]				
0x10F	0	PB	1_HA_LEN[10	:8]	0	P	B1_HA_ST[10:	8]	

PB1_HA_ST Specify the starting pixel of each line if PB port 1 is in BT 601 mode

PB1_HA_LEN Specify the horizontal active length if PB port 1 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x110		PB1_VA1_ST[7:0]								
0x111		PB1_VA2_ST[7:0]								
0x112		PB1_VA_LEN[7:0]								
0x113	0	0 0 PB1_VA_LEN[9:8] PB1_VA2_ST[9:8] PB1_VA1_ST[9:8]								

PB1_VAx_STSpecify the starting line if PB port 1 is in BT 601 modePB1_VA1_ST: The starting line of even fieldPB1_VA2_ST: The starting line of odd field

PB1_VA_LEN Specify the vertical active length if PB port1 is in BT 601 mode

CHID DECODE / STROBE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x120		PB0_MAN	_STRB_EN			PB0_MAN	_PIC_TYPE		
0x130		PB1_MAN	_STRB_EN			PB1_MAN_PIC_TYPE			
0x140		PB2_MAN	_STRB_EN		PB2_MAN_PIC_TYPE				
0x150		PB3_MAN	_STRB_EN			PB3_MAN	_PIC_TYPE		

Enable manual strobe mode for PB port m PBm_MAN_STRB_EN

1 Enable 0

Disable

PBm_MAN_PIC_TYPE Specify the picture type used in manual strobe mode for PB port m

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x121		PB0_MAN	V_CH1_ID			[2] [1] [0] PB0_MAN_CH0_ID PB0_MAN_CH2_ID PB1_MAN_CH0_ID PB1_MAN_CH2_ID PB2_MAN_CH0_ID PB2_MAN_CH0_ID PB2_MAN_CH0_ID PB3_MAN_CH0_ID				
0x122		PB0_MAN	V_CH3_ID			PB0_MAN_CH2_ID				
0x131		PB1_MAN	V_CH1_ID			PB1_MA	N_CH0_ID			
0x132		PB1_MAN	N_CH3_ID			PB1_MAN_CH2_ID				
0x141		PB2_MAN	N_CH1_ID		PB2_MAN_CH0_ID					
0x142		PB2_MAN	N_CH3_ID			PB2_MA	N_CH2_ID			
0x151		PB3_MAN	N_CH1_ID		PB3_MAN_CH0_ID					
0x152		PB3_MAN	N_CH3_ID			PB3_MA	N_CH2_ID			

PBm_MAN_CHn_ID

Specify the channel ID to be used at PB port m channel n in Manual Strobe mode

PBm_MAN_CHn_ID[3:2] chip ID PBm_MAN_CHn_ID[1:0] channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x123	0	PB0_AUT0_STRB_EN	PB0_FORCE_LIVE	PB0_MAN_STRB_FLD		PB0_M	AN_ANA	
0x133	0	PB1_AUTO_STRB_EN	PB1_FORCE_LIVE	PB1_MAN_STRB_FLD		PB1_M	AN_ANA	
0x143	0		PB2_FORCE_LIVE	PB2_MAN_STRB_FLD		PB2_M	AN_ANA	
0x153	0		PB3_FORCE_LIVE	PB3_MAN_STRB_FLD		PB3_M	AN_ANA	

PBm_AUTO_STRB_EN

Enable playback port m automatic strobe using the channel ID embedded in the VBI. Only PBO and PB1 has channel ID decoder. PB2 and PB3 do not support audio CHID.

- 1 Enable to use the channel ID embedded in the VBI to strobe. In this mode, the Strobe signal is sent out automatically without CPU issuing a strobe signal.
- 0 Disable: Use the channel ID specified by the register 0x120 ~ 0x122, 0x130 ~ 0x132, 0x140 ~0x142, 0x150 ~ 0x152 to strobe.

PBm_FORCE_LIVE Force the playback to strobe on whatever input video stream.

- 1 When this bit is set to 1, the strobe is always sent out. It will behave like a LIVE input. When this mode is on, the PBm_MAN_PIC_TYPE has to be set to 0x01.
- 0 When this bit is set to 0, the strobe will be sent out only if there is a match if PB_CHNUM with the channel ID from the VBI, or the channel ID specified in the registers in 0x120 ~0x122, 0x130 ~ 0x132, 0x140 ~ 0x142, 0x150 ~ 0x152.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x129		PB0_AUT0_S1	ROBE_CH_EN		PB0_VAC	TIVE[9:8]	PB0_VD	ELAY[9:8]
0x139		PB1_AUTO_STROBE_CH_EN				ACTIVE[9:8] PB1_VDELAY[9:8]		
0x149					PB2_VAC	TIVE[9:8]	PB2_VD	ELAY[9:8]
0x159					PB3_VAC	:TIVE[9:8]	PB3_VDB	ELAY[9:8]

PBn_AUTO_STROBE_CH_EN[m]

Specify whether to turn on the auto strobe for port n, on channels m. Only PBO and PB1 have channel ID decoder. PB2 and PB3 do not support audio CHID.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x12A	0	PB0_CHI	D_FLD_0S	PB0_DID_EN	PB0_AID_EN	PB0_FLT_EN	PB0_RIC_EN	PB0_AUT0_CHID_DET	
0x13A	0	PB1_CHI	D_FLD_0S	PB1_DID_EN	PB1_AID_EN	PB1_FLT_EN	PB1_RIC_EN	PB1_AUTO_CHID_DET	
	PBn	n_CHID_F	LD_0S					relative to odd field	
				2 One line more than odd field 1 Same offset as odd field					
							-		
				0 0	One line less	s than odd r	ieia		
	PBn	n_DID_EN	N	Enable di	gital channe	el ID detect	ion for the I	PB port m	
				1 1	urn on digit	al channel	ID decoding		
				0 Turn off digital channel ID decoding					
	PBn	PBm_AID_EN		Enable the Analog channel ID detection for PB port m					
					urn on anal	-			
				0 Turn off analog channel ID detection					
	PBn	n_RIC_EN	J	Select the	e run-in cloc	k mode for	analog cha	nnel ID	
					Run-in clock				
				0 1	lo run-in clo	ck mode			
	PBn	n_FLT_EN	1		e LPF filter r		ayback inpl	ut	
					Bypass mod				
				1 E	nable the L	PF filter			
	PBn	PBm_AUTO_CHID_DET		Select the port m	e detection	mode of Ar	nalog chanr	nel ID for playback i	
				-	/lanual dete	ction mode	for Analog	channel ID	
								log channel ID	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x12B		CHID_LINE_S				B0_CHID_V_OF				
0x13B		1_CHID_LINE_S		PB1_CHID_V_OFST						
		IID_LINE_SI	ZE		he line wid nanual det	th for Anal	og Channel	ID for playl ITO_CHID_D		
	PBm_CH	IID_V_OFST	Contro 0 : 8 : 31	bl the vertic channel No offset (default)	ID	offset from t	field transit	ion for analo		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x12C		PB0_CHID_H_OFST								
0x13C				PB1_CHI	_H_OFST					

PBm_CHID_H_OFST	Define the horizontal starting offset of analog channel ID in
	manual
	detection mode (PBm_AUTO_CHID_DET = 0)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x12D	0	0	PB0_VAV_CHK PB0_ANA_CHID_BW						
0x13D	0	0	PB1_VAV_CHK		PB1	_ANA_CHID	_BW		
	PBm_VAV_	снк	(defai	e the cha ult)	annel ID	detectio	on for V	eriod 'Bl period I active per	
	PBm_ANA_	CHID_BW	Define the pixe 0 1 pixe :		r each bit	of analo	g channe	ID	
			31 32 pix	kels					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x12E		PB0_CHID_MID_VAL							
0x13E				PB1_CHID	_MID_VAL				

Define the slicer threshold level to detect bit "0" or bit "1" from PBm_CHID_MID_VAL analog channel ID (default 128)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x15F	0	0	0	0	0	0	PB_NO	VID_MD

PB_NOVID_MD

Select the No-Video flag generation mode 0

- Faster 1
 - Fast

2

3

- Slow
- Slower (default)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x160	0	PB_STOP0	PB_HSCL_BYP0	PB_ANA0		PB_CH	INUMO	
0x170	0	PB_STOP1	PB_HSCL_BYP1	PB_ANA1				
0x180	0	0	PB_HSCL_BYP2	PB_ANA2		PB_CH	INUM2	
0x190	0	0	PB_HSCL_BYP3	PB_ANA3		PB_CH	INUM3	

PB_STOPn	 Disable the auto strobe operation for playback channel n 0 Normal Operation (default) 1 Stop the auto strobe operation for playback channel n
PB_ HSCL_BYPn	Bypass the horizontal scaler for playback channel n 0 Normal operation 1 Bypass the horizontal scaler
PB_ANAn	The analog input selection of channel n0Select VINA1Select VINB
PB_CHNUMn	The playback channel ID selection PB_CHNUMn[3:2] CHIP ID PB_CHNUMn[1:0] Port ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x161							PB_2X_EN0	PB_FLD_POL0
0x171							PB_2X_EN1	PB_FLD_POL1
0x181							PB_2X_EN2	PB_FLD_POL2
0x191							PB_2X_EN3	PB_FLD_POL3

PB_2X_ENn Scale up 2X horizontally for PB channel n

PB_FLD_POLn Reverse the field signal polarity of channel n

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A0	PB_STATUS	5_PORT_SEL	P	B_STATUS_TYPE_SE	iL	PB_	STATUS_MOTION_IN	IDEX

PB_STATUS_PORT_SEL

Select the port number from which the status is read back at register 0x1A2 through 0x1AF

- 00 PB port 0
- 01 PB port 1
- 1X Reserved

PB_STATUS_TYPE_SEL

Select the channel ID type of the status read back at register 0x1A8 through 0x1AF

- 000 Auto CHID
- 001 Detection CHID
- 010 User CHID
- 100 Motion ID 0
- 101 Motion ID 1
- 110 Motion ID 2
- 111 Motion ID 3

PB_STATUS_MOTION_INDEX

Select the bit index range of playback motion channel ID read back at 0x1A8 Through 0x1AF

- 000 Motion ID bit [63:0]
- 001 Motion ID bit [127:64]
- 010 Motion ID bit [191:128]

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A1					PB_CH3_AUTO_VLD*	PB_CH2_AUTO_VLD*	PB_CH1_AUTO_VLD*	PB_CH0_AUT0_VLD*

PB_CHn_AUTO_VLD Playback Channel n auto channel ID valid status (read only)

Address	[7] [6]		[5]	[4]	[3]	[2]	[1]	[0]		
0x1A2	DET_CH	ID_VLD*	USR_CH	USR_CHID_VLD* MOTION_CHID_VLD*						
	DET_CH	IID_VLD			annel ID val STATUS_POI					
	USER_C	HID_VLD		The user channel ID valid status of port m, where m is selec By PB_STATUS_PORT_SEL in 0x1A0 (read only)						
	MOTION	I_CHID_VLD			nel ID valid STATUS_POI					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x1A3	PB_CHID_LINE_SIZE_DET*				PB_ANA_CHID_BW_DET				

PB_CHID_LINE_SIZE_DET

The detected VBI line size of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

PB_ANA_CHID_BW_DET

The detected VBI pixel width of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x1A4					PB_PIC_TYPE*				

PB_PIC_TYPE

The detected VBI picture type of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A5	0	0	0	0	PB_CHID_TYPE			

PB_CHID_TYPE

The detected VBI channel ID type of port m, where m is selected By PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x1A8	CHID_STATUS0*								
0x1A9		CHID_STATUS1*							
0x1AA		CHID_STATUS2*							
0x1AB	CHID_STATUS3*								
0x1AC	CHID_STATUS4*								
0x1AD		CHID_STATUS5*							
0x1AE	CHID_STATUS6*								
0x1AF		CHID_STATUS7*							

This set of registers read back the channel ID detected in the VBI. These registers are all Read only. The PB_STATUS_PORT_SEL will select the corresponding playback port status.

PB_STATUS_TYPE_SEL = 0

CHID_STATUS0: AUTO_CHANNEL_ID0 CHID_STATUS1: AUTO_CHANNEL_ID1 CHID_STATUS2: AUTO_CHANNEL_ID2 CHID_STATUS3: AUTO_CHANNEL_ID3 CHID_STATUS4: Bit 7:4: Vertical Location of Channel n Bit 3:0: Horizontal Location of Channel n Bit 3:0: Playback strobe of Channel n Bit 3:0: Playback analog path of Channel n CHID_STATUS6: Bit 7:4: Reserved Bit 3:0: Field Mode of Channel n CHID_STATUS7: Reserved

PB_STATUS_TYPE_SEL = 1

CHID_STATUSO: DET_CHANNEL_ID[7:0] of Chip ID 0 CHID_STATUS1: DET_CHANNEL_ID[15:8] of Chip ID 0 CHID_STATUS2: DET_CHANNEL_ID[7:0] of Chip ID 1 CHID_STATUS3: DET_CHANNEL_ID[15:8] of Chip ID 1 CHID_STATUS4: DET_CHANNEL_ID[7:0] of Chip ID 2 CHID_STATUS5: DET_CHANNEL_ID[15:8] of Chip ID 2 CHID_STATUS6: DET_CHANNEL_ID[7:0] of Chip ID 3 CHID_STATUS7: DET_CHANNEL_ID[15:8] of Chip ID 3

PB_STATUS_TYPE_SEL = 2

CHID_STATUSO: USER_CHANNEL_ID0[7:0] CHID_STATUS1: USER_CHANNEL_ID0[15:8] CHID_STATUS2: USER_CHANNEL_ID1[7:0] CHID_STATUS3: USER_CHANNEL_ID1[15:8] CHID_STATUS4: USER_CHANNEL_ID2[7:0] CHID_STATUS5: USER_CHANNEL_ID2[15:8] CHID_STATUS6: USER_CHANNEL_ID3[7:0] CHID_STATUS7: USER_CHANNEL_ID3[15:8]

PB_STATUS_TYPE_SEL = 4 n is specified by PB_STATUS_MOTION_INDEX CHID_STATUS0: MOTION_CHANNEL_ID0[64*n+7:64*n] CHID_STATUS1: MOTION_CHANNEL_ID0[64*n+15:64*n+8] CHID_STATUS2: MOTION_CHANNEL_ID0[64*n+23:64*n+16] CHID_STATUS3: MOTION_CHANNEL_ID0[64*n+31:64*n+24] CHID_STATUS4: MOTION_CHANNEL_ID0[64*n+39:64*n+32] CHID_STATUS5: MOTION_CHANNEL_ID0[64*n+47:64*n+40] CHID_STATUS6: MOTION_CHANNEL_ID0[64*n+55:64*n+48] CHID_STATUS7: MOTION_CHANNEL_ID0[64*n+63:64*n+56]

PB_STATUS_TYPE_SEL = 5 n is specified by PB_ STATUS_MOTION_INDEX
CHID_STATUSO: MOTION_CHANNEL_ID1[64*n+7:64*n],
CHID_STATUS1: MOTION_CHANNEL_ID1[64*n+15:64*
n+8]
CHID_STATUS2: MOTION_CHANNEL_ID1[64*n+23:64* n+16]
CHID_STATUS3: MOTION_CHANNEL_ID1[64*n+31:64* n+24]
CHID_STATUS4: MOTION_CHANNEL_ID1[64*n+39:64* n+32]
CHID_STATUS5: MOTION_CHANNEL_ID1[64*n+47:64* n+40]
CHID_STATUS6: MOTION_CHANNEL_ID1[64*n+55:64* n+48]
CHID_STATUS7: MOTION_CHANNEL_ID1[64*n+63:64* n+56]
PB_STATUS_TYPE_SEL = 6 n is specified by PB_ STATUS_MOTION_INDEX
CHID_STATUS0: MOTION_CHANNEL_ID2[64*n+7:64*n]
CHID_STATUS1: MOTION_CHANNEL_ID2[64*n+15:64* n+8]
CHID_STATUS2: MOTION_CHANNEL_ID2[64*n+23:64* n+16]
CHID_STATUS3: MOTION_CHANNEL_ID2[64*n+31:64* n+24]
CHID_STATUS4: MOTION_CHANNEL_ID2[64*n+39:64* n+32]
CHID_STATUS5: MOTION_CHANNEL_ID2[64*n+47:64* n+40]
CHID_STATUS6: MOTION_CHANNEL_ID2[64*n+55:64* n+48]
CHID_STATUS7: MOTION_CHANNEL_ID2[64*n+63:64* n+56]
PB_STATUS_TYPE_SEL = 7 n is specified by PB_ STATUS_MOTION_INDEX
CHID_STATUS0: MOTION_CHANNEL_ID3[64*n+7:64*n],
CHID_STATUS1: MOTION_CHANNEL_ID3[64*n+15:64* n+8]
CHID_STATUS2: MOTION_CHANNEL_ID3[64*n+23:64* n+16]
CHID_STATUS3: MOTION_CHANNEL_ID3[64*n+31:64* n+24]
CHID_STATUS4: MOTION_CHANNEL_ID3[64*n+39:64* n+32]
CHID_STATUS5: MOTION_CHANNEL_ID3[64*n+47:64 *n+40]
CHID_STATUS6: MOTION_CHANNEL_ID3[64*n+55:64* n+48]
CHID_STATUS7: MOTION_CHANNEL_ID3[64*n+63:64* n+56]

PLAYBACK CROPPING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x124	PB0_HDELAY[7:0]								
0x125	PB0_HACTIVE[7:0]								
0x126	0	PB	0_HACTIVE[10):8]	0	PB	0_HDELAY[10	:8]	
0x134				PB1_HD	ELAY[7:0]				
0x135	PB1_HACTIVE[7:0]								
0x136	0 PB1_HACTIVE[10:8] 0 PB1_HDELAY[10:8]							:8]	
0x144	PB2_HDELAY[7:0]								
0x145		PB2_HACTIVE[7:0]							
0x146	0 PB2_HACTIVE[10:8] 0 PB2_HDELAY[10:8]						:8]		
0x154	PB3_HDELAY[7:0]								
0x155	PB3_HACTIVE[7:0]								
0x156	0 PB3_HACTIVE[10:8] 0 PB3_HDELAY[10:8]					:8]			

PBn_HDELAYSpecify the starting pixel number for cropping port n. Pixels before
this pixel number are cropped. Note that this is before the further
cropping based on picture type.

PBn_HACTIVE Specify the active horizontal length for cropping port n. Pixels beyond the range of this horizontal length are cropped. Note that this is before the further cropping based on picture type.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x127		PB0_VDELAY[7:0]							
0x128				PB0_VAC	TIVE[7:0]				
0x129		PB0_AUT0_ST	ROBE_CH_EN		PB0_VAC	TIVE[9:8]	PB0_VD	ELAY[9:8]	
0x137				PB1_VD	ELAY[7:0]				
0x138		PB1_VACTIVE[7:0]							
0x139		PB1_AUT0_ST	ROBE_CH_EN		PB1_VACTIVE[9:8] PB1_VDELAY[9:8]				
0x147				PB2_VD	ELAY[7:0]				
0x148				PB2_VAC	TIVE[7:0]				
0x149		PB2_AUT0_ST	ROBE_CH_EN		PB2_VAC	TIVE[9:8]	PB2_VD	ELAY[9:8]	
0x157				PB3_VD	ELAY[7:0]				
0x158				PB3_VAC	TIVE[7:0]				
0x159	PB3_AUT0_STROBE_CH_EN PB3_VACTIVE[9:8] PB3_VDELAY[9:8					ELAY[9:8]			

 PBn_VDELAY
 Specify the starting line number for cropping port n. Lines before this line number is cropped. Note that this is before the further cropping based on the picture type

 PBn_VACTIVE
 Specify the active vertical length cropping port n. Lines beyond the range of this vertical length are cropped. Note that this is before

further cropping based on the picture type.

PLAYBACK DOWNSCALERS

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x162	0		PB_SCALE_TARGET_HSIZE0						
0x163	0	0			PB_SCALE_TA	RGET_VSIZE0			
0x164	0			PB_	SCALE_SRC_HS	IZE0			
0x165	0	0			PB_SCALE_	SRC_VSIZE0			
0x172	0	0			PB_SCALE_TA	RGET_HSIZE1			
0x173	0	0			PB_SCALE_TA	RGET_VSIZE1			
0x174	0	0			PB_SCALE_	SRC_HSIZE1			
0x175	0	0			PB_SCALE_	SRC_VSIZE1			
0x182	0	0			PB_SCALE_TA	RGET_HSIZE2			
0x183	0	0			PB_SCALE_TA	RGET_VSIZE2			
0x184	0	0			PB_SCALE_S	SRC_HSIZE2			
0x185	0	0			PB_SCALE_	SRC_VSIZE2			
0x192	0	0			PB_SCALE_TA	RGET_HSIZE3			
0x193	0	0		PB_SCALE_TARGET_VSIZE3					
0x194	0	0	PB_SCALE_SRC_HSIZE3						
0x195	0	0			PB_SCALE_	SRC_VSIZE3			

PB_SCALE_TARGET_HSIZEn

Target horizontal size of channel n after scaling. The unit is 16 pixels.

PB_SCALE_TARGET_VSIZEn

Target vertical size of channel n after scaling. The unit is 8 lines.

PB_SCALE_SRC_HSIZEn

Source horizontal size of channel n before scaling. The unit is 16 pixels.

PB_SCALE_SRC_VSIZEn

Source vertical size of channel n before scaling. The unit is 8 lines.

Video Multiplexers RECORD CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x200	0	0	RP_INP_FLD_POL	RP_CC_EN		0	RP_	CLK_SEL		
	RP_INP_FLD_POL RP_CC_EN[1]		Reverse the field polarity for record path only1Record Cascade Output Enable0Record Cascade Output Disable							
			0 Record Cascade Output Disable This feature is not available in TW2851 rev B2. This bit is alway set to 0.							
	RP_CC_I	EN[O]	1 0 This fe set to (Record Ca ature is no	ascade Inj	out Enable out Disable e in TW285	1 rev B2.	This bit is alv		
	RP_CLK	Record Path Clock Selection 0 Reserved 1 27 MHz for 1 port 656, 13.5 MHz for 2 port 656 or 601 2 54 MHz for 1 port 656, 27 MHz for 2 port 656 or 601 3 108 MHz for 1 port 656, 54 MHz for 2 port 656, 601, o 1120								
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x201		K_COLR	RP_BGND		0	RP_BLNK_DIS	0	0		

RP_BLANK_COLR	 The blank color of the video window that does not have active video source or forced to show the blank color 0 Dark Gray 1 Intermediate Gray 2 Bright Gray 3 Blue
RP_BGND_COLR	The background color outside of the video window configured picture. O Dark Gray 1 Intermediate Gray
	2 Bright Gray 3 Blue
RP_BLNK_DIS	0 Shows blank color specified by RP_BLANK_COLR when NO_VIDEO signal is detected
	1 shows the last image captured when the NO_VIDEO is detected

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x202	0	RP_1120		RP_601	RP_2_656	RP_LIM_656					
	RP_112	20	1	Record	Port output	is in 1440>	(960 resoluti	on			
			0	Record Port output is in format specified by PIC_TYP							
	RP_601		1	Record	Port output	is in 601 fo	ormat				
	_			Record Port output is in 656 format							
	RP_2_656			Record output in 656 format in 2 physical port							
				Record output in single port 656 or 601 format							
	RP_LIM	_656	656 c	lata value	clamping se	lection for	Y				
	-	-		RP_LIM_656[2]							
				1 Maximum is 235							
				0 Maximum is 254							
				RP_LIM	_656[1:0]						
				0	Minimum is	s 1					
				1	Minimum is	s 16,					
				2	Minimum is	s 24					
				3	Minimum is	s 32					
				;							
				RP_LIM_656							
				0~1 Maximum 254, Minimum 1							
				2~7	Maximum 2	240, Minim	um 16				

Note that the interface configuration changes should always be followed by a system reset in order to make the change effective.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x203		RP_H_OFFSET								
0x204	0	RP_V_OFFSET								
0x205		RP_H_SIZE[7:0]								
0x206		RP_V_SIZE[7:0]								
0x207	0	0	0	0	0	RP_V_SIZE[8]	RP_H_S	GIZE[9:8]		

RP_H_OFFSET	The horizontal offset of the first active pixel in the output $656/601$ format
RP_V_OFFSET	The vertical offset of the first active line in the output $656/601$ format
RP_H_SIZE	The horizontal active length used to show the video pictures
RP_V_SIZE	The vertical active height used to show the video pictures

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x210	RP_CH_EN_0	0	RP_FUNC_MD_0	RP_ANA_0	0	RP_BLNK_0	RP_MIR_V_0	RP_MIR_H_0		
0x211	RP_CH_EN_1	0	RP_FUNC_MD_1	RP_ANA_1	0	RP_BLNK_1	RP_MIR_V_1	RP_MIR_H_1		
0x212	RP_CH_EN_2	0	RP_FUNC_MD_2	RP_ANA_2	0	RP_BLNK_2	RP_MIR_V_2	RP_MIR_H_2		
0x213	RP_CH_EN_3	0	RP_FUNC_MD_3	RP_FUNC_MD_3 RP_ANA_3 0 RP_BLNK_3 RP_MIR_V_3 RP_MIR_H_3						
	RP_CH_ RP_FUN RP_ANA	IC_MD	1 0 Wher recor 1 0	 Disable channel When the Record Path is not in Switch mode, this bit specifies the record capture mode 1 Strobe Mode 0 Live Mode Specify the analog input selection of each of the channel. 0 VINA 						
	RP_BLN	IK	Force the channel to display blank color 1 Blank 0 Normal video							
	RP_MIR	<u>8_</u> V	Control to mirror the image vertically for each channel 0 Do not mirror vertically 1 Mirror vertically							
	RP_MIR	2_Н	Control to mirror the image horizontally for each channel0Do not mirror horizontally1Mirror horizontally							
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x214	0	0	0	0	RP_STROBE_3	RP_STROBE_2	RP_STROBE_1	RP_STROBE_0		
RP_STROBE				sponding cl		ach chann capture one		set to 1, t e and then cle		

this bit.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x215	0	RP_STRB_FLD	RP_CH	_CYCLE	RP_SM_EN		RP_PIC_TYPE				
	RP_STRB_FLD			In non-switch mode, this bit controls which field to capture in field mode (pic_type 0, 2, 4, 6, 7) 0 Capture Even field 1 Capture Odd field							
	RP_CH_CYCLE			In non-switch mode, this RP_CH_CYCLE controls how many channels to interleave when the pic_type is 0, 1, 6, and 7.							
			PIC_1 0 1 2 3	 Capture channel 0 Capture and interleave channel 0, 1 							
			_	YPE 6, 7	ah ann al O	4					
			1 2	 Capture channel 0, 1 Capture and interleave channel 0, 1, 2, 3 							
	RP_SM	_EN	1 0	•							
	RP_PIC	_TYPE			ath is not _type used i			e, RP_PIC_T			

RECORD SWITCH QUEUE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x208	RP_SQ_CMD	RP_SQ_WR	RP_SQ_RW_DONE*	0	0	0	0	RP_CONFIG_DONE		
	RP_SQ_	CMD					-	ueue read / Il self clear.		
RP_SQ_WR			Read∕ 1 0	Write to	for Record Switch Que m Switch Q	ue	h Queue op	peration		
RP_SQ_RW_DONE			Read	Read Only						
	RP_CONFIG_DONE			After any configuration changes are made to the record path control registers, this bit should be set to resume the record path operation.						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x209	RP_SQ_DATA[7:0]								
0x20A	RP_SQ_DATA[15:8]								
0x20B	RP_SQ_DATA[23:16]								
0x20C	RP_SQ_DATA[31:24]								

 $\label{eq:RP_SQ_DATA0 ~ 3 are used to read/write the data from/to the record path switch queue entry when a switch queue read/write operation is performed.$

In write operation, these 4 registers are written first. Then a command is issued using RP_SQ_CMD in 0x208 to move the data into the switching queue.

In read operation, a read command is issued using RP_SQ_CMD in 0x208 to move the data from switch queue into these 4 registers. The MCU can then read the entry from these registers.

The definition of each bit used in the switch queue entry is as follows.

RP_SQ_DATA[1:0] RP_SQ_DATA[3:2] RP_SQ_DATA[5:4] RP_SQ_DATA[7:6]	Port ID for channel 0 (upper left window) Chip ID for channel 0 Port ID for Channel 1 (upper right window) Chip ID for Channel 1
RP_SQ_DATA[9:8] RP_SQ_DATA[11:10] RP_SQ_DATA[13:12] RP_SQ_DATA[15:14]	Port ID for Channel 2 (Lower left window) Chip ID for Channel 2 Port ID for Channel 3 (Lower right window) Chip ID for Channel 3
RP_SQ_DATA[19:16]	Channel 0 ~ 3 disable bit. Bit 16 set to 1, Channel 0 is disabled. Bit 17 set to 1, Channel 1 is disabled Bit 18 set to 1, Channel 2 is disabled Bit 19 set to 1, Channel 3 is disabled
RP_SQ_DATA[22:20] RP_SQ_DATA[23]	Picture Type, as shown in Figure 15Strobe field type for field mode picture type.1Odd field0Even field
RP_SQ_DATA[25:24]	Field/Frame based OSD0 selection for Record Output Port 0. There will be 4 sets of OSD0 configuration information. These 2 bits selects one of the 4 sets for record output port 0. According to the setting of these 2 bits, the OSD result can change from field to field or frame to frame.
RP_SQ_DATA[27:26]	Field/Frame based OSD1 selection for Record Output Port 1. There will be 4 sets of OSD1 configuration information. These 2 bits selects one of the 4 sets for record output port 1. According to the setting of these 2 bits, the OSD result can change from field to field or frame to frame.
RP_SQ_DATA[31:28]	Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x20D		RP_SQ_ADDR[7:0]									
0x20E		RP_SQ_SIZE[7:0]									
0x20F	0		RP_SQ_SIZE[10:8]		0	RP_SQ_ADDR[10:8]					

RP_SQ_ADDR

The switch queue entry address to perform the switch queue read / write command. This address is automatically incremented after the command is performed

RP_SQ_SIZE

 The switch queue size.

 1-2047:
 1-2047

 2048:
 0

RECORD CHID ENCODER

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x216	RP_MOTN_ID_EN	RP_DIG_ID_EN	RP_ANA_ID_EN	RP_ANA_RIC_EN	RP_AUTO_ID_EN	RP_AUTO_RPT_EN	RP_DET_ID_EN	RP_USR_ID_EN		
	RP_MO	TN_ID_EN	1 0	Turn on motion information encoding Do not turn on motion information encoding						
	RP_DIG	_ID_EN	1 0	Turn on the digital channel ID encoding Turn off the digital channel ID encoding						
	RP_AN4	A_ID_EN	1 0	Turn on the analog channel ID encoding Turn off the analog channel ID encoding						
	RP_AN4	A_RPT_EN	1 0		-	auto channe auto channe	•			
	RP_AUT	O_ID_EN	1 0	· · · · · · · · · · · · · · · · · · ·						
	RP_DET	_ID_EN	1 0	8						
	RP_USF	R_ID_EN	1 0			formation er formation er	-			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x217				RP_ANA_C	HID_H_OFST			

RP_ANA_CHID_H_OFST

The horizontal starting offset for Analog Channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]]
0x218				RP_ANA_CH	IID_HIGH				
0x219				RP_ANA_CH	IID_LOW				
	RP_ANA	A_CHID_HIG		values bigg g Channel II		this setting :: 235)	are interpr	eted as "1	." for
	RP_ANA	A_CHID_LON		values sma g Channel IE		this setting :: 16)	are interp	reted as "O)" for
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	

0x21A		0	RP_CHID_V_OFST
	RP_CHID_V_OFSTO	-	
0x21B	RP_CHID_V_OFSTE	RP_USR_ID_PT_SEL	RP_ANA_CHID_BW
	RP_CHID_V_OFSTO		the vertical starting offset on top of RP_CHID_V_OFST in d for Analog Channel ID
	RP_CHID_V_OFSTE		the vertical starting offset on top of RP_CHID_V_OFST in eld for Analog Channel ID
	RP_CHID_V_OFST	line o	starting offset for Analog Channel ID. The actual vertical ffset is RP_CHID_V_OFST + RP_CHID_V_OFSTO or D_V_OFST + RP_CHID_V_OFSTE
	RP_ANA_CHID_BW	Control 0 : 31	the pixel width of each bit for Analog Channel ID 1 pixel : 32 pixels (default)
	RP_USER_ID_PT_SE		is used to select the user channel ID registers in 0x220 ~ information is to be used for either record port 0 or 1 0x220 ~ 0x227 are used for record port 0 0x220 ~ 0x227 are used for record port 1

		[3]	[~]	[-]	[0]	
0x21C RP_SMALL_FR R	P_BI_CLK RP_BYPAS	SS	RP_GEN_CTL			

	RP_GEN	_CTL	Intern	al test func	tion						
	RP_BYP/ RP_BI_C		interle 0 1 Use 2								
	RP_SMA	LL_FR	0 1	27 MHz 54 MHz al test func							
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1		
0x21D			INUM1				HNUMO		1		
0x21E		RP_CH	INUM3			RP_C	HNUM2		1		
0x21F								RP_GEN_FLDPOL			
	RP_CHN	UM	The Cl [3:2] [1:0]	nannel Num CHIP ID PORT ID	nber to disp	lay in non-s	witch mode	ē			
	RP_GEN	_FLDPOL	Rever path.	se the field	polarity of	f the intern	al pattern	generator fo	or RP		

0x220	RP_USER_CHID[7:0]
0x221	RP_USER_CHID[15:8]
0x222	RP_USER_CHID[23:16]
0x223	RP_USER_CHID[31:24]
0x224	RP_USER_CHID[39:32]
0x225	RP_USER_CHID[47:40]
0x226	RP_USER_CHID[55:48]
0x227	RP_USER_CHID[63:56]

RP_USER_CHID

Used to set the USER Channel ID for record path.

Depending on the RP_USER_ID_PT_SEL (0x21B bit 5), these can be used to read/write the user channel ID for record port 0, or record port 1. Always set RP_USER_ID_PT_SEL before any read/write to these registers

DISPLAY CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x230		DP_BLAI	NK_COLR			DP_BGN	D_COLR	
	DP_BLA	NK_COLR[3	3] 1 0		e gray level NK_COLR[2	is selected 2:0]	by	
	DP_BLA	NK_COLR[2	2:0] 0~3 4 5 6 7	Black Gray daı Gray daı Gray ligi Gray ligi	rker nter			
	DP_BGI	ND_COLR[3]	1 0		e gray level ID_COLR[2:	is selected 0]	by	
	DP_BGN	ND_COLR[2:	:0] 0~3 4 5 6 7	Black Gray daı Gray daı Gray ligh Gray ligh	rker nter			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x231		DP_LIM_656		DP_CVBS_VSPOL			DP_FIELD_ID	DP_WINWIDTH	
	DP_LIM_	_656	656 For Y For C	DP_LIM 0 1 DP_LIM 0 1 2 3	_656[2] Maximum Maximum _656[1:0] Minimum Minimum Minimum Minimum	set to 16 set to 24			
					Maximum	254, Minimu 240, Minimu			
	DP_CVB	S_VSPOL	0 1	Do not reverse the VS polarity for CVBS Reverse the VS polarity for CVBS					
DP_FIELD_ID1Force the output to de-interlacer0Do not force field ID to top field							•	d	
	DP_WIN	WIDTH	1 0		xels maxim els maximu	um per line m per line			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	

	1-1	[-]	1-1	1.1	r=1	1-1		r-1
0x232	DP_SOFTRST	DP_DI_FLDPOL	0	0	0	0	0	0
	DP_SOFT	IRST	1 0		splay Path set the disp	olay path		
	DP_DI_F	LDPOL	1 0		•	larity to the ield polarity		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x237	DP_CAS_IN_EN							

DP_CAS_IN_EN

Enable the display cascade input

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x238							1	0

Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x23A		·	·	DP_BOR	DER_BLINK	·		
	DP_BOR	DP_BORDER_BLINK		Turn on ~ 7	border blin	king for the	correspond	ing window
			0	Turn off	border blin	king		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x23B						DP_VGA_FLDPOL	DP_CVBS_FLDPOL	DP_VD_FLDPOL
	DP_VGA_FLDPOL DP_CVBS_FLDPOL DP_VD_FLDPOL		Reven	se the field	l polarity fo	r the displa	y VGA outpu y CVBS outp ng video stre	ut
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x23C				DP_FRE	ezeopt[7:0]			
0x23D				DP_AD/	NPT_EN[7:0]			
	DP_FRE	DP_FREEZEOPT 0 1			w condition	n occurs hen freeze	command is	
	DP_ADAPT_EN		DP_ADAPT_EN 0 Display field/frame according to DP_FREI 1 Overwrite DP_FREEZEOPT and displa no_motion is asserted					
				no_mot				y frame v
Address	[7]	[6]	[5]	no_mot			[1]	[0]
Address 0x23E	[7]	[6]	[5]	[4]	ion is asser	ted		

NON_REALTIME[n]	0	Display non-real-time video source at display window n, n = 0 ~ 8. n equals 8 specifies the display cascade input.
	1	Display real-time Video Sources at display window n, n = 0 \sim 8. n equals 8 specifies the display cascade input.

FRCE_BLNK_GRY_LVLThese bit only work when the DP_BLNKm Register bit is set
(0x250[0], 0x258[0],, etc.)
0xx0xxBlack
10010025% Gray
10110140% Gray
11011075% Gray

111 100% Gray

FRCE_BLNK_SEL This bit only work when the DP_BLNKm Register bit is set (0x250[0], 0x258[0],, etc.)

			0 1	Gray Blue				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

0x240	DP_VGA_HDELAY[7:0]						
0x241	DP_VGA_HACTIVE[7:0]						
0x242	DP_VGA_HACTIVE[10:8]		DP_VGA_HDELAY[10:8]				
0x243	DP_VGA_VDELAY[7:0]						
0x244	DP_VGA_VACTIVE[7:0]						
0x245	DP_VGA_VACTIVE[10:8]		DP_VGA_VDELAY[10:8]				

DP_VGA_HDELAY	VGA Cropping HDELAY
---------------	---------------------

DP_VGA_HACTIVE	VGA Cropping HACTIVE
----------------	----------------------

DP_VGA_VDELAY	VGA Cropping VDELAY

DP_VGA_VACTI	/E VGA	Cropping VACTIVE
DF_VGA_VACH		Cropping VACTIVI

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x24C		DP_BORDER_COLR		0	0 DP_PBVD_SEL			
	DP_BORDER_COLR Selec			t the color o	of the displa	ay window b	order	
	DP_PBVI	D_SEL				y window 0 ders VD0 ~		from PB_CH
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x24D	DP_CHNAB_SEL							
	DP_CHNAB_SEL Select the Analog Switch A/B for each window 0 ~ 7						7	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x24E		DP_BORDER_EN						
	DP_BOR	DER_EN	Enabl	e display wi	ndow bord	ers for each	window 0 -	- 7
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x24F				DP_STF	B_REQ			
	DP_STR	B_REQ		e Request e is done	to each of	f the 8 wir	ndows. Self	clear after

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x250	DP_CH_EN0	DP_FREEZE0	DP_STR	RB_FLD0	DP_FUNC_MD0		DP_RD_V_2X0	DP_BLNK0
0x258	DP_CH_EN1	DP_FREEZE1	DP_STR	DP_STRB_FLD1		DP_FUNC_MD1		DP_BLNK1
0x260	DP_CH_EN2	DP_FREEZE2	DP_STRB_FLD2		DP_FUNC_MD2		DP_RD_V_2X2	DP_BLNK2
0x268	DP_CH_EN3	DP_FREEZE3	DP_STRB_FLD3		DP_FUNC_MD3		DP_RD_V_2X3	DP_BLNK3
0x270	DP_CH_EN4	DP_FREEZE4	DP_STRB_FLD4		DP_FUN	IC_MD4	DP_RD_V_2X4	DP_BLNK4
0x278	DP_CH_EN5	DP_FREEZE5	DP_STR	DP_STRB_FLD5		IC_MD5	DP_RD_V_2X5	DP_BLNK5
0x280	DP_CH_EN6	DP_FREEZE6	DP_STRB_FLD6		DP_FUN	IC_MD6	DP_RD_V_2X6	DP_BLNK6
0x288	DP_CH_EN7	DP_FREEZE7	DP_STF	RB_FLD7	DP_FUN	IC_MD7	DP_RD_V_2X7	DP_BLNK7

DP_CH_ENm	1 0	Enable window m Disable window m
DP_FREEZEm	1 0	Freeze window m Do not freeze window m
DP_STRB_FLDm	0 1 2/3	Strobe at Odd Field Strobe at Even Field Strobe at Frame
DP_FUNC_MDm	0 1 2/3	LIVE Mode Strobe Mode Reserved
DP_RD_V_2Xm	1 0	Scale Up 2X vertically (For CIF becoming D1) Do not scale up 2X
DP_BLNKm	1 0	Force the window m to display blank color Show normal video in the window m

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x251					DP_OVWR_V2X0	DP_MIR_H_0	DP_MIR_V_0	
0x259					DP_OVWR_V2X1	DP_MIR_H_1	DP_MIR_V_1	
0x261					DP_OVWR_V2X2	DP_MIR_H_2	DP_MIR_V_2	
0x269					DP_OVWR_V2X3	DP_MIR_H_3	DP_MIR_V_3	
0x271					DP_OVWR_V2X4	DP_MIR_H_4	DP_MIR_V_4	
0x279					DP_OVWR_V2X5	DP_MIR_H_5	DP_MIR_V_5	
0x281					DP_OVWR_V2X6	DP_MIR_H_6	DP_MIR_V_6	
0x289					DP_OVWR_V2X7	DP_MIR_H_7	DP_MIR_V_7	

DP_OVWR_V2X		V2X write, instead of following pic_type. I.e., write even top field, and odd line to bottom field.
DP_MIR_H_n	1 0	Mirror horizontally Do not mirror horizontally
DP_MIR_V_n	1 0	Mirror vertically Do not mirror vertically

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x252				DP_PIC	HL0[7:0]					
0x253				DP_PIC	HR0[7:0]					
0x254				DP_F	PICVTO					
0x255		DP_PICVB0								
0x256		0		DP_PICHR0[8]				DP_PICHL0[8]		
0x25A				DP_PIC	HL1[7:0]					
0x25B				DP_PIC	HR1[7:0]					
0x25C				DP_F	PICVT1					
0x25D				DP_P	PICVB1					
0x25E		1		DP_PICHR1[8]				DP_PICHL1[8]		
0x262				DP_PIC	HL2[7:0]					
0x263				DP_PIC	HR2[7:0]					
0x264				DP_F	PICVT2					
0x265				DP_P	PICVB2					
0x266		2		DP_PICHR2[8]				DP_PICHL2[8]		
0x26A				DP_PIC	HL3[7:0]					
0x26B				DP_PIC	HR3[7:0]					
0x26C				DP_F	PICVT3					
0x26D				DP_P	PICVB3					
0x26E		3		DP_PICHR3[8]				DP_PICHL3[8]		
0x272				DP_PIC	HL4[7:0]					
0x273				DP_PIC	HR4[7:0]					
0x274				DP_F	PICVT4					
0x275				DP_P	PICVB4					
0x276		4		DP_PICHR4[8]				DP_PICHL4[8]		
0x27A				DP_PIC	HL5[7:0]					
0x27B				DP_PIC	HR5[7:0]					
0x27C				DP_F	PICVT5					
0x27D				DP_P	ICVB5					
0x27E		5		DP_PICHR5[8]				DP_PICHL5[8]		
0x282				DP_PIC	HL6[7:0]					
0x283				DP_PIC	HR6[7:0]					
0x284					PICVT6					
0x285				1	PICVB6	0	0			
0x286		6		DP_PICHR6[8]				DP_PICHL6[8]		
0x28A					HL7[7:0]					
0x28B					HR7[7:0]					
0x28C					PICVT7					
0x28D				I	PICVB7					
0x28E		7		DP_PICHR7[8]				DP_PICHL7[8]		

DP_PICHLm	The left edge horizontal location of window m in unit of 16 pixels
DP_PICHRm	The right edge horizontal location of window m in unit of 16 pixels
DP_PICVTm	The upper edge vertical location of window m in unit of 8 lines
DP_PICVBm	The lower edge vertical location of window m in unit of 8 lines DP_PRIm. The window m priority when they overlap with each other. 0 has the top priority, while 7 has the least priority

Address [7] [6] [5] [4]	[3]	[2]	[1]	[0]
---	-----	-----	-----	-----

0x257		DP_WR_CH_EN[8]			DP_WR_EN
0x267		DP_WR_C	H_EN[7:0]		

DP_WR_EN Enable write to the display buffer. This bit is combined with DP_WR_CH_EN ({0x257[4], 0x267[7:0]} for the per window control. I.e., use DP_WR_CH_EN to select which windows will be controlled, and then use DP_WR_EN to do the actual enable / disable.

DP_WR_CH_EN {0x257[4], 0x267[7:0]} controls per-window display write buffer control. These bit work together with 0x257[0].

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x27F				DP_BAS	E_ADDR			

DP_BASE_ADDR The base address of the display buffer. In unit of 128 Kbytes The DDR address generated with DP_BASE_ADDR is {DP_BASE_ADDR, 17'h0}

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x28F				DP_	TEST			

DP_TEST

```
Default 0
```


SPOT CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x290	0	0	SP_INP_FLD_POL	SP_CC	_EN					
	SP_INP_ SP_CC_E	FLD_POL	Revers 1	se the field polarity for spot path only SPOT Cascade Output Enable						
			0	SPOT Cascade Output Disable						
	SP_CC_F	EN[0]	1 0	SPOT Cascade Input Enable. The SPOT clock is t clock from SPOT cascade input clock. SPOT Cascade Input Disable. The SPOT clock is a 27 MHz clock generated internally						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x291	SP_BLANK_COLR		SP_BGN	ID_COLR	SP_BLAN	IK_MODE	SP_BORDER_EN	0

SP_BLANK_COLR	 The blank color of the video window that does not have active video source or forced to show the blank color 0 Dark Gray 1 Intermediate Gray 2 Bright Gray 3 Blue
SP_BGND_COLR	The background color outside of the video window configuredpicture.0Dark Gray1Intermediate Gray2Bright Gray3Blue
SP_BLANK_MODE	 Show blank color as specified by SP_BLANK_COLR When the NO_VIDEO is detected Shows the last image captured when the NO_VIDEO is detected Display blank color specified by SP_BLANK_COLR with border blinking when NO_VIDEO is detected (valid only if SP_BORDER_EN is on) Display the last image captured with border blinking when the NO_VIDEO is detected (valid only if SP_BORDER_EN is on)
SP_BORDER_EN	 Enable displaying SPOT border Disable displaying SPOT border

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x292	SP_BORD	DER_COLR		0	0		SP_LIM_656	
	SP_LIM	I_656	656 d For Y	SP_LIM_ 1 0 SP_LIM_ 0	clamping se _656[2] Maximum i Maximum i _656[1:0] Minimum is Minimum is Minimum is	s 235 s 254 s 1 s 16, s 24		
			For C		_656 Maximum 2 Maximum 2			
	SP_BOF	RDER_COLR	0 1 2 3	Black Dark gray Light gray White				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x293				SP_H_	OFFSET						
0x294	0	0 SP_V_OFFSET									
0x295		SP_H_SIZE[7:0]									
0x296		SP_V_SIZE[7:0]									
0x297	0	0	0 0 0 0 SP_V_SIZE[8] SP_H_SIZE[9:8]								

SP_H_OFFSET	The horizontal offset of the first active pixel in the output 656/601 format
SP_V_OFFSET	The vertical offset of the first active line in the output $656/601$ format
SP_H_SIZE	The horizontal active length used to show the video pictures
SP_V_SIZE	The vertical active height used to show the video pictures

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2A0	SP_CH_EN_0	SP_FREEZE_0	SP_FUNC_MD_0	SP_ANA_0	0	SP_BLNK_0	SP_MIR_V_0	SP_MIR_H_0		
0x2A1	SP_CH_EN_1	SP_FREEZE_1	SP_FUNC_MD_1	SP_ANA_1	0	SP_BLNK_1	SP_MIR_V_1	SP_MIR_H_1		
0x2A2	SP_CH_EN_2	SP_FREEZE_2	SP_FUNC_MD_2	SP_ANA_2	0	SP_BLNK_2	SP_MIR_V_2	SP_MIR_H_2		
0x2A3	SP_CH_EN_3	SP_FREEZE_3	SP_FUNC_MD_3	SP_ANA_3	0	SP_BLNK_3	SP_MIR_V_3	SP_MIR_H_3		
	SP_CH_ SP_FRE		1 0 1	Enable o Disable Freeze ti	hannel channel he video	each of cha	nnel O throu	ıgh 3		
	0 Disable freeze SP_FUNC_MD When the SPOT Path is not in Switch mode, this bit spec SPOT mode of 1 1 Strobe Mode 0 Live Mode									
	SP_ANA	N	Specify the analog input selection of each of the channel. 0 VINA 1 VINB							
	SP_BLN	ĸ	Force the channel to display blank color 1 Blank Color 0 Normal video							
	SP_MIR	_v	Control to mirror the image vertically for each channel0Do not mirror vertically1Mirror vertically							
	SP_MIR	_н	Control to mirror the image horizontally for each channel0Do not mirror horizontally1Mirror horizontally							
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
Address										

SP_STROBE Strobe command for each channel. Once set to 1, the corresponding channel will capture one field/frame and then clear this bit.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2A5	0	SP_STRB_FLD	SP_CH	_CYCLE	SP_SM_EN		SP_PIC_TYPE			
SP_STRB_FLD In non-switch mode, this bit controls mode (pic_type 0, 2, 4, 6, 7) 0 Capture Even field 1 Capture Odd field							hich field to	o capture in	field	
	SP_CH_	CYCLE		on-switch in nels to inter					many	
			0 1 2 3	 Capture channel 0 Capture and interleave channel 0, 1 Capture and interleave channel 0, 1, 2 PIC_TYPE 6, 7 Capture channel 0, 1 						
	SP_SM	_EN	1 0	-						
	SP_PIC	_TYPE		When SPOT Path is not in Switch Queue Mode, SP_PIC_TYPE specifies the pic_type used in LIVE/Strobe mode						

SPOT SWITCH QUEUE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x298	SP_SQ_CMD	SP_SQ_WR	SP_SQ_RW_DONE*	0	0	0	0	SP_CONFIG_DONE			
	SP_SQ_	CMD	operation. Set to 1 to start a command. This bit will self clear.								
	SP_SQ_	WR	Read/ 1 0	Write to	for SPOT P Switch Que m Switch Q		Queue ope	ration			
	SP_SQ_	RW_DONE	Read	Read Only							
	SP_CON	IFIG_DONE		After any configuration changes are made to the control registers, this bit should be set to resume the SPOT path operation.							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x299	SP_SQ_DATA[7:0]										
0x29A	SP_SQ_DATA[15:8]										
0x29B	SP_SQ_DATA[23:16]										

SP_SQ_DATA are used to read/write the data from/to the SPOT path switch queue entry when a switch queue read/write operation is performed.

In write operation, these 4 registers are written first. Then a command is issued using SP_SQ_CMD in 0x298 to move the data into the switching queue.

In read operation, a read command is issued using SP_SQ_CMD in 0x298 to move the data from switch queue into these 4 registers. The MCU can then read the entry from these registers.

The definition of each bit used in the switch queue entry is as follows.

SP_SQ_DATA[1:0]	Port ID for channel 0 (upper left window)
SP_SQ_DATA[3:2]	Chip ID for channel 0
SP_SQ_DATA[5:4]	Port ID for Channel 1 (upper right window)
SP_SQ_DATA[7:6]	Chip ID for Channel 1
SP_SQ_DATA[9:8]	Port ID for Channel 2 (Lower left window)
SP_SQ_DATA[11:10]	Chip ID for Channel 2
SP_SQ_DATA[13:12]	Port ID for Channel 3 (Lower right window)
SP_SQ_DATA[15:14]	Chip ID for Channel 3
SP_SQ_DATA[19:16]	Channel 0 ~ 3 disable bit. Bit 16 set to 1, Channel 0 is disabled. Bit 17 set to 1, Channel 1 is disabled Bit 18 set to 1, Channel 2 is disabled Bit 19 set to 1, Channel 3 is disabled
SP_SQ_DATA[22:20] SP_SQ_DATA[23]	Picture Type, as shown in Figure ??.Strobe field type for field mode picture type.1Odd field0Even field

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x29D					SP_SQ_ADDR					
0x29E					SP_SQ_SIZE					

SP_SQ_ADDR	write comm	ueue entry address to perform the switch queue read / and. This address is automatically incremented after nd is performed
SP_SQ_SIZE	The switch q	
	1 - 15:	1-15
	16:	0

SPOT CHID ENCODER

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2A6	SP_MOTN_ID_EN	SP_DIG_ID_EN	SP_ANA_ID_EN	SP_ANA_RIC_EN	SP_AUTO_ID_EN	SP_AUTO_RPT_EN	SP_DET_ID_EN	SP_USR_ID_EN		
	SP_M01	[N_ID_EN	1 0			ormation end	-	g		
	SP_DIG	_ID_EN	1 0		Turn on the digital channel ID encoding Turn off the digital channel ID encoding					
	SP_ANA	LID_EN	1 0	Turn on the analog channel ID encoding Turn off the analog channel ID encoding						
	SP_ANA	_RPT_EN	1 0	Turn on the analog auto channel ID repeat line Turn off the analog auto channel ID repeat line						
	SP_AUT	O_ID_EN	1 0	Turn on the auto channel ID encoding Turn off the auto channel ID encoding						
	SP_DET	_ID_EN	1 0	Turn on the detection ID encoding Turn off the detection ID encoding						
	SP_USR	LID_EN	1 0	Turn on the user information encoding Turn off the user information encoding						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2A7				SP_ANA_CI	HID_H_OFST			

SP_ANA_CHID_H_OFST

The horizontal starting offset for Analog Channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2A8		SP_ANA_CHID_HIGH									
0x2A9		SP_ANA_CHID_LOW									

SP_ANA_CHID_HIGH	Pixel values bigger than this setting are interpreted as "1" for Analog Channel ID (default: 235)
SP_ANA_CHID_LOW	Pixel values smaller than this setting are interpreted as "0" for Analog Channel ID (default: 16)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]]		
0x2AA	SP_CHID	D_V_OFSTO	0			SP_CHID_V_OFST	•	•	-		
0x2AB	SP_CHIE	D_V_OFSTE	0			SP_ANA_CHID_BW	1]		
	SP_CHIE	D_V_OFSTO		ol the verti ield for Ana	-	•	top of SP_	CHID_V_OF	ST in		
	SP_CHIE	D_V_OFSTE		Control the vertical starting offset on top of SP_CHID_V_OFST in even field for Analog Channel ID							
	SP_CHIE	D_V_OFST	line	Vertical starting offset for Analog Channel ID. The actual vertical line offset is SP_CHID_V_OFST + SP_CHID_V_OFSTO or SP_CHID_V_OFST + SP_CHID_V_OFSTE							
	SP_ANA	_CHID_BW	Contr 0 : 31	1 pixel :	width of ea s (default)	ch bit for Ar	nalog Chanr	nel ID			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2AC	0	0	0	0	0	0	0	SP_GEN_EN

SP_GEN_EN

Internal Test Function Default 0

Address	[7] [6]		[5]	[4]	[3]	[2]	[1]	[0]	
0x2AD		SP_CH	INUM1		SP_CHNUMO				
0x2AE		SP_CH	INUM3		SP_CHNUM2				

SP_CHNUM

The Channel Number to display in non-switch mode SP_CHNUMx[3:2]: SP_CHNUMx[1:0]: CHIP ID PORT ID

TW2851

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x2B0	SP_USER_CHID[7:0]											
0x2B1		SP_USER_CHID[15:8]										
0x2B2		SP_USER_CHID[23:16]										
0x2B3				SP_USER_	_CHID[31:24]							
0x2B4				SP_USER_	_CHID[39:32]							
0x2B5				SP_USER_	_CHID[47:40]							
0x2B6		SP_USER_CHID[55:48]										
0x2B7		SP_USER_CHID[63:56]										

SP_USER_CHID

Used to set the USER Channel ID for SPOT path.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2C0								SP_16

SP_16

16 Window Display Mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2C1		SP_16_V	VINNUM1		SP_16_WINNUM0				
0x2C2		SP_16_V	VINNUM3		SP_16_WINNUM2				

SP_16_WINNUM

The window location of the 16 window configuration. The 16 windows are arranged as shown in the following figure.

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

FIGURE 58. THE WINDOW ID OF THE 16 WINDOW CONFIGURATION

Display CVBS Processing DOWN-SCALING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x1C0	CVBS_SCL_HACTIVE[7:0]										
0x1C1		CVBS_SCL_VACTIVE[7:0]									
0x1C2	CVBS_SCL_VACTIVE[8] CVBS_SCL_HACTIVE[9:8]										
	CVBS_SCL_HACTIVE The horizontal active pixel number for display CVBS path										

CVBS_SCL_HACTIVE The horizontal active pixel number for display CVBS path downscaler

CVBS_SCL_VACTIVE	The vertical active line number for display CVBS path
	downscaler

Address	[7]	[6]	[5] [4] [3] [2]				[1]	[0]			
0x1C3	CVBS_VSCALE[7:0]										
0x1C4	CVBS_VSCALE[15:8]										
0x1C6	CVBS_HSCALE[7:0]										
0x1C7	CVBS_HSCALE[15:8]										

CVBS_V	SCALE		The vertical scaling factor for display CVBS path downscaler. 0x1FFF is scaling factor of 1.						
			_VSCALE = ut line num	Input line r Iber + 1)	umber (CV	BS_SCL_VA	.CTIVE) * 8	191 /	
		**No	**Note: line number means the number of lines in a field						
CVBS_H	SCALE		The horizontal factor for display CVBS path downscaler. 0x1FFF is scaling factor of 1,						
		-	CVBS_HSCALE = Input pixel number (CVBS_SCL_HACTIVE) * 8191/ (Output pixel number + 1)						
[7]	[6]	[6]	[4]	101	101	[4]	101		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x1C5		CVBS_OD	D_SKEW	EW CVBS_EVEN_SKEW					
	CVBS_0	DD_SKEW	Addit	ional vertica	al offset on	odd fields			

CVBS_EVEN_SKEW Additional vertical offset on even fields

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x1C8	CVBS_LIM656	CVBS_V_OFST	CVBS_VSYNC_POL	CVBS_HSYNC_POL	CVBS_			VSFLT		
	CVBS_L	IM656	1	Limit the C 16 and	Limit the CVBS display pixel outputs (YUV) to between					
			0	235 (Defau	,	/ pixel outp	outs (YUV) t	o between 1		
	CVBS_V	_OFST	1	Enable using different offset for EVEN/ODD field during						
			0	vertical sca Use the sau scaling		,	DD field du	ring vertical		
	CVBS_V	SYNC_POL	1 0		e VS polarit erse the VS	•	• • •	,		
	CVBS_H	ISYNC_POL	1 0	Reverse the HS polarity for CVBS display (Default) Do not reverse the HS polarity for CVBS display						
	CVBS_H	ISFLT	Select mode	the CVBS d	isplay horiz	zontal dow	nscaler ar	nti-aliasing f		
			0 1 2 3	Full bandw 2 MHz ban 1.5 MHz ban 1 MHz ban	dwidth andwidth	lt)				
	CVBS_V	/SFLT	Select mode 0 1 2,3	the CVBS Full bandw 0.25 line-ra 0.18 line-ra	idth (Defau	lt) dth	nscaler an	ti-aliasing f		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x1C9	0	0	0	0	CVBS_FLD_POL	CVBS_T_FDLY	CVBS_T_VSCL	CVBS_T_CPALDLY			
	CVBS_F	LD_POL	1 0		the Display everse the f		• •				
	CVBS_T	_FDLY	Set d	Set display CVBS scaler field delay mode for testing							
	CVBS_T	_VSCL	Set d	Set display CVBS vertical scaler scaling factor to be ${f 1}$ for testing							
	CVBS_T	CPALDLY	Set d	Set display CVBS scaler chroma delay in PAL mode							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x1CA			CVBS_TEST			CVBS_SOFT_RST	CVBS_HSCL_BP	CVBS_PALDLY			
	CVBS_	TEST		 0001 Enable display CVBS scaler test pattern with data valid from the pattern generator 0010 Enable display CVBS scaler test pattern with data valid from the display path 							
	CVBS_	SOFT_RST	. Disp	lay CVBS scal	er software	e reset					
	CVBS_HSCL_BP Bypass display CVBS horizontal scaler										
	CVBS_	PALDLY	Set I	PAL delay mo	de						
Address	dress [7] [6] [5] [4] [3] [2] [1] [0]										
0x1CB	C_V_START										
0x1CC				C_V_ENE) [7:0]						
0x1CD	C_LINE_INS C_V_END[8]										

C_V_START Set the starting line number of active video shown in PAL mode

C_V_END	Set the end line number of active video shown in PAL mode
---------	---

C_LINE_INS Enable inserting blanking lines at the beginning and end in PAL mode

Display VGA / LCD Processing

Address [7] [6]			[5]	[4]	[3]	[2]	[1]	[0]	
0x480							VGA_RD_RST	VGA_RST	
	VGA RS	БТ	Softv	vare Reset	for VGA / D	e-Interlacer	/ Brightne	ss Control /	′ RG

Software Reset for VGA / De-Interlacer / Brightness Control / RGB control, timing generation modules. When this bit is set, the VGA sync is lost.

VGA_RD_RST Software Reset of the video buffer read side of the VGA path. When this bit is set, the VGA output become blanks, and the VGA sync is not lost. This bit can be set when the display configuration change is performed.

Address	[7]	161	[5]	[4]	121	[0]	[4]	[0]		
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4E0						USE_GAMMAB	USE_GAMMAG	USE_GAMMAR		
0x4E1	DITHER_BP		S_DM				S_BC			
	USE_GAN	MMAR	Enabl	e red color	gamma tak	ole				
	USE_GAN	VIVIAG	Enabl	e green col	or gamma	table				
	USE_GAN	MMΔR	Fnabl	e blue coloi	r gamma ta	table				
			Enabr		Samma te					
	S_BC		Outpu	t Pixel Wid	th for each	n of R, G, B value				
				:8 (default)						
			1: 6:6	· /						
			2: 5:6	:5						
			3: 5:5	:5						
			4: 4:4	:4						
			5: 3:3	:3						
			6: 3:3	:2						
	S_DM Dithering mode configuration. This specifies the number of low									
	—			or dithering.						
				0						
	DITHER_	BP	Bypas	s dithering						
				-						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
Ox4F0	[1]	VGA_BYP_OSD	VGA_BYP_DI	UGA_DATA0	VGA_BYP_HUE	[≃] VGA_BYP_YUV	UGA_BYP_SHARP	VGA_BYP_BW			
0x4F2		VGA_BIF_03D		VGA_DATAO	VGA_BIF_HUE	VGA_BIF_10V	VGA_BIF_SHARF	VGA_BTF_BW VGA_CGEN_EN			
07412				VAA_BWAEN_EN				VUA_CUEN_EN			
		GA_BYP_OSD 1 Bypass OSD for the VGA path									
	Van_Dii	_050	Ō	Do not bypass OSD							
			·								
	VGA_BY	P_DI	1								
			0	Does not bypass DI							
			_	-							
	VGA_DA	TA0		1 Blank out the whole screen							
			0	Normal operation							
	VGA_BY		1	Bynass I	Hue Control						
	Tur_Di		ō								
	VGA_BY	P_YUV	1		YUV contras						
			0	Does no	t bypass YU	V contrast ,	/ gain contro	bl			
			1	1 Bypass sharpness control							
	VGA_DT	P_SHARP		0 Does not bypass sharpness control							
			Ŭ								
	VGA_BY	P_BW	1	Bypass black / white stretch control							
			0	. ,							
	VGA_BW	/GEN_PTRN	lest 0	pattern for i	nternal use White Patte						
			1	,		:111					
			2	Color Pattern Color Bar							
			3	Y Single							
			4	Y block							
			5								
			6/7	Black							
	VGA_BW	/GEN_EN	Patte	Pattern Generation Enable for Internal Test only							
	VGA_CG	FN FN	Patte	Pattern Generation Enable for Internal use only							
			i atte			e. meend					

Ox4F3 VGA_DEBUG_DATA[7:4] VGA_DEBUG_DATA[3:0] * / VGA_DEBUG_SEL	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
	0x4F3		VGA_DEBUG	G_DATA[7:4]	VGA_DEBUG_DATA[3:0] * / VGA_DEBUG_SEL						

VGA_DEBUG_SEL	Write only. Set this to select the read back of register 0x4F0
VGA_DEBUG_DATA	The setting of VGA_DEBUG_SEL determines the read back of this register. 1 BWYMIN 2 BWYMAX 3 BWFMIN 4 BWFMAX Others Not valid

UP-SCALING

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
Ī	0x4A0		UPS_BG_COLR								

UPS_BG_COLR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4A1	UPS_HST									
0x4A2	UPS_VST									
0x4A3	UPS_HACTIVE_0[7:0]									
0x4A4	UPS_VACTIVE_0[7:0]									
0x4A5	UPS_VACTIVE_0[10:8] UPS_HACTIVE_0[10:8]									

UPS_HSTSpecify the video starting horizontal location in the output video
frameUPS_VSTSpecify the video starting vertical location in the output video
frameUPS_HACTIVE_OSpecify the video width shown in the output video frame after
scalingUPS_VACTIVE_OSpecify the video height shown in the output video frame after
scaling

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x4A8		UPS_HACTIVE_IN[7:0]							
0x4A9		UPS_VACTIVE_IN[7:0]							
0x4AA		U	IPS_VACTIVE_IN[10:8	8]		UPS_HACTIVE_IN[10:8]			

UPS_HACTIVE_IN Specify the upscaler input horizontal video width

UPS_VACTIVE_IN Specify the upscaler input vertical video height

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4AB	UPS_HSCALE[7:0]							
0x4AC		UPS_HSCALE[12:0]						
0x4AD	UPS_VSCALE[7:0]							
0x4AE							UPS_VSCALE[10:8]	

 UPS_HSCALE
 Horizontal scaling factor. 0x1000 represents scaling factor of 1

UPS_VSCALE

Vertical scaling factor. 0x400 represents scaling factor of 1

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4AF								VGA_BLACKOPUT

1

0

VGA_BLACKOUT

Black out the VGA output Normal display

GAMMA TABLE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x488		GAMMA_ADDR[7:0]						
0x489							GAMMA_ADDR[9:8]	
0x48A	GAMMA_WDATA[7:0]							
0x48B							GAMMA_V	VDATA[9:8]
0x48C				GAMMA_F	DATA[7:0]*			
0x48D							GAMMA_R	DATA[9:8]*
0x48E	GAMMA_RD_START							

GAMMA_ADDR	Gamma table address
GAMMA_WDATA	Gamma table write data. The indirect write starts after writing 0x48B
GAMMA_RDATA	Gamma table read data (Read Only)
GAMMA_RD_START	Command to start a read by writing register 0x48E. Data written to 0x48E does not matter.

2D DE-INTERLACE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x490		M	2DI_LOW_ANGLE_CN			M2DI_USE_BOB		

M2DI_LOW_ANGLE_CNTL

Disable a specific criterion to disqualify low angle. Default 0

M2DI_USE_BOB

Use BOB instead of low angle. Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x491	0	0	0	1	1	0	0	1
0x492	0	0	1	1	1	1	0	0
0x493	1	1	0	0	1	0	0	0
0x494	1	0	1	1	0	1	0	0
0x495	0	0	0	0	0	0	0	1
0x496	0	0	0	0	1	0	1	0
0x497	0	0	0	0	1	0	1	0

RENESAS

Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x498		M2DI_FRM_WIDTH[7:0]							
0x499		M2DI_FRM_PITCH[7:0]							
0x49A		М	2DI_FRM_PITCH[10:	:8]		M2DI_FRM_WIDTH[10:8]			
0x49B		M2DI_FRM_HEIGHT[7:0]							
0x49C						M2DI_FRM_HEIGHT[9:8]			

M2DI_FRM_WIDTH	The frame width of the incoming video in pixels
M2DI_FRM_PITCH	The frame width allocated in the memory including the unused portion at the end of each line
M2DI_FRM_HEIGHT	The frame height of the incoming video in lines

IMAGE ENHANCEMENT

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4B0	VGA_S	SHWIN		VGA_SHCOR							
0x4B1		VGA_OVE	ERSHOOT	T VGA_SHARP							
	VGA_SHWIN[1] VGA_SHWIN[0]		0 1	14 pixelsSharpening filter min/max window size selection02 pixels							
	VGA_SH VGA_OV VGA_SH	ERSHOOT	Shar	4 pixels pening Corin pening over pening gain	shoot settin	g					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4B2		VGA_BLACK						
0x4B3		VGA_Y_GAIN						
0x4B4				VGA_Y	OFFSET			
0x4B5				VGA_C	R_GAIN			
0x4B6	VGA_CB_GAIN							

VGA_BLACK	The black level used for contrast control. Any incoming pixel less than this value is assume to be black. The contrast control does not amplify the black pixels.
VGA_Y_GAIN	The contrast control. A setting of 64 represents gain of 1 (neutral)
VGA_Y_OFFSET	The brightness control. A value of 128 represents offset of 0 (neutral)
VGA_CR_GAIN	Cr gain control. A value of 64 represents gain of 1 (neutral)
VGA_CB_GAIN	Cb gain control. A value of 64 represents gain of ${f 1}$ (neutral)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4B7	VGA_BLKLVL VGA_WHTLVL VGA_HUEADJ							
0x4B8	VGA_BWLST[7:0]							
0x4B9				VGA_BW	LEND[7:0]			
0x4BA		VGA_BWL	END[11:8]		VGA_BWLST[11:8]			
0x4BB	VGA_BWFGAIN				VGA_BWHGAIN			
0x4BC				VGA_	BTILT			
0x4BD	VGA_WTILT							
0x4BE	VGA_BLIMIT							
0x4BF	VGA_WLIMIT							

VGA_HUEADJ	HUE Co	ntrol				
VGA_WHTLVL	0 1	235 as white 255 as white				
VGA_BLKLVL	0 1	0 as black 16 as black				
VGA_BWLST	The first line of the black $/$ white detection window for BW stretch					
VGA_BWLEND	The last	The last line of the black $/$ white detection window for BW stretch				
VGA_BWHGAIN	Tap for pixel recursive filtering before black / white line minmax detection					
VGA_BWFGAIN	Tap for field recursive filtering before $\mbox{black}/\mbox{white field minmax}$ detection					
VGA_BTILT	Black Tilt point for BW stretch					
VGA_WTILT	White Tilt point for BW stretch					
VGA_BLIMIT	The dar	kest pixel value after BW stretch				
VGA_WLIMIT	The brightest pixel value after BW stretch					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4C8	VGA_R_GAIN							
0x4C9		VGA_R_OFFSET						
0x4CA	VGA_G_GAIN							
0x4CB		VGA_G_OFFSET						
0x4CC	VGA_B_GAIN							
0x4CD	VGA_B_OFFSET							

	VGA_R_GAIN	Red color gain control. A setting of 64 represents gain of 1 (neutral)
	VGA_R_OFFSET	Red color offset control. A setting of 128 represents offset of 0 (neutral)
	VGA_G_GAIN	Green color gain control. A setting of 64 represents gain of ${\bf 1}$ (neutral)
	VGA_G_OFFSET	Green color offset control. A setting of 128 represents offset of 0 (neutral)
	VGA_B_GAIN	Blue color gain control. A setting of 64 represents gain of 1 (neutral)
	VGA_B_OFFSET	Blue color offset control. A setting of 128 represents offset of 0 (neutral)
tn	+	

Video Output RECORD CVBS TIMING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x228		RP_HALF_LINE[7:0]							
0x229	RP_HALF	_LINE[9:8]	RP_HS_P_OS						
0x22A				RP_HS	_width				

RP_HALF_LINE	This defines in number of clock cycles from VS edge to the location of field change, in case it is change in middle of a line
RP_HS_P_0S	HSYNC starting location, in number of clock cycles
RP_HS_WIDTH	HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x22B				RP_TOP_VS_END				
0x22C				RP_BOT_VS_END				
0x22D	RP_T_VS_POS			RP_T0P_VS_0S				
0x22E	RP_B_VS_PS			RP_BOT_VS_OS				

RP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
RP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
RP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
RP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
RP_T_VS_POS	Enable the top field vsync edge at the middle of a line
RP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Addr	SS	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2	2F			RP_HS_POL	RP_VS_POL	RP_FLD_POL	RP_VAV_POL	RP_HAV_POL	RP_656_ERRCHK

RP_HS_POL	Output HSYNC polarity control
RP_VS_POL	Output VSYNC polarity control
RP_FLD_POL	Output FIELD polarity control
RP_VAV_POL	Output VAV polarity control
RP_HAV_POL	Output HAV polarity control
RP_656_ERRCHK	Enable 656 SAV/EAV error check

SPOT CVBS TIMING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2B8		SP_HALF_LINE[7:0]							
0x2B9	SP_HALF_LINE[9:8]		SP_HS_P_0S						
0x2BA				SP_HS	_width				

SP_HALF_LINE	This defines in number of clock cycles from VS edge to the location of field change, in case it is change in middle of a line
SP_HS_P_OS	HSYNC starting location, in number of clock cycles
SP_HS_WIDTH	HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2BB	0	0	0			SP_TOP_VS_END		
0x2BC	0	0	0	SP_BOT_VS_END				
0x2BD	SP_T_VS_POFS	0	0			SP_TOP_VS_OS		
0x2BE	SP_B_VS_POFS	0	0			SP_BOT_VS_OS		

SP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
SP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
SP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
SP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
SP_T_VS_POS	Enable the top field vsync edge at the middle of a line.
SP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2BF			SP_HS_POL	SP_VS_POL	SP_FLD_POL	SP_VAV_POL	SP_HAV_POL	SP_656_ERRCHK

SP_HS_POL	Output HSYNC polarity control
SP_VS_POL	Output VSYNC polarity control
SP_FLD_POL	Output FIELD polarity control
SP_VAV_POL	Output VAV polarity control
SP_HAV_POL	Output HAV polarity control
 SP_656_ERRCHK	Enable 656 SAV/EAV error check

DISPLAY CVBS TIMING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2C8		DP_HALF_LINE[7:0]						
0x2C9	DP_HALF	_LINE[9:8]			DP_HS	6_P_0S		
0x2CA				DP_HS	_width			

DP_HALF_LINE	This defines in number of clock cycles from VS edge to the location of field change, in case it is change in middle of a line
DP_HS_P_OS	HSYNC starting location, in number of clock cycles
DP_HS_WIDTH	HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2CB						DP_TOP_VS_END		
0x2CC						DP_BOT_VS_END		
0x2CD	DP_T_VS_POS					DP_TOP_VS_OS		
0x2CE	DP_B_VS_POS					DP_BOT_VS_OS		

DP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
DP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
DP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
DP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
DP_T_VS_POS	Enable the top field vsync edge at the middle of a line.
DP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2CF			DP_HS_POL	DP_VS_POL	DP_FLD_POL	DP_VAV_POL	DP_HAV_POL	DP_656_ERRCHK		
	DP_HS_P	OL	Outpu	t HSYNC po	larity contro	ol				
	DP_VS_P	OL	Outpu	Output VSYNC polarity control						
	DP_FLD_I	POL	Outpu	Output FIELD polarity control						
	DP_VAV_	POL	Outpu	t VAV polari	ity control					
	DP_HAV_POL Output HAV polarity control									
	DP_656_	ERRCHK	Enable	e 656 SAV/	EAV error c	heck				

CVBS ENCODER CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2D0	VE_FS	SCSEL	0	VE_FLD	VE_VS	0	1	VE_PAL_NTSC			
	VE_FSC	SEL	Set the sub-carrier frequency for video encoder								
			0 3.57954545 MHz (default)								
			1 4.43361875 MHz								
			2 3.57561149 MHz								
	3 3.58205625 MHz										
	VE_FLD		Define the field detection type								
			0 Use field from input field signal (default)								
			1 Detect field from combination of HSENC and VSEN								
			signals								
	VE_VS		Defin	e the vertic	al sync (VS)	NC) detecti	on type				
	_		0	Use sigr	nal from inp	ut VSYNC					
			1	-	-		on of HSEN	C and FLDEN			
	VE_PAL	_NTSC	Defin	e the PAL o	or NTSC						
			0	NTSC							
			1	PAL							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2D1	VE_HSI	DEL[9:8]	VE_FLDPOL	VE_VSPOL	VE_HSPOL	VE_PED	VE_FDRST	VE_PHALT			
	VE_FLD	POL	Control the field polarity O Even field is high (default) 1 Odd field is high								
VE_VSPOL			Control the vertical sync polarity0Active low (default)1Active high								
VE_HSPOL			Control the horizontal sync polarity0Active low (default)1Active high								
	VE_PED		Set 7 0 1	IRE for p	edestal leve bedestal leve for pedestal	el	ult)				
	VE_FDR	ST	Rese 0 1	No reset	alternation t mode (defa te phase alt	ault)					
	VE_PHA	ILT	Set tl 0 1		ternation phase alter phase altern			lefault)			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x2D1	VE_HSI	DEL[9:8]	VE_FLDPOL	VE_VSPOL	VE_HSPOL	VE_PED	VE_FDRST	VE_PHALT				
0x2D2				VE_HS	DEL[7:0]							
0x2D3	2D3 VE_VSOFF VE_VSDEL											
	VE_HSD	DEL	Control the pixel delay of horizontal sync from active video by									
			•	s/Step								
			0 No delay									
			:	: :								
			256	64 pixel	s delay (def	ault)						
			:	:								
			1023 255 pixels delay									
	VE_VSD	EL	Control the line delay of vertical sync from active video by									
			line/step									
			0 No delay									
				: .	·							
			32	32 lines	delay (defa	ult)						
			:	:		,						
			63	63 lines	delav							
	VE_VSO	FF	Comi	ensate the	field offset	for the first	active vide	o line				
			0					eld (default)				
			1		E_VSDEL+1			· · ·				
			-	field		.,						
			2		E_VSDEL for	odd and (V	F VSDFI +	1) for even				
			£	field				±, 101 01011				
			3		E_VSDEL for	odd and (V) for even				
			5	field								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2D4				VE_ACTIVE_VDEL						
0x2D5		VE_ACTIVE_HDEL								

VE_ACTIVE_VDEL	Contre O	ol the line delay of active video by 1 line/step -12 lines delay
	:	:
	12	0 line delay (default)
	:	:
	25	13 lines delay
VE_ACTIVE_HDEL	Contro	ol the pixel delay of active video by 1 pixel/step
VE_ACTIVE_HDEL	Contro 0	ol the pixel delay of active video by 1 pixel/step -32 pixels delay
VE_ACTIVE_HDEL		
VE_ACTIVE_HDEL		
VE_ACTIVE_HDEL	0 :	-32 pixels delay

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2D6	0	0		0	(0	VE_ACTIVE_MD	VE_CCIR_STD
	VE_ACTIV	/E_MD	0 1	control th digital ou	ne active de Itput (defau	elay for botl Ilt)	or digital BT. h analog en y analog en	
	VE_T_650	6_STD	Select 0 1	240 lines	s for odd an	d even fiel		system eld (Standar

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2D7	0	VE_OSD_SEL0	VE_	SELO	VE_	CBWO	VE_Y	′BW0		
0x2D8	0	VE_OSD_SEL1	VE_S	SEL1	VE_0	CBW1	VE_Y	'BW1		
	VE_OSD_	_SEL	Select 1 0	t video enco Turn on Turn off		with OSD				
	VE_SEL		Select the source of the video encoder0Select display CVBS output1Select SPOT CVBS output2Select RECORD CVBS output3ReservedControl the chrominance bandwidth of video encoder							
	VE_CBW		Contro 0 1 2 3	0.8 MHz 1.15 MH	z z (default)	ndwidth of v	video encod	er		
VE_YBW Control the luminance bandwidth of video encoder 0 Narrow bandwidth 1 Narrower bandwidth 2 Wide bandwidth (default) 3 Middle bandwidth										
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2D9		VE_CBGEN1	VE_CKILL1			VE_CBGEN0	VE_CKILLO	

VE_CBGEN	 Enable the test pattern output Normal operation Internal color bar with 100% amplitude and 100% saturation
VE_CKILL	Enable the color kill function 0 Normal operation (default) 1 Color is killed

DISPLAY CASCADE TIMING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x508	VDOX_BT1120_SEL	VDOX_FLD_POL	VDOX_1120_CROP	VDOX_HVS_MD	VDOX_DIG_OSD_BP			DISP_CVBS_EN		
	DISP_C\	/BS_EN	1 0	Enable d	Display CVBS lisplay digita		ither BT112	?0 or 8-bit		
	VDOX_D	DIG_OSD_BF	2 1 0) he digital di he OSD on tl			ut		
	VDOX_HVS_MD 1 0				Output HAV/VAV signal at the HSYNC VSYNC port Output regular HSYNC/VSYNC signal					
	VDOX_1120_CROP 1 0				BT1120 mode crop window enabled BT1120 mode crop window disabled					
VDOX_FLD_POL 1				Reverse the field polarity for display digital output						
	VDOX_B	8T1120_SEL	0 - 1 0	Do not reverse the field polarity for display digital output Select display digital output as the BT1120 output Select display digital output as the 8-bit Cascade output						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x509				VDOX_BT112	20_TOP_0S[7:0]					
0x50A	VDOX_BT1120_BOT_OS[7:0]									
0x50B	VDOX_BT1120_L_OS[7:0]									
0x50C	VD0X_BT1120_R_08[7:0]									
0x50D				VDOX_BT1120_R_OS[8]				VDOX_BT1120_BOT_OS[8]		

VDOX_BT1120_TOP_OS Top offset defining the vertical starting location of active video in the BT1120 (1920x1080) frame

VDOX_BT1120_BOT_OS Bottom offset defining the vertical ending location of active video in the BT1120 (1920x1080) frame

VDOX_BT1120_L_OS	Left offset defining the horizontal starting location of active video in the BT1120 (1920x1080) frame
VDOXD_BT1120_R_OS	Right offset defining the horizontal ending location of active video in the BT1120 (1920x1080) frame

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x50F			VD0X_VAV_0DD_0FS								
0x510			VDOX_VAV_EVEN_OFS								

VDOX_VAV_ODD_OFS The line number between the beginning of the ODD field and the beginning of VAV of display digital output (BT1120 or cascade)

VDOX_VAV_EVEN_OFS The line number between the beginning of the EVEN field and the beginning of VAV of display digital output (BT1120 or cascade)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x511	VDOX_VS_POL	VDOX_HS_POL	VDOX_VS_ETP_EN	VDOX_VS_ELP_EN	VDOX_VS_OTP_EN	VDOX_VS_OLP_EN				
VDOX_VS_POL Select the VS polarity of display digital output. 1 Low active 0 High active										
	VDOX_H	IS_POL	Selec	t the HS pol	arity of disp	olay digital o	output			
	-	-	1	Low activ	ve	, ,	•			
			0	High acti	ive					
	VDOX_V	'S_ETP_EN		•	offset of ev OX_VS_POI		trailing edg	e relative to		
	VDOX_V	S_ELP_EN		•	offset of ev OX_VS_POI		leading edg	ge relative to		
VDOX_VS_OTP_EN Enable the pixel offset of odd field VS trailing edge relative t specified with VDOX_VS_POFS										
	VDOX_V	S_OLP_EN		Enable the pixel offset of odd field VS leading edge relative to H specified with VDOX_VS_POFS						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x512		VDOX_VS_I	POFS[11:8]		VDOX_VSYNC_WIDTH				
0x513		VD0X_VS_P0FS[7:0]							

 VDOX_VS_POFS
 The pixel offset of VS edge relative to HS for the display digital output timing

 VDOX_VSYNC_WIDTH
 The VSYNC width in unit of lines for the display digital output

VDOX_VSYNC_WIDTH The VSYNC width in unit of lines for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x514	VDOX_VS_E_LOFS					VDOX_VS	6_0_LOFS	

VDOX_VS_E_LOFS The even field line offset of the VS relative to the edge of field change for the display digital output timing

VDOX_VS_0_LOFS The odd field line offset of the VS relative to the edge of field change for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x515							VDOX_HS_WIDTH[8]	0
0x516		VDOX_HS_WIDTH[7:0]						
0x517		0						

VDOX_HS_WIDTH The HSYNC Width in number of pixels for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1] [0]			
0x518	VDOX_HACTIVE[11:8] VDOX_VACTIVE[9:8]							(_VACTIVE[9:8]		
0x519		VDOX_VACTIVE[7:0]								
0x51A	VDOX_HACTIVE[7:0]									

VDOX_HACTIVE

The active pixels per line for the display digital output timing

VDOX_VACTIVE

The active lines per field for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x51B			VDOX_0	OVT[9:8]			VD	OX_EVT[9:8]
0x51C		VDOX_EVT[7:0]						
0x51D	VDOX_OVT[7:0]							

VDOX_EVT The total line number of even field including vertical blanking for the display digital output timing

VDOX_OVT

The total line number of odd field including vertical blanking for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x51E					VDOX_HT [11:8]				
0x51F		VDOX_HT [7:0]							

VDOX_HT

The total pixel number per line including horizontal blanking for the display digital output timing

DISPLAY VGA TIMING

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4D0		VGA_HTOTAL[7:0]								
0x4D1				VGA_VTC)TAL[7:0]					
0x4D2		VGA_VTOTAL[10:8] VGA_HTOTAL[10:8]								
0x4D3		VGA_HSTART[7:0]								
0x4D4		VGA_HACTIVE[7:0]								
0x4D5			VGA_HACTIVE[10:8]				VGA_HSTART[10:8]			
0x4D6				VGA_VS1	ART[7:0]					
0x4D7	VGA_VACTIVE[7:0]									
0x4D8			VGA_VACTIVE[10:8]				VGA_VSTART[10:8]			
0x4D9	VGA_TRACK_EN VGA_AUTO_ADJ VGA_LOCK_EN VGA_TIM_WIN									

VGA_HTOTAL	VGA pixel size per line, including horizontal blanking. Note the following condition needs to be met.
	VGA_HTOTAL - VGA_HSTART - VGA_HACTIVE > 6
VGA_VTOTAL	VGA line size per frame, including the vertical blanking. Note the following condition needs to be met.
	VGA_VTOTAL - VGA_VSTART - VGA_VACTIVE > 2
VGA_HSTART	VGA active pixel starting location relative to the leading edge of HSYNC, in # of pixels.
	VGA_HSTART = VGA_HS_WIDTH + H Back Porch - 6
VGA_HACTIVE	VGA active pixel width per line, in # of pixels
VGA_VSTART	VGA active line starting location relative to the leading edge of VSYNC, in $\ensuremath{\texttt{\#}}$ of lines
	VGA_VSTART = VGA_VS_WIDTH + V Back Porch
VGA_VACTIVE	VGA active line height per frame, in # of lines
VGA_TRACK_EN	 Enable frame tracking. Does not do frame tracking. Always use free running control Enable frame tracking
VGA_AUTO_ADJ	 Hardware does not adjust to do frame tracking Hardware adjust the configuration to do frame tracking
VGA_LOCK_EN	0 Free running1 Lock to incoming video timing
VGA_TIM_WIN	In frame tracking, this parameter specifies the maximum number of lines inserted in the vertical blanking to track the incoming frame

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4DA							VGA_HS_POL	VGA_VS_POL		
0x4DB		VGA_HS_WIDTH								
0x4DC		VGA_VS_WIDTH								
	VGA_VS	_POL	1 0	-	e (Low activ (High active	,				
	VGA_HS	_POL	1 0							
	VGA_HS	_WIDTH	VGA I	HSYNC widt	h in # of pix	els				

VGA VSYNC height in # of lines

TFT PANEL CONTROL

VGA_VS_WIDTH

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4E2	FP_PX_MODE	FP_DE_AH	FP_HS_AH	FP_VS_AH	FP_CK_AH						
0x4E3			FP_S	FP_SEL_LG FP_SIG_OFF FP_CKTPS							
	FP_PX_	MODE	1 0		channel LV le channel L		:				
	FP_DE_	AH	1 0	Panel DE signal active high Panel DE signal active low							
	FP_HS_	AH	1 0	Panel HS signal active high Panel HS signal active low							
	FP_VS_/	AH	1 0	Panel VS signal active high Panel VS signal active low							
	FP_CK_	AH	Reverse the FPCLK polarity1Data is sampled at the falling edge0Data is sampled at the rising edge								
	FP_SEL	_LG	0 1 2 3	Select the LVDS mapping of the LG type Reserved							
	FP_SIG_	_OFF	0 1		urn off the p the panel	anel					
	FP_CKT	PS	Rese	rved							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1		
0x4E4				FP_PW	R_CLK_DV	•		·	1		
0x4E5	FP_CLK_PWDN	FP_CLKSEL			FP_MAN_PWR	FP_EDPMS	FP_	PCR	I		
	FP_PWF	R_CLK_DV	is div		ernal 23 bit c his counter t						
	FP_CLK	_PWDN	1	1 Force the internal panel clock to power down							
	FP_CLK	SEL	Defau	ılt 1							
	FP_MAN	N_PWR	deter	mine the s	tates of FPP	management state. These power s f FPPWC, FPBIAS, and FP Interfaces suc d all data signals. C FPBIAS FP Interfaces					
			00: o	ff	"O"	"0"		"O"			
				tandby	"1"	"O"		"O"			
				uspend	" 1 "	"Õ"		"1" or "0"			
			11:0		" 1 "	"1"		"1" or "0"			
					etween pow er the timer e						
	FP_EDP	MS	powe	r sequenci		_	MS is "1",	it enables	auto		
			-	C loss & H		Off					
					SYNC active	Stand					
			-		HSYNC loss	Suspe	end				
			VSYN	C active &	HSYNC activ	ve On					
	FP_PCR			the powe Off Standb Suspen On	•	equence to	this state,	and stay in	this		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x4E6		FP_IT	V12		FP_ITV01				
0x4E7		FP_IT	V32		FP_ITV23				
0x4E8		FP_IT	V21		FP_ITV10				
0x4E9	FP_PWM_CLK_SEL	FP_PWM_CLK_SEL				FP_PWM			
Ox4EB								FP_PWM_AL	

FP_ITV01	Timer counts for On state to Suspend state transition
FP_ITV12	Timer counts for Suspend state to Standby state transition
FP_ITV23	Timer counts for Standby state to Power Off state
FP_ITV32	Timer counts for Power Off state to Standby state
FP_ITV10	Timer count for Suspend state to On State
FP_ITV21	Timer count for Standby state to Suspend state
FP_PWM_CLK_SEL	 PWM clock set to 27 MHz PWM clock set to 13.5 MHz
FP_PWM	Pulse width of PWM is FP_PWM + 1
FP_PWM_AL	PWM Output Polarity1Reverse PWM signal output polarity0Do not reverse PWM signal output polarity

Address	[7]	[6]	(5)	[4]	[0]	[0]	[4]	101		
Address 0xE40	[7]	[6] LP_SEL	[5]	[4] CP_SEL	[3]	[2] LVDS_EN	[1] LVDS_FAB_TEST	[0] LVDS_LCD_TEST		
0xE40	LVDS_SWAP_CH	LVDS_9BIT_DC	LVDS_NS_SEL	LVDS_DC_BAL	LVDS BIT	PERPIXEL	LVDS_REV_DATA	LVDS_ECD_TEST		
0xE42			LVDS_REV_DCB	LVDS_DCB_POL			LVDS_MAP_SEL			
0xE43						LVDS_VOS_SEL	LVDS	_I_SEL		
	LVDS_LP	_	Defaul							
	LVDS_CP	SEL	Defaul	lt O						
	LVDS_EN	l	0 1	LVDS Dis LVDS Ena						
	LVDS_FA	B_TEST	0 1	Normal Operation LVDS Test Mode						
	LVDS_LC	D_TEST	0 1	Normal 0 LCD Pane	peration I Test Mod	e				
	LVDS_SV	VAP_CH	1 0		DS channel vap LVDS c	0 and 1 hannel 0 a	nd 1			
	LVDS_9B	BIT_DC	0	Select 7 cycle DC balance, as used in most Nationa chip						
			1	•						
	LVDS_NS	5_SEL	0 1	interface	protocol	-	Maxim or Ti National int			
	LVDS_DC	C_BAL	1 0	DC Balan	ce Enable ce Disable					
	LVDS_BI	[PERPIXEL	0 1 2	1 8 bit data output						
	LVDS_RE	V_DATA	0 1		ata output lata output					
	LVDS_SE	L_LD	Load/S O 1	Shift signal Active lov Active hig	V	lection				
	LVDS_RE	V_DCB	1	Reverse I	DC balance	bit order				
	LVDS_DO	B_POL	1	Reverse I	DC balance	polarity				
	LVDS_M	AP_SEL	Chang 000 001 010 100 101 110	{DE, {VSYNC, {HSYNC, E {DE,	VS` HS` DE, HS` /SYNC, DE	YNC, HSYN YNC, DE VSYN YNC, VSYN	} C } C }	YNC signal		

LVDS_VOS_SEL	LVDS Driver Voltage Offset Select

LVDS_I_SEL LVDS Driver Output Swing Select

OSG

OSG BITMAP WRITE / MOVE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x640					OSG_ME	M_WIDTH		

OSG_MEM_WIDTH

The OSG memory structure width in units of 64 pixels (128 bytes)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x641				OSG_WRB	ASE_ADDR			

OSG_WRBASE_ADDR

The base address used for writing data into OSG memory space. This base address can be set statically to treat all the OSG memory space into a big one, or it can be set dynamically to match each of the OSG base address at the write side. The unit is in 64 Kbytes. The DDR address generated from this register is {1'b1, OSG_WRBASE_ADDR[7:0], 16'h0}

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x642	()	OSG_COLR_CON	0 1 1 0SG_OPMOD				PMODE
	OSG_COI	-R_CON	1 0	memory. used to n the pixel output pi	There is a 4 natch with t	4-entry colo the pixel va d to a speci	writing into r conversion lue. If it ma fied corresp nction	n table tches,
	OSG_OPI	MODE	0 1 2 3	Block Mo	ve Mode – rom one loc Mode	Move one b	ll the pixel b block of men other locati	mory

Address	[7]	[6]	[5]	[4]	[3]	[2] [1] [0]					
0x645		0SG_SRC_SH[10:8] 0SG_SRC_SV[10:8]									
0x646		OSG_SRC_SV[7:0]									
0x647				OSG_SR	C_SH[7:0]						
0x648		OSG_DST_EH[10:8] OSG_DST_EV[10:8]									
0x649				OSG_DS	T_EV[7:0]						
0x64A				OSG_DS	T_EH[7:0]						
0x64B		OSG_DST_SH[10:8] OSG_DST_SV[10:8]									
0x64C		0SG_DST_SV[7:0]									
0x64D		OSG_DST_SH[7:0]									

OSG_SRC_SV	The start line of the source block
OSG_SRC_SH	The starting pixel of the source block
OSG_DST_EV	The end line of the destination block
OSG_DST_EH	The end pixel of the destination block
OSG_DST_SV	The starting line of the destination block
OSG_DST_SH	The starting pixel of the destination block

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
	0x64E		SEL	OSG		0	OSG_INDRD	OSG_INDWR	0	
		OSG_IND	OWR		1 to start i G_SELOSG.		e comman	d for on-chi	p table sele	ected
	OSG_INDRD				1 to start ir G_SELOSG.		command	from on-chi	p table sele	ected
OSG_SELOSG				or conversions: reserved.						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x64F		OSG_IDLE	OSG_BMWR_BUSY					OSG_OP_START	
	-	P_START MWR_BUSY	WRIT This k new Note:	E function. Dit can be u operation. do not writ only flag t space avail	Self clear a sed as stat If it is 0, r e 0 to this I o specify w able to writ	fter done. us bit for w neans the bit. It may c hether the ce. If this bi	VE, BLOCK hether the O previous op ause unexpo BITMAP WR t is 0, the M ing this bit a	PSG is ready peration is c ected result. RITE fifo has ICU can feel	for a done. 256
	OSG_ID	LE	usual	OP_START	osite of the	ne OSG_OF incorrect t progress	machine is P_START (0 ime during	x64F[0]), u	nless

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x650				OSG_IN	D_ADDR			

OSG_IND_ADDR The indirect access address used to access the internal tables.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x651				OSG_IND	_wrdata			

OSG_IND_WRDATA

The indirect write data for writing the color table.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x652			С	SG_UP_DATA[15:0]	or OSG_UP_DATA[7:0	D]		

OSG_UP_DATA The BITMAP WRITE data register. Note that in the 16-bit data bus mode, this address is used to write 16 bits, instead of 8 bits.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x654	OSG_FILL_COLR(7:0) (Y2)									
0x655		OSG_FILL_COLR[15:8] (Cr)								
0x656		OSG_FILL_COLR[23:16] (Y1)								
0x657		OSG_FILL_COLR31:24] (Cb)								

OSG_FILL_COLR[31:24]	U pixel value for block fill
OSG_FILL_COLR[23:16]	Y1 pixel value for block fill
OSG_FILL_COLR[15:8]	V pixel value for block fill
OSG_FILL_COLR[7:0]	Y2 pixel value for block fill

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x658	OSG_RLC_EN			OSG_RLC_32B		OSG_R	LC_CNT	
	OSG_RL(C_EN	the bi uploa comp by th	itmap into ding bitmap ressed form	the OSG bu o from MCU nat. The RL e automat	uffer. With J through t C compress tically. This	this feature he host inte sed result is	while uploa turned on erface is in s decompre the bandv
	OSG_RL0	С_32В	1 0	Use 32 b	it data for c it data for c	ompressior		
	OSG_RLO	C_CNT	0	ite how mar The repe 5 The repe	tition count	is 16 bits	•	ount.
	The prop	rietary com	pression fo	rmat is as f	ollows:			
	F, D/C, F	, D/C,						
	Where F	(1 bit):		licate the fo dicate the fo			ount	
	D	:	Pixel		•	•		s specified
	С	:	Repet numb	tition count				s repeated. ntrolled by

OSG_RLC_CNT. Note: count of 0 means 2**N repetition, where N is OSG_RLC_CNT

OSD BITMAP READ

0xm21, 0xm30 ~ 0xm3F, 0xm64 ~ 0xm8F are used to control the read side of the 5 0SDs.

m: 5 – Display VGA OSD

m: 6 - Display CVBS OSD

m: 7 - Record 0 OSD

m: 8 - Record 1 OSD

m: 9 - SPOT OSD

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x521								
0x621								
0x721	0	0					OSD_FLD_POL	OSD_VSYNC_POL
0x821								
0x921								

OSD_FLD_POL The Polarity control for the OSD to interpret the field signal

OSD_VSYNC_POL The polarity control for the OSD to interpret the VS when signal

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x530								
0x630								
0x730								OSD_BLINK_EN
0x830								
0x930								
0x531		•	•	•		•	•	•
0x631								
0x731		OSD_	TEST		OSD_WINSEL[7:0]			
9x831								
0x931								

OSD_BLINK_EN Enable blinking

OSD_TEST OSD Test pattern. For internal use only

OSD_WINSEL[n] Selects which window to configure. This is used with registers 0xm35, 0xm37 ~ 0xm3F. 0 ~ 7 Sub-windows 8 Main Window

Address [7] [6] [5] [3] [2] [1] [0] [4] 0x532 0x632 0x732 OSD_GLOBAL_ALPHA1 (Main Window) 0x832 0x932 0x533 0x633 0x733 OSD_GLOBAL_ALPHA2 (Sub Windows) 0x833 0x933

OSD_GLOBAL_ALPHA1 The alpha value for main window

OSD_GLOBAL_ALPHA2 The alpha value for all sub-windows

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x534 0x634 0x734 0x834 0x934	0	0	OSD_BLEND_OPT	OSD_WINSUB_ON	OSD_WINMAIN_ON	OSD_P_ALPHA	OSD_MODE[1]	OSD_MODE[0]			
	OSD_BL	END_OPT	OSD	le whether on top whe	single windo n blending	ow OSD lay	er on top	or multi-wii			
	OSD_WI	NSUB_ON		Turn on sub-window OSD. Each individual sub-window is enabled by OSD_WIN_EN in 0xm35							
	OSD_WI	NMAIN_ON	l Turn	Turn on the main window OSD							
	OSD_P_	ALPHA	(rese	(reserved)							
	OSD_MO	DDE[1:0]		For VGA OSD(0x534) 00: 422 UYVY format 01: 565 UYV format 11: 565 RGB format For other OSD (0x634/0x734/0x834/0x934) Always 422 UYVY format							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x535								
0x635	OSD_BLINK_TIME							
0x735			OSD_WINSWITCH	OSD_WINSET			OSD_WIN_EN	
0x835								
0x935								

OSD_BLINK_TIME Enable blinking of the window specified by OSD_WINSEL in 0xm31. This bit is written into the corresponding window when **OSD_WINSET** is set to 1. 0 blink every 8 VSYNC 1 blink every 16 VSYNC 2 blink every 32 VSYNC 3 blink every 64 VSYNC OSD_WINSWITCH Enable the dynamic field based OSD switching for record / SPOT OSD OSD_WINSET Write command to write to one of the 9 windows configuration registers. This bit is not self cleared. It requires a clear before setting to 1 again. OSD_WIN_EN Enable the window specified by OSD_WINSEL in 0xm31. This bit is written into the corresponding window when the OSD_WINSET is set to 1.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x536										
0x636										
0x736	OSD_RDBASE_ADDR									
0x836										
0x936										

OSD_RDBASE_ADDR The base address of the current OSD. Each OSD can have its own base address. This address is in unit of 64 KB. The derived DDR address will be {1'b1, OSD_RDBASE_ADDR, 16'h0000 }

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x537		•	•			•	•	•			
0x637											
0x737		OSD_SRC	_SH[11:8]			OSD_SRC	C_SV[11:8]				
0x837											
0x937											
0x538											
0x638											
0x738		OSD_SRC_SV[7:0]									
0x838											
0x938											
0x539											
0x639											
0x739	OSD_SRC_SH[7:0]										
0x839											
0x939											
0x53A											
0x63A											
0x73A	OSD_DST_EH[11:8] OSD_DST_EV[11:8]										
0x83A 0x93A											
0x93A 0x53B											
0x53B 0x63B											
0x03B 0x73B		OSD_DST_EV[7:0]									
0x73B 0x83B				030_03	I_EV[7:0]						
0x83B 0x93B											
0x53C											
0x63C											
0x73C				OSD DS	T_EH[7:0]						
0x83C											
0x93C											
0x53D											
0x63D											
0x73D		OSD_DST	[_SH[11:8]			OSD_DST	[_SV[11:8]				
0x83D		_				_					
0x93D											
0x53E											
0x63E											
0x73E				OSD_DS	T_SV[7:0]						
0x83E											
0x93E											
0x53F											
0x63F											
0x73F				OSD_DS	T_SH[7:0]						
0x83F											
0x93F											

The following register setting are saved into the corresponding OSD window specified by OSD_WINSEL in 0xm31 when the OSD_WINSET bit is set to 1.

OSD_SRC_SV	Starting line of the source block in the OSD memory
OSD_SRC_SH	Starting pixel of the source block in the OSD memory
OSD_DST_EV	Ending line of the OSD on the destination video stream

OSD_DST_EH	End pixel location of the OSD on the destination video stream. This should be the starting location OSD_DST_SH + OSD_WIDTH.
OSD_DST_SV	Starting line of the OSD on the destination video stream
OSD_DST_SH	Starting pixel location of the OSD on the destination video stream.

1D BOX CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x564									
0x664									
0x764		BOX1D_	ALPHA1		BOX1D_ALPHA0				
0x864									
0x964									

BOX1D_ALPHA0	The alpha value for the 6 1DBOXs below the bitmap OSG layer (1D box 2 \sim 7)
BOX1D_ALPHA1	The alpha value for the 2 1DBOXs above the bitmap OSG layer (1D box 0 ~ 1)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x566									
0x666									
0x766		MOSAIC_CO	DLOR_SEL1		MOSAIC_COLOR_SEL0				
0x866									
0x966									

MOSAIC_COLOR_SEL0

Mosaic color selection for the 6 1D Boxes below the bitmap OSG layer

MOSAIC_COLOR_SEL1

Mosaic color selection for the 2 1D Boxes above the bitmap OSG layer

- 0 White (75% Amplitude 100% Saturation)
- 1 Yellow (75% Amplitude 100% Saturation)
- 2 Cyan (75 % Amplitude 100 Saturation)
- 3 Green (75% Amplitude 100% Saturation)
- 4 Magenta (75% Amplitude 100% Saturation)
- 5 Red (75% Amplitude 100% Saturation)
- 6 Blue (75% Amplitude 100% Saturation)
- 7 0% Black
- 8 100% White
- 9 50% Gray
- 10 25% Gray
- **11** Blue (75% Amplitude 75% Saturation)
- 12 Defined by CLUTO in 0xm78, 0xm7C, 0xm80
- 13 Defined by CLUT1 in 0xm79, 0xm7D, 0xm81
- 14 Defined by CLUT2 in 0xm7A, 0xm7E, 0xm82
- 15 Defined by CLUT3 in 0xm7B, 0xm7F, 0xm83

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x567								
0x667								
0x767	BOX1	BOX1D_EN						
0x867	_							
0x967								

[1]

BOX1D_EN

Enable the upper layer with 2 Single Boxes (1D Box 0 \sim 1) Enable the lower layer with 6 Single Boxes

[0] (1D box 2 ~ 7)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x568										
0x668										
0x768					MOSAIC_EN	BOX1D_MIX_EN	BOX1D_BDR_EN	BOX1D_INT_EN		
0x868										
0x968										
0x569										
0x669										
0x769			BOX1D_B	DR_COLR		BOX10	_COLR			
0x869										
0x969										
0x56A										
0x66A										
0x76A			BOX1D	_VT[9:8]			BOX1D_HL[10:8]			
0x86A										
0x96A										
0x56B										
0x66B										
0x76B				BOX10	D_HL[7:0]					
0x86B										
0x96B										
0x56C										
0x66C 0x76C				DOV4						
0x76C 0x86C				BOX11	D_VT[7:0]					
0x86C 0x96C										
0x56D										
0x56D										
0x76D			BOX1D_	VW[9:8]			B0X1D_HW[10:8]			
0x86D			LOAID_				20.000_000120.01			
0x96D										
0x56E			1			1				
0x66E										
0x76E				BOX1D	_HW[7:0]					
0x86E										
0x96E										
0x56F										
0x66F										
0x76F				BOX1D	_VW[7:0]					
0x86F										
0x96F										

Register $0 \times 68 \sim 0 \times 6F$ are used to control 8 sets of 1D-boxes. In order to access the 1D box to control, use MDCH_SEL in 0×76 to enable the corresponding bit before accessing these registers.

MOSAIC_EN[m]	Turn on the MOSAIC pattern in the 1D Box.
BOX1D_MIX_EN	Transparent blending enable
BOX1D_BDR_EN	Enable showing the border line
BOX1D_INT_EN	Enable showing the interior pixel color
BOX1D_BDR_COLR	Define the box boundary color for each box00% White (Default)125% White250% White375% White
BOX1D_COLR	Define the interior pixel colors0White (75% Amplitude 100% Saturation)1Yellow (75% Amplitude 100% Saturation)2Cyan (75% Amplitude 100 Saturation)3Green (75% Amplitude 100% Saturation)

	4 5 6 7 8 9 10 11 12 13 14 15	Magenta (75% Amplitude 100% Saturation) Red (75% Amplitude 100% Saturation) Blue (75% Amplitude 100% Saturation) 0% Black 100% White 50% Gray 25% Gray Blue (75% Amplitude 75% Saturation) Defined by CLUT0 in 0xm78, 0xm7C, 0xm80 Defined by CLUT1 in 0xm79, 0xm7D, 0xm81 Defined by CLUT2 in 0xm7A, 0xm7E, 0xm82 Defined by CLUT3 in 0xm7B, 0xm7F, 0xm83
BOX1D_HL	Define 0 : 1439	the horizontal left location of box. Left end (default) : Right end
BOX1D_VT	Define 0 : 899	the vertical top location of box. Vertical top (default) : Vertical bottom
BOX1D_HW	0 :	the horizontal size of box. 1 Pixel width (default) : 1440 Pixels width
BOX1D_VW	Define 0 : 899	the vertical size of box. 1 Lines height (default) : 900 Lines height

2D BOX CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x575 0x675 0x775 0x875 0x875	MDBOX_EN					MD_BND_MERG	MDBOX	_alpha

MDBOX_EN	N
----------	---

Enable the Motion 2D Box function

MD_BND_MERG	Turn	on the 2D Box merge if two adjacent box are both on
MDBOX_ALPHA	Selec	t the alpha blending mode for 2D arrayed Box
	0	50% (default)
	1	50%
	2	75%
	3	25%

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x576										
0x676										
0x776		MDCH_SEL								
0x876										
0x976										

MDCH_SEL

Select one of the 8 1DBOXs to configure using $0xm68 \sim 0xm6F$ or one of the 8 Motion 2D Boxes to configure using $0xm84 \sim 0xm8F$.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x578										
0x678										
0x778				MD_C	LUTO_Y					
0x878										
0x978										
0x579										
0x679										
0x779				MD_C	LUT1_Y					
0x879 0x979										
0x979 0x57A										
0x57A 0x67A										
0x07A 0x77A				MD C	LUT2_Y					
0x77A				WD_C	1012_1					
0x97A										
0x57B										
0x67B										
0x77B				MD C	LUT3_Y					
0x87B				-						
0x97B										
0x57C										
0x67C										
0x77C				MD_CL	UTO_CB					
0x87C										
0x97C										
0x57D										
0x67D										
0x77D				MD_CL	UT1_CB					
0x87D										
0x97D										
0x57E										
0x67E				MD CL	UT2_CB					
0x77E										
0x87E										

TW2851

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x97E												
0x57F												
0x67F												
0x77F				MD_CL	UT3_CB							
0x87F												
0x97F												
0x580												
0x680												
0x780				MD_CL	UT0_CR							
0x880												
0x980												
0x581												
0x681												
0x781				MD_CL	UT1_CR							
0x881												
0x981												
0x582												
0x682					170.00							
0x782				MD_CL	UT2_CR							
0x882												
0x982 0x583												
0x683 0x783				MD CI								
0x783 0x883				WID_CL	UT3_CR							
0x883												
0,303												

MD_CLUTx_Y	Y component for user defined color 0 (default : 0)
MD_CLUTx_CB	Cb component for user defined color 0 (default : 0)
MD_CLUTx_CR	Cr component for user defined color 0 (default : 0)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x584		[0]	[0]	ויין	[0]	[=]	[-]	[0]	
0x584 0x684									
0x084 0x784					MDBOX_MODE				
0x784 0x884					WIDBOX_WIDDE				
0x984									
0x585									
0x585 0x685									
0x085 0x785	MDDET_EN	MDMASK_EN	MDBOX_VINV	MDBOX_HINV	MDBOX_MIX	MDCUR_EN		MDBOXm_EN	
0x185 0x885	WDDET_EN	MDMASK_EN		NDBOX_HINV		WIDCOR_EN		WDBOXIII_EN	
0x985									
0x586									
0x686									
0x786		MDDF	T_COLR			MDMAS			
0x886		mbbe				meniadi			
0x986									
0x587									
0x687									
0x787			MDBOX_VOS[10:8]				MDBOX_HOS[10:8]		
0x887									
0x987									
0x588									
0x688									
0x788				MDBOX	HOS[7:0]				
0x888				WIDBOX_	103[1.0]				
0x988									
0x589									
0x689									
0x085 0x789				MDBOX	VOS[7:0]				
0x889				MDBOX_	100[1:0]				
0x989									
0x585									
0x68A									
0x78A			MDBOX_VW[10:8]				MDBOX_HW[10:8]		
0x88A			11000X_111(10.0)			(1050)[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
0x98A									
0x58B									
0x68B									
0x78B				MDBOX	_HW[7:0]				
0x88B				ind box					
0x98B									
0x58C									
0x68C									
0x78C				MDBOX	_VW[7:0]				
0x88C									
0x98C									
0x58D									
0x68D									
0x08D 0x78D						MDBOX_BNDEN		RY_COLR	
0x88D									
0x98D									
0x58E		1	1	1			I		
0x68E									
0x78E		MDCUE	R_HPOS			MDCUR	VPOS		
0x88E					112001				
0x98E									
0x58F									
0x58F									
0x08F 0x78F		MDROY				MDBOX	VCFU		
0x78F									
0x88F									
UX30L									

Register 0xm84 ~ 0xm8F are used to control 8 sets of 2D boxes. In order to select the specific 2D box to control, use MDCH_SEL in 0xm76 to enable the corresponding bit before accessing these registers.

MDBOX_MODEDefine the operation mode of 2D arrayed box.

- 0 Table mode (default)
- 1 Motion display mode

MDDET_EN	Enable the motion cell display when the corresponding mask bit is 0 When MDBOX_MODE = "0" 0 Disable the detection plane of 2D arrayed box (default) 1 Enable the detection cell of 2D arrayed box
	When MDBOX_MODE = "1"0Display the motion detection result with inner boundary1Display the motion detection result with whole cell area
MDMASK_EN	 Enable the mask plane of 2D arrayed box Disable the mask plane of 2D arrayed box (default) Enable the mask plane of 2D arrayed box
MDBOX_VINV	 Enable the vertical mirroring for 2D arrayed box. 0 Normal operation (default) 1 Enable the vertical mirroring
MDBOX_HINV	 Enable the horizontal mirroring for 2D arrayed box. Normal operation (default) Enable the horizontal mirroring
MDBOX_MIX	 Enable the alpha blending for 2D arrayed box plane with video data. 0 Disable the alpha blending (default) 1 Enable the alpha blending with MDBOX_ALPHA setting (0x575)
MDCUR_EN	Used to change the color of a cell to indicate the cell where the cursor is located
MDBOXm_EN	Enable the 2Dbox specified by 0xm760Disable the 2D box (default)1Enable the 2D box
MDMASK_COLR	Define the color of Mask plane in 2D arrayed box. (default = 0)
MDDET_COLR	Define the color of Detection plane in 2D arrayed box. (default = 0)0White (75% Amplitude 100% Saturation)1Yellow (75% Amplitude 100% Saturation)2Cyan (75 % Amplitude 100% Saturation)3Green (75% Amplitude 100% Saturation)4Magenta (75% Amplitude 100% Saturation)5Red (75% Amplitude 100% Saturation)6Blue (75% Amplitude 100% Saturation)70% Black8100% White950% Gray1025% Gray11Blue (75% Amplitude 75% Saturation)12Defined by CLUT013Defined by CLUT114Defined by CLUT215Defined by CLUT3

MDBOX_VOS

Define the vertical top location of 2D arrayed box.

	0	Vertical top end (default)
	900	Vertical bottom end
MDBOX_HOS	Define 0	the horizontal left location of 2D arrayed box. Horizontal left end (default)
	720	Horizontal right end
MDBOX_VW	Define 0 : 255	the vertical size of 2D arrayed box. 0 Line height (default) : 255 Line height
MDBOX_HW	Define 0	the horizontal size of 2D arrayed box. 0 Pixel width (default)
	: 255	: 510 Pixels width
MDBOX_BNDEN	Enable 0 1	the boundary of 2D arrayed box. Disable the boundary (default) Enable the boundary
MD_BNDRY_COLR	0 1 2 3	the color of 2D arrayed box boundary 0 % Black (default) 25% Gray 50% Gray 75% White the displayed color for cursor cell and motion-detected 75% White (default) 0% Black
MDCUR_HPOS	Indicate	e the horizontal location of the cursor cell
MDCUR_VPOS	Indicate	e the vertical location of the cursor cell
MDBOX_HCELL	Indicate	e the number of columns in the 2D box
MDBOX_VCELL	Indicate	e the number of rows in the 2D box

CURSOR CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x65B						CUR_EN		

CUR_EN

Enable the 5 OSD cursors. Only one of the 5 should be turned on.

Bit 0: Display VGA OSD

Bit 1: Display CVBS OSD

Bit 2: Record 0 OSD

Bit 3: Record 1 OSD

Bit 4: SPOT OSD

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x65C	CUR_REV	CUR_BLINK	CUR_HOLLOW_OFF	CUR_CUSTOM_LD			CUR	_SEL	
	CUR_RE	(black beco	ome white,	white be	come				
	CUR_BL	INK	Enabl O 1		iouse pointe cursor blink ursor blinki	ing (default)		
	CUR_HC	OLLOW_OFF	Contr 0 1	(default)	ursor shap	e (only the	e border pi by the curse		າown)
	CUR_CU	ISTOM_LD	Load chip S	the custom SRAM	ized cursor	shape fror	n DDR mer	nory into tl	he on
	CUR_SE	ïL	Selec 0 1 2 3	t the cursor Small cu Normal c Customi Reserved	rsor cursor zed cursor i	mplemente	d with SRA	М	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x65D			CUR_Y[10:8]				CUR_X[10:8]	
0x65E			CUR					
0x65F				CUR_	Y[7:0]			

CUR_X	Control the horizontal location of mouse pointer. 0 0 Pixel position (default)
	: : 1440 1440 Pixel position
CUR_Y	Control the vertical location of mouse pointer. 0 0 Line position (default)
	: : 900 900 Line position

Audio CODEC

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxEBA					AIG	AIN1		
OxEBB	0	0	0	0	0	0	0	0
OxEBC	0	0	0	1	0	0	0	0
OxEBD		AIGAIN3 AIGAIN2						
OxEBE		AIG	AIN5			AIG	AIN4	

AIGAIN

Select the amplifier's gain for each analog audio input AIN1 ~ AIN5.

AIN5.	
0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x062	M_RLSWAP	RM_SYNC	RM_I	PBSEL	R_AI	DATM	R_MI	JLTCH		
	M_RLSW/	ĄΡ	ADATN	position 8 (Default)						
			If RM_ 0 1	position 1	dio on posit . (Default) audio on po	tion 0 and p	-			
	RM_SYNC	;								
	RM_PBSE	ïL	Select 0 1 2 3	Second St Third Stag		In audio (De IckIn audio In audio		in		
	R_ADATM	ADATMSelect the output mode for the ADATM pin0Digital serial data of mixing audio (Default)1Digital serial data of ADATR format record audio2Digital serial data of ADATM format record audio								
	R_MULTC	Н	0 1 2 3 Numbe channe		Default) data are lir cord table.	nited as sh Also, each	own on Sec	uence of Multi- sition data are		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x063	AAUTO_MUTE	PBREFEN	VRS	VRSTSEL FIRSTCNUM						
	AAUTO_M	UTE	1	1 When input Analog data is less than ADET_TH level, output PCM data will be set to 0. Audio DAC data input is 0x200.						
			0	No effect						
	PBREFEN		Audio A O 1	register (Default)						
	VRSTSEL		Select input . 0 1 2 3	 VINO Video Decoder Path VRST (default) VIN1 Video Decoder Path VRST VIN2 Video Decoder Path VRST 						
	FIRSTCNU	IM	Set up case, t	Set up First Stage number on audio cascade mode connection. Set up the value of (Cascade chip number-1). In 4 chips cascad case, this value is 3h for ALINK mode. In single chip applicatio case, this doesn't need to be set up. 0 (default)						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x064	R_SEQ_1				R_SEQ_0			
0x065		R_SI	EQ_3		R_SEQ_2			
0x066		R_SI	EQ_5		R_SEQ_4			
0x067		R_SI	EQ_7		R_SEQ_6			
0x068		R_SI	EQ_9		R_SEQ_8			
0x069	R_SEQ_B				R_SEQ_A			
0x06A		R_SI	EQ_D		R_SEQ_C			
0x06B		R_S	EQ_F		R_SEQ_E			

R_SEQ

Define the sequence of record audio on the ADATR pin. Refer to Table 15 for the detail of the R_SEQ_0 ~ R_SEQ_F. The default value of R_SEQ_0 is "0", R_SEQ_1 is "1", ... and R_SEQ_F is "F". 0 AIN1

1	AIN2
:	:
:	:
14	AIN15
15	AIN16

Addusse	[7]	[6]	[6]	[4]	[0]	[0]	[4]	[0]			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x06C	ADACEN	AADCEN	PB_ MASTER	PB_LRSEL	PB_SYNC	RM_8BIT	ASYNROEN	ACLKRMASTER			
	ADACEN		Audio O 1								
	AADCEN		Audio O 1				t purpose oi ault)	nly)			
	PB_MAS	TER	 Define the operation mode of the ACLKP and ASYNP pin f playback. 0 All type I2S/DSP Slave mode (ACLKP and ASYNP is input) (Default) 1 TW2851 type I2S/DSP Master mode (ACLKP and ASYNP is output) 								
	PB_LRSE	EL	 Select the channel for playback. Left channel audio is used for playback input (Default) Right channel audio is used for playback input 								
	PB_SYN(C	Define the digital serial audio data format for playback au the ACLKP, ASYNP and ADATP pin. 0 I2S format (Default) 1 DSP format								
	RM_8BI1	г	Define output data format per one word unit on ADATR016bit one word unit output (Default)18bit one word unit packed output								
	ASYNRO	EN	Define input/output mode on the ASYNR pin. 1 ASYNR pin is input 0 ASYNR pin is output (Default)								
	ACLKRM	ASTER	 Define input/output mode on the ACLKR pin and set up audi 256xfs system processing ACLKR pin is input. External 256xfs clock should be connected to ACLKR pin. This function is single chip Audio slave mode only. ACLKR pin is output. Internal ACKG generates 256xfs clock (Default) 								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x06D	LAV	VMD	MIX_ DERATIO			MIX_MUTE					
	LAWMD			 SB(Signed MSB bit in PCM data is inverted) output u-Law output 							
	MIX_DER	ATIO	 Disable the mixing ratio value for all audio. 0 Apply individual mixing ratio value for each audio (default) 1 Apply nominal value for all audio commonly 								
	MIX_MUT	E[n]	It effec	cts only for playback at	mixing. Wh Idio input. I	en n = 4, it	t enable the	when n is 0 to 3. e mute function e chip or the last			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0E0	MRATIOMD	0	0	0	0	0	0	0		
0x06E		MIX_R	ATIO2		MIX_RATIO1					
0x06F		MIX_R	ATIO4		MIX_RATIO3					
0x070	0	0	0	0		MIX_R	ATIOP			

MIX_RATIOn MIX_RATIOP Define the ratio values for audio mixing of channel AlNn Define the ratio values for audio mixing of playback audio input If MRATIOMD = 0 (default)

0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

If MRATIONMD = 1, Mixing ratio is MIX_RATIOn / 64

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x071	V_ADC_CKPOL	A_ADC_CKPOL	A_DAC_CKPOL			MIX_OUTSEL						
		•										
	V_ADC_C	CKPOL	Test purp	ose only (De	efault 0)							
			_									
	A_ADC_0	CKPOL	Test purp	ose only (De	efault 0)							
	A_DAC_0		Test nurn	ose only (De	ofault ()							
	A_DAC_C		rest purp	USE ONLY (De	elault 0)							
	ΜΙΧ_ΟυΤ	SEL	Define the	Define the final audio output for analog and digital mixing out.								
					audio of cl		. 0	0				
				2 Select record audio of channel 3								
				elect record	d audio of cl	hannel 4						
				4 Select record audio of channel 5								
				5 Select record audio of channel 6								
					audio of cl							
					audio of cl							
			8 Select record audio of channel 9 9 Select record audio of channel 10									
					d audio of cl							
					d audio of cl d audio of cl							
			-		d audio of cl							
					audio of cl							
					audio of cl							
					ack audio o		age chip					
					ack audio o			0				
					ack audio o							
					ack audio o							
				• •	l audio (defa							
			21 S	elect record	d audio of cl	hannel AIN	51					
			22 S	elect record	d audio of cl	hannel AIN	52					
			23 S	elect record	d audio of cl	hannel AIN	53					
			24 S	elect record	d audio of cl	hannel AIN	54					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x072	AAMPMD		ADET_FILT		ADET_TH4[4]	ADET_TH3[4]	ADET_TH2[4]	ADET_TH1[4]				
0x073		ADET_TI	H2[3:0]			ADET_1	H1[3:0]					
0x074		ADET_TI	H4[3:0]			ADET_1	H3[3:0]					
	•				•							
	AAMPM	D	Det	ine the a	udio detectio	n method.						
			0	Dete	ect audio if al	bsolute ampl	itude is grea	ter than				
				thre	shold							
			1		ect audio if di		nplitude is gro	eater than				
				Thre	eshold (defau	lt)						
	ADET_F	ит	امک	ect the fil	ter for audio	detection (de	afault 4h)					
	ADEI_I		0	Select the filter for audio detection (default 4h) 0 Wide LPF								
			:	:	0 2.1							
			7	Nar	row LPF							
		Um	Det	ina tha th		a far audia d	otootion of A	INIn (Default /				
	ADET_T		0	Define the threshold value for audio detection of AINn (Default A 0 Low value								
			31	 31 High value								
			lf fs	s = 8kHz /	Audio Clock s	etting mode,	Register	S				
				0x0	72 = 0xC0	-	_					
				0x0	73 = 0xAA							
				0x0	74 = 0xAA							
			are	are typical setting.								
			lf t	If fs=16kHz/32kHz/44.1kHz/48kHz Audio Clock setting								
				Registers								
				-	72 = 0xE0							
				0x0	73 = 0xBB							
				0x0	74 = 0xBB							
				Accession and the	- 11 ¹							

0x074 = 0x are typical setting.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x075		ACKI[7:0]									
0x076		ACKI[15:8]									
0x077	0	0			ACI	(I[21:16]					

ACKI

These bits control ACKI Clock Increment in ACKG block. 09B583h for fs = 8kHz is default

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x078		ACKN[7:0]									
0x079		ACKN[15:8]									
0x07A	0	0 0 0 0 0 0 ACKN[17:16]									

ACKN

These bits control ACKN Clock Number in ACKG block.. 000100h for Playback Slave-in lock is default.

SDIV

LRDIV

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ſ	0x07B	0	0			SE	DIV		

These bits control SDIV Serial Clock Divider in ACKG block (Default 01h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x07C	0	0			LR	DIV		

These bits control LRDIV Left/Right Clock Divider in ACKG block (Default 20h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x07D	APZ		APG		0	ACPL	SRPH	LRPH
	APZ APG				Loop in ACI	,	,	
ACPL These bits control Loop closed/open in ACKG block 0 Loop closed 1 Loop open (recommended on typical application (Default)								ation case)
SRPH Reserved. These bits are not used in TW2851 chip.								
LRPH Reserved. These bits are not used in TW2851 chip.								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x0D0	AADC40	OFS[9:8]	AADC3	0FS[9:8]	0FS[9:8]	AADC10FS[9:8]					
0x0D1		AADC10FS[7:0]									
0x0D2		AADC20FS[7:0]									
0x0D3				AADC3	OFS[7:0]						
0X0D4				AADC4	OFS[7:0]						
0x0D5	0	0 0 0 0 0 0 AADC50FS[9:8]									
0x0D6	AADC50FS[7:0]										

Digital ADC input data offset control. Digital ADC input data is adjusted by

ADJAADCn = AUDADCn + AADCnOFS

Where AUDADCn is 2's formatted Analog Audio ADC output, and AADCnOFS is adjusted offset value by 2's format. All default 10bit data value is 3EFh.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0D7	0		ADCISEL		AUDAD	Cn[9:8]*	ADJAAD	Cn[9:8]*	
0x0D8				AUDAD	Cn[7:0]*				ĺ
0x0D9				ADJAAD	Cn[7:0]*				
		n	These	value show	dio n ADC E the first inp ng process.	U 1		2's format of Digital Aı	Jdio
	ADJAADC	n	These	Current adjusted Audio ADC Digital input data value by 2's forn These value show the first input data value in front of Digital Au Decimation Filtering process.					
	ADCISEL							AUDADCn io input data	

			101			101
Address [7] [6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0DA 0 0	0			I2SO_RSEL		
OxODB 0 0	0		1	I2S0_LSEL		
0x0DC I2SRECSEL53		CSEL52	I2SRE	CSEL51	I2SRE	CSEL50
0x0DD A50UT_OFF ADATM_	MIX_MUTE			ADET_TH5		
I2SOEN	_A5			-		
A5OUT_OFF	AIN5 d O 1	Output Al	N51/AIN52	, ,	154 record	data on ADAT record data o
ADATM_I2SOEN	Define output 0		•	2 word dat /back data d		e standard l2
		ADATM pi (Default)	in as specifi	ed by M_RL	SWAP regi	ster
	1	,		pin is select EL registers	-	
MIX_MUTE_A5	Audio i O 1	nput AIN5 i Normal Muted	mute functi	on control		
ADET_TH5	AIN5 th	nreshold va	lue for audi	o detection		
I2SO_RSEL/ I2SO_LSEL	Both 12 order. 0 1 2 3 4 5 6 7 8 9 10(Ah) 11(Bh) 12(Ch) 13(Dh) 14(Eh) 12(Ch) 13(Dh) 14(Eh) 15(Fh) 16(10f 17(11f 18(12f 19(13f 20(14f 21(15f 22(16f 23(17f 24(18f	2SO_RSEL Select rec Select rec	and I2SO_I cord audio o cord audio o		output da (AINO) (AIN1) (AIN2) (AIN3) (AIN3) (AIN5) (AIN5) (AIN6) (AIN7) (AIN8) 0(AIN9) 1(AIN10) 2(AIN11) 3(AIN12) 4(AIN13) 5(AIN14) 6(AIN15) t stage chip ond stage chi stage chip 1(AIN51) (c 2(AIN52) 3(AIN53)	chip (PB2) p (PB3) (PB4)
I2SRECSEL5n	Select	output data	a of port n ir	n the positio	n below	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0DE						MIX_F	atio5	

MIX_RATI05

TW2851

Define the ratio values for audio mixing of channel AIN4 using MIX_RATIO4 to the ratio values for audio mixing of playback audio input

If MRATIOMD = 0 (default)

0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

If MRATIONMD = 1, Mixing ratio is MIX_RATIO4 / 64

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0DF	ATHROUG	ASYNSERI	ACLKR128	ACLKR64	AFS384	AIN5MD	0	0		
	Н	AL	/		/		•	-		
	ATHROUG	θH	Default	t 0						
	ASYNSER	IAL	Default	t 0						
	ACLKR12	8	ACLKR interfa	clock outp ce.	out mode fo	or special 1	6x8bit (tota	al 128bit) (data	
			0		tput is norn	nal (Default	:).			
			1	the numb	er of ACLKF	R clock per f	is is 128.Th			
				effective v	with RM_8B	SIT=1 8bit m	node (specia	al purpose).		
	ACLKR64			clock out	aut mode f	for special	4 word ou	itnut intorf	200	
	ACLAR04		ACLKR clock output mode for special 4 word output interface. ACLKRMASTER=1 mode only.							
			0 ACLKR output is normal (Default)							
			1 the number of ACLKR clock per fs is 64.							
	AFS384		Snecia	I Audio fs S	ampling mo	nde				
			0			ode is norm	al 256xfs if	AIN5 = 0.		
				(Default)						
			1			ode is 384x				
					,	0, A2NUM=	,	2, A4NUM		
				= 3, ASNU	ivi=4 settin	g are neede	eu.			
	AIN5MD			nput proces	s mode					
				0 AIN1/AIN2/AIN3/AIN4 4 audio input mode.						
). In this mo	,			
			1	,		14/AIN5 5 a	•	mode. This		
				mode is 3		e if AFS384	= 0.			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E0	MRATIOMD	ADACTEST	0	0	0	0	0	0

MRATIOMD	1 0	Use a more exponential way to interpret the MRATIO. Perform the following transformation before using the ratio $0 \sim 3 \Rightarrow 4 \sim 7$ $4 \sim 7 \Rightarrow 8 \sim 14$ $8 \sim 11 \Rightarrow 16 \sim 28$ $12 \sim 15 \Rightarrow 32 \sim 44$ Use the MRATIO as the ratio

ADACTEST

Test feature for ADAC. Set to 0.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E3	0	0	ACLKRPOL	ACLKPPOL	AFAUTO		AFMD	
	ACLKRPO	L	ACLKR 0 1	input signa Not invers Inversed	l polarity in ed (Default			
	ACLKPPO	L	ACLKP	input signa	l polarity in	verse.		

	0	Not inversed (Default)
	1	Inversed
AFAUTO	ACKI[21	L:0] control automatic set up with AFMD registers
	This mo	de is only effective when ACLKRMASTER=1
	0	ACKI[21:0] registers set up ACKI control
	1	ACKI control is automatically set up by AFMD register
		values
AFMD	AFAUTO) control mode
	0	8kHz setting (Default)
	1	16kHz setting
	2	32kHz setting
	3	44.1kHz setting
	4	48kHz setting

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E4	I2S8MODE	MASCKMD	PBINSWAP	ASYNRDLY	ASYNPDLY	ADATPDLY	INLA	WMD

I2S8MODE	 8bit I2S Record output mode. 0 L/R half length separated output (Default). 1 One continuous packed output equal to DSP output format.
MASCKMD	 Audio Clock Master ACLKR output wave format. High period is one 27MHz clock period (default). Almost duty 50-50% clock output on ACLKR pin. If this mode is selected, two times bigger number value need to be set up on the ACKI register. If AFAUTO=1, ACKI control is automatically set up even if MASCKMD=1.
PBINSWAP	Playback ACLKP/ASYNP/ADATP input data MSB-LSB swapping. 0 Not swapping 1 Swapping.
ASYNRDLY	ASYNR input signal delay. O No delay 1 Add one 27MHz period delay in ASYNR signal input
ASYNPDLY	ASYNP input signal delay. O no delay 1 add one 27MHz period delay in ASYNP signal input
ADATPDLY	 ADATP input data delay by one ACLKP clock. No delay (Default).This is for I2S type 1T delay input interface. Add 1 ACLKP clock delay in ADATP input data. This is for left-justified type 0T delay input interface.
INLAWMD	 Select u-Law/A-Law/PCM/SB data input format on ADATP pin. PCM input (Default) SB (Signed MSB bit in PCM data is inverted) input u-Law input A-Law input

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E5	0	0	0	0	0	0	AINTPOFF	A5DETENA

AINTPOFF	Test feature for ADAC. Set to 0.
A5DETENA	Enable state register updating and interrupt request of audio AIN5 detection for each input
	0 Disable state register updating and interrupt request

1 Enable state register updating and interrupt request

Host Interface

VGA DDC INTERFACE CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x9C0		DDC_FREQ_DIV[7:0]									
0x9C1				DDC_FREQ	_DIV[15:8]						

DDC_FREQ_DIV DI

DDC I2C Clock Generator generates DDC_CLK from an internal 54 MHz clock divided by DDC_FREQ_DIV.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C2				DDC_W	r_data			

	DDC_WF	R_DATA	DDC I	2C Write Da	ata Register			
			At the Slave_ R/W 0	follows A[7:1] A[0]				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C3				DDC_R	D_DATA			

DDC_RD_DATA

DDC I2C Read Data Register

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C4				DDC_CC	MMAND			
	DDC_CO	MMAND	DDC 0 7 6 5 4 3 2 1 0	Once ack Register Write the Send an Clock Co Interrupt	e value from knowledged e value in Di ACK to the unt Enable	the slave of the data v , the data v DC_WR_DA DDC_DATA	vill be in DD .TA onto DD	OC_RD_DATA

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ſ	0x9C5				DDC_S	STATUS			

DDC_STATUS

DDC Status Register (read only)

- Bit 7 RXACK
- I2C_BUSY Bit 6 Bit 5 Active Low
- Bit 4 0
- Bit 3 0
- Bit 2
 - 0
- Bit 1 I2C Read/Write
- Bit 0 Interrupt Acknowledge

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C7				()			

Reserved

Should be kept 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9CF				DDC	_RST			

DDC_RST

DDC Software Reset whenever CPU issues a write to this address

PS2 MOUSE INTERFACE CONTROL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x9D0		PS2_M	axNoSig	PS2_MaxByte PS2_WR_EN PS2_EN fy the length of time used to flag no signal when PS2_fggled. num number of bytes used in PS2 read operation pata Write Enable to write data in PS2_WR_DATA onto PS nable [4] [3] [2] [1] [0]		1					
	PS2_Ma	xNoSig	-	fy the lengt ggled.	h of time u	ised to flag	no signal	when PS2_	CK is		
	PS2_Ma	xByte		Maximum number of bytes used in PS2 read operation PS2_D							
	PS2_WR	EN	PS2 D	PS2 Data Write Enable to write data in PS2_WR_DATA onto PS2_D							
	PS2_EN		PS2 E	PS2 Enable							
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]]		
0x9D1				PS2_W	r_data						
	PS2_WR_DATA Before writing this register, make sure the 0x9D0 control is writing the PS2_WR_EN = 1 and PS2_EN = 1.						ritten				

Once writing into this register, the PS2 interface start sending PS2_WR_DATA onto PS2_D bus.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x9D2		PS2_RD_DATA[7:0]									
0x9D3		PS2_RD_DATA[15:8]									
0x9D4		PS2_RD_DATA[23:16]									
0x9D5				PS2_RD_D	ATA[31:24]						

PS2_RD_DATA

Data read back from PS2 port. If PS2_WR_EN = 0, and PS2_EN = 1, and the PS2 Interrupt is asserted, the data on PS2_D bus are available in these registers. The maximum number of valid bytes is determined by PS2_MaxByte in 0x9D0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9DF				PS2	_RST			

PS2_RST

PS2 Software Reset whenever CPU issues a write to this address

INTERRUPT

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x1D0		INTERRUPT_VECTO									
0x1D1		INTERRUPT_VECT1									
0x1D2		INTERRUPT_VECT2									
0x1D3				INTERRU	PT_VECT3						
0x1D4				INTERRU	PT_VECT4						
0x1D5				INTERRU	PT_VECT5						
0x1D6				INTERRU	PT_VECT6						
0x1D7				INTERRU	PT_VECT7						
0x1D8				INTERRUPT_	VECT_MASK0						
0x1D9				INTERRUPT_	VECT_MASK1						
0x1DA				INTERRUPT_	VECT_MASK2						
0x1DB				INTERRUPT_	VECT_MASK3						
Ox1DC				INTERRUPT_	VECT_MASK4						
0x1DD				INTERRUPT_	VECT_MASK5						
0x1DE				INTERRUPT_	VECT_MASK6						
0x1DF				INTERRUPT_	VECT_MASK7						
Ox1E0				INTERRUF	PT_STATUS						

INTERRUPT_VECTn	Read Write	Read the interrupt status of the specific interrupt source Write a '1' to that bit will clear the specific interrupt source. This clear bit will make the INTERRUPT_VECT to become '0'
INTERRUPT_VECT_MASH	٢n	
	1	Set to '1' will allow the INTERRUPT_VECT source to
		show up at the output IRQ pin if the vector bit is a '1'
	0	Set to '0' will disable the output to IRQ, so the MCU will
		ignore that source
INTERRUPT STATUS[x]		
	1	An INTERRUPT_STATUS[x] of '1' means there is some
		source in INTERRUPT_VECTx set to 1. The MCU can read
		this register before it read each of the INTERRUPT_VECTx.

The specific interrupt vector is organized as follows:

INTERRUPT_VECT0[3:0]	Video Decoder Motion Detection, ANA SW = 0
INTERRUPT_VECT0[7:4]	Video Decoder Motion Detection, ANA_SW = 1
INTERRUPT_VECT1[3:0]	Video Decoder Night Detection, ANA SW = 0
INTERRUPT_VECT1[7:4]	Video Decoder Night Detection, ANA_SW = 1
INTERRUPT_VECT2[3:0]	Video Decoder Black Detection, ANA_SW = 0
INTERRUPT_VECT2[7:4]	Video Decoder Black Detection, ANA_SW = 1
INTERRUPT_VECT3[3:0]	Video Decoder NO VIDEO detection, ANA_SW = 0
INTERRUPT_VECT3[7:4]	Video Decoder NO VIDEO detection, ANA_SW = 1
INTERRUPT_VECT4[3:0]	Unused

INTERRUPT_VECT4[7:4]	Playback port CHID Detection
INTERRUPT_VECT5[3:0]	Playback port NO VIDEO
	Detection
INTERRUPT_VECT5[7:4]	Playback muxed channel PORT
	Change Detection
INTERRUPT_VECT6[0]	Display Strobe Done
INTERRUPT_VECT6[1]	Record Strobe Done
INTERRUPT_VECT6[2]	SPOT Strobe Done
INTERRUPT_VECT6[3]	Record Read/Write Switch
	Queue Done
INTERRUPT_VECT6[4]	SPOT Read/Write Switch
	Queue Done
INTERRUPT_VECT6[5]	PS2 Mouse Interrupt
INTERRUPT_VECT6[6]	OSG Bitmap Done (or Wait)
INTERRUPT_VECT6[7]	DDC Channel Interrupt
	-
INTERRUPT_VECT7[0]	Display VGA Vstart
INTERRUPT_VECT7[1]	Display CVBS Vstart
INTERRUPT_VECT7[2]	Record Vstart
INTERRUPT_VECT7[3]	SPOT Vstart
INTERRUPT_VECT7[4]	Unused
INTERRUPT_VECT7[5]	Unused
INTERRUPT_VECT7[6]	Unused
INTERRUPT_VECT7[7]	Unused

DDR BURST

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2DF	AUX_DDR_DATA							

AUX_DDR_DATA

The data register used to read/write the internal 64 bytes FIFO used to burst to/from the DDR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2E0	AUX_DDR_ADDR[7:0]								
0x2E1	AUX_DDR_ADDR[15:8]								
0x2E2	AUX_DDR_ADDR[23:16]								

AUX_DDR_ADDR The address registers used to burst read/write to/from DDR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2E3				AUX_DDI	R_LENGTH[7:0]			•		
0x2E4	AUX_WAIT_POL	AU	X_DDR_LENGTH[10):8]	AUX_FIFO_EMPTY*	AUX_FIFO_FULL*	AUX_DDR_RD	AUX_DDR_WR		
	AUX_DDI	R_LENGTH			th of the CP h is 1204 by		l/write to/fi	rom DDR. The		
	AUX_WA	IT_POL	Reve	rse the pol	arity of the A	UX WAIT sig	gnal			
	AUX_FIFO_EMPTY AUX_FIFO_EMPTY The internal 64 bytes FIFO emptiness status flag 1 The 64 bytes internal FIFO is empty and availa for writing data to burst to DDR 0 The 64 bytes internal FIFO is not empty, mear the previous move from FIFO to DDR is completed yet. The CPU should wait until this b set before writing a new 64 bytes.									
	set before writing a new 64 bytes.AUX_FIFO_FULLThe internal 64 bytes FIFO has data available for CPU to read This bit allows the CPU to poll after an AUX_DDR_RD comm issued, or after every 64 bytes of data are read. With this the CPU is safe to read up to 64 bytes, or up to the las length derived from the AUX_DDR_LENGTH 11The 64 bytes internal FIFO has some data Available for CPU to read0The 64 bytes internal FIFO does not have da for CPU to read yet						RD comman With this bit to the last b me data			
	AUX_DDI	R_WR	The A	UX DDR W	/rite Comma	nd. This bit	is self-clear	ed		
	AUX_DDI	R_RD	The A		ead Comma	nd. This bit i	is self-clear	ed.		

DDR Memory Controller

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2E5		DDR_RD_CLK_SEL			DDR_DQS_RD_DLY		DDR_RD_TO_WR_NOP			
	DDR_RD_CLK_SEL Select the DQS or ~DQS as read clock to latch the DQ									
	DDR_DQ	S_RD_DLY	Select	Select the DQS valid read data cycle delay number						
	DDR_RD	D_TO_WR_NO		ead to write	e adds addi	tional nop c	ycles. Defa	ult O		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2E6					DDR_DQS_SEL0				
0x2E7					DDR_DQS_SEL1				
0x2E8		OSG_DDR_TIMER			DDR_CLK90_SEL				

DDR_DQS_SEL0	Select DDR_DQS_SEL/32 clock phase delay
DDR_DQS_SEL1	Select DDR_DQS_SEL/32 clock phase delay
DDR_CLK90_SEL	Select the phase of 90 degree CLK generated from DLL. The phase is DDR_CLK90_SEL/32
OSG_DDR_TIMER	Timer to slow down the OSG write to avoid excessive peak bandwidth

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2E9	DDR_DLL	_TEST_SEL	DDR_DLL_I	DEBUG_SEL			DDR_DL	L_TAP_S

DDR_DLL_DEBUG_SEL

Debug select to the DLL Debug Output

DDR_DLL_TEST_SEL Select the DLL test output signal

DDR_DLL_TAP_S Select the DLL TAPS

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2EA		DDR_	T_RC		DDR_T_RAS				
0x2EB	DDR_T_RFC					DDR_T_RP			
0x2EC		DDR_T_RCD					DDR_T_WR		

DDR_T_RC	DDR t_rc timing
DDR_T_RAS	DDR t_ras timing
DDR_T_RFC	DDR t_rfc timing
DDR_T_RP	DDR t_rp timing
DDR_T_RCD	DDR t_rcd timing
DDR_T_WR	DDR t_wr timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2ED		DDR_REFRESH			DDR_INIT_BYPASS		DDR_B_LENGTH			
	DDR_RE			DDR refresh timing control DDR initialization bypass (for simulation purpose only)						
	DDR_IN	IT_BYPASS	DDR	initializatio	n bypass (fo	or simulatio	n purpose o	only)		
	DDR_B_	LENGTH	DDR	burst length	ı					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

0x2EE			DDR_CAS_LAT DDR_SAMSUNG 0 DDR_SIZE							
	DDR_CA	AS_LAT	DDR							
	DDR_SA	DDR_SAMSUNG Inte		Internal test mode						
	DDR_SI	ZE								
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2EF	DDR_WTR	DDR_B_TYPE	DDR_DV_ST	DDR_EN_DLL						
DDR_WTR			 DDR Write to Read Turn Around cycle needed No Write to Read Turn Around cycle needed 							
	DDR_B_TYPE		External DDR Burst Type, for initialization use							
DDR_DV_ST Configur			gure externa	al DDR drivi	ng strength	ı, for initializ	zation use			
	DDR_EN	N_DLL	Enab	le the DLL ir	n the extern	al DDR me	mory, for in	itialization u		
c Con	itrol									
Address	[7]	101	151	[4]	[2]	[0]	[4]	101		

Mi

Ox2FO SOFT_RSTN DLL_RST	

SOFT_RSTN	Software resetn signal for the whole chip. This bit does not reset the configuration registers.
	0 Reset
	1 Release Reset
DLL_RST	1 Reset DLLs
	0 Release Reset DLLs
DLL_RST	1 Reset DLLs

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2F1							CHIF	P_ID

CHIP_ID

Set the chip ID in cascade mode.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2F5	SP_CC_CLK_SEL RP_CC_CLK		.K_SEL	0	0	0	0	
	SP_CC_	CLK_SEL	[1] [0]	Reverse the SPOT output sampling across clock domain from SCLK to CLKOS Reverse the SPOT input sampling across clock domain from CLKIS to SCLK Reverse the RECORD output sampling across clock				
	RP_CC_	CLK_SEL	[1]		the RECOR from RCLK	-	mpling acro	oss clock
			[0]		the RECOR	D input sam to RCLK	pling acros	s clock
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2F8	DP_CLK	_CSCD_SEL	DP_CLK_CSCD_PD	CLKOX_SEL				

DP_CLK_CSCD_SEL	Select the clock source of the internal Display Cascade module clock
	0 54 MHz
	1 27 MHz
	2 108 MHz
	3 PPLL clock output
DP_CLK_CSCD_PD	Power down the display cascade clock
DP_CLK_CSCD_PD CLKOX_SEL	
	Power down the display cascade clock Select the source of the display output CLKOX pin 0 From cascade clock as determined by
	Select the source of the display output CLKOX pin

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FB	CLKOY1_POL	CLKOY0_POL	CLKOS_POL	CLKOX_POL				

CLKOY1_POL	Reverse the clock polarity of output CLKOY1 pin
CLKOY0_POL	Reverse the clock polarity of output CLKOYO pin
CLKOS_POL	Reverse the clock polarity of the CLKOS pin
CLKOX_POL	Reverse the clock polarity of the CLKOX pin

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FC				CLKIX_POL		CLKP	B_POL	

CLKIX_POL Reverse the CLKIX polarity

CLKPB_POL Reverse the CLKPB polarity

Address	[7]	[6]	[5] [4] [3] [2] [1] [0] os_DLY CLKOX_DLY					
0x2FD	D CLKOS_DLY CLKOX_DLY							
	CLKOS_ CLKOX_		Select the delay of CLKOS Select the delay of CLKOX					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FE	CLKOY1_DLY					CLKOY	0_DLY	
	CLKOY1_DLY Select the delay CLKOY0_DLY Select the delay			of CLKOY1				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxE00							0	0

Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxEB0		PPLL_F[7:0]								
OxEB1		PPLL_OD PPLL_R								
0xEB2				EXT_PCLK_SEL PPLL_OE PPLL_E						

PPLL is controlled with the following equation

FOUT = (FIN * 2 * F) / (R * NO)

With the following restriction:

	2 MHz < FIN / R < 8 MHz 200 MHz < FOUT * NO < 400 MHz 50 MHz < FOUT < 400 MHz
PPLL_F PPLL_R PPLL_OD	The F parameter in the equationThe R parameter in the equationOD of PLL, determines the NO in the equation0NOT ALLOWED1NO = 12NO = 23NO = 4
EXT_PCLK_SEL	Select the external PCLK, rather than using the internal PLL Clock
	3'b1xx Force pclk to 0 3'b000 Select PPLL_CLK 3'b010 Select PPLL_CLK/2 3'b0x1 Select P_EXT_PCLK
PPLL_OE	OE of PCLK PLL
PPLL_BP	Bypass of PCLK PLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0xEB4		MPLL_F[7:0]									
0xEB5		MPLL_OD MPLL_R									
0xEB6		EXT_MCLK_SEL MPLL_OE MPL						MPLL_BP			

MPLL is controlled with the following equation

FOUT = (FIN * 2 * F) / (R * NO)

With the following restriction:

MPLL_BP

2 MHz < FIN / R < 8 MHz200 MHz < FOUT * NO < 400 MHz 50 MHz < FOUT < 400 MHz MPLL_F The F parameter in the equation MPLL_R The R parameter in the equation OD of PLL, determines the NO in the equation MPLL_OD 0 Not allowed 1 NO = 1NO = 2 2 3 NO = 4EXT_MCLK_SEL 1 Select the external MCLK signal rather than from PLL 0 Select the PLL output as MCLK MPLL_OE OE of MPLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xEB8				SPLL_IREF SPLL_CPX4 SPLL_LPX4					
	SPLL_IF	REF	Syste 0 1		urrent (Defa	ult)	setting to 0)	
	SPLL_C	PX4	System clock PLL charge pump select01 uA15 uA (Default)210 uA315 uA						
	SPLL_LI	PX4	Syste 0 1 2 3	m clock PLI 80K Ohr 40K Ohr 30K Ohr 20K Ohr	ns ns (Default) ns				

Bypass of MPLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0xEB9	SPLL_PD		MPLL_PD	PPLL_PD	DLL_DBG	SPLL_DBG	MPLL_DBG	PPLL_DBG			
	PPLL_P MPLL F			Power Down of PCLK PLL Power Down of MPLL							
		U	FOWE								
	SPLL_P	D	Powe	Power Down of SPLL							
	xPLL_D	BG	Rese	Reserved for internal test purpose only							
	DLL_DB	G	Rese	Reserved for internal test purpose only							
	_										

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xEC0		VD0X_422	MPPVD0_SEL	RGBOUT_EN	VDOY_H_PD	VDOY_L_PD	VDOS_PD	VDOX_PD	
OxEC1		DAC1	_gain		DACO_GAIN				
0xEC2		DACR	_gain			DACG	_gain		
0xEC3	V_DAC_PD	V_DAC1_PD	V_DAC0_PD	RGB_DAC_PD	_PD DACB_GAIN				
OxEC4	EXT_VADC	EXT_AADC	T_AADC A_DAC_PD A_ADC_PD V_ADC_PD						

VDOX_PD	1 0	Set VDOX to 0 Enable VDOX Output
VDOS_PD	1 0	Set VDOS to 0 Enable VDOS Output
VDOY_L_PD	1 0	Set VDOY[7:0] to 0 Enable VDOY[7:0] Output
VDOY_H_PD	1 0	Set VDOY[15:8] to 0 Enable VDOY[15:8] Output
RGBOUT_EN	1 0	Enable RGB Output on PINs shared with LVDS Disable RGB Output on PINs shared with LVDS
MPPVDO_SEL	1 0	Set MPP PIN output as Digital B component Set MPP PIN output as VDOX[15:8]
VDOX_422	1 0	Select digital display output as 422 interlaced digital video output. The VS/HS/DE is through the VGA_VS / VGA_HS / VGA_DE pins. The Y component is through the MPP_VDO (VDOX[15:8]) pins. The UV component is through VDOX[7:0] pins. Select RGB output instead.
DACxx_GAIN	The vid	eo gain control for CVBSO/1 and RGB DACs.
xxx_PD	1	Power down the ADC / DACs to save power. This applies to V_DAC, V_DAC0, V_DAC1, A_DAC, RGB_DAC, A_ADC, V_ADC
EXT_AADC	Interna	I Testing feature
EXT_VADC	Interna	I Testing feature

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0xEC5					VGA_CLK_POL	VGA_DAC_CLK_POL	DACO_CLK_POL	DAC1_CLK_POL		
0xEC8		0			0		A_DAC_BIAS_SEL	0		
	– DACO_C DAC1_C	- C_CLK_POI LK_POL LK_POL	- Chan Chan Chan	ge the pola ge the pola ge the pola	arity of the arity of the	ock polarity clock used by clock used by clock used by	CVBSO DA	C		
	A_DAC_I	BIAS_SEL	Bias 0 1			ne reference v age as the ref	•			
Address	[7]	[6]	[5]	[5] [4] [3] [2] [1] [0]						
0x620	0	0		•	BLI	NK_PERIOD	•			
	BLINK_F	PERIOD	Defir	e the blink	ing time fr	om on to off a	and off to or	1		

Register Description by Address

Page 0: 0x000 ~ 0x0FE

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0	0x000											
1	0x010	VDLOSS*	HLOCK*	SLOCK*	FLD*	VLOCK*	NOVIDEO*	MONO*	DET50*			
2	0x020	VDL035	HLOCK	SLOCK		VLOCK	NOVIDEO		DEISO			
3	0x030											
		* Read only	bits									
		VDLOSS		1	Video not present. (sync is not detected in number of consecutive line periods specified by MISSCNT register)							
				0	Video detected.							
		HLOCK		1	Horizontal sync PLL is locked to the incoming video							
				0	source. Horizontal sync PLL is not locked.							
		SLOCK		1 0	Sub-carrier PLL is locked to the incoming video source. Sub-carrier PLL is not locked.							
		FLD		1 0	Even field is Odd field is	-						
		VLOCK		1 0	Vertical log Vertical log		to the inco ked.	ming video	source.			
		NOVIDEO		Reserve	d for TEST.							
		MONO		1 0	No color burst signal detected. Color burst signal detected.							
		DET50			60Hz sourc 50Hz sourc ual vertical d invoked.	e detected	frequency	depends o	n the curre			

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x001									
1	0x011	VCR*	WKAIR*	WKAIR1*	VSTD*	NINTL*		VSHP		
2	0x021		WIGHT		VOID			Voini		
3	0x031									
		* Read only	y bits							
		VCR		VCR sign	al indicator					
		WKAIR		Weak signal indicator 2.						
		WKAIR1		Weak signal indicator controlled by WKTH						
		VSTD		1 = Standard signal 0 = Non-standard signal						
		NINTL		1 =Non-interlaced signal0 =interlaced signal						
		VSHP Vertical Sharpness Control 0 = None (default) 7 = Highest **Note: VSHP must be set to '0' if COMB = 0								

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x006									
1	0x016	0	0	VACTIVE_	VDELAY_		E_XY[9:8]	HDELAY	VV[0-9]	
2	0x026	U	0	XY[8]	XY[8]	HACHIVE		NUELAT		
3	0x036									
0	0x002									
1	0x012									
2	0x022		HDELAY_XY[7:0]							
3	0x032									

HDELAY_XY

This 10bit register defines the starting location of horizontal active pixel for display / record path. A unit is 1 pixel. The default value is 0x00F for NTSC and 0x00A for PAL.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x006							-	
1	0x016	0	0	VACTIVE_	VDELAY_	HACITIVE_XY[9:8]		HDELAY_XY[9:8]	
2	0x026	U	0	XY[8]	XY[8]				
3	0x036								
0	0x003								
1	0x013					VV(7-01			
2	0x023		HACTIVE_XY[7:0]						
3	0x033	1							

HACTIVE_XY

This 10bit register defines the number of horizontal active pixel for display / record path. A unit is 1 pixel. The default value is decimal 720.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x006							_		
1	0x016	0	0	VACTIVE_	VDELAY_		HACITIVE XY[9:8]		VVI0.01	
2	0x026	U	0	XY[8]	XY[8]	Hacitive_XY[9:8]		HDELAY_XY[9:8]		
3	0x036									
0	0x004									
1	0x014									
2	0x024		VDELAY_XY[7:0]							
3	0x034									

VDELAY_XY

This 9bit register defines the starting location of vertical active for display / record path. A unit is 1 line. The default value is decimal 6.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x006							-		
1	0x016	0	0	VACTIVE_	VDELAY_	Hacitive_XY[9:8]			VVI0.01	
2	0x026	U	0	XY[8]	XY[8]			HDELAY_XY[9:8]		
3	0x036									
0	0x005									
1	0x015					VV[7.0]				
2	0x025		VACTIVE_XY[7:0]							
3	0x035									

VACTIVE_XY

This 9bit register defines the number of vertical active lines for display / record path. A unit is 1 line. The default value is decimal 240.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0	0x007												
1	0x017		ше										
2	0x027		HUE										
3	0x037												

HUE

These bits control the color hue as 2's complement number. They have value from +36° (7Fh) to -36° (80h) with an increment of 2.8°. The 2 LSB has no effect. The positive value gives greenish tone and negative value gives purplish tone. The default value is 0° (00h). This is effective only on NTSC system. The default is 00h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x008										
1	0x018	SCUDVE	SCURVE VSF		СТІ		SHARPNESS				
2	0x028	SCORVE	VSF				JIAN	-NL33			
3	0x038										

SCURVE	This bit controls the center frequency of the peaking filter. The corresponding gain adjustment is HFLT.0Low1center
VSF	This bit is for internal used. The default is 0.
СТІ	CTI level selection. The default is 1. O None 3 Highest
SHARPNESS	These bits control the amount of sharpness enhancement on the luminance signals. There are 16 levels of control with '0' having no effect on the output image. 1 through 15 provides sharpness enhancement with 'F' being the strongest. The default is 1.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0	0x009												
1	0x019		CNITEST										
2	0x029		CNTRST										
3	0x039												

CNTRST

These bits control the luminance contrast gain. A value of 100 (64h) has a gain of 1. The range adjustment is from 0% to 255% at 1% per step. The default is 64h.

VIN	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0	0x00A												
1	0x01A		BRIGHT										
2	0x02A				DRI	GHI							
3	0x03A												

BRIGHT

These bits control the brightness. They have value of -128 to 127 in 2's complement form. Positive value increases brightness. A value 0 has no effect on the data. The default is 00h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0	0x00B											
1	0x01B		SAT_U									
2	0x02B				JA	1_0						
3	0x03B											

SAT_U

These bits control the digital gain adjustment to the U (or Cb) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. A value of 128 (80h) has gain of 100%. The default is 80h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0	0x00C											
1	0x01C		SAT_V									
2	0x02C				JA	1_V						
3	0x03C	1										

SAT_V

These bits control the digital gain adjustment to the V (or Cr) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. A value of 128 (80h) has gain of 100%. The default is 80h.

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0	0x00D												
1	0x01D	SF*	PF*	FF*	KF*	CSBAD*	MCVSN*	CSTRIPE*	CTYPE2*				
2	0x02D	Эг"	FF"	FF	NF "	C3DAD.		WIRIFE"	CITEZ"				
3	0x03D												
		* Read only	y bits										
		SF		This bit i	s for interna	al use							
		PF		This bit i	This bit is for internal use								
		FF		This bit i	This bit is for internal use								
		KF		This bit is for internal use									
		CSBAD		1	1 Macrovision color stripe detection may be un-reliable								
		MCVSN		1	Macrovisio	n AGC pulse	detected.						
					Not detecte	•							
		CSTRIPE			Macrovision Not detecte		e protection	n burst dete	cted.				
		CTYPE2			This bit is valid only when color stripe protection is detected, i.e. i CSTRIPE=1,								

- Type 2 color stripe protection Type 3 color stripe protection 1
- 0

			101			101	101	141	101
#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x00E								
1	0x01E	DETSTUS*		STDNOW*		ATREG		STANDARD	
2	0x02E	52.0.00		0.2.1011		/		01/11/2/11/2	
3	0x03E								
		* Read only	y bits						
		DETSTUS		0	Idle				
				1	detection in	n progress			
		STDNOW		Current 0 1 2 3 4 5 6 7 1 0	standard inv NTSC(M) PAL (B,D,G, SECAM NTSC4.43 PAL (M) PAL (CN) PAL 60 Not valid Disable the Enable VAC depending	H,I) shadow re TIVE and H	DELAY shad		's value
		STANDARD		Standar 0 1 2 3 4 5 6 7	d selection NTSC(M) PAL (B,D,G, SECAM NTSC4.43 PAL (M) PAL (CN) PAL 60 Auto detect		t)		

#	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x00F										
1	0x01F	ATSTART	PAL60EN	PALCNEN	PALMEN	NTSC44EN	SECAMEN	PALBEN	NTSCEN		
2	0x02F			-							
3	0x03F										
		ATSTART		1	detection p	rocess. This	bit is a s	elf-clearing			
				0	Manual initiation of auto format detection is done. (Default)						
		PAL60EN		1	Enable recognition of PAL60 (Default)						
				0	Disable recognition						
	PALCNEN			1	Enable reco		PAL (CN). (D	efault)			
				0	Disable recognition						
		PALMEN		1	Enable recognition of PAL (M). (Default)						
				0	Disable recognition						
		NTSC44EN		1	Enable recognition of NTSC 4.43. (Default)						
				0	Disable rec	ognition					
		SECAMEN		1	Enable reco	-	SECAM. (De	fault)			
				0	Disable rec	ognition					
	PALBEN				Enable recognition of PAL (B,D,G,H,I). (Default)						
				0	Disable rec	ognition					
		NTSCEN		1 0	Enable recognition of NTSC (M). (Default) Disable recognition						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x045	0	0	VSMODE	FLDPOL	HSPOL	VSPOL	DECVSMODE	DECFLDPOL	
	VSMODE	Ξ	Cont O 1	video (E	field flag is	aligned wi	th vertical syr th HS	ic of incomin	
	FLDPOL		Select the FLD polarity 0 Odd field is high 1 Even field is high (Default)						
	HSPOL		Select the HS polarity 0 Low for sync duration (Default) 1 High for sync duration						
	VSPOL		Selec O 1		blarity sync durat r sync durat		t)		
	DECVSM	IODE	0	Default					
	DECFLD	POL	0	Default					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x046	AGCEN4	AGCEN3	AGCEN2	AGCEN1	AGCGAIN4[8]	AGCGAIN3[8]	AGCGAIN2[8]	AGCGAIN1[8]	
0x047			1	А	GCGAIN1[7:0]	l.			
0x048				А	GCGAIN2[7:0]				
0x049				Α	GCGAIN3[7:0]				
0x04A				A	GCGAIN4[7:0]				
AGCENn Select Video AGC loop function on VIN of channel n 0 AGC loop function enabled (recommended for most application cases) (default). 1 AGC loop function disabled. Gain is set by AGCGAINn AGCGAINn These registers control the AGC gain of channel n when AGC I disabled. Default value is OFOh.									
Address	[7] [6]			j]	[4] [3]	[2]	[1]	[0]	
0x04B	PD_BIA	S	V_ADC	SAVE	0	0	0	YFLEN	
V_ADC_SAVE					ver down the not power do		/ADC		
			0	Mos	ng Mode Sele st Power Cons st Power Savi	suming			
	IREF	_	0	Mos Mos Inte	st Power Con	suming ng reference 1 fo		· /	
	IREF VREF	_	0 7 0	Mos Mos Inte Inte	st Power Cons st Power Savi ernal current i	suming ng reference 1 fo reference incl reference for	rease 30% fo Video ADC (d	r Video ÁDC. lefault)	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x04D	TST_ADC_VD1		ADC_SEL1		0	0	0	0
	TST_ADC_VD1		0	Default				
			0	Default				
	ADC_SEL1		0	Default				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x04E	TST_ADC_VD2		ADC_SEL2		0	0	0	0
	TST_ADC_VD2		0 1	Default				
	ADC_SEL2		0 1	Default				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x04F	FF	RW	YI	NR	CLI	MD	PS	SP	
	FRM		Free ru	in mode coi	ntrol				
			0 Auto(default)						
			2 Default to 60Hz						
			3 Default to 50Hz						
	VAID								
YNR				oise reducti	•••				
				0 None(default)					
				1 Smallest					
			2	Small					
			3	Medium					
	CLMD		Clamping mode control						
			0 Sync top						
			1 Auto(default)						
			2	Pedestal	,				
			3	N/A					
	PSP			Slice level control					
			0	Low					
			1	Medium(d	lefault)				
				High	,				
			2	ngn					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x050		HFI	LT2		HFLT1				
0x051		HFI	LT4		HFLT3				

	HFLTn			HFLTn controls the peaking function of channel n. Reserved for tes purpose.						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x052	CTEST	YCLEN	0	AFLTEN	GTEST	VLPF	CKLY	CKLC		
	CTEST		-	Clamping control for debugging use. (Test purpose only) (default 0)						
	YCLEN		1 0	_ · · · · · · · · · · · · · · · · · · ·						
	AFLTEN		1 0							
	GTEST		1 0							
	VLPF		Clampi	Clamping filter control (default 0)						
	CKLY		Clampi	Clamping current control 1 (default 0)						
	CKLC		Clampi	Clamping current control 2 (default 0)						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x053	NT502	NT501						

NT501	1	Force the Video Decoder 1 to a special NTSC 50 Hz format
	0	Do not force to NTSC 50 Hz format
NT502	1	Force the Video Decoder 2 to a special NTSC 50 Hz format
	0	Do not force to NTSC 50 Hz format

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x054	NT504	NT503	DIV_RST	DOUT_RST	ACALEN		AADC_SAVE			
	NT503		1	Force the format	Video Deco	der 4 to a s	pecial NTSC	C 50 Hz		
			0	0 Do not force to NTSC 50 Hz format						
	NT504		1	1 Force the Video Decoder 4 to a special NTSC 50 Hz format						
			0	0 Do not force to NTSC 50 Hz format						
	DIV_RST		Audio	Audio ADC divider reset. This bit must be set to 0 again after reset.						
	DOUT_RS	т		Audio ADC digital output reset for all channel. This bit must be setup up to 0 again after reset.						
	ACALEN			Audio ADC Calibration control. This be must be set up to 0 again after enabled.						
	AADC_SA	VE	Audio /	Audio ADC Power Saving Mode. 7 is most power saving.						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x055		FL	D*		VAV*				
	FLD			0] are FIELD Odd field	flag for com D ID for VIN3 when FLDP when FLDF	B to VINO. OL (0x045)	= 1	ead only)	
	VAV			only). VAV	[3:0] are Ve lanking time	ertical Active		onding channel nal for VIN3 to	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x057	SHCOR				ANA_SW4	ANA_SW3	ANA_SW2	ANA_SW1	
	SHCOR These (default				de coring	function fo	or the sha	rpness con	
ANA_SWn Control the analog input channel switch for VIN1 to VIN4 inp 0 VIN_A channel is selected (default) 1 VIN_B channel is selected									
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x058	PBW	DEM	PALSW	SET7	COMB	HCOMP	YCOMB	PDLY	
PBW 1 Wide Chroma BPF BW (Default) 0 Normal Chroma BPF BW									
	DEM Reserved (Default 1)								
	PALSW		1 0	PAL switch sensitivity low. PAL switch sensitivity normal (Default)					
SET71The black level is 7.5 IRE above the blank level.0The black level is the same as the blank level (I									
	COMB1Adaptive comb filter for NTSC and PAL (Recommended). This setting is not for SECAM (Def 00Notch filter. For SECAM, always set to 0.								
HCOMP1 0Operation mode 1 (Recommended) (Default) Mode 0YCOMB1 0Bypass Comb filter when no burst presence No bypass (Default)PDLY0 1Enable PAL delay line (default) Disable PAL delay line								t)	
								•	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x059	GMEN	CKHY		HSDLY						
	GMEN		Reserved (Default 0)							
	СКНҮ		Color k 0 1 2 3	iller hystere Fastest (D Fast Medium Slow						
	HSDLY		Reserv	Reserved for test						

Address	[7]	[6]	151	[4]	[2]	101	[4]	101		
Address 0x05A	[7] CTC	[6]	[5]	[4] COR	[3] VC	[2]	[1]	[0] CIF		
UNUSA	CTCOR				the coring f		<u> </u>			
	CCOR			bits control				he Cb/Cr out		
	VCOR		These (Defau		the coring f	unction of v	ertical pea	king		
	CIF These bits control the IF compensation level. 0 None(default) 1 1.5dB 2 3dB 3 6dB									
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x05B		CLP	END			CLI	PST			
	CLPEND CLPST		should These	be larger th 4 bits set t	nan the valu	e of CLPST	(Default 5	pulse. Its va h) is referenced		
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x05C		NMG	GAIN			WPGAIN		FC27		
	NMGAIN		These (Defau		the normal	AGC loop I	maximum	correction va		
	WPGAIN		Peak A	GC loop ga	in control (C	Default 1h)				
	FC271Normal ITU-R656 operation (Default)0Squared Pixel mode for test purpose only									
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x05D				PEA	KWT					
	PEAKWT PEAKWT These bits control the white peak detection threshold. Setting									

These bits control the white peak detection threshold. Setting 'FF can disable this function (Default D8h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x05E	CLMPLD				CLMPL							
	CLMPLD		 Clamping level is set by CLMPL Clamping level preset at 60d (Default) 									
	CLMPL	PL These bits determine the clamping level of the Y channel (Defaul 3Ch)										
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
Address 0x05F	[7] SYNCTD	[6]	[5]	[4]	[3] SYNCT	[2]	[1]	[0]				
		[6]	[5] 0 1	Reference		itude is set	by SYNCT					

Address	ss [7] [6] [5] [4] [3] [2] [1] [0]									
0x062	M_RLSWAP	RM_SYNC	RM_F	PBSEL	R_AD	DATM	R_MI	JLTCH		
	M_RLSW/	ĄΡ	ADATN	position 8 (Default)						
			lf RM_: 0 1	position 1	dio on posit (Default) audio on po	-	-			
	RM_SYNC	;								
	RM_PBSE	ïL	Select 0 1 2 3	Second Stage PlayBackIn audio Third Stage PlayBackIn audio						
	R_ADATM	I	Select 0 1 2	1 Digital serial data of ADATR format record audio						
	R_MULTC	н	0 1 2 3 Numbe channe		Default) data are lin cord table.	nited as sh Also, each	own on Sec	uence of Multi- sition data are		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x063	AAUTO_MUTE	PBREFEN	VRS	TSEL		FIRST	CNUM			
	AAUTO_M	UTE	1	output PCM data will be set to 0. Audio DAC data input is 0x200.						
			0	0 No effect						
	PBREFEN		Audio A O 1	ACKG has register (D	ence (refin) video VRST Default) audio ASYN	refin input	selected by	y VRSTSEL		
	VRSTSEL		Select input . 0 1 2 3	 0 VINO Video Decoder Path VRST (default) 1 VIN1 Video Decoder Path VRST 2 VIN2 Video Decoder Path VRST 						
	FIRSTCNU	IM	Set up case, t	the value of the value of the value of the value is	•	e chip numl INK mode.	ber-1). In 4	connection. chips casca hip applicati		

Address	[7]	[6]	[5]	[4]	[3] [2] [1] [0]					
0x064		R_SI	EQ_1			R_SI	EQ_0			
0x065		R_SI	EQ_3			R_SI	EQ_2			
0x066		R_SI	EQ_5			R_SI	EQ_4			
0x067		R_SI	EQ_7		R_SEQ_6					
0x068		R_SI	EQ_9		R_SEQ_8					
0x069		R_SI	EQ_B		R_SEQ_A					
0x06A		R_SE	EQ_D		R_SEQ_C					
0x06B		R_SI	EQ_F			R_S	EQ_E			

R_SEQ

Define the sequence of record audio on the ADATR pin. Refer to Table 15 for the detail of the R_SEQ_0 ~ R_SEQ_F. The default value of R_SEQ_0 is "0", R_SEQ_1 is "1", ... and R_SEQ_F is "F". 0 AIN1 1 AIN2

1 AIN2 1 1 1 4 AIN15 15 AIN16

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x06C	ADACEN	AADCEN	PB_ MASTER	PB_LRSEL	PB_SYNC	RM_8BIT	ASYNROEN	ACLKRMASTER		
	ADACEN		Audio DAC Function mode0Audio DAC function disable (test purpose only)1Audio DAC function enable (Default)							
	AADCEN		Audio ADC Function mode0Audio ADC function disable(test purpose only)1Audio ADC function enable (Default)							
	PB_MAS	TER		input) (Default)						
	PB_LRSE	EL	 Select the channel for playback. 0 Left channel audio is used for playback input (Default) 1 Right channel audio is used for playback input 							
	PB_SYN(C	Define the digital serial audio data format for playback audio the ACLKP, ASYNP and ADATP pin. 0 I2S format (Default) 1 DSP format							
	RM_8BI1	r	Define output data format per one word unit on ADATR pin.016bit one word unit output (Default)18bit one word unit packed output							
	ASYNRO	EN	Define input/output mode on the ASYNR pin. 1 ASYNR pin is input 0 ASYNR pin is output (Default)							
	ACLKRM	ASTER		s system pr ACLKR p connecte Audio sla	ocessing in is input. E d to ACLKR ive mode or in is output.	External 250 pin. This fu	6xfs clock s Inction is si	ngle chip		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x06D	LAV	VMD	MIX_ DERATIO			MIX_MUTE					
LAWMD Select u-Law/A-Law/PCM/SB data out ADATM pin. 0 PCM output (default) 1 SB(Signed MSB bit in PCM data 2 u-Law output 3 A-Law output											
	MIX_DER	ATIO	Disable O 1	(default)							
MIX_MUTE[n] Enable the mute function for audio channel AINn when n is 0 It effects only for mixing. When n = 4, it enable the mute fun of the playback audio input. It effects only for single chip or the stage chip 0 Normal 1 Muted (default)							e mute function				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x06E		MIX_F	ratio2		MIX_RATIO1				
0x06F		MIX_F	ATIO4			MIX_F	ratio3		
0x070	0	0	0	0	MIX_RATIOP				

MIX_RATIOn MIX_RATIOP

Define the ratio values for audio mixing of channel AlNn Define the ratio values for audio mixing of playback audio input If MRATIOMD = 0 (default)

	$A \Pi O W D = 0 (ue)$
0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

If MRATIONMD = 1, Mixing ratio is MIX_RATIOn / 64

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x071	V_ADC_CKPOL	A_ADC_CKPOL	A_DAC_CKPOL			MIX_OUTSEL		
	V_ADC_C	CKPOL	Test purp	ose only (De	efault 0)			
	A_ADC_0	CKPOL	Test purp	ose only (De	efault 0)			
	A_DAC_0	CKPOL	Test purp	ose only (De	efault 0)			
	MIX_OUT	ISEL	Define the	e final audio	o output for	analog and	digital mix	ing out.
			0 S	elect record	d audio of c	hannel 1		
				elect record	d audio of c	hannel 2		
				elect record	d audio of c	hannel 3		
			3 S	elect record	d audio of c	hannel 4		
			-	elect record	d audio of c	hannel 5		
			-	elect record				
				elect record				
				elect record	d audio of c	hannel 8		
				elect record				
				elect record				
				elect record				
			-	elect record				
				elect record				
				elect record				
				elect record				
				elect record				
						of the first st	- ·	
						of the second		0
						of the third s		
						of the last sta	age chip	
				elect mixed	•	,		
						hannel AIN5		
						hannel AIN5	_	
						hannel AINS		
			24 S	elect record	a audio of c	hannel AIN5	04	

			,,						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x072	AAMPMD		ADET_FILT		ADET_TH4[4]	ADET_TH3[4]	ADET_TH2[4]	ADET_TH1[4]	
0x073		ADET_TI	H2[3:0]			ADET_1	H1[3:0]		
0x074		ADET_TH	H4[3:0]			ADET_1	H3[3:0]		
					•				
	AAMPM	D	Def	ine the a	udio detectio	n method.			
			0	Dete	ect audio if al	bsolute ampl	itude is grea	ter than	
				thre	shold				
			1		ect audio if di		nplitude is gro	eater than	
				Thre	eshold (defau	lt)			
	ADET_F	ит	Sel	ect the fil	ter for audio	detection (de	efault 4h)		
			Select the filter for audio detection (default 4h) 0 Wide LPF						
			:	:					
			7	Nar	row LPF				
	ADET_TI	Hn	Def	ine the th	nreshold valu	e for audio d	etection of A	INn (Default A	
	· · · · - · ·		0		value			(
			:	:					
			31	High	n value				
			lf fs	s = 8kHz /	Audio Clock s	etting mode	Register	s	
					72 = 0xC0		inegiotori	•	
					73 = 0xAA				
				0x0	74 = 0xAA				
			are	typical s	etting.				
			lf f	s=16kHz	/32kHz/44.1	LkHz/48kHz	Audio Clock	k setting mo	
	Registers								
	0x072 = 0xE0								
				0x0	73 = 0xBB				
				0x0	74 = 0xBB				
				4					

are typical setting.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x075				ACM	l[7:0]			
0x076				ACK	[15:8]			
0x077	0	0			AC	(1[21:16]		

ACKI

These bits control ACKI Clock Increment in ACKG block. 09B583h for fs = 8kHz is default

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x078		ACKN[7:0]						
0x079		ACKN[15:8]						
0x07A	0	0	0	0	0	0	ACKN[17:16]	

ACKN

These bits control ACKN Clock Number in ACKG block.. 000100h for Playback Slave-in lock is default.

SDIV

LRDIV

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x07B	0	0			SI	DIV		

These bits control SDIV Serial Clock Divider in ACKG block (Default 01h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x07C	0	0			LR	DIV		

These bits control LRDIV Left/Right Clock Divider in ACKG block (Default 20h)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x07D	APZ	APG			0	ACPL	SRPH	LRPH			
	APZ APG				l Loop in ACKG block (Default 1) I Loop in ACKG block (Default 4h)						
			mooo								
	ACPL		These 0 1	Loop clos	Loop closed ed n (recomme	, .		ation case)			
	SRPH		Reserv	Reserved. These bits are not used in TW2851 chip.							
	LRPH		Reserv	eserved. These bits are not used in TW2851 chip.							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x0C0		BGN	DEN		BGNDCOL	AUTO_BGND	LIM_656	0			
	BGNDEN	[n]									
	BGNDCO	L		()							
	AUTO_BGND LIM_656										
			Clamp the Y and C value in the video stream O Maximum of Y is 254, Minimum of Y is 1 Maximum of C is 254, Minimum of Y is 1 1 Maximum of Y is 235, Minimum of Y is 16 Maximum of Y is 240, Minimum of Y is 16								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0C1	0	OUT_CHID	SAV_CHID	TST_EHAV_BLK	0	0	0	0	
	TST_EHA\	/_BLK	Testing purpose only 1 Force the Y value to be 0 when HAV is high. 0 Normal Operation						
	OUT_CHID			Enable the channel ID format in the horizontal blanking period Record Bypass byte interleaving BT 656 stream O Disable the channel ID format (default) 1 Enable the channel ID format The lowest 4 bits of Y and C pixel value during horizontal blanki is Bit 3 Video Loss Bit 2 Analog Mux A/B Bit 1-0 Port ID					
	SAV_CHID				eaving BT65 e channel II e channel II at is FF, 00 e enabled, tl	66 stream D format (d) format , 00, XX	efault)	ader in Rec	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0D0	AADC30	OFS[9:8]	AADC20	OFS[9:8]	AADC10	OFS[9:8]	AADCOOFS[9:8]		
0x0D1		AADCOOFS[7:0]							
0x0D2		AADC10FS[7:0]							
0x0D3				AADC20	OFS[7:0]				
0X0D4				AADC30	OFS[7:0]				
0x0D5	0 0 0 0 0 0 AADC40F					DFS[9:8]			
0x0D6	AADC40FS[7:0]								

Digital ADC input data offset control. Digital ADC input data is adjusted by

ADJAADCn = AUDADCn + AADCnOFS

Where AUDADCn is 2's formatted Analog Audio ADC output, and AADCnOFS is adjusted offset value by 2's format. All default 10bit data value is 3EFh.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0D7	0		ADCISEL AUDADCn[9:8]* ADJAADCn[9:8]*							
0x0D8		AUDADCn[7:0]*								
0x0D9				ADJAAD	Cn[7:0]*					
		AUDADCn Current Analog Audio n ADC Digital Output Value by 2's format These value show the first input data value in front of Digital Au Decimation Filtering process.								
	ADJAADC	'n	These	•	the first inp	out data val		e by 2's forr of Digital Au		
	ADCISEL							AUDADCn io input data		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxODA	0	0	0	ניין	[3]	I2SO_RSEL	[1]			
0x0DA 0x0DB	0	0	0			I2SO_KSEL				
0x0DD 0x0DC	_	SEL53		SEL52	12SRF(SEL51	12SRF	CSEL50		
		ADATM_	MIX_MUTE		1201120		12011	COLEGO		
0x0DD	A50UT_OFF	I2SOEN	_A5			ADET_TH5				
	A50UT_0	FF	AIN5 d			DATR recor				
			0	DATR		/AIN53/AIN				
			1	Not outpu ADATR	it AIN51/AI	N52/AIN53,	/AIN54 red	ord data on		
	ADATM_I	2SOEN	Define output.		in output 2	2 word dat	a to mak	e standard l		
			0	•						
			1	(Default) L/R data	on ADATM	oin is select	ed by			
				I2SO_RSE	EL/I2SO_LS	EL registers	-			
	MIX_MUT	E_A5		udio input AIN5 mute function control						
			0 1	Normal Muted						
	ADET TH5									
	ADET_TH5				lue for audi					
	I2SO_RSE I2SO_LSE							_I2SOEN=1. Ita by followi		
			0			f channel 1				
				1 Select record audio of channel 2(AIN1)						
			2			f channel 3	· /			
			3 4			f channel 4 f channel 5	. ,			
			5			f channel 6				
			6			f channel 7				
			7			f channel 8				
			8			f channel 9				
			9			f channel 1	· /			
						f channel 1				
						f channel 1				
			· · ·			f channel 1	· · ·			
						f channel 1 f channel 1				
						f channel 1				
			· · /			o of the first	. ,	(PR1)		
						o of the sec				
			•	<i>,</i> .	•	o of the thir	-	• • •		
			•	<i>,</i> .	•	o of the last	-	• • •		
			20(14)Select mi	xed audio					
			•	•		f channel 5	• • • •	default)		
			•	•		f channel 5	• •			
						f channel 5				
			•	•		f channel 5	4(AIN54)			
			others	No audio	ουτρυτ					

	I2SRECSE	EL5n	Select 0 1 2 3	output data AIN51 AIN52 AIN53 AIN54	of port n ir	the positio	n below	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	
0x0DE						MIX_F	ratio5	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0DE						MIX_F	atio5	

MIX_RATIO5

TW2851

Define the ratio values for audio mixing of channel AIN4 using MIX_RATIO4 to the ratio values for audio mixing of playback audio input

If MRA	TIOMD = 0 (default)
0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

If MRATIONMD = 1, Mixing ratio is MIX_RATIO4 / 64

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0DF	ATHROUG H	ASYNSERI AL	ACLKR128	ACLKR64	AFS384	AIN5MD	0	0		
	ATHROUG	iH	Default 0							
	ASYNSER	IAL	Default 0							
	ACLKR128		 ACLKR clock output mode for special 16x8bit (total 128bi interface. 0 ACLKR output is normal (Default). 1 the number of ACLKR clock per fs is 128.This function effective with RM_8BIT=1 8bit mode (special purpose) 							
	ACLKR64			MASTER=1 ACLKR ou	mode only. tput is norn)	utput interfa		
	AFS384		Specia O 1	(Default)						
	AIN5MD		Audio I O 1	256xfs if AIN1/AIN	2/AIN3/AIN Afs384 = 0 2/AIN3/AIN). In this mo	de, AIN5 is audio input	. This mode not used. mode. This		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Ox0E0	MRATIOMD	ADACTEST	0	0	0	0	0	0
	MRATIOM	ID	1 0	Perform t ratio 0 ~ 3 => 4 4 ~ 7 => 3 8 ~ 11 => 12 ~ 15 =	8~14	g transform		
ADACTEST			Test fe	ature for AI	DAC. Set to	0.		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0E3	0	0	ACLKRPOL	ACLKPPOL	AFAUTO		AFMD			
	ACLKRPOL			• •	Il polarity in Sed (Default					
	ACLKPPOL			ACLKP input signal polarity inverse. 0 Not inversed (Default) 1 Inversed						
	AFAUTO			ode is only ACKI[21:0	l automatic effective wh)] registers s rol is autom	en ACLKRN set up ACKI	ASTER=1			
	AFMD			0 control m 8kHz sett 16kHz set 32kHz set 44.1kHz s 48kHz set	ing (Default tting tting setting)				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E4	I2S8MODE	MASCKMD	PBINSWAP	ASYNRDLY	ASYNPDLY	ADATPDLY	INLA	WMD
	I2S8MOD	E	8bit 125 0 1		ength separ	ated output ed output e		? output
	MASCKMD PBINSWAP			High perio Almost du mode is s to be set u	od is one 27 Ity 50-50% elected, two up on the A	Itput wave f 'MHz clock clock outpu o times bigg CKI register Illy set up ev	period (defa It on ACLKR ger number . If AFAUTO	pin. If this value need =1, ACKI
PBINSWAP			Playba swappi 0 1		oing	ATP input da	ata MSB-LS	В
	ASYNRDLY			input signa No delay Add one 2	-	od delay in <i>l</i>	ASYNR sign	al input
	ASYNPDL	Y	ASYNP 0 1	input signa no delay add one 2	-	od delay in A	ASYNP signa	al input
ADATPDLY			ADATP 0 1	interface.				
INLAWMD			Select 0 1 2 3	PCM input	t (Default) d MSB bit ir ut	data input n PCM data		-
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0E5	0	0	0	0	0	0	AINTPOFF	A5DETENA

									1
0x0E5	0	0	0	0	0	0	AINTPOFF	A5DETENA	
	AINTPOF	-	Test fe	ature for AI	DAC. Set to	0.			
	A5DETENA			on for each Disable	input state regist	- er updating:	rupt reques § and interru § and interru	• •	IN5

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x0E7	HASYNC	r1	OFDLY		DECOUTMD	0	0	0			
HASYNC			1 0	register	h of EAV to s h of SAV to l registers		•	-			
	OFDLY		Oh		y elay FIELD o ine delay FII	• •	mode only))			
	DECOUTM	DECOUTMD Defa			DECOUTMD Default 1						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x0E8				HB	LEN						
	HBLEN		setup t value is NTSC/I	the length o		V code whe	n HASYNC alue. 20				

If register 0x00E[3] (ATREG for CH1) is set to 0, this value changes into 8Ah or 90h at audio video format detection initial time automatically according to CH1 video detection status.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0E9	CKLM	YDLY			0	0	0	0	
	CKLM		Color M O 1	iller mode. Normal (D Fast (For s	Default) special appl	lication)			
	TDLY			•	e adjustme unit delay c		•	ement num	ıber
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0EA	0	0	ADECRST	0	VDEC4RST	VDEC3RST	VDEC2RST	VDEC1RST	
	ADECRST	A 1 written to this bit resets the audio portion to its default sta but all register content remains unchanged. This bit is self-cleared							
	VDECnRST					-		coder portio nanged. This	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x0EB		MISS	SCNT			HS\	WIN		1
	MISSCNT		thresh	old (Default	4h)		-	nc miss co reshold (Def	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1
OxOEC	[1]	[0]	[3]		AMP	[2]	[1]	[0]	-
	PCLAMP		These (Defau	bits set the	clamping p	osition from	the PLL s	ync edge]
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1
0x0ED	VLC	CKI	VLC	СКО	VMODE	DETV	AFLD	VINT	
	VLCKI VLCKO VMODE		0 : 3 Vertica 0 : 3	Search m	Default) me Default) ne vertical de				
	DETV		1 0		ended for sp sync logic (E		cation only		
	AFLD		Auto fi O 1	eld generat Off (Defau On					
	VINT		Vertica 1 0	l integration Short Normal (E	n time conti Default)	rol			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1
0x0EE		BSHT				VSHT			1
	BSHT		Burst F	PLL center f	requency co	ontrol (Defa	ult Oh)		L

Vsync output delay control in the increment of half line length (Default Oh)

VSHT

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0EF	CKILI	LMAX			CKIL	LMIN		

CKILLMAX	These bits control the amount of color killer hysteresis. The
	hysteresis amount is proportional to the value (Default 1h)

CKILLMIN These bits control the color killer threshold. Larger value gives lower killer level (Default 28h)

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ſ	0x0F0	COMBMD		HTL			v	ΓL	

COMBMD	0 Adaptive mode (Default)1 Fixed comb
HTL	Adaptive Comb filter threshold control 1 (Default 4h)
VTL	Adaptive Comb filter threshold control 2 (Default Ch)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0F1	HPLC	EVCNT	PALC	SDET	0	BYPASS	0	0

HPLC	Reserved for internal use (Default 0)
EVCNT	 Even field counter in special mode Normal operation (Default)
PALC	Reserved for future use (Default 0)
SDET	ID detection sensitivity. A '1' is recommended (Default 1)
BYPASS	It controls the standard detection and should be set to '1' in normal use (Default 1)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x0F2	HF	PM	AC	СТ	SF	M	CE	BW
	HPM		Horizo	ntal PLL acc	uisition tim	e.		
			0	Normal	-			
			1	Auto2				
			2	Auto1 (De	efault)			
			3	Fast				
	ACCT		ACC tir	ne constan	t			
			0	No ACC				
			1	Slow				
			2	Medium (Default)			
			3	Fast				
	SPM		Burst F	LL control				
			0	Slowest				
			1	Slow (Def	ault)			
			2	Fast	·			
			3	Fastest				
	CBW		Chrom (Defau		filter bandw	idth contro	l. Refer to fi	Iter curves

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x0F3	NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST				
	NKILL		1	Enable no (Default)	isy signal c	olor killer fu	Inction in N	rSC mode				
			0	Disabled								
	PKILL		1 0	Enable au (Default) Disabled	itomatic noi	sy color kill	er function	in PAL mode				
	SKILL		1	Enable au		sy color kill	er function	in SECAM				
			0	Mode (De Disabled	Mode (Default) Disabled							
	CBAL		0 1		utput (Defau utput mode.							
	FCS		1 0	Force dec Disabled (value dete	rmined by C	CS				
	LCS		1	when vide	eo loss is de		alue indicate	ed by CCS				
			0	Disabled ((Default)							
	CCS				two colors o		tion is dete be selected	cted when L				
	BST		1 0	Enable bli Disabled (

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0F4	0	0			MON	ITOR				
0x0F5				HREF*						

These registers are for test purpose only. The MONITOR is used to select the HREF status of a certain video decoder port in Reg0x0F5 HREF

MONITOR Value

Select video decoder port for register 0x0F5

- 00h VINO Video Decoder Path HREF[9:2] value
- 10h VIN1 Video Decoder Path HREF[9:2] value
- 20h VIN2 Video Decoder Path HREF[9:2] value
- 30h VIN3 Video Decoder Path HREF[9:2] value

Address	[7]	[6] [5] [4]			[3]	[2]	[1]	[0]		
0x0F6	0		CVSTD1*		CVFMT1					
0x0F7	0		CVSTD2*		CVFMT2					
0x0F8	0		CVSTD3*		CVFMT3					
0x0F9	0		CVSTD4*			CVF	MT4			

CVSTDn CVFMTn

Address	[7]	[6]	[5]	[5] [4] [3] [2] [1] [0]						
OxOFA	ID)	X1	NSEN1/SSEN1/PSEN1/WKTH1							
OxOFB	ID)	X2	NSEN2/SSEN2/PSEN2/WKTH2							
OxOFC	ID)	X3		NSEN3/SSEN3/PSEN3/WKTH3						
0x0FD	ID)	X4	NSEN4/SSEN4/PSEN4/WKTH4							

NSENn/SSENn/PSENn/WKTHn shared the same 6 bits in the register. IDXn is used to select which of the four parameters is being controlled. The write sequence is a two steps process unless the same register is written. A write of {ID,000000} selects one of the four registers to be written. A subsequent write will actually write into the register. (Default 0h)

 IDXn
 0
 Controls the NTSC color carrier detection sensitivity (NSENn) (Default 1Ah)

 1
 Controls the SECAM ID detection sensitivity (SSENn) (Default 20h)

 2
 Controls the PAL ID detection sensitivity (PSENn) (Default 1Ch)

3 Controls the weak signal detection sensitivity (WKTHn) (Default 2Ah)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x0FE		DEV_ID * REV_ID *								
	* Read or	Read only								
	DEV_ID	DEV_ID The TW2851 product ID code is 01000								
	REV_ID	REV_ID The revision number is Oh								

Page 1: 0x100 ~ 0x1FE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x100	0	0	LIM_PB _656							
	* Read or	nly								
	LIM_PB_656 Specify the Clamping mode for PB input data at BT 656 mode 1 maximum 235, minimum 16 0 maximum 254, minimum 1									
	656_PB_I	EC_BYPASS	5 Bypass 1 0 wrong		ror correction	on	when the	parity chec		
	PB_CH_N	O_VIDEO[n]	NO_VI	DEO Status	of Playback	channel n	(Read Only)			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x101	PB_POR	T_SEL3*	PB_PORT_SEL2* PB_PORT_SEL1* PB_PORT_SEL0*							

* Read only

PB_PORT_SELn

The playback channel n mux selection of the physical playback input port number (read only)

- 0 Channel n has input from Playback port 0
- 1 Channel n has input from Playback port 1
- 2 Channel n has input from Playback port 2
- 3 Channel n has input from Playback port 3

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x102	PB1_VS_ POL	PB1_HS_ POL	PB1_TYPE	PB0_ WIDTH	PB0_VS_ POL	PB0_HS_ POL	PB0_	TYPE
	PB1_VS_P(DL	Playbac 1 0	Reverse t	SYNC signa he polarity verse the p		ontrol	
	PB1_HS_P	OL	Playbad 1 0	Reverse t	SYNC sign he polarity verse the p		control	
	PB1_TYPE				iated with ode	1 – Refer PB0_TYPE	r to Table	e 3 for Pl
	PB0_WIDTI	Η	Playback Port 0 Data Width when used as component inpu (PB0_TYPE == 2'b11) 1 24 bits (R/V at PB2[7:0], G/Y at PB1[7:0], B/V at PI 0 16 bit mode (R/V at {PB1[1:0], PB0[7:5]}, G/Y at PI					
	PB0_VS_P	DL		Reverse t	SYNC signa he polarity verse the p		ontrol	
	PB0_HS_P	OL	Playbac 1 0	Reverse t	SYNC sign he polarity verse the p		ontrol	
	PB0_TYPE			associated BT 656 BT 601 BT 1120	pe Control I with PB1 <u>.</u> ent (RGB/Y	_	r to Table	e 3 for Pl

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x103	PB0_PROG	PB0_RGB	PB_FLD	_DET_MD		PB_FI	D_POL		
	PB0_PR0(9	Port PB 1 0	0 input Progre Port PB0 inp Port PB0 inp	ut is forc		ressive		
	PB0_RGB		1 0	Input is in RO Input is in YU					
	PB_FLD_D	ET_MODE[ction Mode w Field ID is of leading edge Field ID is de leading edge larger than th 0x104 or 0x2 Otherwise it	derived of VSYN rived by of HSYN ne VS_HS L05, ther	by sample C checking t C and VSN 6_LAG_TH n this video	the HS he distar (NC. If the specified	YNC signa nce betwee e distance d in registe	
	PB_FLD_P	OL[m]	Field Po 1 0						
	(7)	101		[4]	101	101	141	101	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x104		PB0_VS_HS_LAG_TH							
0x105		PB1_VS_HS_LAG_TH							

PB_VS_HS_LAG_THUse the VS to HS distance to determine the field ID. When this
distance is larger than this threshold, the current video field is an
odd field (field ID = 1'b0). Else it is even field (field ID = 1'b1). Used
8'hFF when PB_FLD_DET_MODE in 0x103 is set to 0.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x106				PB0_HA	_ST[7:0]				
0x107				PB0_HA_LE	ENGTH[7:0]				
0x108	0	PB0_HA_LENGTH[10:8] 0 PB0_HA_ST[10:8]							

PB0_HA_ST Specify the starting pixel of each line if PB port 0 is in BT 601 mode

PB0_HA_LEN Specify the horizontal active length if PB port 0 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x109				PB0_VA:	1_ST[7:0]					
0x10A		PB0_VA2_ST[7:0]								
0x10B		PB0_VA_LEN[7:0]								
0x10C	0	0	PB0_VA_	LEN[9:8]	PB0_VA2	_ST[9:8]	PB0_VA1	L_ST[9:8]		

PB0_VAx_ST Specify the starting line if PB port 0 is in BT 601 mode PB0_VA1_ST: The starting line of even field PB0_VA2_ST: The starting line of odd field

PB0_VA_LEN Specify the vertical active length if PB port 0 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x10D				PB1_HA	_ST[7:0]			
0x10E				PB1_HA_	LEN[7:0]			
0x10F	0	PB	1_HA_LEN[10):8]	0	PI	B1_HA_ST[10:	:8]

PB1_HA_ST Specify the starting pixel of each line if PB port 1 is in BT 601 mode

PB1_HA_LEN Specify the horizontal active length if PB port 1 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x110				PB1_VA:	1_ST[7:0]					
0x111		PB1_VA2_ST[7:0]								
0x112		PB1_VA_LEN[7:0]								
0x113	0	0	PB1_VA_	LEN[9:8]	PB1_VA2	2_ST[9:8]	PB1_VA1	L_ST[9:8]		

PB1_VAx_ST Specify the starting line if PB port 1 is in BT 601 mode PB1_VA1_ST: The starting line of even field PB1_VA2_ST: The starting line of odd field

PB1_VA_LEN Specify the vertical active length if PB port1 is in BT 601 mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x120		PB0_MAN	_STRB_EN			PB0_MAN	_PIC_TYPE	
0x130		PB1_MAN_STRB_EN PB1_MAN_PIC_TYPE						
0x140		PB2_MAN	_STRB_EN			PB2_MAN	_PIC_TYPE	
0x150		PB3_MAN	_STRB_EN			PB3_MAN	PIC_TYPE	

PBm_MAN_STRB_EN

Enable manual strobe mode for PB port m

- Enable 1 0
 - Disable

PBm_MAN_PIC_TYPE

Specify the picture type used in manual strobe mode for PB port m

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x121		PB0_MAI	N_CH1_ID			PB0_MA	N_CH0_ID			
0x122		PB0_MAN_CH3_ID PB0_MAN_CH2_ID								
0x131		PB1_MAI	N_CH1_ID		PB1_MAN_CH0_ID					
0x132	PB1_MAN_CH3_ID					PB1_MAN_CH2_ID				
0x141		PB2_MAI	N_CH1_ID			PB2_MA	N_CH0_ID			
0x142		PB2_MAI	N_CH3_ID			PB2_MA	N_CH2_ID			
0x151		PB3_MAI	N_CH1_ID			PB3_MA	N_CH0_ID			
0x152	PB3_MAN_CH3_ID PB3_MAN_CH2_ID									

PBm_MAN_CHn_ID

Specify the channel ID to be used at PB port m channel n in Manual Strobe mode

PBm_MAN_CHn_ID[3:2] chip ID PBm_MAN_CHn_ID[1:0] channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x123	0	PB0_AUT0_STRB_EN	PB0_FORCE_LIVE	PB0_MAN_STRB_FLD		PB0_M	AN_ANA	
0x133	0	PB1_AUTO_STRB_EN	PB1_FORCE_LIVE	PB1_MAN_STRB_FLD		PB1_M	AN_ANA	
0x143	0		PB2_FORCE_LIVE	PB2_MAN_STRB_FLD		PB2_M	AN_ANA	
0x153	0		PB3_FORCE_LIVE	PB3_MAN_STRB_FLD		PB3_M	AN_ANA	

PBm_AUTO_STRB_EN

Enable playback port m automatic strobe using the channel ID embedded in the VBI. Only PBO and PB1 has channel ID decoder. PB2 and PB3 do not support audio CHID.

1 Enable to use the channel ID embedded in the VBI to strobe. In this mode, the Strobe signal is sent out automatically without CPU issuing a strobe signal.

0 Disable: Use the channel ID specified by the register 0x120 ~ 0x122, 0x130 ~ 0x132, 0x140 ~0x142, 0x150 ~ 0x152 to strobe.

PBm_FORCE_LIVE

1

Force the playback to strobe on whatever input video stream.

- When this bit is set to 1, the strobe is always sent out. It will behave like a LIVE input. When this mode is on, the PBm_MAN_PIC_TYPE has to be set to 0x01.
- 0 When this bit is set to 0, the strobe will be sent out only if there is a match if PB_CHNUM with the channel ID from the VBI, or the channel ID specified in the registers in $0x120 \sim 0x122$, $0x130 \sim 0x132$, $0x140 \sim 0x142$, $0x150 \sim 0x152$.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x124				PB0_HDI	ELAY[7:0]					
0x125		PB0_HACTIVE[7:0]								
0x126	0	0 PB0_HACTIVE[10:8] 0 PB0_HDELAY[10:8]								
0x134				PB1_HD	ELAY[7:0]					
0x135				PB1_HAC	CTIVE[7:0]					
0x136	0	PB	1_HACTIVE[10):8]	0	PB	1_HDELAY[10	:8]		
0x144				PB2_HDI	ELAY[7:0]					
0x145				PB2_HAC	CTIVE[7:0]					
0x146	0	PB	2_HACTIVE[10):8]	0	PB	2_HDELAY[10	:8]		
0x154		PB3_HDELAY[7:0]								
0x155		PB3_HACTIVE[7:0]								
0x156	0	PB	3_HACTIVE[10	3_HDELAY[10	:8]					

PBn_HDELAY

Specify the starting pixel number for cropping port n. Pixels before this pixel number are cropped. Note that this is before the further cropping based on picture type.

PBn_HACTIVE

Specify the active horizontal length for cropping port n. Pixels beyond the range of this horizontal length are cropped. Note that this is before the further cropping based on picture type.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x127		PB0_VDELAY[7:0]									
0x128				PB0_VAC	TIVE[7:0]						
0x129		PB0_AUT0_S1	ROBE_CH_EN		PB0_VAC	:TIVE[9:8]	PB0_VDE	ELAY[9:8]			
0x137		PB1_VDELAY[7:0]									
0x138		PB1_VACTIVE[7:0]									
0x139		PB1_AUT0_STROBE_CH_EN PB1_VACTIVE[9:8] PB1_VDELAY[9:8]									
0x147				PB2_VD	ELAY[7:0]						
0x148				PB2_VAC	TIVE[7:0]						
0x149					PB2_VAC	:TIVE[9:8]	PB2_VD	ELAY[9:8]			
0x157		PB3_VDELAY[7:0]									
0x158		PB3_VACTIVE[7:0]									
0x159					PB3_VAC	:TIVE[9:8]	PB3_VDE	ELAY[9:8]			

 PBn_VDELAY
 Specify the starting line number for cropping port n. Lines before this line number is cropped. Note that this is before the further cropping based on the picture type

 PBn_VACTIVE
 Specify the active vertical length cropping port n. Lines beyond the range of this vertical length are cropped. Note that this is before further cropping based on the picture type.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x129		PB0_AUT0_S1	ROBE_CH_EN		PB0_VA0	TIVE[9:8]	PB0_VDI	LAY[9:8]
0x139		PB1_AUT0_S1	ROBE_CH_EN		PB1_VAC	CTIVE[9:8]	PB1_VDI	ELAY[9:8]
0x149					PB2_VAC	CTIVE[9:8]	PB2_VDI	ELAY[9:8]
0x159					PB3_VA0	CTIVE[9:8]	PB3_VDI	ELAY[9:8]

PBn_AUTO_STROBE_CH_EN[m]

Specify whether to turn on the auto strobe for port n, on channels m. Only PBO and PB1 have channel ID decoder. PB2 and PB3 do not support audio CHID.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x12A	0	PB0_CHI	D_FLD_0S	PB0_DID_EN	PB0_AID_EN	PB0_FLT_EN	PB0_RIC_EN	PB0_AUT0_CHID_DET			
0x13A	0	PB1_CHI	D_FLD_0S	PB1_DID_EN	PB1_AID_EN	PB1_FLT_EN	PB1_RIC_EN	PB1_AUTO_CHID_DET			
	PBr	n_CHID_F	LD_0S					relative to odd field			
						re than odd					
						as odd field					
				0 One line less than odd field							
	PBr	n_DID_EN	I	Enable digital channel ID detection for the PB port m							
			1 Turn on digital channel ID decoding								
		0 Turn off digital channel ID decoding									
	PBr	n_AID_EN	l	Enable the Analog channel ID detection for PB port m							
				1 Turn on analog channel ID detection							
			0 Turn off analog channel ID detection								
				Colort the way in clock words for each of the word ID							
	PBr	n_RIC_EN		Select the run-in clock mode for analog channel ID							
					lun-in clock						
				0 N	lo run-in clo	ck mode					
	PBr	n_FLT_EN		Select the	I PF filter i	node for pla	avhack inni	ıt			
	1 01				ypass mod		ayouon mpe				
					nable the L						
	PBr	n_AUTO_(CHID_DET	Select the port m	e detection	mode of Ar	nalog chanr	nel ID for playback i			
				•	lanual dete	ction mode	for Analog	channel ID			
							-	log channel ID			
				- 7							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x12B		CHID_LINE_S				B0_CHID_V_OF		
0x13B		1_CHID_LINE_S				B1_CHID_V_OF		
0,202		IID_LINE_SI	ZE		he line wid nanual det	th for Anal	og Channel	ID for playl ITO_CHID_D
	PBm_CH	IID_V_OFST	Contro 0 : 8 : 31	ol the vertic channel No offset (default)	ID	offset from t	field transit	ion for analo
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x12C		PB0_CHID_H_OFST										
0x13C		PB1_CHID_H_OFST										

PBm_CHID_H_OFST	Define the horizontal starting offset of analog channel ID in
	manual
	detection mode (PBm_AUTO_CHID_DET = 0)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x12D	0	0	PB0_VAV_CHK		PB0	_ANA_CHID	_BW		
0x13D	0	0	PB1_VAV_CHK PB1_ANA_CHID_BW						
	PBm_VAV_	снк	(defai	e the cha ult)	annel ID	detectio	on for V	eriod 'Bl period I active per	
	PBm_ANA_	CHID_BW	Define the pixel width for each bit of analog channel ID 0 1 pixel :						
			31 32 pix	kels					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x12E		PB0_CHID_MID_VAL									
0x13E		PB1_CHID_MID_VAL									

Define the slicer threshold level to detect bit "0" or bit "1" from PBm_CHID_MID_VAL analog channel ID (default 128)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x15F	0	0	0	0	0	0	PB_NOVID_MD	

PB_NOVID_MD

Select the No-Video flag generation mode 0

- Faster 1
 - Fast

2

3

- Slow
- Slower (default)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x160	0	PB_STOP0	PB_HSCL_BYP0	PB_ANA0	PB_CHNUMO			
0x170	0	PB_STOP1	PB_HSCL_BYP1	PB_ANA1	PB_CHNUM1			
0x180	0	0	PB_HSCL_BYP2	PB_ANA2	PB_CHNUM2			
0x190	0	0	PB_HSCL_BYP3	PB_ANA3	PB_CHNUM3			

PB_STOPn	 Disable the auto strobe operation for playback channel n 0 Normal Operation (default) 1 Stop the auto strobe operation for playback channel n
PB_ HSCL_BYPn	Bypass the horizontal scaler for playback channel n 0 Normal operation 1 Bypass the horizontal scaler
PB_ANAn	The analog input selection of channel n O Select VINA 1 Select VINB
PB_CHNUMn	The playback channel ID selection PB_CHNUMn[3:2] CHIP ID PB_CHNUMn[1:0] Port ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x161							PB_2X_EN0	PB_FLD_POL0
0x171							PB_2X_EN1	PB_FLD_POL1
0x181							PB_2X_EN2	PB_FLD_POL2
0x191							PB_2X_EN3	PB_FLD_POL3

PB_2X_ENn Scale up 2X horizontally for PB channel n

PB_FLD_POLn Reverse the field signal polarity of channel n

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x162	0			PB_S	CALE_TARGET_H	ISIZE0					
0x163	0	0		PB_SCALE_TARGET_VSIZE0							
0x164	0			PB_SCALE_SRC_HSIZE0							
0x165	0	0			PB_SCALE_	SRC_VSIZE0					
0x172	0	0			PB_SCALE_TA	RGET_HSIZE1					
0x173	0	0			PB_SCALE_TA	RGET_VSIZE1					
0x174	0	0		PB_SCALE_SRC_HSIZE1							
0x175	0	0		PB_SCALE_SRC_VSIZE1							
0x182	0	0			PB_SCALE_TA	RGET_HSIZE2					
0x183	0	0			PB_SCALE_TA	RGET_VSIZE2					
0x184	0	0			PB_SCALE_S	SRC_HSIZE2					
0x185	0	0			PB_SCALE_	SRC_VSIZE2					
0x192	0	0			PB_SCALE_TA	RGET_HSIZE3					
0x193	0	0		PB_SCALE_TARGET_VSIZE3							
0x194	0	0		PB_SCALE_SRC_HSIZE3							
0x195	0	0			PB_SCALE_S	SRC_VSIZE3					

PB_SCALE_TARGET_HSIZEn

Target horizontal size of channel n after scaling. The unit is 16 pixels.

PB_SCALE_TARGET_VSIZEn

Target vertical size of channel n after scaling. The unit is 8 lines.

PB_SCALE_SRC_HSIZEn

Source horizontal size of channel n before scaling. The unit is 16 pixels.

PB_SCALE_SRC_VSIZEn

Source vertical size of channel n before scaling. The unit is 8 lines.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x1A0	PB_STATUS_PORT_SEL		Р	B_STATUS_TYPE_SE	L	PB_STATUS_MOTION_INDEX			

PB_STATUS_PORT_SEL

Select the port number from which the status is read back at register 0x1A2 through 0x1AF

00	DR	port	n
00	гD	port	υ

- 01 PB port 1
- 1X Reserved

PB_STATUS_TYPE_SEL

Select the channel ID type of the status read back at register 0x1A8 through 0x1AF

- 000 Auto CHID
- 001 Detection CHID
- 010 User CHID
- 100 Motion ID 0
- 101 Motion ID 1
- 110 Motion ID 2
- 111 Motion ID 3

PB_STATUS_MOTION_INDEX

Select the bit index range of playback motion channel ID read back at 0x1A8 Through 0x1AF

- 000 Motion ID bit [63:0]
- 001 Motion ID bit [127:64]
- 010 Motion ID bit [191:128]

	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
ſ	0x1A1					PB_CH3_AUTO_VLD*	PB_CH2_AUTO_VLD*	PB_CH1_AUTO_VLD*	PB_CH0_AUT0_VLD*

PB_CHn_AUTO_VLD

Playback Channel n auto channel ID valid status (read only)

Address	[7] [6]		[5]	[4]	[3]	[2]	[1]	[0]			
0x1A2	DET_CHID_VLD*		USR_CH	ID_VLD*	MOTION_CHID_VLD*						
	DET_CHID_VLD			The detection channel ID valid status of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)							
	USER_CHID_VLD			The user channel ID valid status of port m, where m is select By PB_STATUS_PORT_SEL in 0x1A0 (read only)							
	MOTION_CHID_VLD			The motion channel ID valid status of port m, where n selected by PB_STATUS_PORT_SEL in 0x1A0 (read on							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A3	PB_CHID_LINE_SIZE_DET*			PB_ANA_CHID_BW_DET				

PB_CHID_LINE_SIZE_DET

The detected VBI line size of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

PB_ANA_CHID_BW_DET

The detected VBI pixel width of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A4						PB_PIC	_TYPE*	

PB_PIC_TYPE

The detected VBI picture type of port m, where m is selected by PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A5	0	0	0	0		PB_CHI	D_TYPE	

PB_CHID_TYPE

The detected VBI channel ID type of port m, where m is selected By PB_STATUS_PORT_SEL in 0x1A0 (read only)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1A8		CHID_STATUS0*						
0x1A9		CHID_STATUS1*						
0x1AA	CHID_STATUS2*							
0x1AB	CHID_STATUS3*							
Ox1AC	CHID_STATUS4*							
0x1AD	CHID_STATUS5*							
0x1AE	CHID_STATUS6*							
0x1AF	CHID_STATUS7*							

This set of registers read back the channel ID detected in the VBI. These registers are all Read only. The PB_STATUS_PORT_SEL will select the corresponding playback port status.

PB_STATUS_TYPE_SEL = 0

CHID_STATUS0: AUTO_CHANNEL_ID0 CHID_STATUS1: AUTO_CHANNEL_ID1 CHID_STATUS2: AUTO_CHANNEL_ID2 CHID_STATUS3: AUTO_CHANNEL_ID3 CHID_STATUS4: Bit 7:4: Vertical Location of Channel n Bit 3:0: Horizontal Location of Channel n Bit 3:0: Playback strobe of Channel n Bit 3:0: Playback analog path of Channel n CHID_STATUS6: Bit 7:4: Reserved Bit 3:0: Field Mode of Channel n CHID_STATUS7: Reserved

PB_STATUS_TYPE_SEL = 1

CHID_STATUSO: DET_CHANNEL_ID[7:0] of Chip ID 0 CHID_STATUS1: DET_CHANNEL_ID[15:8] of Chip ID 0 CHID_STATUS2: DET_CHANNEL_ID[7:0] of Chip ID 1 CHID_STATUS3: DET_CHANNEL_ID[15:8] of Chip ID 1 CHID_STATUS4: DET_CHANNEL_ID[7:0] of Chip ID 2 CHID_STATUS5: DET_CHANNEL_ID[15:8] of Chip ID 2 CHID_STATUS6: DET_CHANNEL_ID[7:0] of Chip ID 3 CHID_STATUS7: DET_CHANNEL_ID[15:8] of Chip ID 3 PB_STATUS_TYPE_SEL = 2 CHID_STATUSO: USER_CHANNEL_ID0[7:0] CHID_STATUS1: USER_CHANNEL_ID0[15:8] CHID_STATUS2: USER_CHANNEL_ID1[7:0] CHID_STATUS3: USER_CHANNEL_ID1[15:8] CHID_STATUS4: USER_CHANNEL_ID2[7:0] CHID_STATUS5: USER_CHANNEL_ID2[15:8] CHID_STATUS6: USER_CHANNEL_ID3[7:0] CHID_STATUS7: USER_CHANNEL_ID3[15:8] PB_STATUS_TYPE_SEL = 4 n is specified by PB_ STATUS_MOTION_INDEX CHID_STATUSO: MOTION_CHANNEL_ID0[64*n+7:64*n] CHID_STATUS1: MOTION_CHANNEL_ID0 [64*n+15:64*n+8] CHID_STATUS2: MOTION_CHANNEL_ID0[64*n+23:64*n+16] CHID_STATUS3: MOTION_CHANNEL_ID0[64*n+31:64 *n+24] CHID_STATUS4: MOTION_CHANNEL_ID0[64*n+39:64 *n+32] CHID STATUS5: MOTION CHANNEL ID0[64*n+47:64 *n+40] CHID_STATUS6: MOTION_CHANNEL_ID0[64*n+55:64 *n+48] CHID_STATUS7: MOTION_CHANNEL_ID0[64*n+63:64 *n+56] PB_STATUS_TYPE_SEL = 5 n is specified by PB_ STATUS_MOTION_INDEX CHID_STATUS0: MOTION_CHANNEL_ID1[64*n+7:64*n], CHID_STATUS1: MOTION_CHANNEL_ID1[64*n+15:64* n+8] CHID_STATUS2: MOTION_CHANNEL_ID1[64*n+23:64* n+16] CHID_STATUS3: MOTION_CHANNEL_ID1[64*n+31:64* n+24] CHID_STATUS4: MOTION_CHANNEL_ID1[64*n+39:64* n+32] CHID_STATUS5: MOTION_CHANNEL_ID1[64*n+47:64* n+40] CHID_STATUS6: MOTION_CHANNEL_ID1[64*n+55:64* n+48] CHID_STATUS7: MOTION_CHANNEL_ID1[64*n+63:64* n+56] PB_STATUS_TYPE_SEL = 6 n is specified by PB_ STATUS_MOTION_INDEX CHID_STATUS0: MOTION_CHANNEL_ID2[64*n+7:64*n] CHID_STATUS1: MOTION_CHANNEL_ID2[64*n+15:64* n+8] CHID_STATUS2: MOTION_CHANNEL_ID2[64*n+23:64* n+16] CHID_STATUS3: MOTION_CHANNEL_ID2[64*n+31:64* n+24] CHID_STATUS4: MOTION_CHANNEL_ID2[64*n+39:64* n+32] CHID_STATUS5: MOTION_CHANNEL_ID2[64*n+47:64* n+40] CHID_STATUS6: MOTION_CHANNEL_ID2[64*n+55:64* n+48] CHID_STATUS7: MOTION_CHANNEL_ID2[64*n+63:64* n+56] PB_STATUS_TYPE_SEL = 7 n is specified by PB_ STATUS_MOTION_INDEX CHID_STATUS0: MOTION_CHANNEL_ID3[64*n+7:64*n], CHID_STATUS1: MOTION_CHANNEL_ID3[64*n+15:64* n+8] CHID STATUS2: MOTION CHANNEL ID3[64*n+23:64* n+16] CHID_STATUS3: MOTION_CHANNEL_ID3[64*n+31:64* n+24] CHID_STATUS4: MOTION_CHANNEL_ID3[64*n+39:64* n+32] CHID_STATUS5: MOTION_CHANNEL_ID3[64*n+47:64 *n+40] CHID_STATUS6: MOTION_CHANNEL_ID3[64*n+55:64* n+48] CHID_STATUS7: MOTION_CHANNEL_ID3[64*n+63:64* n+56]

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1C0		CVBS_SCL_HACTIVE[7:0]						
0x1C1		CVBS_SCL_VACTIVE[7:0]						
0x1C2	CVBS_SCL_VACTIVE[8] CVBS_SCL_HACTIVE[9:8						ACTIVE[9:8]	
	CVBS_SCL_HACTIVE			The horizontal act downscaler	ive pixel r	number fo	r display CVB	S path

CVBS_SCL_VACTIVE	The vertical active line number for display CVBS path
	downscaler

[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
	CVBS_VSCALE[7:0]									
			CVBS_VSCALE	[15:8]						
	CV	/BS_ODD_S	KEW		CVBS_	EVEN_SKEW				
			CVBS_HSCAL	.E[7:0]						
			CVBS_HSCALE	E[15:8]						
	[7]			CVBS_VSCAL CVBS_VSCAL CVBS_ODD_SKEW CVBS_HSCAL	CVBS_VSCALE[7:0] CVBS_VSCALE[15:8]	CVBS_VSCALE[7:0] CVBS_VSCALE[15:8] CVBS_ODD_SKEW CVBS_ CVBS_HSCALE[7:0]	CVBS_VSCALE[7:0] CVBS_VSCALE[15:8] CVBS_ODD_SKEW CVBS_EVEN_SKEW CVBS_HSCALE[7:0]			

CVBS_VSCALE	The vertical scaling factor for display CVBS path downscaler. 0x1FFF is scaling factor of 1.
	CVBS_VSCALE = Input line number (CVBS_SCL_VACTIVE) * 8191 / (Output line number + 1)
	**Note: line number means the number of lines in a field
CVBS_HSCALE	The horizontal factor for display CVBS path downscaler. 0x1FFF is scaling factor of 1,
	CVBS_HSCALE = Input pixel number (CVBS_SCL_HACTIVE) * 8191/ (Output pixel number + 1)
CVBS_ODD_SKEW	Additional vertical offset on odd fields
CVBS_EVEN_SKEW	Additional vertical offset on even fields

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1C8	CVBS_LIM656	CVBS_V_OFST	CVBS_VSYNC_POL	CVBS_HSYNC_POL	CVBS_	HSFLT	CVBS	_VSFLT
	CVBS_L	IM656	1 0	16 and 235 (Defau Limit the C	,			o between
	CVBS_V	2_OFST	1 0	vertical sca	aling (Defa	ault)		field during
	CVBS_V	SYNC_POL	1 0		e VS polarit erse the VS	-	• • •	,
	CVBS_H	ISYNC_POL	1 0		e HS polari erse the HS	•		,
	CVBS_F	ISFLT	Select mode 0 1 2 3	the CVBS d Full bandw 2 MHz ban 1.5 MHz ba 1 MHz ban	idth (Defau dwidth andwidth		nscaler ar	nti-aliasing t
	CVBS_V	SFLT	Select mode 0	the CVBS Full bandw	display vei idth (Defau		nscaler an	iti-aliasing

1	0.25 line-rate bandwidth	
~ ~	A 4 A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

2,3 0.18 line-rate bandwidth

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x1C9	0	0	0	0	CVBS_FLD_POL	CVBS_T_FDLY	CVBS_T_VSCL	CVBS_T_CPALDLY		
CVBS_FLD_POL1Reverse the Display CVBS field polarity0Do not reverse the field polarity										
	CVBS_T_FDLY Set display CVBS scaler field delay mode for testing									
	CVBS_T_VSCL Set display CVBS vertical scaler scaling factor to be 1 for testing									
CVBS_T_CPALDLY Set display CVBS scaler chroma delay in PAL mode										
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x1CA		CV	BS_TEST			CVBS_SOFT_RST	CVBS_HSCL_BP	CVBS_PALDLY		
	CVBS_T	EST	0001 0010	from the Enable	pattern ge	nerator 8S scaler te		th data valid with data v		
	CVBS_S	OFT_RST	Displ	ay CVBS sca	aler softwar	e reset				
	CVBS_HSCL_BP Bypass display CVBS horizontal scaler									
	CVBS_H	SCL_BP	Вура	ss display C	VBS horizor	ntal scaler				
	CVBS_H CVBS_P	-		ss display C AL delay m		ital scaler				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1CB					C_V_START			
0x1CC				C_V_E	ND [7:0]			
0x1CD	C_LINE_INS							C_V_END[8]

C_V_START Set the starting line number of active video shown in PAL mode

C_V_END Set the end line number of active video shown in PAL mode

C_LINE_INS Enable inserting blanking lines at the beginning and end in PAL mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x1D0				INTERRU	PT_VECT0			
0x1D1				INTERRU	PT_VECT1			
0x1D2				INTERRU	PT_VECT2			
0x1D3				INTERRU	PT_VECT3			
0x1D4				INTERRU	PT_VECT4			
0x1D5				INTERRU	PT_VECT5			
0x1D6				INTERRU	PT_VECT6			
0x1D7				INTERRU	PT_VECT7			
0x1D8				INTERRUPT_	VECT_MASK0			
0x1D9				INTERRUPT_	VECT_MASK1			
0x1DA				INTERRUPT_	VECT_MASK2			
0x1DB				INTERRUPT_	VECT_MASK3			
Ox1DC				INTERRUPT_	VECT_MASK4			
0x1DD				INTERRUPT_	VECT_MASK5			
0x1DE				INTERRUPT_	VECT_MASK6			
0x1DF				INTERRUPT_	VECT_MASK7			
0x1E0				INTERRUF	PT_STATUS			

INTERRUPT_VECTn	Read Write	Read the interrupt status of the specific interrupt source Write a '1' to that bit will clear the specific interrupt source. This clear bit will make the INTERRUPT_VECT to become '0'
INTERRUPT_VECT_MASK	(n	
	1	Set to '1' will allow the INTERRUPT_VECT source to
	0	show up at the output IRQ pin if the vector bit is a '1'
	0	Set to '0' will disable the output to IRQ, so the MCU will ignore that source
INTERRUPT STATUS[x]		
	1	An INTERRUPT_STATUS[x] of '1' means there is some source in INTERRUPT_VECTx set to 1. The MCU can read this register before it read each of the INTERRUPT_VECTx.
	-	Write INTERRUPT_VECT_MASKn 1 0 INTERRUPT_STATUS[x]

The specific interrupt vector is organized as follows:

INTERRUPT_VECT0[3:0]	Video Decoder Motion Detection, ANA SW = 0
INTERRUPT_VECT0[7:4]	Video Decoder Motion Detection, ANA SW = 1
INTERRUPT_VECT1[3:0]	Video Decoder Night Detection, ANA SW = 0
INTERRUPT_VECT1[7:4]	Video Decoder Night Detection, ANA SW = 1
INTERRUPT_VECT2[3:0]	Video Decoder Black Detection, ANA SW = 0
INTERRUPT_VECT2[7:4]	Video Decoder Black Detection, ANA SW = 1
INTERRUPT_VECT3[3:0]	Video Decoder NO VIDEO detection, ANA SW = 0
INTERRUPT_VECT3[7:4]	Video Decoder NO VIDEO detection, ANA SW = 1
INTERRUPT_VECT4[3:0] INTERRUPT_VECT4[7:4] INTERRUPT_VECT5[3:0]	Unused Playback port CHID Detection Playback port NO VIDEO

RENESAS

	Detection
INTERRUPT_VECT5[7:4]	Playback muxed channel PORT
	Change Detection
INTERRUPT_VECT6[0]	Display Strobe Done
INTERRUPT_VECT6[1]	Record Strobe Done
INTERRUPT_VECT6[2]	SPOT Strobe Done
INTERRUPT_VECT6[3]	Record Read/Write Switch
	Queue Done
INTERRUPT_VECT6[4]	SPOT Read/Write Switch
	Queue Done
INTERRUPT_VECT6[5]	PS2 Mouse Interrupt
INTERRUPT_VECT6[6]	OSG Bitmap Done (or Wait)
INTERRUPT_VECT6[7]	DDC Channel Interrupt
INTERRUPT_VECT7[0]	Display VGA Vstart
INTERRUPT_VECT7[1]	Display CVBS Vstart
INTERRUPT_VECT7[2]	Record Vstart
INTERRUPT_VECT7[3]	SPOT Vstart
INTERRUPT_VECT7[4]	Unused
INTERRUPT_VECT7[5]	Unused
INTERRUPT_VECT7[6]	Unused
INTERRUPT_VECT7[7]	Unused

Page 2: 0x200 ~ 0x2FE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x200	0	0	RP_INP_FLD_POL RP_CC_EN		C_EN	0	RP_CLK_SEL		
RP_INP_FLD_POL Reverse the field polarity for record path only									
	RP_CC_I	EN[1]	1 O This fe set to (Record Ca ature is not	scade Outr scade Outr available	out Disable	;	This bit is alv	
	RP_CC_I	EN[O]	1 0 This fe set to (Record Ca ature is not	scade Inpu scade Inpu available	t Disable	1 rev B2. ⁻	This bit is alv	
	RP_CLK	_SEL	Record 0 1 2 3	54 MHz fo	r 1 port 65 r 1 port 65	6, 27 MHz	for 2 port	rt 656 or 601 656 or 601 port 656, 60:	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x201	RP_BLA	NK_COLR	RP_BGN	D_COLR	0	RP_BLNK_DIS	0	0
	RP_BLAI	NK_COLR		source or fo Dark Gra	orced to she ay diate Gray	eo window ow the blan		not have a
	RP_BGN	D_COLR	The b pictur 0 1 2 3	e. Dark Gra	ay diate Gray	side of the	e video wi	ndow confi
	RP_BLNI	K_DIS	0 1	when NC	D_VIDEO sig ne last imag	specified by gnal is deteo ge captured	cted	{_COLR NO_VIDEO is

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x202	0	RP_1120		RP_601	RP_2_656		RP_LIM_656				
	RP_112	20	1 0		Record Port output is in 1440x960 resolution Record Port output is in format specified by PIC_TYP						
	RP_601	L	1 0		Record Port output is in 601 format Record Port output is in 656 format						
	RP_2_6	56	1 0		Record output in 656 format in 2 physical port Record output in single port 656 or 601 format						
	RP_LIM	_656	656 c	RP_LIM 1 0 RP_LIM 4 5 6 7 RP_LIM 0~1	Maximum i Maximum i _656[1:0] Minimum is Minimum is Minimum is Minimum is	s 235 s 254 s 1 s 16, s 24 s 32 254, Minimi	um 1				

Note that the interface configuration changes should always be followed by a system reset in order to make the change effective.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x203		RP_H_OFFSET										
0x204	0	0 RP_V_OFFSET										
0x205	RP_H_SIZE[7:0]											
0x206				RP_V_S	GIZE[7:0]							
0x207	0	0	0	0	0	RP_V_SIZE[8]	RP_H_S	IZE[9:8]				

RP_H_OFFSET	The horizontal offset of the first active pixel in the output 656/601 format
RP_V_OFFSET	The vertical offset of the first active line in the output $656/601$ format
RP_H_SIZE	The horizontal active length used to show the video pictures
RP_V_SIZE	The vertical active height used to show the video pictures

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x208	RP_SQ_CMD	RP_SQ_WR	RP_SQ_RW_DONE*	0	0	0	0	RP_CONFIG_DONE
				I	I	I		

RP_SQ_CMD	The command bit to start a Record Path Switch Queue read / write operation. Set to 1 to start a command. This bit wills self clear.
RP_SQ_WR	Read/Write Flag for Record Path Switch Queue operation 1 Write to Switch Queue 0 Read from Switch Queue
RP_SQ_RW_DONE	Read Only
RP_CONFIG_DONE	After any configuration changes are made to the record path control registers, this bit should be set to resume the record path operation.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x209	RP_SQ_DATA[7:0]										
0x20A	RP_SQ_DATA[15:8]										
0x20B		RP_SQ_DATA[23:16]									
0x20C		RP_SQ_DATA[31:24]									

 $\label{eq:RP_SQ_DATA0 ~ 3 are used to read/write the data from/to the record path switch queue entry when a switch queue read/write operation is performed.$

In write operation, these 4 registers are written first. Then a command is issued using RP_SQ_CMD in 0x208 to move the data into the switching queue.

In read operation, a read command is issued using RP_SQ_CMD in 0x208 to move the data from switch queue into these 4 registers. The MCU can then read the entry from these registers.

The definition of each bit used in the switch queue entry is as follows.

RP_SQ_DATA[1:0] RP_SQ_DATA[3:2] RP_SQ_DATA[5:4] RP_SQ_DATA[7:6]	Port ID for channel 0 (upper left window) Chip ID for channel 0 Port ID for Channel 1 (upper right window) Chip ID for Channel 1
RP_SQ_DATA[9:8] RP_SQ_DATA[11:10] RP_SQ_DATA[13:12] RP_SQ_DATA[15:14]	Port ID for Channel 2 (Lower left window) Chip ID for Channel 2 Port ID for Channel 3 (Lower right window) Chip ID for Channel 3
RP_SQ_DATA[19:16]	Channel 0 ~ 3 disable bit. Bit 16 set to 1, Channel 0 is disabled. Bit 17 set to 1, Channel 1 is disabled Bit 18 set to 1, Channel 2 is disabled Bit 19 set to 1, Channel 3 is disabled
RP_SQ_DATA[22:20] RP_SQ_DATA[23]	Picture Type, as shown in Figure 15Strobe field type for field mode picture type.1Odd field0Even field
RP_SQ_DATA[25:24]	Field/Frame based OSD0 selection for Record Output Port 0. There will be 4 sets of OSD0 configuration information. These 2 bits selects one of the 4 sets for record output port 0. According to the setting of these 2 bits, the OSD result can change from field to field or frame to frame.
RP_SQ_DATA[27:26]	Field/Frame based OSD1 selection for Record Output Port 1. There will be 4 sets of OSD1 configuration information. These 2 bits selects one of the 4 sets for record output port 1. According to the setting of these 2 bits, the OSD result can change from field to field or frame to frame.
RP_SQ_DATA[31:28]	Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x20D		RP_SQ_ADDR[7:0]								
0x20E				RP_SQ_	SIZE[7:0]					
0x20F	0		RP_SQ_SIZE[10:8]		0	RP_SQ_ADDR[10:8]				

RP_SQ_ADDR The switch queue entry address to perform the switch queue read / write command. This address is automatically incremented after the command is performed

RP_SQ_SIZE

 The switch queue size.

 1-2047:
 1-2047

 2048:
 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x210	RP_CH_EN_0	0	RP_FUNC_MD_0	RP_ANA_0	0	RP_BLNK_0	RP_MIR_V_0	RP_MIR_H_0
0x211	RP_CH_EN_1	0	RP_FUNC_MD_1	RP_ANA_1	0	RP_BLNK_1	RP_MIR_V_1	RP_MIR_H_1
0x212	RP_CH_EN_2	0	RP_FUNC_MD_2	RP_ANA_2	0	RP_BLNK_2	RP_MIR_V_2	RP_MIR_H_2
0x213	RP_CH_EN_3	0	RP_FUNC_MD_3	RP_ANA_3	0	RP_BLNK_3	RP_MIR_V_3	RP_MIR_H_3

	RP_CH_	EN	Chan 1 0	Enable	Control for o channel channel	each of cha	nnel O throu	igh 3		
	RP_FUN	IC_MD		n the Recor d capture n Strobe I Live Mo	node Node	ot in Switch	mode, this	bit specifies th	ıe	
	RP_ANA Specify the analog input selection of each of the channel. 0 VINA 1 VINB									
	RP_BLN	IK	Force 1 0							
	RP_MIR	<u>k_</u> v	Conti O 1	· · · · · · · · · · · · · · · · · · ·						
RP_MIR_HControl to mirror the image horizontally for each channel0Do not mirror horizontally1Mirror horizontally										
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x214	0	0	0	0	RP_STROBE_3	RP_STROBE_2	RP_STROBE_1	RP_STROBE_0		

RP_STROBE Strobe command for each channel. Once set to 1, the corresponding channel will capture one field/frame and then clear this bit.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x215	0	RP_STRB_FLD	RP_CH	_CYCLE	RP_SM_EN		RP_PIC_TYPE			
	RP_STR	B_FLD		e (pic_type Capture	ode, this bit 0, 2, 4, 6, 7 Even field Odd field		ich field to	capture in fiel		
	RP_CH_	CYCLE			mode, this leave when			rols how ma and 7.		
			0 1 2 3	1 Capture channel 0 2 Capture and interleave channel 0, 1 3 Capture and interleave channel 0, 1, 2 PIC_TYPE 6, 7 1 1 Capture channel 0, 1						
	RP_SM	_EN	1 0		Path is in Sv Path is in Liv	•				
	RP_PIC	_TYPE			ath is not _type used i			e, RP_PIC_TY		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x216	RP_MOTN_ID_EN	RP_DIG_ID_EN	RP_ANA_ID_EN	RP_ANA_RIC_EN	RP_AUTO_ID_EN	RP_AUTO_RPT_EN	RP_DET_ID_EN	RP_USR_ID_EN					
	RP_MOTN_ID_EN					ormation end ion informat	-	g					
	RP_DIG	_ID_EN	1	Turn on	Turn on the digital channel ID encoding								
			0	Turn off	the digital	channel ID e	ncoding						
	RP_ANA	LID_EN	1 0	Turn on the analog channel ID encoding Turn off the analog channel ID encoding									
	RP_ANA	A_RPT_EN	1		-	auto channe	•						
			0	Turn off	the analog	auto channe	el ID repeat	line					
	RP_AUT	O_ID_EN	1	Turn on	the auto ch	annel ID en	coding						
	-		0			annel ID en	-						
	RP_DET	_ID_EN	1 0	Turn on the detection ID encoding Turn off the detection ID encoding									
	RP_USR	LID_EN	1	Turn on	the user inf	ormation er	coding						
			0	Turn off	the user in	formation er	ncoding						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x217	RP_ANA_CHID_H_OFST							

RP_ANA_CHID_H_OFST

The horizontal starting offset for Analog Channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x218		RP_ANA_CHID_HIGH						
0x219	RP_ANA_CHID_LOW							

RP_ANA_CHID_HIGH Pixel values bigger than this setting are interpreted as "1" for Analog Channel ID (default: 235)

RP_ANA_CHID_LOW Pixel values smaller than this setting are interpreted as "0" for Analog Channel ID (default: 16)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x21A	RP_CHID_V_OFSTO		0	RP_CHID_V_OFST					
0x21B	RP_CHID_V_OFSTE		RP_USR_ID_PT_SEL			RP_ANA_CHID_BW			

RP_CHID_V_OFSTO	Control the vertical starting offset on top of RP_CHID_V_OFST in odd field for Analog Channel ID
RP_CHID_V_OFSTE	Control the vertical starting offset on top of RP_CHID_V_OFST in even field for Analog Channel ID
RP_CHID_V_OFST	Vertical starting offset for Analog Channel ID. The actual vertical line offset is RP_CHID_V_OFST + RP_CHID_V_OFSTO or RP_CHID_V_OFST + RP_CHID_V_OFSTE
RP_ANA_CHID_BW	Control the pixel width of each bit for Analog Channel ID01 pixel::3132 pixels (default)
RP_USER_ID_PT_SEL	This bit is used to select the user channel ID registers in 0x220 ~0x227 information is to be used for either record port 0 or 100x220 ~ 0x227 are used for record port 010x220 ~ 0x227 are used for record port 1

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x21C		RP_SMALL_FR	RP_BI_CLK	RP_BYPASS		RP_GE	N_CTL	

RP_GEN_CTL	Internal test function
RP_BYPASS	 Enable bypass from video decoder to record output pin with byte-interleaving format 0 Disable bypass 1 Enable bypass
RP_BI_CLK	Use 27 MHz CLKOY and CLKOYB for Byte Interleaving Output. This bit is valid only when RP_BYPASS is set to 1. 0 27 MHz

54 MHz

1

	RP_SMALL_FR		Internal test function					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x21D	RP_CHNUM1				RP_CHNUMO			
0x21E		RP_CHNUM3				RP_CH	INUM2	
0x21F								RP_GEN_FLDPOL

RP_CHNUM

The Channel Number to display in non-switch mode

[3:2] CHIP ID

[1:0] PORT ID

RP_GEN_FLDPOL Reverse the field polarity of the internal pattern generator for RP path.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x220		RP_USER_CHID[7:0]							
0x221		RP_USER_CHID[15:8]							
0x222		RP_USER_CHID[23:16]							
0x223		RP_USER_CHID[31:24]							
0x224		RP_USER_CHID[39:32]							
0x225		RP_USER_CHID[47:40]							
0x226		RP_USER_CHID[55:48]							
0x227		RP_USER_CHID[63:56]							

RP_USER_CHID

Used to set the USER Channel ID for record path.

Depending on the RP_USER_ID_PT_SEL (0x21B bit 5), these can be used to read/write the user channel ID for record port 0, or record port 1. Always set RP_USER_ID_PT_SEL before any read/write to these registers

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x228	RP_HALF_LINE[7:0]							
0x229	RP_HALF_LINE[9:8] RP_HS_P_OS							
0x22A	RP_HS_WIDTH							

RP_HALF_LINE	This defines in number of clock cycles from VS edge to the location of field change, in case it is change in middle of a line
RP_HS_P_OS	HSYNC starting location, in number of clock cycles
RP_HS_WIDTH	HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x22B				RP_TOP_VS_END				
0x22C				RP_BOT_VS_END				
0x22D	RP_T_VS_POS			RP_TOP_VS_OS				
0x22E	RP_B_VS_PS			RP_BOT_VS_OS				

RP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
RP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
RP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
RP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
RP_T_VS_POS	Enable the top field vsync edge at the middle of a line
RP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Add	ess	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2	2F			RP_HS_POL	RP_VS_POL	RP_FLD_POL	RP_VAV_POL	RP_HAV_POL	RP_656_ERRCHK

RP_HS_POL	Output HSYNC polarity control
RP_VS_POL	Output VSYNC polarity control
RP_FLD_POL	Output FIELD polarity control
RP_VAV_POL	Output VAV polarity control
RP_HAV_POL	Output HAV polarity control
RP_656_ERRCHK	Enable 656 SAV/EAV error check

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x230		DP_BLAM	NK_COLR			DP_B	GND_COLR		
	DP_BLAI	NK_COLR[3] 1 0		e gray leve NK_COLR[l is selected 2:0]	i by		
	DP_BLAI	NK_COLR[2:	:0] 0~3 4 5 6 7	Black Gray dai Gray dai Gray ligi Gray ligi	rker nter				
	DP_BGN	D_COLR[3]	1 0		e gray leve ID_COLR[2	l is selected :0]	l by		
	DP_BGN	D_COLR[2:0	0 ~ 3 4 5 6 7	Black Gray dai Gray dai Gray ligi Gray ligi	rker nter				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x231		DP_LIM_656		DP_CVBS_VSPOL			DP_FIELD_ID	DP_WINWIDTH	
	DP_LIM_656			DP_LIM 0 1 DP_LIM					
				0 1 2 3 DP_LIM 0 1~7	Maximum	set to 16 set to 24			
	DP_CVB	S_VSPOL	0 1			VS polarity arity for CV			
	DP_FIEL	D_ID	1 0			de-interlac D to top fiel	cer to top fie Id	ld	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x232	DP_SOFTRST	DP_DI_FLDPOL	0	0	0	0	0	0					
	DP_SOF	IRST	1 0		splay Path eset the dis	splay path							
	DP_DI_F	LDPOL	1 0				e VGA de-int y to the de-in						
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x237	DP_CAS_IN_EN												
	DP_CAS_IN_EN Enable the display cascade input												
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x238							1	0					
Reserved													
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
			0		border blin	_	1						
Address 0x23B	[7]	[6]	[5]	[4]	[3]	[2] DP_VGA_FLDPOL	[1] DP_CVBS_FLDPOL	[0] DP_VD_FLDPOL					
t		_FLDPOL S_FLDPOL FLDPOL	Reve	rse the field	polarity fo	r the displa	y VGA outpu y CVBS outp ng video stre	ut					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0x23C				DP_FREE	ZEOPT[7:0]								
0x23D				DP_ADA	PT_EN[7:0]								
	DP_FREE	EZEOPT	0 1	underflo Display	w conditio	n occurs hen freeze	command is	issued or I is issued					
	DP_ADA	PT_EN	0 1	Overwrit		EEZEOPT ີ	to DP_FREE and display						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x23E		NON_REALTIME[7:0]										
0x23F	FRCE_BLNK_SEL	F	RCE_BLNK_GRY_L	VL				NON_REALTIME[8]				

NON_REALTIME[n]	0	Display non-real-time video source at display window n,
		$n = 0 \sim 8$. n equals 8 specifies the display cascade input.
	1	Display real-time Video Sources at display window n,
		n = 0 ~ 8. n equals 8 specifies the display cascade input.

FRCE_BLNK_GRY_LVL	These bit only work when the DP_BLNKm Register bit is set
	(0x250[0], 0x258[0],, etc.)

- 0xx Black
- 100 25% Gray
- 101 40% Gray
- 110 75% Gray
- 111 100% Gray

FRCE_BLNK_SEL This bit only work when the DP_BLNKm Register bit is set (0x250[0],

- 0x258[0], ... , etc.)
- 0 Gray 1
 - Blue

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x240	DP_VGA_HDELAY[7:0]											
0x241	DP_VGA_HACTIVE[7:0]											
0x242	DP_VGA_HACTIVE[10:8] DP_VGA_HDELAY[10:8]											
0x243				DP_VGA_V	DELAY[7:0]							
0x244		DP_VGA_VACTIVE[7:0]										
0x245	DP_VGA_VACTIVE[10:8] DP_VGA_VDELAY[10:8]											

- DP_VGA_HDELAY VGA Cropping HDELAY
- DP_VGA_HACTIVE VGA Cropping HACTIVE
- DP_VGA_VDELAY VGA Cropping VDELAY
- DP_VGA_VACTIVE **VGA Cropping VACTIVE**

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x24C		DP_BORDER_COLR		0		DP_PB	VD_SEL	
	DP_BOR	DER_COLR	Select	the color o	f the displa	y window be	order	
	DP_PBVI	D_SEL		the source 13 or from PB VD				from PB_CI

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

0x24D	DP_CHNAB_SEL											
	DP_CHNAB_SEL Select the Analog Switch A/B for each window 0 ~ 7											
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x24E	DP_BORDER_EN											
	DP_BORDER_EN Enable display window borders for each window 0 ~ 7											
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x24F	DP_STRB_REQ											

DP_STRB_REQ

Strobe Request to each of the 8 windows. Self clear after the strobe is done

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x250	DP_CH_EN0	DP_FREEZE0	DP_STR	B_FLD0	DP_FUN	DP_FUNC_MD0		DP_BLNK0
0x258	DP_CH_EN1	DP_FREEZE1	DP_STR	B_FLD1	DP_FUNC_MD1		DP_RD_V_2X1	DP_BLNK1
0x260	DP_CH_EN2	DP_FREEZE2	DP_STR	B_FLD2	DP_FUNC_MD2		DP_RD_V_2X2	DP_BLNK2
0x268	DP_CH_EN3	DP_FREEZE3	DP_STR	DP_STRB_FLD3		DP_FUNC_MD3		DP_BLNK3
0x270	DP_CH_EN4	DP_FREEZE4	DP_STR	B_FLD4	DP_FUNC_MD4		DP_RD_V_2X4	DP_BLNK4
0x278	DP_CH_EN5	DP_FREEZE5	DP_STR	B_FLD5	DP_FUNC_MD5		DP_RD_V_2X5	DP_BLNK5
0x280	DP_CH_EN6	DP_FREEZE6	DP_STRB_FLD6		DP_FUNC_MD6		DP_RD_V_2X6	DP_BLNK6
0x288	DP_CH_EN7	DP_FREEZE7	DP_STR	B_FLD7	DP_FUNC_MD7		DP_RD_V_2X7	DP_BLNK7

DP_CH_ENm	1 0	Enable window m Disable window m
DP_FREEZEm	1 0	Freeze window m Do not freeze window m
DP_STRB_FLDm	0 1 2/3	Strobe at Odd Field Strobe at Even Field Strobe at Frame
DP_FUNC_MDm	0 1 2/3	LIVE Mode Strobe Mode Reserved
DP_RD_V_2Xm	1 0	Scale Up 2X vertically (For CIF becoming D1) Do not scale up 2X
DP_BLNKm	1 0	Force the window m to display blank color Show normal video in the window m

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x251					DP_OVWR_V2X0	DP_MIR_H_0	DP_MIR_V_0	
0x259					DP_OVWR_V2X1	DP_MIR_H_1	DP_MIR_V_1	
0x261					DP_OVWR_V2X2	DP_MIR_H_2	DP_MIR_V_2	
0x269					DP_OVWR_V2X3	DP_MIR_H_3	DP_MIR_V_3	
0x271					DP_OVWR_V2X4	DP_MIR_H_4	DP_MIR_V_4	
0x279					DP_OVWR_V2X5	DP_MIR_H_5	DP_MIR_V_5	
0x281					DP_OVWR_V2X6	DP_MIR_H_6	DP_MIR_V_6	
0x289					DP_OVWR_V2X7	DP_MIR_H_7	DP_MIR_V_7	

DP_OVWR_V2X		/2X write, instead of following pic_type. I.e., write even top field, and odd line to bottom field.
DP_MIR_H_n	1	Mirror horizontally

L .	Mirror norizontally
0	Do not mirror horizontally
	0

1 0

DP_MIR_V_n

Mirror vertically

Do not mirror vertically

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x252				DP_PIC	HL0[7:0]			
0x253				DP_PIC	HR0[7:0]			
0x254				DP_F	PICVTO			
0x255				DP_F	ICVB0			
0x256		0		DP_PICHR0[8]				DP_PICHL0[8]
0x25A				DP_PIC	HL1[7:0]			
0x25B				DP_PIC	HR1[7:0]			
0x25C				DP_F	PICVT1			
0x25D				DP_F	ICVB1			
0x25E		1		DP_PICHR1[8]				DP_PICHL1[8]
0x262				DP_PIC	HL2[7:0]			
0x263				DP_PIC	HR2[7:0]			
0x264				DP_F	PICVT2			
0x265				DP_F	ICVB2			
0x266	2 DP_PICHR2[8] DP_PI							DP_PICHL2[8]
0x26A				DP_PIC	HL3[7:0]			
0x26B				DP_PIC	HR3[7:0]			
0x26C				DP_F	PICVT3			
0x26D				DP_F	ICVB3			
0x26E		3		DP_PICHR3[8]				DP_PICHL3[8]
0x272				DP_PIC	HL4[7:0]			
0x273					HR4[7:0]			
0x274				DP_F	PICVT4			
0x275				DP_F	ICVB4		r	
0x276		4		DP_PICHR4[8]				DP_PICHL4[8]
0x27A				DP_PIC	HL5[7:0]			
0x27B				DP_PIC	HR5[7:0]			
0x27C				DP_F	PICVT5			
0x27D					ICVB5	1	1	
0x27E		5		DP_PICHR5[8]				DP_PICHL5[8]
0x282					HL6[7:0]			
0x283					HR6[7:0]			
0x284				DP_F	PICVT6			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x285	DP_PICVB6									
0x286	6 DP_PICHR6[8] DP_PICHL6							DP_PICHL6[8]		
0x28A		DP_PICHL7[7:0]								
0x28B				DP_PIC	HR7[7:0]					
0x28C				DP_F	PICVT7					
0x28D		DP_PICVB7								
0x28E		7 DP_PICHR7[8] DP_PICHL7					DP_PICHL7[8]			

DP_PICHLmThe left edge horizontal location of window m in unit of 16 pixelsDP_PICHRmThe right edge horizontal location of window m in unit of 16 pixels

DP_PICVTm The upper edge vertical location of window m in unit of 8 lines

DP_PICVBm The lower edge vertical location of window m in unit of 8 lines DP_PRIm. The window m priority when they overlap with each other. 0 has the top priority, while 7 has the least priority

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x257				DP_WR_CH_EN[8]				DP_WR_EN
0x267	DP_WR_CH_EN[7:0]							

DP_WR_EN Enable write to the display buffer. This bit is combined with DP_WR_CH_EN ({0x257[4], 0x267[7:0]} for the per window control. I.e., use DP_WR_CH_EN to select which windows will be controlled, and then use DP_WR_EN to do the actual enable / disable.

DP_WR_CH_EN {0x257[4], 0x267[7:0]} controls per-window display write buffer control. These bit work together with 0x257[0].

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x27F	DP_BASE_ADDR									
	DP_BASE_ADDR The base address of the display buffer. In unit of 128 Kbyte The DDR address generated with DP_BASE_ADDR is {DP_BASE_ADDR, 17'h0}									
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x28F	DP_TEST									

DP_TEST

Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x290	0	0	SP_INP_FLD_POL	SP_CC	_EN				
	SP_INP_I SP_CC_E	_	Reverse 1 0	rse the field polarity for spot path only SPOT Cascade Output Enable SPOT Cascade Output Disable					
	SP_CC_E	N[0]	1 0	SPOT Cascade Input Enable. The SPOT clock is clock from SPOT cascade input clock. SPOT Cascade Input Disable. The SPOT clock i a 27 MHz clock generated internally.					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x291	SP_BLA	NK_COLR	SP_BGN	D_COLR	SP_BLAN	IK_MODE	SP_BORDER_EN	0	
	SP_BLA	NK_COLR		source or f Dark Gr	forced to sh ay diate Gray			not have a	active
	SP_BGN	ND_COLR	The b pictu 0 1 2 3	re. Dark Gr	diate Gray	de of the vio	deo window	configured	
	SP_BLA	NK_MODE	0 1 2 3	When th Shows detecte Display border SP_BOF Display when th	d blank colo	O is detecte hage captu or specified en NO_VID on) age capture D is detecte	ed red when t d by SP_BI EO is detec ed with bord	LANK_COLR Cted (valid o ter blinking	with
	SP_BOF	RDER_EN	1 0		displaying S displaying S				

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x292	SP_BORE	DER_COLR		0	0		SP_LIM_656			
	SP_LIM_	_656		656 data value clamping selection For Y						
				SP_LIM_	656[2]					
					Maximum is	s 235				
					Maximum is					
				SP LIM	_656[1:0]					
					Minimum is	1				
				1	Minimum is	16 ,				
					Minimum is					
				3	Minimum is	32				
			For C							
				SP_LIM_	656					
					 Maximum 2	254, Minim	um 1			
					Maximum 2					
	SP BOR	DER COLR								
	SP_BORDER_COLR 0 Black 1 Dark gray 2 Light gray 3 White									

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x293		SP_H_OFFSET									
0x294	0	0 SP_V_OFFSET									
0x295				SP_H_S	SIZE[7:0]						
0x296		SP_V_SIZE[7:0]									
0x297	0	0	0 0 0 0 SP_V_SIZE[8] SP_H_SIZE[9:8]								

SP_H_OFFSET	The horizontal offset of the first active pixel in the output 656/601 format
SP_V_OFFSET	The vertical offset of the first active line in the output $656/601$ format
SP_H_SIZE	The horizontal active length used to show the video pictures
SP_V_SIZE	The vertical active height used to show the video pictures

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x298	SP_SQ_CMD	SP_SQ_WR	SP_SQ_RW_DONE*	0	0	0	0	SP_CONFIG_DONE			
	SP_SQ_0	CMD		The command bit to start a SPOT Path Switch Queue read $/$ write operation. Set to 1 to start a command. This bit wills self clear.							
	SP_SQ_\	WR	Read/\ 1 0	Write to S	or SPOT Pa Switch Que n Switch Q	ue	Queue ope	ration			
	SP_SQ_F	RW_DONE	Read C	only							
	SP_CON	FIG_DONE		After any configuration changes are made to the control regist this bit should be set to resume the SPOT path operation.							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x299		SP_SQ_DATA[7:0]									
0x29A		SP_SQ_DATA[15:8]									
0x29B		SP_SQ_DATA[23:16]									

SP_SQ_DATA are used to read/write the data from/to the SPOT path switch queue entry when a switch queue read/write operation is performed.

In write operation, these 4 registers are written first. Then a command is issued using SP_SQ_CMD in 0x298 to move the data into the switching queue.

In read operation, a read command is issued using SP_SQ_CMD in 0x298 to move the data from switch queue into these 4 registers. The MCU can then read the entry from these registers.

The definition of each bit used in the switch queue entry is as follows.

SP_SQ_DATA[1:0]	Port ID for channel 0 (upper left window)
SP_SQ_DATA[3:2]	Chip ID for channel 0
SP_SQ_DATA[5:4]	Port ID for Channel 1 (upper right window)
SP_SQ_DATA[7:6]	Chip ID for Channel 1
SP_SQ_DATA[9:8]	Port ID for Channel 2 (Lower left window)
SP_SQ_DATA[11:10]	Chip ID for Channel 2
SP_SQ_DATA[13:12]	Port ID for Channel 3 (Lower right window)
SP_SQ_DATA[15:14]	Chip ID for Channel 3
SP_SQ_DATA[19:16]	Channel 0 ~ 3 disable bit. Bit 16 set to 1, Channel 0 is disabled. Bit 17 set to 1, Channel 1 is disabled Bit 18 set to 1, Channel 2 is disabled Bit 19 set to 1, Channel 3 is disabled
SP_SQ_DATA[22:20] SP_SQ_DATA[23]	Picture Type, as shown in Figure ??.Strobe field type for field mode picture type.1Odd field0Even field

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x29D					SP_SQ_ADDR				
0x29E					SP_SQ_SIZE				

 SP_SQ_ADDR
 The switch queue entry address to perform the switch queue read / write command. This address is automatically incremented after the command is performed

SP_SQ_SIZE

 The switch queue size.

 1 - 15:
 1-15

 16:
 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2A0	SP_CH_EN_0	SP_FREEZE_0	SP_FUNC_MD_0	SP_ANA_0	0	SP_BLNK_0	SP_MIR_V_0	SP_MIR_H_0
0x2A1	SP_CH_EN_1	SP_FREEZE_1	SP_FUNC_MD_1	SP_ANA_1	0	SP_BLNK_1	SP_MIR_V_1	SP_MIR_H_1
0x2A2	SP_CH_EN_2	SP_FREEZE_2	SP_FUNC_MD_2	SP_ANA_2	0	SP_BLNK_2	SP_MIR_V_2	SP_MIR_H_2
0x2A3	SP_CH_EN_3	SP_FREEZE_3	SP_FUNC_MD_3	SP_ANA_3	0	SP_BLNK_3	SP_MIR_V_3	SP_MIR_H_3

	SP_CH_	EN	Chan 1 0	Enable	Control for o channel channel	each of cha	nnel O throu	ıgh 3			
	SP_FRE	EZE	1 0								
	SP_FUN	IC_MD	When the SPOT Path is not in Switch mode, this bitSPOT mode of1Strobe Mode0Live Mode								
	SP_AN4	A	ection of ea	ich of the ch	nannel.						
	SP_BLN	IK	Force 1 0								
	SP_MIR	2_V	Contr O 1		r the image nirror vertic ertically	•	r each char	inel			
SP_MIR_HControl to mirror the image horizon0Do not mirror horizontally1Mirror horizontally							for each ch	nannel			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2A4	0	0	0	0	SP_STROBE_3	SP_STROBE_2	SP_STROBE_1	SP_STROBE_0			

SP_STROBE

Strobe command for each channel. Once set to 1, the corresponding channel will capture one field/frame and then clear this bit.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2A5	0	SP_STRB_FLD	SP_CH	_CYCLE	SP_SM_EN		SP_PIC_TYPE				
	SP_STRI	3_FLD									
	SP_CH_0	CYCLE		In non-switch mode, this SP_CH_CYCLE controls how many channels to interleave when the pic_type is 0, 1, 6, and 7.							
			0 1 2 3	1Capture channel 02Capture and interleave channel 0, 13Capture and interleave channel 0, 1, 2PIC_TYPE 6, 71Capture channel 0, 1							
	SP_SM_	EN	 SPOT Path is in Switch Queue Mode SPOT Path is in Live or Strobe Mode 								
	SP_PIC_	TYPE		When SPOT Path is not in Switch Queue Mode, SP_PIC_TYPE specifies the pic_type used in LIVE/Strobe mode							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x2A6	SP_MOTN_ID_EN	SP_DIG_ID_EN	SP_ANA_ID_EN	SP_ANA_RIC_EN	SP_AUTO_ID_EN	SP_AUTO_RPT_EN	SP_DET_ID_EN	SP_USR_ID_EN				
	SP_M01	ſN_ID_EN	1 0									
	SP_DIG	ID EN	1	Turn on the digital channel ID encoding								
			0	Turn off the digital channel ID encoding								
	SP_ANA	LID_EN	1 0	Turn on the analog channel ID encoding Turn off the analog channel ID encoding								
	SP_ANA_RPT_EN				-	auto channe auto channe	-					
	SP_AUT	O_ID_EN	1 0			annel ID en annel ID en	-					
	SP_DET	_ID_EN	1 0									
	SP_USR	LID_EN	1 0			ormation en formation er	-					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2A7				SP_ANA_CI	HID_H_OFST			

SP_ANA_CHID_H_OFST

The horizontal starting offset for Analog Channel ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2A8		SP_ANA_CHID_HIGH								
0x2A9				SP_ANA_	CHID_LOW					

SP_ANA_CHID_HIGH Pixel values bigger than this setting are interpreted as "1" for Analog Channel ID (default: 235)

SP_ANA_CHID_LOW Pixel values smaller than this setting are interpreted as "0" for Analog Channel ID (default: 16)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2AA	Ox2AA SP_CHID_V_OFSTO			SP_CHID_V_0FST					
0x2AB	SP_CHID_	_V_OFSTE	0	SP_ANA_CHID_BW					

SP_CHID_V_OFSTO	Control the vertical starting offset on top of SP_CHID_V_OFST in odd field for Analog Channel ID
SP_CHID_V_OFSTE	Control the vertical starting offset on top of SP_CHID_V_OFST in even field for Analog Channel ID
SP_CHID_V_OFST	Vertical starting offset for Analog Channel ID. The actual vertical line offset is SP_CHID_V_OFST + SP_CHID_V_OFSTO or SP_CHID_V_OFST + SP_CHID_V_OFSTE
SP_ANA_CHID_BW	Control the pixel width of each bit for Analog Channel ID 0 1 pixel : : 31 32 pixels (default)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2AC	0	0	0	0	0	0	0	SP_GEN_EN

SP_GEN_EN

Internal Test Function Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2AD		SP_CH	INUM1		SP_CHNUM0			
0x2AE		SP_CH	INUM3		SP_CHNUM2			

SP_CHNUM

The Channel Number to display in non-switch modeSP_CHNUMx[3:2]:CHIP IDSP_CHNUMx[1:0]:PORT ID

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x2B0		SP_USER_CHID[7:0]										
0x2B1		SP_USER_CHID[15:8]										
0x2B2		SP_USER_CHID[23:16]										
0x2B3		SP_USER_CHID[31:24]										
0x2B4				SP_USER_	_CHID[39:32]							
0x2B5				SP_USER_	_CHID[47:40]							
0x2B6		SP_USER_CHID[55:48]										
0x2B7				SP_USER_	_CHID[63:56]							

SP_USER_CHID

Used to set the USER Channel ID for SPOT path.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2B8	SP_HALF_LINE[7:0]									
0x2B9	SP_HALF_LINE[9:8]					5_P_0S				
0x2BA	SP_HS_WIDTH									

SP_HALF_LINE	This defines in number of clock cycles from VS edge to the location of field change, in case it is change in middle of a line
SP_HS_P_OS	HSYNC starting location, in number of clock cycles
SP_HS_WIDTH	HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2BB	0	0	0	SP_TOP_VS_END					
0x2BC	0	0	0	SP_BOT_VS_END					
0x2BD	SP_T_VS_POFS	0	0		SP_TOP_VS_OS				
0x2BE	SP_B_VS_POFS	0	0			SP_BOT_VS_OS			

SP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
SP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
SP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
SP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
SP_T_VS_POS	Enable the top field vsync edge at the middle of a line.
SP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x2BF			SP_HS_POL	SP_VS_POL	SP_FLD_POL	SP_VAV_POL	SP_HAV_POL	SP_656_ERRCHK			
	SP_HS_POL			Output HSYNC polarity control							
	SP_VS_POL		Outp	Output VSYNC polarity control							
	SP_FLD	_POL	Outp	Output FIELD polarity control							
	SP_VAV	_POL	Outp	out VAV pola	arity control						
	SP_HAV	_POL	Outp	Output HAV polarity control							
	SP_656	_ERRCHK	Enat	Enable 656 SAV/EAV error check							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2C0								SP_16

SP_16

16 Window Display Mode

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2C1		SP_16_V	VINNUM1		SP_16_WINNUMO				
0x2C2		SP_16_V	VINNUM3		SP_16_WINNUM2				

SP_16_WINNUM

The window location of the 16 window configuration. The 16 windows are arranged as shown in the Figure 58.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2C8	DP_HALF_LINE[7:0]									
0x2C9	DP_HALF_LINE[9:8] DP_HS_P_OS									
0x2CA		DP_HS_WIDTH								

DP_HALF_LINE	This defines in number of clock cycles from VS edge to the location
	of field change, in case it is change in middle of a line

- DP_HS_P_OS HSYNC starting location, in number of clock cycles
- DP_HS_WIDTH HSYNC width, in number of clock cycles

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2CB				DP_TOP_VS_END					
0x2CC				DP_BOT_VS_END					
0x2CD	DP_T_VS_POS			DP_TOP_VS_OS					
0x2CE	DP_B_VS_POS			DP_BOT_VS_OS					

DP_TOP_VS_END	VSYNC trailing edge location of top field, in number of lines
DP_BOT_VS_END	VSYNC trailing edge location of bottom field, in number of lines
DP_TOP_VS_OS	VSYNC leading edge location of top field, in number of lines
DP_BOT_VS_OS	VSYNC leading edge location of bottom field, in number of lines
DP_T_VS_POS	Enable the top field vsync edge at the middle of a line.
DP_B_VS_POS	Enable the bottom field vsync edge at the middle of a line

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2CF			DP_HS_POL	DP_VS_POL	DP_FLD_POL	DP_VAV_POL	DP_HAV_POL	DP_656_ERRCHK

DP_HS_POL	Output HSYNC polarity control	
DP_VS_POL	Output VSYNC polarity control	
DP_FLD_POL	Output FIELD polarity control	
DP_VAV_POL	Output VAV polarity control	
DP_HAV_POL	Output HAV polarity control	
DP_656_ERRC	IK Enable 656 SAV/EAV error check	

ISS	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1		
0	VE_FS	SCSEL	0	VE_FLD	VE_VS	0	1	VE_PAL_NTSC	1		
	VE_FSC	SEL	Set th	ne sub-carri	er frequenc	y for video e	encoder				
			0	3.57954	4545 MHz (default)					
			1	1 4.43361875 MHz							
			2	2 3.57561149 MHz							
			3	3.58205	5625 MHz						
	VE_FLD		Defin	Define the field detection type							
-			0	0 Use field from input field signal (default)							
			1								
			signa	signals							
	VE_VS		Defin	e the vertic	al sync (VS)	(NC) detecti	ion type				
	-		0		• •	,					
				Detect V	SYNC from	combinatio	on of HSENC	and FLDEN			
VE_PAL_NTSC			Defin	Define the PAL or NTSC							
			0	NTSC							
			1	PAL							
		0 VE_FSC	0 VE_FSCSEL VE_FSCSEL VE_FLD VE_VS	0 VE_FSCSEL 0 VE_FSCSEL 0 VE_FSCSEL 0 1 2 3 3 VE_FLD Defin 0 1 signa VE_VS Defin 0 1 VE_PAL_NTSC Defin 0 1	VE_FSCSEL 0 VE_FLD VE_FSCSEL 0 VE_FLD VE_FSCSEL Set the sub-carri 0 3.57954 1 4.43361 2 3.57561 3 3.58205 VE_FLD Define the field of 0 Use field 1 Detect signals VE_VS VE_PAL_NTSC Define the PAL of 0 NTSC	O VE_FSCSEL O VE_FLD VE_VS VE_FSCSEL 0 VE_FLD VE_VS VE_FSCSEL Set the sub-carrier frequenc 0 3.57954545 MHz (inclusion) 0 3.57954545 MHz 1 4.43361875 MHz 1 4.43361875 MHz 2 3.57561149 MHz 2 3.57561149 MHz 3 3.58205625 MHz VE_FLD Define the field detection ty 0 Use field from input 1 Detect field from signals 1 Detect field from input VE_VS Define the vertical sync (VS) 0 Use signal from inp 1 Detect VSYNC from 1 Detect VSYNC from VE_PAL_NTSC Define the PAL or NTSC 0 NTSC	VE_FSCSEL 0 VE_FLD VE_VS 0 VE_FSCSEL 0 VE_FLD VE_VS 0 VE_FSCSEL 0 Set the sub-carrier frequency for video of 0 3.57954545 MHz (default) 1 4.43361875 MHz 2 3.57561149 MHz 2 3.57561149 MHz 3 3.58205625 MHz VE_FLD Define the field detection type 0 Use field from input field signa 1 Detect field from combinatisignals 1 Detect field from combination input VSYNC VE_VS Define the vertical sync (VSYNC) detect in 0 Use signal from input VSYNC 1 Detect VSYNC from combination input VSYNC 1 VE_PAL_NTSC Define the PAL or NTSC 0 0 NTSC NTSC	O VE_FSCSEL O VE_VS O 1 VE_FSCSEL 0 VE_FLD VE_VS 0 1 VE_FSCSEL 0 3.57954545 MHz (default) 1 4.43361875 MHz 1 4.43361875 MHz 2 3.57561149 MHz 2 3.57561149 MHz 2 3.57561149 MHz 3 3.58205625 MHz 0 Use field from input field signal (default) 1 Define the field detection type 0 Use field from combination of HSE signals VE_VS Define the vertical sync (VSYNC) detection type 0 Use signal from input VSYNC 1 Detect VSYNC from combination of HSENC 1 Detect VSYNC from combination of HSENC VE_PAL_NTSC Define the PAL or NTSC 0 NTSC	Image: Construction Image: Construction		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2D1	VE_HSI	DEL[9:8]	VE_FLDPOL	VE_VSPOL	VE_HSPOL	VE_PED	VE_FDRST	VE_PHALT		
	VE_FLDF	POL	Control the field polarity0Even field is high (default)1Odd field is high							
	VE_VSPC	DL	Contro O 1		al sync pola w (default) gh	ırity				
	VE_HSP(DL	Control the horizontal sync polarity 0 Active low (default) 1 Active high							
	VE_PED		Set 7.5 IRE for pedestal level 0 IRE for pedestal level 1 7.5 IRE for pedestal level (default)							
	VE_FDRS	ST	Reset the phase alternation every 8 field0No reset mode (default)1Reset the phase alternation every 8 field							
	VE_PHAI	LT	Set the phase alternation0Disable phase alternation for line-by-line (default)1Enable phase alternation for line-by-line							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2D1	VE_HSDEL[9:8]		VE_FLDPOL	VE_VSPOL	VE_HSPOL	VE_PED	VE_FDRST	VE_PHALT	
0x2D2		VE_HSDEL[7:0]							
0x2D3	VE_V	SOFF			VE_V	SDEL			

VE_HSDEL	Control the pixel delay of horizontal sync from active video by $^{1\!\!/_2}$ pixels/Step
	0 No delay
	: :
	256 64 pixels delay (default)
	: :
	1023 255 pixels delay
VE_VSDEL	Control the line delay of vertical sync from active video by ${f 1}$ line/step
	0 No delay
	32 32 lines delay (default)
	: :
	63 63 lines delay
VE_VSOFF	Compensate the field offset for the first active video line
_	0 Apply same VE_VSDEL for odd and even field (default)
	1 Apply (VE_VSDEL+1) for odd and VE_VSDEL for even field
	2 Apply VE_VSDEL for odd and (VE_VSDEL + 1) for even field
	3 Apply VE_VSDEL for odd and (VE_VSDEL+2) for even field

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2D4						VE_ACTIVE_VDEL			
0x2D5				VE_ACTI	/e_Hdel				
	VE_ACTI\ VE_ACTI\		0 : 12 : 25	rol the line delay of active video by 1 line/step -12 lines delay : 0 line delay (default) : 13 lines delay rol the pixel delay of active video by 1 pixel/step -32 pixels delay : 0 pixel delay : 31 pixels delay [4] [3] [2] [1] [0]					
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2D6	0	0		0	()	VE_ACTIVE_MD	VE_CCIR_STD	
	VE_ACTIN	-	0 1 Select 0 1	 Select the active delay mode for digital BT. 656 output control the active delay for both analog encoder and digital output (default) Control the active delay for only analog encoder Select the ITU-R BT. 656 standard format for 60 Hz system 240 lines for odd and even field 					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2D7	0	VE_OSD_SEL0	VE_S	SEL0	VE_CBW0		VE_YBW0			
0x2D8	0	VE_OSD_SEL1	VE_S	SEL1	VE_C	CBW1	VE_Y	/BW1		
			Color	tuidee ene						
	VE_OSE	J_SEL	Selec 1	Turn on	oder output	with USD				
			0	Turn off						
			U	Turn on	030					
	VE_SEL		Select the source of the video encoder							
	-		0 Select display CVBS output							
			1		POT CVBS o	-				
			2		ECORD CVE	-				
			3	Reserve	d	-				
	VE_CBV	v	Control the chrominance bandwidth of video encoder							
	-		0	0.8 MHz						
			1	1.15 MF	Iz					
			2	1.35 MF	lz (default)					
			3	1.35 MH						
	VE_YBV	v	Contr	ol the lumii	nance band	width of vid	eo encoder			
	-		0	Narrow	bandwidth					
	1 Narrower bandwidth									
			2	Wide ba	ndwidth (de	efault)				
			3		andwidth	,				

Middle bandwidth 3

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2D9		VE_CBGEN1	VE_CKILL1			VE_CBGEN0	VE_CKILLO		
VE_CBGEN Enable the test pattern output 0 Normal operation 1 Internal color bar with 100% amplitude and 100% saturation									
	VE_CKILI	L	Enable O 1	e the color l Normal c Color is k	operation (d	-			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2DF				AUX_DD	DR_DATA			

AUX_DDR_DATA The data register used to read/write the internal 64 bytes FIFO used to burst to/from the DDR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2E0		AUX_DDR_ADDR[7:0]						
0x2E1		AUX_DDR_ADDR[15:8]						
0x2E2	AUX_DDR_ADDR[23:16]							

AUX_DDR_ADDR

The address registers used to burst read/write to/from DDR

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2E3		I I		AUX_DDF	LENGTH[7:0]			1	
0x2E4	AUX_WAIT_POL	AUX	_DDR_LENGTH[10	:8]	AUX_FIFO_EMPTY*	AUX_FIFO_FULL*	AUX_DDR_RD	AUX_DDR_WR	
	AUX_DD	R_LENGTH			th of the CPI n is 1204 by		/write to/fi	rom DDR. Th	
	AUX_WA	IT_POL	Revei	se the pola	arity of the A	UX WAIT sig	gnal		
	AUX_FIF	O_EMPTY	The ir 1 0	for writing data to burst to DDR					
	AUX_FIF(O_FULL	This k issue the	oit allows t d, or after CPU is s	every 64 by safe to read rom the AUX The 64 byte Available fo	ooll after a tes of data up to 64 by _DDR_LENG s internal F or CPU to rea s internal F	AUX_DDR_ are read. \ ytes, or up GTH IFO has sor ad	RD comman With this bit to the last b	
	AUX_DD	R_WR	The A	UX DDR W	rite Comma	nd. This bit i	is self-clear	ed	
	AUX_DD	R_RD	The A	UX DDR Re	ead Comma	nd. This bit i	s self-clear	ed.	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2E5		DDR_RD_CLK_SEL			DDR_DQ	S_RD_DLY	DDR_RD_T	O_WR_NOP	
	DDR_RD_CLK_SEL				or ~DQS as r /alid read da				

DDR_RD_TO_WR_NOP

DDR read to write adds additional nop cycles. Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2E6						DDR_D	QS_SELO		
0x2E7						DDR_D	QS_SEL1		
0x2E8		OSG_DDR_TIMER			DDR_CLK90_SEL				
				_SEL/32 clo _SEL/32 clo		-			

DDR_CLK90_SEL Select the phase of 90 degree CLK generated from DLL. The phase is DDR_CLK90_SEL/32

OSG_DDR_TIMER Timer to slow down the OSG write to avoid excessive peak bandwidth

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2E9	DDR_DLL	_TEST_SEL	DDR_DLL_I	DEBUG_SEL			DDR_DL	L_TAP_S

DDR_DLL_DEBUG_SEL

Debug select to the DLL Debug Output

DDR_DLL_TEST_SEL Select the DLL test output signal

DDR_DLL_TAP_S Select the DLL TAPS

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2EA		DDR_T_RC				DDR_T_RAS			
0x2EB	DDR_T_RFC					DDR_T_RP			
0x2EC	DDR_T_RCD				DDR_T_WR				

DDR_T_RC	DDR t_rc timing
DDR_T_RAS	DDR t_ras timing
DDR_T_RFC	DDR t_rfc timing
DDR_T_RP	DDR t_rp timing
DDR_T_RCD	DDR t_rcd timing
DDR_T_WR	DDR t_wr timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2ED			DDR_REFRESH		DDR_INIT_BYPASS		DDR_B_LENGTH	
		FEDECH	פחח	refresh timi	ing control			

DDIN_INELINESII	DDit refresh timing control
DDR_INIT_BYPASS	DDR initialization bypass (for simulation purpose only)
DDR_B_LENGTH	DDR burst length

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2EE			DDR_CAS_LAT		DDR_SAMSUNG	0	DDR	_SIZE

DDR_CAS_LAT **DDR CAS Latency**

DDR_SAMSUNG Internal test mode

DDR_SIZE

Address [7	7] [6]	[5]	[4]	[3]	[2]	[1]	[0]
Ox2EF DDR	_WTR DDR_B_TYPE	DDR_DV_ST	DDR_EN_DLL				

DDR_WTR	1DDR Write to Read Turn Around cycle needed0No Write to Read Turn Around cycle needed
DDR_B_TYPE	External DDR Burst Type, for initialization use
DDR_DV_ST	Configure external DDR driving strength, for initialization use
DDR_EN_DLL	Enable the DLL in the external DDR memory, for initialization use

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2F0	SOFT_RSTN	DLL_RST							
	SOFT_R	STN		vare resetn onfiguratior	0	the whole c	chip. This bi	it does not	reset

	Soundatio
0	Reset
1	Release

1

0

_	Release Re	set

DLL_RST

- Reset DLLs
- **Release Reset DLLs**

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2F1							CHIP_ID	

CHIP_ID

Set the chip ID in cascade mode.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2F5	SP_CC_CLK_SEL		RP_CC_CLK_SEL		0	0	0	0		
	SP_CC_	CLK_SEL	[1] [0]	Reverse the SPOT output sampling across clock domain from SCLK to CLKOS Reverse the SPOT input sampling across clock domain from CLKIS to SCLK						
	RP_CC_	RP_CC_CLK_SEL [1] Reverse the RECORD output sampling across cloc domain from RCLK to CLKOY [0] Reverse the RECORD input sampling across clock domain from CLKIY to RCLK								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x2F8	DP_CLK_	CSCD_SEL	DP_CLK_CSCD_PD	CLKOX_SEL						
	DP_CLK	CSCD_SE	- Select clock 0 1 2 3	54 MHz 27 MHz 108 MH;		the interna	al Display	Cascade m	iodule	
	DP_CLK	CSCD_PD	Powe	r down the	display case	cade clock				
	CLKOX_SEL Selec 0 1			DP_CLK_CSCD_SEL						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x2FB	CLKOY1_POL	CLKOY0_POL	CLKOS_POL	CLKOX_POL					
CLKOY1_POL Reverse the clock polarity of output CLKOY1 pin									
	CLKOY0	_POL	Reverse the clock polarity of output CLKOY0 pin						
	CLKOS_	POL	Revei	Reverse the clock polarity of the CLKOS pin					
	CLKOX_	POL	Reverse the clock polarity of the CLKOX pin						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FC				CLKIX_POL		CLKP	B_POL	

CLKIX_POL	Reverse the CLKIX polarity
-----------	----------------------------

CLKPB_POL Reverse the CLKPB polarity

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FD		CLK0	S_DLY			CLKO	X_DLY	

CLKOS_DLY Select the delay of CLKOS

CLKOX_DLY

Select the delay of CLKOX

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x2FE		CLKOY	1_DLY			CLKO	/0_DLY	
	CLKOY1	L_DLY	Selec	ct the delay	of CLKOY1			
	CLKOYO	_DLY	Selec	t the delay	of CLKOYO			

Page 3: 0x300 ~ 0x3FE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x301	0	BP_SCL_2S	BP_SCL_2Y	BP_SCL_2X	0	BP_SCL_1S	BP_SCL_1Y	BP_SCL_1X
0x302	0	BP_SCL_4S	BP_SCL_4Y	BP_SCL_4X	0	BP_SCL_3S	BP_SCL_3Y	BP_SCL_3X
	BP_SCL_r	١X	Bypass 1 0	the down s Bypass Do not by		play path fo	or port n	
	BP_SCL_r	١Y	Bypass 1 0	the down s Bypass Do not by		ord path fo	r port n	
	BP_SCL_r	ıS	Bypass 1 0	the down s Bypass Do not by		OT path for	port n	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x303	0	1	PTRN_LIM_656	PTRN_SMALL	PTRN_(CHIP_ID	PTRN_PAL	PTRN_EN	
	PTRN_LII	M_656	Limit the pixel value generated by the internal pattern generator after the video decoder. 1 Limit Y to 235 maximum, 16 minimum 0 Do not limit						
	PTRN_SM	1ALL	Internal pattern generator generates small frame. For simulation only						
	PTRN_CH	IIP_ID	Specify	Specify the chip ID of this chip					
	PTRN_PA	L	1 0	•	•	•	ates PAL pa ates NTSC p		
	PTRN_EN			Enable Internal pattern generator to replace the video stream from video decoder 1 Enable the pattern generator 0 Use the video decoder input					

A	ddress	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x304	0	0	0	0		PTRN_VID	EO_LOSS	

PTRN_VIDEO_LOSS

Generate the video loss signal from the internal pattern generator

1 Video Loss

0 Video detected

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x305	0	BP_NR_2S	BP_NR_2Y	BP_NR_2X	0	BP_NR_1S	BP_NR_1Y	BP_NR_1X		
0x306	0	BP_NR_4S	BP_NR_4Y	BP_NR_4X	0	BP_NR_3S	BP_NR_3Y	BP_NR_3X		
	BP_NR_n	x	Bypass the noise reduction of display path for port n 1 Bypass 0 Do not bypass							
BP_NR_nY			Bypass 1 0	the noise r Bypass Do not b		record path	n for port n			
	BP_NR_n	S	Bypass 1 0	the noise r Bypass Do not b		SPOT path	for port n			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x340		VDLOS	IS_TH1		VDLOSS_TH0			
0x341		VDLOS	IS_TH3			VDLOS	IS_TH2	

VDLOSS_THn

Adjust the video loss signal presented to the backend modules from video decoder 0, 1, 2, and 3.

- 0 The backend video loss signal is the same as the video decoder video loss signal.
- 1 14 The backend video loss signal is asserted only when video decoder video loss signal is asserted for more than VDLOSS_THx fields.
- 15 The backend video loss signal is never asserted regardless of the Video decoder video loss signal.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x350	NR2_SML_THD	NR2_FR2	NR2_FR1	NR2_FR0	NR1_SML_THD	NR1_FR2	NR1_FR1	NR1_FR0
0x351	NR4_SML_THD	NR4_FR2	NR4_FR1	NR4_FR0	NR3_SML_THD	NR3_FR2	NR3_FR1	NR3_FR0

NRn_FR0

Force port n noise reduction to level 0 – Disable noise reduction

NRn_FR1 Force port n noise reduction to level 1 – weak

NRn_FR2 Force port n noise reduction to level 2 – strong

NRn_SML_THD

Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x352	0	0	0	0	NR4_RST_DET	NR3_RST_DET	NR2_RST_DET	NR1_RST_DET

NRn_RST_DET

Reset the noise reduction detection for port n

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x356		NR_DET_OUT_THD					NR_DET_	REF_VAR

NR_DET_OUT_THD Default 6

NR_DET_REF_VAR Default 1

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x357		NR_DET_NOISE_1L									
0x358		NR_DET_NOISE_1H									
0x359				NR_DET_	NOISE_2L						
0x35A				NR_DET_	NOISE_2H						
0x35B				NR_DET_	NOISE_CL						
0x35C				NR_DET_	NOISE_CH						
0x35D		NR_DET_SKIP_L									
0x35E		NR_DET_SKIP_H									

NR_DET_NOISE_1L	Lower bound of pixel distance for noise level 1 Default: 3
NR_DET_NOISE_1H	Higher bound of pixel distance for noise level 1 Default: 10
NR_DET_NOISE_2L	Lower bound of pixel distance for noise level 2 Default: 5
NR_DET_NOISE_2H	Higher bound of pixel distance for noise level 2 Default: 15
NR_DET_NOISE_CL	Lower bound of pixel distance for chroma noise level Default: 4
NR_DET_NOISE_CH	Higher bound of pixel distance for chroma noise level Default: 10
NR_DET_SKIP_L	Pixels with value below this threshold will not be processed Default: 25
NR_DET_SKIP_H	Pixels with value above this threshold will not be processed Default: 240

Address	[7]	[6]	[5]	[4]	[1]	[0]		
0x35F	NRDET	4_LVL*	NRDET	3_LVL*	NRDET	NRDET2_LVL*		1_LVL*
		d only Tn_LVL	Detec 0 1 2	Disable r Weak no	vel for chann noise ise reduction bise reduction			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

0x380		HSCL_DISP_TARG_1
0x390		HSCL_DISP_TARG_2
0x3A0		HSCL_DISP_TARG_3
0x3B0		HSCL_DISP_TARG_4

HSCL_DISP_TARG_n The display down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x381				VSCL_DISP_TARG_1						
0x391				VSCL_DISP_TARG_2						
0x3A1				VSCL_DISP_TARG_3						
0x3B1					VSCL_DIS	P_TARG_4				

VSCL_DISP_TARG_n The display down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x382				HSCL_REC_TARG_1						
0x392				HSCL_REC_TARG_2						
0x3A2				HSCL_REC_TARG_3						
0x3B2					HSCL_REC	C_TARG_4				

HSCL_REC_TARG_n The record down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x383				VSCL_REC_TARG_1						
0x393				VSCL_REC_TARG_2						
0x3A3				VSCL_REC_TARG_3						
0x3B3					VSCL_REC	_TARG_4				

VSCL_REC_TARG_n The record down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x384				HSCL_SPOT_TARG_1					
0x394				HSCL_SPOT_TARG_2					
0x3A4				HSCL_SPOT_TARG_3					
0x3B4				HSCL_SPOT_TARG_4					

HSCL_SPOT_TARG_n

n The SPOT down scaler target horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x385					VSCL_SPO	T_TARG_1			
0x395				VSCL_SPOT_TARG_2					
0x3A5					VSCL_SPO	T_TARG_3			
0x3B5					VSCL_SPO	T_TARG_4			

VSCL_SPOT_TARG_n The SPOT down scaler target vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x387				HSCL_DISP_SRC_1						
0x397				HSCL_DISP_SRC_2						
0x3A7				HSCL_DISP_SRC_3						
0x3B7				HSCL_DISP_SRC_4						

HSCL_DISP_SRC_n The display down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x388				VSCL_DISP_SRC_1						
0x398				VSCL_DISP_SRC_2						
0x3A8				VSCL_DISP_SRC_3						
0x3B8				VSCL_DISP_SRC_4						

VSCL_DISP_SRC_n The display down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x389					HSCL_RE	C_SRC_1					
0x399				HSCL_REC_SRC_2							
0x3A9			HSCL_REC_SRC_3								
0x3B9					HSCL_RE	C_SRC_4					

HSCL_REC_SRC_n The record down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38A					VSCL_REC	C_SRC_1				
0x39A				VSCL_REC_SRC_2						
0x3AA			VSCL_REC_SRC_3							
0x3BA				VSCL_REC_SRC_4						

VSCL_REC_SRC_n

The record down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38B					HSCL_SPC	T_SRC_1				
0x39B			HSCL_SPOT_SRC_2							
0x3AB			HSCL_SPOT_SRC_3							
0x3BB				HSCL_SPOT_SRC_4						

HSCL_SPOT_SRC_n The SPOT down scaler source horizontal size for port n. The unit is in multiple of 16 pixels

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x38C					VSCL_SPC	T_SRC_1				
0x39C				VSCL_SPOT_SRC_2						
0x3AC				VSCL_SPOT_SRC_3						
0x3BC				VSCL_SPOT_SRC_4						

VSCL_SPOT_SRC_n The SPOT down scaler source vertical size for port n. The unit is in multiple of 8 lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x386						FLDPOL_1S	FLDPOL_1Y	FLDPOL_1X
0x396						FLDPOL_2S	FLDPOL_2Y	FLDPOL_2X
0x3A6						FLDPOL_3S	FLDPOL_3Y	FLDPOL_3X
0x3B6						FLDPOL_4S	FLDPOL_4Y	FLDPOL_4X

FLDPOL_nX	The display downscaler field polarity control for port n
FLDPOL_nY	The record downscaler field polarity control for port n
FLDPOL_nS	The SPOT downscaler field polarity control for port n

Page 4: 0x400 ~ 0x4FE

0x480 VGA RD DIS VGA RST	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0x480							VGA_RD_DIS	VGA_RST

change is performed.

VGA_RST	Software Reset for VGA / De-Interlacer / Brightness Control / RGB control, timing generation modules. When this bit is set, the VGA sync is lost.
VGA_RD_DIS	Software Disable of the video buffer read side of the VGA path. When this bit is set, the VGA output become blanks, and the VGA sync is not lost. This bit can be set when the display configuration

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x488				GAMMA_	ADDR[7:0]						
0x489		GAMMA_ADDR[9:8]									
0x48A		GAMMA_WDATA[7:0]									
0x48B		GAMMA_WDATA[9:8]									
0x48C		GAMMA_RDATA[7:0]*									
0x48D		GAMMA_RDATA[9:8]*									
0x48E		GAMMA_RD_START									

GAMMA_ADDR Gamma table address

GAMMA_WDATA Gamma table write data. The indirect write starts after writing 0x48B

GAMMA_RDATA Gamma table read data (Read Only)

GAMMA_RD_START Command to start a read by writing register 0x48E. Data written to 0x48E does not matter.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x490		M	2DI_LOW_ANGLE_CN			M2DI_USE_B0B		

M2DI_LOW_ANGLE_CNTL

Disable a specific criterion to disqualify low angle. Default 0

M2DI_USE_BOB

Use BOB instead of low angle. Default 0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x491	0	0	0	1	1	0	0	1
0x492	0	0	1	1	1	1	0	0
0x493	1	1	0	0	1	0	0	0
0x494	1	0	1	1	0	1	0	0
0x495	0	0	0	0	0	0	0	1
0x496	0	0	0	0	1	0	1	0
0x497	0	0	0	0	1	0	1	0

Reserved

Address	[7]	[6]	[5]	[4]	[3]	[2] [1] [0]						
0x498		M2DL_FRM_WIDTH[7:0]										
0x499		M2DI_FRM_PITCH[7:0]										
0x49A		м	2DI_FRM_PITCH[10:	8]	M2DI_FRM_WIDTH[10:8]							
0x49B		M2DL_FRM_HEIGHT[7:0]										
0x49C						M2DI_FRM_HEIGHT[9:8						

M2DI_FRM_WIDTH	The frame width of the incoming video in pixels
M2DI_FRM_PITCH	The frame width allocated in the memory including the unused portion at the end of each line
M2DI_FRM_HEIGHT	The frame height of the incoming video in lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4A0		UPS_BG_COLR								

UPS_BG_COLR

Background color used for UPS Y = {UPS_BG_COLR[7:6], 6'b0} Cb = {UPS_BG_COLR[5:3], 5'b0}

 $Cr = {UPS_BG_COLR[2:0], 5'b0}$

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4A1	UPS_HST									
0x4A2	UPS_VST									
0x4A3				UPS_HAC	TIVE_0[7:0]					
0x4A4				UPS_VAC	FIVE_0[7:0]					
0x4A5		UPS_VACTIVE_0[10:8] UPS_HACTIVE_0[10:8]								

UPS_HSTSpecify the video starting horizontal location in the output video
frameUPS_VSTSpecify the video starting vertical location in the output video
frameUPS_HACTIVE_0Specify the video width shown in the output video frame after
scalingUPS_VACTIVE_0Specify the video height shown in the output video frame after
scaling

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4A8	UPS_HACTIVE_IN[7:0]										
0x4A9	UPS_VACTIVE_IN[7:0]										
0x4AA		UPS_VACTIVE_IN[10:8] UPS_HACTIVE_IN[10:8]									

UPS_HACTIVE_IN

Specify the upscaler input horizontal video width

UPS_VACTIVE_IN

Specify the upscaler input vertical video height

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4AB	UPS_HSCALE[7:0]										
0x4AC					UPS_HSCALE[12:0]						
0x4AD	UPS_VSCALE[7:0]										
0x4AE					UPS_VSCALE[10:8]						

Horizontal scaling factor. 0x1000 represents scaling factor of 1

UPS_VSCALE

UPS_HSCALE

Vertical scaling factor. 0x400 represents scaling factor of 1

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4AF								VGA_BLACKOPUT
						ı		1 1

1

0

VGA_BLACKOUT

Black out the VGA output Normal display

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x4B0	VGA_S	SHWIN		VGA_SHCOR					
0x4B1		VGA_OVE	ERSHOOT			VGA_S	SHARP		
	VGA_SH	WIN[1]	Sharp 0 1	ening filter 2 pixels 4 pixels	window siz	e selection			
	VGA_SHWIN[0]		Sharp 0 1	ening filter 2 pixels 4 pixels	min/max w	vindow size	selection		
	VGA_SH	COR	Sharp	ening Corin	g Setting				
	VGA_OV	ERSHOOT	Sharp	Sharpening overshoot setting					
	VGA_SH	ARP	Sharp	Sharpening gain					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4B2	VGA_BLACK										
0x4B3	VGA_Y_GAIN										
0x4B4				VGA_Y	_OFFSET						
0x4B5				VGA_C	R_GAIN						
0x4B6				VGA_C	B_GAIN						

VGA_BLACK	The black level used for contrast control. Any incoming pixel less than this value is assume to be black. The contrast control does not amplify the black pixels.
VGA_Y_GAIN	The contrast control. A setting of 64 represents gain of 1 (neutral)
VGA_Y_OFFSET	The brightness control. A value of 128 represents offset of 0 (neutral)
VGA_CR_GAIN	Cr gain control. A value of 64 represents gain of 1 (neutral)
VGA_CB_GAIN	Cb gain control. A value of 64 represents gain of 1 (neutral)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4B7	VGA_BLKLVL	VGA_WHTLVL	VGA_HUEADJ								
0x4B8	VGA_BWLST[7:0]										
0x4B9		VGA_BWLEND[7:0]									
0x4BA	VGA_BWLEND[11:8] VGA_BWLST[11:8]										
0x4BB		VGA_B\	WFGAIN			VGA_B	WHGAIN				
0x4BC				VGA_	BTILT						
0x4BD				VGA_	WTILT						
0x4BE		VGA_BLIMIT									
0x4BF				VGA_V	VLIMIT						

VGA_HUEADJ	HUE Co	ntrol
VGA_WHTLVL	0 1	235 as white 255 as white
VGA_BLKLVL	0 1	0 as black 16 as black
VGA_BWLST	The firs	t line of the black / white detection window for BW stretch
VGA_BWLEND	The last	t line of the black / white detection window for BW stretch
VGA_BWHGAIN	Tap for detection	pixel recursive filtering before black / white line minmax on
VGA_BWFGAIN	Tap for detection	field recursive filtering before black / white field minmax on
VGA_BTILT	Black T	ilt point for BW stretch
VGA_WTILT	White T	ilt point for BW stretch
VGA_BLIMIT	The dar	kest pixel value after BW stretch
VGA_WLIMIT	The brig	ghtest pixel value after BW stretch

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4C8	VGA_R_GAIN										
0x4C9	VGA_R_OFFSET										
0x4CA	VGA_G_GAIN										
0x4CB				VGA_G	OFFSET						
0x4CC		VGA_B_GAIN									
0x4CD				VGA_B	OFFSET						

VGA_R_GAIN	Red color gain control. A setting of 64 represents gain of 1 (neutral)
VGA_R_OFFSET	Red color offset control. A setting of 128 represents offset of 0 (neutral)
VGA_G_GAIN	Green color gain control. A setting of 64 represents gain of 1 (neutral)
VGA_G_OFFSET	Green color offset control. A setting of 128 represents offset of 0 (neutral)
VGA_B_GAIN	Blue color gain control. A setting of 64 represents gain of 1 (neutral)
VGA_B_OFFSET	Blue color offset control. A setting of 128 represents offset of 0 (neutral)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x4D0		VGA_HTOTAL[7:0]									
0x4D1		VGA_VTOTAL[7:0]									
0x4D2			VGA_VTOTAL[10:8]				VGA_HTOTAL[10:8]				
0x4D3		VGA_HSTART[7:0]									
0x4D4				VGA_HAC	TIVE[7:0]						
0x4D5			VGA_HACTIVE[10:8]]			VGA_HSTART[10:8]				
0x4D6				VGA_VST	ART[7:0]						
0x4D7				VGA_VAC	TIVE[7:0]						
0x4D8	VGA_VACTIVE[10:8] VGA_VSTART[10:8]										
0x4D9	VGA_TRACK_EN	VGA_AUTO_ADJ		VGA_LOCK_EN	VGA_TIM_WIN						

VGA_HTOTAL	VGA pixel size per line, including horizontal blanking. Note the following condition needs to be met.
	VGA_HTOTAL - VGA_HSTART - VGA_HACTIVE > 6
VGA_VTOTAL	VGA line size per frame, including the vertical blanking. Note the following condition needs to be met.
	VGA_VTOTAL - VGA_VSTART - VGA_VACTIVE > 2
VGA_HSTART	VGA active pixel starting location relative to the leading edge of HSYNC, in # of pixels.
	VGA_HSTART = VGA_HS_WIDTH + H Back Porch - 6
VGA_HACTIVE	VGA active pixel width per line, in # of pixels
VGA_VSTART	VGA active line starting location relative to the leading edge of VSYNC, in # of lines
	VGA_VSTART = VGA_VS_WIDTH + V Back Porch
VGA_VACTIVE	VGA active line height per frame, in # of lines
VGA_TRACK_EN	 Enable frame tracking. Does not do frame tracking. Always use free running control 1 Enable frame tracking
VGA_AUTO_ADJ	 Hardware does not adjust to do frame tracking Hardware adjust the configuration to do frame tracking
VGA_LOCK_EN	0 Free running1 Lock to incoming video timing
VGA_TIM_WIN	In frame tracking, this parameter specifies the maximum number of lines inserted in the vertical blanking to track the incoming frame

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x4DA							VGA_HS_POL	VGA_VS_POL				
0x4DB		VGA_HS_WIDTH										
0x4DC		VGA_VS_WIDTH										
	VGA_VS_	POL	1	Negative	e (Low activ	e)						

	0 Positive (High active)
VGA_HS_POL	 Negative (Low active) Positive (High active)
VGA_HS_WIDTH	VGA HSYNC width in # of pixels
VGA_VS_WIDTH	VGA VSYNC height in # of lines

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4E0						USE_GAMMAB	USE_GAMMAG	USE_GAMMAR
0x4E1	DITHER_BP	S_DM					S_BC	

USE_GAMMAR	Enable red color gamma table
USE_GAMMAG	Enable green color gamma table
USE_GAMMAB	Enable blue color gamma table
S_BC	Output Pixel Width for each of R, G, B value 0: 8:8:8 (default) 1: 6:6:6 2: 5:6:5 3: 5:5:5 4: 4:4:4 5: 3:3:3 6: 3:3:2
S_DM	Dithering mode configuration. This specifies the number of lower bits for dithering.
DITHER_BP	Bypass dithering

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
						[2]	[1]	[0]	
0x4E2	FP_PX_MODE	FP_DE_AH	FP_HS_AH	FP_VS_AH	FP_CK_AH				
0x4E3			FP_S	EL_LG	FP_SIG_OFF		FP_CKTPS		
	FP_PX_N	IODE	1		channel LVI				
			0	Set single	e channel L	vDS output			
	FP_DE_A	ιH	1	Panel DE	signal activ	e high			
			0	Panel DE	signal activ	/e low			
		u	1	Donal US	aignal activ	o high			
	FP_HS_A	ND ND	0		signal activ	-			
			0	Fallel H3	Signal activ				
	FP_VS_A	H	1	Panel VS signal active high					
			0		signal activ	-			
	FP CK A	н	Rever	se the FPCI	K nolarity				
			1	Reverse the FPCLK polarity 1 Data is sampled at the falling edge					
			0		ampled at t				
			-				0-		
	FP_SEL_	LG	0	Select the	e LVDS map	ping of the	Samsung t	ype	
			1	Select the	LVDS map	ping of the	LG type		
			1	Reserved					
			2	Reserved					
		055	0	De net tu					
	FP_SIG_0	UFF	0		rn off the pa	anei			
			1	Turn off t	ne panei				
	FP_CKTP	s	Reserv	ved					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x4E4				FP_PWF	R_CLK_DV			1		
0x4E5	FP_CLK_PWDN	FP_CLKSEL			FP_MAN_PWR	FP_EDPMS	FP_	PCR		
	FP_PWR	_CLK_DV	is divi					ne 27 MHz cl for Power St		
	FP_CLK_	PWDN	1	Force the	e internal pa	anel clock to	power dov	wn		
	FP_CLKS	EL	Defau	lt 1						
	FP_MAN	_PWR	deterr	nine the st FPDE, FPC		WC, FPBIAS ata signals.	, and FP In	e power sta terfaces such		
			00: of		"0"	ыдэ "0"		aces "0"		
			01: St		" 1 "	"O"		"O"		
				······	" 1 "	" 0 "		" 1 " or "O"		
			11: Or		" 1 "	"1"		1" or "0"		
				The transition between power states does not occur right away. takes place after the timer expiration defined in 0x4E6 ~ 0x4E8						
	FP_EDPN	ΛS	power VSYNC VSYNC VSYNC	sequencin loss & HS loss & HS loss & HS active & H	g.	Off Standl Suspe	ру	it enables a		
	FP_PCR		Force state 0 1 2 3	the power Off Standby Suspend On		equence to	this state,	and stay in		

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x4E6		FP_IT	V12		FP_ITV01				
0x4E7		FP_IT	V32		FP_ITV23				
0x4E8		FP_IT	V21		FP_ITV10				
0x4E9	FP_PWM_CLK_SEL	SEL FP_PWM							
Ox4EB								FP_PWM_AL	

FP_ITV01	Timer counts for On state to Suspend state transition
FP_ITV12	Timer counts for Suspend state to Standby state transition
FP_ITV23	Timer counts for Standby state to Power Off state
FP_ITV32	Timer counts for Power Off state to Standby state
FP_ITV10	Timer count for Suspend state to On State
FP_ITV21	Timer count for Standby state to Suspend state
FP_PWM_CLK_SEL	 PWM clock set to 27 MHz PWM clock set to 13.5 MHz
FP_PWM	Pulse width of PWM is FP_PWM + 1
FP_PWM_AL	PWM Output Polarity1Reverse PWM signal output polarity0Do not reverse PWM signal output polarity

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
Ox4F0	[1]	VGA_BYP_OSD	VGA_BYP_DI	UGA_DATA0	VGA_BYP_HUE	[≃] VGA_BYP_YUV	UGA_BYP_SHARP	VGA_BYP_BW	
0x4F2		VGA_BIF_03D		VGA_DATAO	VGA_BIF_HUE	VGA_BIF_10V	VGA_BIF_SHARF	VGA_BTF_BW VGA_CGEN_EN	
07412				VAA_BWAEN_EN				VUA_CUEN_EN	
	VGA_BY	P OSD	1	Bynass (OSD for the	VGA nath			
	Van_Dii	_050	Ō		ypass OSD	VuA patri			
			·	20.000)				
	VGA_BY	P_DI	1	Bypass I	OI operation	ı			
			0	Does no	t bypass DI				
			_						
	VGA_DA	TA0	1		it the whole	screen			
			0	Normal	operation				
	VGA_BY		1	Bynass I	Hue Control				
	Tur_Di		ō	••					
				Does not bypass Hue Control					
	VGA_BY	P_YUV	1	Bypass YUV contrast / gain control					
			0	0 Does not bypass YUV contrast / gain control					
			4						
	VGA_DTI	P_SHARP	1 0	Bypass sharpness control Does not bypass sharpness control					
			U	boes not bypass snarpness control					
	VGA_BY	P_BW	1	Bypass I	olack / whit	e stretch co	ontrol		
			0	· · · · ·					
	VGA_BW	/GEN_PTRN		pattern for i					
			0 1	Color Pa	White Patte	rn			
			2	Color Pa					
			3	Y Single					
			4	Y block					
			5	BW patt	ern				
			6/7	Black					
	VGA_BW	/GEN_EN	Patte	ern Generati	on Enable f	or Internal	Test only		
	VGA_CG	FN FN	Patte	ern Generati	on Fnable f	or Internal	use only		
	107_00					e. meenu			

Ox4F3 VGA_DEBUG_DATA[7:4] VGA_DEBUG_DATA[3:0] * / VGA_DEBUG_SEL	Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0x4F3	EL							

VGA_DEBUG_SEL	Write only. Set this to select the read back of register 0x4F0
VGA_DEBUG_DATA	The setting of VGA_DEBUG_SEL determines the read back of this register. 1 BWYMIN 2 BWYMAX 3 BWFMIN 4 BWFMAX Others Not valid

Page 5: 0x500 ~ 0x51F

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x508	VDOX_BT1120_SEL	VDOX_FLD_POL	VDOX_1120_CROP	VDOX_HVS_MD	VDOX_DIG_OSD_BP			DISP_CVBS_EN	
	DISP_C\	/BS_EN	1 0		Display CVBS lisplay digita)		ther BT112	20 or 8-bit	
	VDOX_D	OIG_OSD_BF	2 1 0	••	he digital di he OSD on t			ut	
VDOX_HVS_MD 1 0				Output HAV/VAV signal at the HSYNC VSYNC port Output regular HSYNC/VSYNC signal					
	VDOX_1	120_CROP	1 0	BT1120 mode crop window enabled BT1120 mode crop window disabled					
	VDOX_F	LD_POL	1	Reverse the field polarity for display digital output					
			0	•	everse the fi	eld polarity	for display	digital outp	
	VDOX_B	T1120_SEL	. 1 0	Select display digital output as the BT1120 output Select display digital output as the 8-bit Cascade outpu					

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x509				VDOX_BT112	20_TOP_OS[7:0]					
0x50A				VDOX_BT112	20_BOT_OS[7:0]					
0x50B	VDOX_BT1120_L_OS[7:0]									
0x50C	VDOX_BT1120_R_OS[7:0]									
0x50D				VDOX_BT1120_R_OS[8]				VDOX_BT1120_BOT_0S[8]		

VDOX_BT1120_TOP_OS Top offset defining the vertical starting location of active video in the BT1120 (1920x1080) frame

VDOX_BT1120_BOT_OS Bottom offset defining the vertical ending location of active video in the BT1120 (1920x1080) frame

VDOX_BT1120_L_OS	Left offset defining the horizontal starting location of active video in the BT1120 (1920x1080) frame
VDOXD_BT1120_R_OS	Right offset defining the horizontal ending location of active video in the BT1120 (1920x1080) frame

Address	[7]	[6]	[6] [5] [4] [3] [2] [1] [0]									
0x50F			VDOX_VAV_ODD_OFS									
0x510		VDOX_VAV_EVEN_OFS										

VDOX_VAV_ODD_OFS The line number between the beginning of the ODD field and the beginning of VAV of display digital output (BT1120 or cascade)

VDOX_VAV_EVEN_OFS The line number between the beginning of the EVEN field and the beginning of VAV of display digital output (BT1120 or cascade)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x511	VDOX_VS_POL	VDOX_HS_POL	VDOX_VS_ETP_EN	VDOX_VS_ELP_EN	VDOX_VS_OTP_EN	VDOX_VS_OLP_EN				
	VDOX_V	/S_POL	Selec 1 0	t the VS pol Low acti High acti	ve	lay digital o	utput.			
	VDOX_H	IS_POL	Selec 1 0	t the HS pol Low acti High act	ve	olay digital o	output			
	VDOX_V	'S_ETP_EN		•	offset of ev OX_VS_POI	en field VS -S	trailing edg	ge relative t		
	VDOX_V	/S_ELP_EN		Enable the pixel offset of even field VS leading edge relative to l specified with VDOX_VS_POFS						
	VDOX_V	/S_OTP_EN		Enable the pixel offset of odd field VS trailing edge relative to H specified with VDOX_VS_POFS						
	VDOX_V	S_OLP_EN		-	offset of oc OX_VS_POI	ld field VS FS	leading edg	ge relative t		

Address	[7] [6] [5] [4] [3] [2] [1] [0]										
0x512	VD0X_VS_P0FS[11:8] VD0X_VSYNC_WIDTH										
0x513	VD0X_VS_P0FS[7:0]										

VDOX_VS_POFS	The pixel offset of VS edge relative to HS for the display digital
	output timing

VDOX_VSYNC_WIDTH The VSYNC width in unit of lines for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]		[0]		
0x514		VDOX_VS_E_LOFS VDOX_VS_0_LOFS									
	VDOX_V	VS_E_LOFS		e even field inge for the			/S relative t timing	to the	e edge of	field	
VDOX_VS_0_LOFS The odd field line offset of the VS relative to the edge of f change for the display digital output timing										field	
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]		[0]		

0x515						VDOX_HS_WIDTH[8]	0		
0x516	VDOX_HS_WIDTH[7:0]								
0x517	0								

VDOX_HS_WIDTH The HSYNC Width in number of pixels for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1] [0]					
0x518		VDOX_HACTIVE[11:8] VDOX_VACTIVE[9:8]										
0x519	VDOX_VACTIVE[7:0]											
0x51A	VDOX_HACTIVE[7:0]											

VDOX_HACTIVE The active pixels per line for the display digital output timing

VDOX_VACTIVE

The active lines per field for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x51B			VDOX_0	DVT[9:8]			VDOX_EVT[9:8]					
0x51C	VDOX_EVT[7:0]											
0x51D		VDOX_0VT[7:0]										

VDOX_EVT

The total line number of even field including vertical blanking for the display digital output timing

VDOX_OVT

The total line number of odd field including vertical blanking for the display digital output timing

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x51E					VDOX_HT [11:8]							
0x51F		VDOX_HT [7:0]										

VDOX_HT

The total pixel number per line including horizontal blanking for the display digital output timing

Page 6: 0x600 ~ 0x620, 0x640 ~ 0x65F, 0x690 ~ 0x6FE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x616	MD3_M/	MD3_MASK_SEL		MD2_MASK_SEL		MD1_MASK_SEL		MD0_MASK_SEL	

MDn_MASK_SEL Decide the

Decide the read out of MD_MASKS in 0x690 ~ 0x6EF

- 0 Read the detected motion of port n VINA
- 1 Read the detected motion of port n VINB
- 2 Read the mask of port n VINA
- 3 Read the mask of port n VINB

MDn_MASK_SEL also decide the write MD_MASKS in 0x690 \sim 0x6EF

- 0 Write the mask for port n VINA
- 1 Write the mask for port n VINB

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x617		I	WD_BASE_ADDR[4:0					
0x618					MD_BASE_ADDR[8:5]			

MD_BASE_ADDR

The base address of the motion detection buffer. This address is in unit of 64K bytes. The generated DDR address will be {MD_BASE_ADDR, 16'h0000}. The default value should be 9'h0CF

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x619							MD_PALNT	MD_TEST_EN

MD_PALNT Same as video decoder PALNT, need to be pull from bit 0 of 0x000, 0x010, 0x020, and 0x030 (To be fixed)

MD_TEST_EN

Enable test pattern (not implemented)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x61A			MD_DIS	MD_DUAL_EN	MD_STRB	MD_STRB_EN	BD_CELLSENS		
0x61B		MD_TN	IPSENS		MD_PIXEL_OS				
0x61C	MD_REFFLD	MD_I	FIELD		MD_LVSENS				
0x61D	MD_CE	LSENS			MD_SPEED				
0x61E		MD_S	PSENS		BD_LVSENS				
0x61F		ND_TN	IPSENS		ND_LVSENS				

Register $0x61A \sim 0x61F$ are used to control the motion detection of 8 inputs (A / B inputs of 4 video decoders). In order to select the specific input to control, set the corresponding bit of MDCH_SEL in 0x676.

MD_DIS	Disable the motion and blind detection.
	0 Enable motion and blind detection (default)
	1 Disable motion and blind detection
MD_DUAL_EN	Enable pseudo 8 channel for motion detection

MD_STRB	Reques 0 1	t to start motion detection on manual trigger mode None Operation (default) Request to start motion detection
MD_STRB_EN	Select t 0 1	he trigger mode of motion detection Automatic trigger mode of motion detection (default) Manual trigger mode for motion detection
BD_CELSENS	Define t 0	he threshold of cell for blind detection. Low threshold (More sensitive) (default)
	3	: High threshold (Less sensitive)
MD_TMPSENS	Control O	the temporal sensitivity of motion detector. More Sensitive (default)
	15	Less Sensitive
MD_PIXEL_OS	Adjust t 0	he horizontal starting position for motion detection O pixel (default)
	: 15	: 15 pixels
MD_REFFLD	Control 0 1	the updating time of reference field for motion detection. Update reference field every field (default) Update reference field according to MD_SPEED
MD_FIELD	Select t 0 1 2 3	he field for motion detection. Detecting motion for only odd field (default) Detecting motion for only even field Detecting motion for any field Detecting motion for both odd and even field
MD_LVSENS	Control O	the level sensitivity of motion detector. More sensitive (default)
	: 31	: Less sensitive
MD_CELSENS	Define t 0	the threshold of sub-cell number for motion detection. Motion is detected if 1 sub-cell has motion (More sensitive) (default)
	1 2 3	Motion is detected if 2 sub-cells have motion Motion is detected if 3 sub-cells have motion Motion is detected if 4 sub-cells have motion (Less
	sensitiv	
MD_SPEED	Large va In MD_E 0 1 : 61	<pre>the velocity of motion detector. alue is suitable for slow motion detection. DUAL_EN = 1, MD_SPEED should be limited to 0 ~ 31. 1 field intervals (default) 2 field intervals : 62 field intervals</pre>
	62 63	63 field intervals Not supported
MD_SPSENS	Control O	the spatial sensitivity of motion detector. More Sensitive (default)

	: : 15 Less Sensitive
BD_LVSENS	Define the threshold of level for blind detection. 0 Low threshold (More sensitive) (default) : :
	15 High threshold (Less sensitive)
ND_TMPSENS	Define the threshold of temporal sensitivity for night detection. 0 Low threshold (More sensitive) (default) : :
	15 High threshold (Less sensitive)
ND_LVSENS	Define the threshold of level for night detection. 0 Low threshold (More sensitive) (default) : :
	15 High threshold (Less sensitive)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x620	0	0		BLINK_PERIOD						

BLINK_PERIOD

Define the blinking time from on to off and off to on

Addres	3 [7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x640				OSG_MEM_WIDTH						

OSG_MEM_WIDTH

The OSG memory structure width in units of 64 pixels (128 bytes)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x641		OSG_WRBASE_ADDR									

OSG_WRBASE_ADDR

The base address used for writing data into OSG memory space. This base address can be set statically to treat all the OSG memory space into a big one, or it can be set dynamically to match each of the OSG base address at the write side. The unit is in 64 Kbytes. The DDR address generated from this register is {1'b1, OSG_WRBASE_ADDR[7:0], 16'h0}

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x642	C)	OSG_COLR_CON	0	1	1	0SG_0	PMODE	
	OSG_COLR_CON		COLR_CON1Turn on color conversion before writing memory. There is a 4-entry color conver used to match with the pixel value. If it the pixel is converted to a specified corr output pixel value.0Turn off the color conversion function						
	OSG_OPMODE		0 1 2 3	Block Mo	ve Mode – rom one loo Mode	Move one b	ll the pixel b block of me other locati	mory	

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x645			OSG_SRC_SH[10:8]			OSG_SRC_SV[10:8]			
0x646		OSG_SRC_SV[7:0]							
0x647		OSG_SRC_SH[7:0]							
0x648		0SG_DST_EH[10:8] 0SG_DST_EV[10:8]							
0x649		OSG_DST_EV[7:0]							
0x64A		OSG_DST_EH[7:0]							
0x64B		0SG_DST_SH[10:8] 0SG_DST_SV[10:8]							
0x64C		OSG_DST_SV[7:0]							
0x64D		OSG_DST_SH[7:0]							

- OSG_SRC_SV The start line of the source block
- OSG_SRC_SH The starting pixel of the source block.
- OSG_DST_EV The end line of the destination block
- OSG_DST_EH The end pixel of the destination block
- OSG_DST_SV The starting line of the destination block
- OSG_DST_SH The starting pixel of the destination block.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x64E		SEL	OSG		0	OSG_INDRD	OSG_INDWR	0		
-				1 to start i G_SELOSG.		te comman	d for on-chi	p table sel	ected	
	OSG_IND	ORD		Write 1 to start indirect read command from on-chip table selected by OSG_SELOSG. Write only						
	OSG_SELOSG			or conversions: reserved.						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	I
0x64F		OSG_IDLE	OSG_BMWR_BUSY					OSG_OP_START	

OSG_OP_START	Command bit to start the BLOCK MOVE, BLOCK FILL, or BITMAP WRITE function. Self clear after done. This bit can be used as status bit for whether the OSG is ready for a new operation. If it is 0, means the previous operation is done. Note: do not write 0 to this bit. It may cause unexpected result.
OSG_BMWR_BUSY	Read only flag to specify whether the BITMAP WRITE fifo has 256 byte space available to write. If this bit is 0, the MCU can feel free to write up to 256 bytes without checking this bit again.
OSG_IDLE	Read only flag to specify OSG state machine is idle. This bit is usually the opposite of the OSG_OP_START (0x64F[0]), unless OSG_OP_START was set at incorrect time during OSG_IDLE is not 1.
	0 OSG operation is in progress1 OSG operation is idle

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x650	OSG_IND_ADDR							

OSG_IND_ADDR The indirect access address used to access the internal tables.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x651				OSG_IND	_wrdata			

OSG_IND_WRDATA

The indirect write data for writing the color table.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x652			C	SG_UP_DATA[15:0]	or OSG_UP_DATA[7:0)]		

OSG_UP_DATA

The BITMAP WRITE data register. Note that in the 16-bit data bus mode, this address is used to write 16 bits, instead of 8 bits.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x654		OSG_FILL_COLR[7:0] (Y2)							
0x655		OSG_FILL_COLR(15:8) (Cr)							
0x656		OSG_FILL_COLR[23:16] (Y1)							
0x657		OSG_FILL_COLR31:24] (Cb)							
	OSG_FII	OSG_FILL_COLR[31:24] U pixel value for block fill							
	OSG_FILL_COLR[23:16] Y1 pixel value for block fill								
	OSC FILL COLDITERS								

OSG_FILL_COLR[15:8] OSG_FILL_COLR[7:0]

V pixel value for block fill Y2 pixel value for block fill

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x658	OSG_RLC_EN			OSG_RLC_32B		OSG_R	LC_CNT	

OSG_RLC_EN

Enable proprietary hardware RLC decompression while uploading the bitmap into the OSG buffer. With this feature turned on, the

	compr by the	ling bitmap from MCU through the host interface is in RLC essed format. The RLC compressed result is decompressed e hardware automatically. This reduces the bandwidth mption on the host interface.
OSG_RLC_32B	1 0	Use 32 bit data for compression pattern match Use 16 bit data for compression pattern match
OSG_RLC_CNT	0	te how many bits are used for the repetition count. The repetition count is 16 bits The repetition count is 1 – 15 bits
The proprietary compr	ession for	mat is as follows:

The proprietary compression format is as follows:

F, D/C, F, D/C,	
Where F (1 bit):	0 : indicate the following is pixel data 1 : indicate the following is repetition count
D :	Pixel Data in either 16 bits or 32 bits, as specified by OSG_RLC_32B)
C :	Repetition count (how many times the D data is repeated. The number of bits of this repetition count is controlled by the OSG_RLC_CNT.

Note: count of 0 means 2**N repetition, where N is OSG_RLC_CNT

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x65B						CUR_EN		

CUR_EN

Enable the 5 OSD cursors. Only one of the 5 should be turned on.

Bit 0: Display VGA OSD

Bit 1: Display CVBS OSD

- Bit 2: Record 0 OSD
- Bit 3: Record 1 OSD

Bit 4: SPOT OSD

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x65C	CUR_REV	CUR_BLINK	CUR_HOLLOW_OFF	CUR_CUSTOM_LD			CUF	R_SEL			
	CUR_RE	v	Reverse black)	e the curso	or color (b	lack beco	me white,	white bec	:om		
	CUR_BLI	NK	Enable	blink of mo	use pointer	.					
			0		rsor blinkin	,					
			1	1 Enable cursor blinking							
	CUR_HO	LLOW_OFF	Control O 1	(default)							
	CUR_CU	STOM_LD	Load th chip SR	ne customiz RAM	ed cursor s	shape from	DDR mer	nory into th	ie o		
	CUR_SEI	L	Select 1 0 1 2 3	the cursor ty Small curs Normal cu Customize Reserved	or	plemented	I with SRAI	м			

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x65D			CUR_Y[10:8]			CUR_X[10:8]					
0x65E		CUR_X[7:0]									
0x65F		CUR_Y[7:0]									

CUR_X	Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 1440 1440 Pixel position
CUR_Y	Control the vertical location of mouse pointer. 0 0 Line position (default) : : 900 900 Line position

Registers 0x690 ~ 0x6EF are used to control the mask of input A / B of each video decoder. To access the corresponding inputs, set the corresponding MDn_MASK_SEL in 0x616.

Address	[7]	[6] [5] [4] [3] [2] [1] [0]												
0x690		MD0_MASK0[7:0]												
0x691				MD0_MA	SK0[15:8]									
0x692		MD0_MASK1[7:0]												
0x693		MDO_MASK1[15:8]												
0x694		MDO_MASK2[7:0]												
0x695		MD0_MASK2[15:8]												
0x696		MD0_MASK3[7:0]												
0x697		MD0_MASK3[15:8]												
0x698		MD0_MASK4[7:0]												
0x699		MD0_MASK4[15:8]												
0x69A		MD0_MASK5[7:0]												
0x69B		MD0_MASK5[15:8]												
0x69C				MD0_MA	ASK6[7:0]									
0x69D				MD0_MA	SK6[15:8]									
0x69E				MD0_MA	ASK7[7:0]									
0x69F				MD0_MA	SK7[15:8]									
0x6A0				MD0_MA	SK8[7:0]									
0x6A1				MD0_MA	SK8[15:8]									
0x6A2				MD0_MA	ASK9[7:0]									
0x6A3				MD0_MA	SK9[15:8]									
0x6A4		MD0_MASK10[7:0]												
0x6A5		MD0_MASK10[15:8]												
0x6A6				MD0_MA	SK11[7:0]									
0x6A7				MD0_MAS	K11[15:8]									

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x6A8				MD1_MA	ASK0[7:0]							
0x6A9		MD1_MASK0[15:8]										
0x6AA		MD1_MASK1[7:0]										
0x6AB		MD1_MASK1[15:8]										
0x6AC		MD1_MASK2[7:0]										
0x6AD		MD1_MASK2[15:8]										
0x6AE		MD1_MASK3[7:0]										
0x6AF				MD1_MA	SK3[15:8]							
0x6B0				MD1_M/	ASK4[7:0]							
0x6B1		MD1_MASK4[15:8]										
0x6B2		MD1_MASK5[7:0]										
0x6B3				MD1_MA	SK5[15:8]							
0x6B4				MD1_MA	ASK6[7:0]							
0x6B5				MD1_MA	SK6[15:8]							
0x6B6				MD1_MA	ASK7[7:0]							
0x6B7				MD1_MA	SK7[15:8]							
0x6B8				MD1_MA	ASK8[7:0]							
0x6B9				MD1_MA	SK8[15:8]							
0x6BA		MD1_MASK9[7:0]										
0x6BB		MD1_MASK9[15:8]										
0x6BC				MD1_MA	SK10[7:0]							
0x6BD				MD1_MAS	SK10[15:8]							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x6BE		MD1_MASK11[7:0]									
0x6BF		MD1_MASK11[15:8]									

Address	[7]													
0x6C0		MD2_MASK0[7:0]												
0x6C1		MD2_MASK0[15:8]												
0x6C2		MD2_MASK1[7:0]												
0x6C3		MD2_MASK1[15:8]												
0x6C4		MD2_MASK2[7:0]												
0x6C5		MD2_MASK2[15:8]												
0x6C6		MD2_MASK3[7:0]												
0x6C7		MD2_MASK3[15:8]												
0x6C8		MD2_MASK4[7:0]												
0x6C9		MD2_MASK4[15:8]												
0x6CA		MD2_MASK5[7:0]												
0x6CB		MD2_MASK5[15:8]												
0x6CC				MD2_MA	ASK6[7:0]									
0x6CD				MD2_MA	SK6[15:8]									
0x6CE				MD2_MA	ASK7[7:0]									
0x6CF				MD2_MA	SK7[15:8]									
0x6D0				MD2_MA	ASK8[7:0]									
0x6D1				MD2_MA	SK8[15:8]									
0x6D2				MD2_MA	ASK9[7:0]									
0x6D3				MD2_MA	SK9[15:8]									
0x6D4		MD2_MASK10[7:0]												
0x6D5		MD2_MASK10[15:8]												
0x6D6				MD2_MA	SK11[7:0]									
0x6D7				MD2_MAS	SK11[15:8]									

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x6D8				MD3_MA	ASK0[7:0]							
0x6D9		MD3_MASK0[15:8]										
0x6DA		MD3_MASK1[7:0]										
0x6DB		MD3_MASK1[15:8]										
0x6DC		MD3_MASK2[7:0]										
0x6DD		MD3_MASK2[15:8]										
0x6DE		MD3_MASK3[7:0]										
0x6DF		MD3_MASK3[15:8]										
0x6E0		MD3_MASK4[7:0]										
0x6E1				MD3_MA	SK4[15:8]							
0x6E2				MD3_MA	ASK5[7:0]							
0x6E3				MD3_MA	SK5[15:8]							
0x6E4				MD3_MA	ASK6[7:0]							
0x6E5				MD3_MA	SK6[15:8]							
0x6E6				MD3_MA	SK7[7:0]							
0x6E7				MD3_MA	SK7[15:8]							
0x6E8				MD3_MA	ASK8[7:0]							
0x6E9				MD3_MA	SK8[15:8]							
0x6EA				MD3_MA	ASK9[7:0]							
0x6EB				MD3_MA	SK9[15:8]							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x6EC		MD3_MASK10[7:0]										
0x6ED		MD3_MASK10[15:8]										
0x6EE		MD3_MASK11[7:0]										
0x6EF	MD3_MASK11[15:8]											
	MDx_M	MDx_MASK Define the motion Mask/Detection cell for VIN x. MD_MASK[15] right end and MD_MASK[0] is left and of column										

MD_MASK[0] is left end of column.

In writing mode

- 0 Non-masking cell for motion detection (default)
- 1 Masking cell for motion detection

In reading mode when MDn_MASK_SEL= "0"

- 0 Motion is not detected for cell
- 1 Motion is detected for cell

In reading mode when MDn_MASK_SEL= "1"

- 0 Non-masked cell
- 1 Masked cell

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x6F0						MD_ST	RB_DET*			
*Read only bit										
	MD_STR	Bn	1	MD strob	MD strobe has been performed at channel n					

0

MD strobe has not yet been performed at channel n

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x6F1	NOVID_DET_0B*	MD_DET_0B*	BD_DET_0B*	ND_DET_0B*	NOVID_DET_0A*	MD_DET_0A*	BD_DET_0A*	ND_DET_0A*
0x6F2	NOVID_DET_1B*	MD_DET_1B*	BD_DET_1B*	ND_DET_1B*	NOVID_DET_1A*	MD_DET_1A*	BD_DET_1A*	ND_DET_1A*
0x6F3	NOVID_DET_2B*	MD_DET_2B*	BD_DET_2B*	ND_DET_2B*	NOVID_DET_2A*	MD_DET_2A*	BD_DET_2A*	ND_DET_2A*
0x6F4	NOVID_DET_3B*	MD_DET_3B*	BD_DET_3B*	ND_DET_3B*	NOVID_DET_3A*	MD_DET_3A*	BD_DET_3A*	ND_DET_3A*

*Read only bits

NOVID_DET_mA	NO_VIDEO Detected from port m, analog path A (read only)
NOVID_DET_mB	NO_VIDEO Detected from port m, analog path B (read only)
MD_DET_mA	Motion Detected from port m, analog path A (read only)
MD_DET_mB	Motion Detected from port m, analog path B (read only)
BD_DET_mA	Blind Detected from port m, analog path A (read only)
BD_DET_mB	Blind Detected from port m, analog path B (read only)
ND_DET_mA	Night Detected from port m, analog path A (read only)
ND_DET_mB	Night Detected from port m, analog path B

Page 9: 0x9C0 ~ 0x9DF

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x9C0		DDC_FREQ_DIV[7:0]									
0x9C1		DDC_FREQ_DIV[15:8]									

DDC_FREQ_DIV DDC I2C Clock Generator generates DDC_CLK from an internal 54 MHz clock divided by DDC_FREQ_DIV.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C2				DDC_W	R_DATA			

DDC_WR_DATA DDC I2C Write Data Register

At the start operation, the Slave_Device_Addr	DDC_W	/R_DATA[7:1]
R/W Command	DDC_W	/R_DATA[0] Read
	0	Write

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x9C3		DDC_RD_DATA								

DDC_RD_DATA

DDC I2C Read Data Register

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x9C4		DDC_COMMAND								

DDC_COMMAND

DDC Control Command (Read/Write)

- 7 I2C Start
- 6 I2C Stop
- 5 Read the value from the slave device register. Once acknowledged, the data will be in DDC_RD_DATA register
- 4 Write the value in DDC_WR_DATA onto DDC_DATA bus
- 3 Send an ACK to the DDC_DATA bus when read
- 2 Clock Count Enable
- 1 Interrupt Enable
- 0 Interrupt Acknowledge

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C5					STATUS			
	DDC_ST/	ATUS	DDC S Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	RXACK I2C_BUS Active Lo 0 0 0 I2C Read	9W			
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9C7	1-1	1-1	1-1		0			101
	Reserved	d	Shoul	d be kept O				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9CF					RST			
	DDC_RS	т	DDC S	Software Re	eset whenev	er CPU issu	ies a write t	o this addres
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9D0		PS2_Ma	axNoSig		PS2_N	laxByte	PS2_WR_EN	PS2_EN
	PS2_Ma PS2_Ma	_	not to	ggled.		-	_	when PS2_C operation fi
	1 5 2_141d.	ADyte	PS2_I		ier of byte	s useu in	152 1640	
	PS2_WR	R_EN	PS2 D	oata Write E	inable to wr	ite data in I	PS2_WR_D	ATA onto PS:
	PS2_EN		PS2 E	nable				
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9D1				PS2_W	(R_DATA			
PS2_WR_DATA Before writing this register, make sure the 0x9D0 control is with PS2_WR_EN = 1 and PS2_EN = 1. Once writing into this register, the PS2 interface start PS2_WR_DATA onto PS2_D bus.								

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x9D2		PS2_RD_DATA[7:0]										
0x9D3		PS2_RD_DATA[15:8]										
0x9D4		PS2_RD_DATA[23:16]										
0x9D5		PS2_RD_DATA[31:24]										

PS2_RD_DATA Data read back from PS2 port. If PS2_WR_EN = 0, and PS2_EN = 1, and the PS2 Interrupt is asserted, the data on PS2_D bus are available in these registers. The maximum number of valid bytes is determined by PS2_MaxByte in 0x9D0

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x9DF				PS2	_RST			

PS2_RST

PS2 Software Reset whenever CPU issues a write to this address

Page M: 0xM21 ~ 0xM3F, 0xM60 ~ 0xM8F, where M = 5 ~ 9

M=5: VGA OSD, M=6: Display CVBS OSD, M=7: REC0_OSD, M=8: REC1_OSD, M=9: SPOT_OSD

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x521 0x621								
0x821 0x721	0	0					OSD_FLD_POL	OSD_VSYNC_POL
0x821								
0x921								

OSD_FLD_POL	The Polarity control for the OSD to interpret the field signal
OSD_VSYNC_POL	The polarity control for the OSD to interpret the VS when signal

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x530									
0x630									
0x730								OSD_BLINK_EN	
0x830									
0x930									
0x531				•			•	•	
0x631									
0x731		OSD_	TEST			OSD_WI	NSEL[7:0]		
0x831									
0x931									

OSD_BLINK_EN Enable blinking

OSD_TEST OSD Test pattern. For internal use only

OSD_WINSEL[n] Selects which window to configure. This is used with registers 0xm35, 0xm37 ~ 0xm3F. 0 ~ 7 Sub-windows

8 Main Window

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x532												
0x632		OSD_GLOBAL_ALPHA1 (Main Window)										
0x732												
0x832												
0x932												
0x533		OSD_GLOBAL_ALPHA2 (Sub Windows)										
0x633												
0x733												
0x833												
0x933												

OSD_GLOBAL_ALPHA1 The alpha value for main window

OSD_GLOBAL_ALPHA2 The alpha value for all sub-windows

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x534 0x634 0x734 0x834 0x934	0	0	OSD_BLEND_OPT	OSD_WINSUB_ON	OSD_WINMAIN_ON	OSD_P_ALPHA	OSD_MODE[1]	OSD_MODE[0]			
	OSD_BL	.end_opt		Decide whether single window OSD layer on top or multi-window OSD layer on top when blending							
	OSD_W	INSUB_ON		Turn on sub-window OSD. Each individual sub-window is enabled by OSD_WIN_EN in 0xm35							
	OSD_W	INMAIN_ON	l Turn	Turn on the main window OSD							
	OSD_P_	ALPHA	(rese	(reserved)							
	OSD_M	ODE[1:0]		For VGA OSD(0x534) 00: 422 UYVY format 01: 565 UYV format 11: 565 RGB format For other OSD (0x634/0x734/0x834/0x934) Always 422 UYVY format							

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	1		
0x535 0x635 0x735 0x835 0x935	OSD_BLINK_TIME		OSD_WINSWITCH	OSD_WINSET			OSD_WIN_EN				
	OSD_BL	INK_TIME	This OSD_	1 blink every 16 VSYNC 2 blink every 32 VSYNC							
	OSD_WI	NSWITCH	CH Enable the dynamic field based OSD switching for record / SPO OSD								
	OSD_WI	NSET	regist	Write command to write to one of the 9 windows configuration registers. This bit is not self cleared. It requires a clear before setting to 1 again.							
	OSD_WI	N_EN	Enabl	e the windo n into the (w specified	-		xm31. This OSD_WINS			
Address	[7] [6] [5] [4] [3] [2] [1] [0]										
0x536 0x636 0x736 0x836 0x936	OSD_RDBASE_ADDR										

OSD_RDBASE_ADDR The base address of the current OSD. Each OSD can have its own base address. This address is in unit of 64 KB. The derived DDR address will be { 1'b1, OSD_RDBASE_ADDR, 16'h0000 }

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x537												
0x637												
0x737		OSD_SRC	_SH[11:8]			OSD_SRC	_SV[11:8]					
0x837												
0x937												
0x538												
0x638												
0x738		OSD_SRC_SV[7:0]										
0x838												
0x938												
0x539 0x639												
0x839 0x739												
0x135 0x839	OSD_SRC_SH[7:0]											
0x939												
0x53A												
0x63A												
0x73A	OSD_DST_EH[11:8] OSD_DST_EV[11:8]											
0x83A												
0x93A												
0x53B												
0x63B												
0x73B	OSD_DST_EV[7:0]											
0x83B												
0x93B												
0x53C												
0x63C 0x73C	OSD_DST_EH(7:0)											
0x73C 0x83C				OSD_DS	I_EH[<i>1</i> :0]							
0x83C 0x93C												
0x53D					[
0x63D												
0x73D		OSD_DST_	SH[11:8]			OSD DST	_SV[11:8]					
0x83D					030_031_34[110]							
0x93D												
0x53E					1							
0x63E												
0x73E	OSD_DST_SV[7:0]											
0x83E												
0x93E												
0x53F												
0x63F												
0x73F				OSD_DS	T_SH[7:0]							
0x83F												
0x93F												

The following register setting are saved into the corresponding OSD window specified by OSD_WINSEL in 0xm31 when the OSD_WINSET bit is set to 1.

OSD_SRC_SV	Starting line of the source block in the OSD memory
OSD_SRC_SH	Starting pixel of the source block in the OSD memory
OSD_DST_EV	Ending line of the OSD on the destination video stream
OSD_DST_EH	End pixel location of the OSD on the destination video stream. This should be the starting location OSD_DST_SH + OSD_WIDTH.
OSD_DST_SV	Starting line of the OSD on the destination video stream
OSD_DST_SH	Starting pixel location of the OSD on the destination video stream.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x564										
0x664										
0x764		BOX1D_	ALPHA1		BOX1D_ALPHA0					
0x864										
0x964										

BOX1D_ALPHA0

The alpha value for the 6 1DBOXs below the bitmap OSG layer (1D $box 2 \sim 7$)

The alpha value for the 2 1DBOXs above the bitmap OSG layer $(1D box 0 \sim 1)$

BOX1D_ALPHA1

Address [7] [6] [5] [4] [3] [2] [1] [0] 0x566 0x666 0x766 MOSAIC_COLOR_SEL1 MOSAIC_COLOR_SELO 0x866 0x966

MOSAIC_COLOR_SELO

Mosaic color selection for the 6 1D Boxes below the bitmap **OSG** layer

MOSAIC_COLOR_SEL1

Mosaic color selection for the 2 1D Boxes above the bitmap **OSG** layer

- 0 White (75% Amplitude 100% Saturation)
- 1 Yellow (75% Amplitude 100% Saturation)
- 2 Cyan (75 % Amplitude 100 Saturation)
- 3 Green (75% Amplitude 100% Saturation)
- 4 Magenta (75% Amplitude 100% Saturation)
- 5 Red (75% Amplitude 100% Saturation)
- 6 Blue (75% Amplitude 100% Saturation)
- 7 0% Black
- 8 100% White
- 9 50% Gray
- 10 25% Gray

11 Blue (75% Amplitude 75% Saturation)

- 12 Defined by CLUTO in 0xm78, 0xm7C, 0xm80
- 13 Defined by CLUT1 in 0xm79, 0xm7D, 0xm81
- 14 Defined by CLUT2 in 0xm7A, 0xm7E, 0xm82 15
 - Defined by CLUT3 in 0xm7B, 0xm7F, 0xm83

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x567								
0x667								
0x767	BOX1D_EN							
0x867								
0x967								

[1]

BOX1D_EN

Enable the upper layer with 2 Single Boxes $(1D Box 0 \sim 1)$

[0] Enable the lower layer with 6 Single Boxes (**1D** box 2 ~ 7)

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x568								
0x668								
0x768					MOSAIC_EN	BOX1D_MIX_EN	BOX1D_BDR_EN	BOX1D_INT_EN
0x868								

0x968							
0x569		· ·					
0x669							
0x769		BOX1D_BDR_0	COLR		BOX1D	_COLR	
0x869							
0x969							
0x56A							
0x66A							
0x76A		BOX1D_VT[9	:8]		BOX1D_HL[10:8]		
0x86A							
0x96A							
0x56B							
0x66B							
0x76B			BOX10	0_HL[7:0]			
0x86B							
0x96B							
0x56C							
0x66C							
0x76C			BOX10	D_VT[7:0]			
0x86C							
0x96C							
0x56D							
0x66D 0x76D							
0x76D 0x86D		BOX1D_VW[9:8]			BOX1D_HW[10:8]	
0x86D 0x96D							
0x96D 0x56E		I					
0x56E							
0x06E			BOX1D	_HW[7:0]			
0x86E			DOVID				
0x96E							
0x56F							
0x66F							
0x76F			BOX1D	_VW[7:0]			
0x86F			20/110	,			
0x96F							
0,000							

Register $0 \times 68 \sim 0 \times 6F$ are used to control 8 sets of 1D-boxes. In order to access the 1D box to control, use MDCH_SEL in 0×76 to enable the corresponding bit before accessing these registers.

MOSAIC_EN[m]	Turn on the MOSAIC pattern in the 1D Box.			
BOX1D_MIX_EN	Transparent blending enable			
BOX1D_BDR_EN	Enable showing the border line			
BOX1D_INT_EN	Enable showing the interior pixel color			
BOX1D_BDR_COLR	Define the box boundary color for each box00% White (Default)125% White250% White375% White			
BOX1D_COLR	Define the interior pixel colors0White (75% Amplitude 100% Saturation)1Yellow (75% Amplitude 100% Saturation)2Cyan (75% Amplitude 100 Saturation)3Green (75% Amplitude 100% Saturation)4Magenta (75% Amplitude 100% Saturation)5Red (75% Amplitude 100% Saturation)6Blue (75% Amplitude 100% Saturation)70% Black			

	8 9 10 11 12 13 14 15	100% White 50% Gray 25% Gray Blue (75% Amplitude 75% Saturation) Defined by CLUT0 in 0xm78, 0xm7C, 0xm80 Defined by CLUT1 in 0xm79, 0xm7D, 0xm81 Defined by CLUT2 in 0xm7A, 0xm7E, 0xm82 Defined by CLUT3 in 0xm7B, 0xm7F, 0xm83
BOX1D_HL	Define 0 : 1439	the horizontal left location of box. Left end (default) : Right end
BOX1D_VT	Define 0 : 899	the vertical top location of box. Vertical top (default) : Vertical bottom
BOX1D_HW	0 :	the horizontal size of box. 1 Pixel width (default) : 1440 Pixels width
BOX1D_VW	Define 0 : 899	the vertical size of box. 1 Lines height (default) : 900 Lines height

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x575								
0x675								
0x775	MDBOX_EN					MD_BND_MERG	MDBOX	_alpha
0x875	_							_
0x975								

MDBOX_EN

Enable the Motion 2D Box function

Turn on the 2D Box merge if two adjacent box are both on

MDBOX_ALPHA

MD_BND_MERG

Select the alpha blending mode for 2D arrayed Box 0

- 50% (default)
- 50%

1

2

3

75% 25%

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x576								
0x676								
0x776				MDCI	I_SEL			
0x876								
0x976								

MDCH_SEL

Select one of the 8 1DBOXs to configure using 0xm68 ~ 0xm6F or one of the 8 Motion 2D Boxes to configure using 0xm84 ~ 0xm8F.

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x578								
0x678								
0x778				MD_C	LUTO_Y			
0x878								
0x978								
0x579								
0x679								
0x779				MD_C	LUT1_Y			
0x879								
0x979								
0x57A								
0x67A								
0x77A				MD_C	LUT2_Y			
0x87A 0x97A								
0x57B 0x67B								
0x67B 0x77B				MD C				
0x77B 0x87B				MD_C	LUT3_Y			
0x87B 0x97B								
0x57C								
0x67C								
0x77C				MD CL	UTO_CB			
0x87C					<u>-</u>			
0x97C								
0x57D								
0x67D								
0x77D				MD_CL	UT1_CB			
0x87D				-	-			
0x97D								
0x57E								
0x67E								
0x77E				MD_CL	UT2_CB			
0x87E								
0x97E								

FN7743 Rev.0.00 August 17, 2012

TW2851

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x57F								
0x67F								
0x77F				MD_CL	UT3_CB			
0x87F								
0x97F								
0x580								
0x680								
0x780				MD_CL	UTO_CR			
0x880								
0x980								
0x581								
0x681								
0x781				MD_CL	UT1_CR			
0x881								
0x981								
0x582								
0x682					170.00			
0x782 0x882				MD_CL	UT2_CR			
0x882 0x982								
0x982 0x583								
0x583 0x683								
0x683 0x783				MD CI	UT3_CR			
0x783 0x883				WID_CL	013_01			
0x883								
0,303								

MD_CLUTx_Y

Y component for user defined color 0 (default : 0)

MD_CLUTx_CB

Cb component for user defined color 0 (default : 0)

MD_CLUTx_CR

 $\label{eq:component} \mbox{ Cr component for user defined color 0 (default:0)}$

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x584									
0x684									
0x784					MDBOX_MODE				
0x884									
0x984									
0x585									
0x685									
0x785	MDDET_EN	MDMASK_EN	MDBOX_VINV	MDBOX_HINV	MDBOX_MIX	MDCUR_EN		MDB0Xm_EN	
0x885									
0x985									
0x586									
0x686									
0x786		MDDE	COLR			MDMASI	K_COLR		
0x886									
0x986									
0x587									
0x687									
0x787			MDBOX_VOS[10:8]				MDBOX_HOS[10:8]		
0x887									
0x987									
0x588									
0x688									
0x788				MDBOX_	HOS[7:0]				
0x888									
0x988									
0x589									
0x689									
0x789				MDBOX_	VOS[7:0]				
0x889									
0x989		1							
0x58A									
0x68A			MDBOX_VW[10:8]				MDBOX_HW[10:8]		
0x78A			•				•		
0x88A									

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x98A								
0x58B								
0x68B								
0x78B				MDBOX	_HW[7:0]			
0x88B								
0x98B								
0x58C								
0x68C								
0x78C				MDBOX	_VW[7:0]			
0x88C								
0x98C								
0x58D								
0x68D								
0x78D						MDBOX_BNDEN	MD_BND	RY_COLR
0x88D								
0x98D								
0x58E								
0x68E								
0x78E		MDCUF	R_HPOS			MDCUR	_VPOS	
0x88E								
0x98E								
0x58F								
0x68F								
0x78F		MDBOX_HCELL				MDBOX	_VCELL	
0x88F								
0x98F								

Register 0xm84 ~ 0xm8F are used to control 8 sets of 2D boxes. In order to select the specific 2D box to control, use MDCH_SEL in 0xm76 to enable the corresponding bit before accessing these registers.

MDBOX_MODE	Define the operation mode of 2D arrayed box.
	0 Table mode (default)
	1 Motion display mode
MDDET_EN	Enable the motion cell display when the corresponding mask bit is
	0
	When MDBOX_MODE = "0"
	0 Disable the detection plane of 2D arrayed box (default)
	1 Enable the detection cell of 2D arrayed box
	When MDBOX_MODE = "1"
	0 Display the motion detection result with inner boundary
	1 Display the motion detection result with whole cell area
MDMASK_EN	Enable the mask plane of 2D arrayed box
	0 Disable the mask plane of 2D arrayed box (default)
	1 Enable the mask plane of 2D arrayed box
MDBOX_VINV	Enable the vertical mirroring for 2D arrayed box
	Enable the vertical mirroring for 2D arrayed box.
	0 Normal operation (default)
	1 Enable the vertical mirroring
MDBOX_HINV	Enable the horizontal mirroring for 2D arrayed box.
	0 Normal operation (default)
	1 Enable the horizontal mirroring
MDBOX_MIX	Enable the alpha blending for 2D arrayed box plane with video data.
	0 Disable the alpha blending (default)

	1	Enable the alpha blending with MDBOX_ALPHA setting $(0x575)$
MDCUR_EN		o change the color of a cell to indicate the cell where the s located
MDBOXm_EN	Enable 0 1	the 2Dbox specified by 0xm76 Disable the 2D box (default) Enable the 2D box
MDMASK_COLR	Define	the color of Mask plane in 2D arrayed box. (default = 0)
MDDET_COLR	Define 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	the color of Detection plane in 2D arrayed box. (default = 0) White (75% Amplitude 100% Saturation) Yellow (75% Amplitude 100% Saturation) Cyan (75% Amplitude 100% Saturation) Green (75% Amplitude 100% Saturation) Magenta (75% Amplitude 100% Saturation) Red (75% Amplitude 100% Saturation) Blue (75% Amplitude 100% Saturation) 0% Black 100% White 50% Gray 25% Gray Blue (75% Amplitude 75% Saturation) Defined by CLUT0 Defined by CLUT1 Defined by CLUT2 Defined by CLUT3
MDBOX_VOS	Define t 0 : 900	the vertical top location of 2D arrayed box. Vertical top end (default) : Vertical bottom end
MDBOX_HOS	Define 0 : 720	the horizontal left location of 2D arrayed box. Horizontal left end (default) : Horizontal right end
MDBOX_VW	Define 1 0 : 255	the vertical size of 2D arrayed box. 0 Line height (default) : 255 Line height
MDBOX_HW	Define 1 0 : 255	the horizontal size of 2D arrayed box. O Pixel width (default) : 510 Pixels width
MDBOX_BNDEN	Enable 0 1	the boundary of 2D arrayed box. Disable the boundary (default) Enable the boundary
MD_BNDRY_COLR	Define 1 0	the color of 2D arrayed box boundary 0 % Black (default)

	1 2 3	25% Gray 50% Gray 75% White
	Define region	the displayed color for cursor cell and motion-detected
	0,1 2,3	75% White (default) 0% Black
	2,3	
MDCUR_HPOS	Indicate	e the horizontal location of the cursor cell
MDCUR_VPOS	Indicate	e the vertical location of the cursor cell
MDBOX_HCELL	Indicate	e the number of columns in the 2D box
MDBOX_VCELL	Indicate	e the number of rows in the 2D box

Page E : 0xE00 ~ 0xEFE

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xE00							0	0

Reserved

Address	[7]	[6]	(5)	[4]	[2]	101	[4]	101		
Address 0xE40	[7]	[6] LP_SEL	[5]	[4] CP_SEL	[3]	[2] LVDS_EN	[1] LVDS_FAB_TEST	[0] LVDS_LCD_TEST		
0xE40	LVDS_SWAP_CH	LVDS_9BIT_DC	LVDS_NS_SEL	LVDS_DC_BAL	LVDS BIT	PERPIXEL	LVDS_REV_DATA	LVDS_LCD_IESI		
0xE42			LVDS_REV_DCB	LVDS_DCB_POL			LVDS_MAP_SEL			
0xE43						LVDS_VOS_SEL	LVDS	_I_SEL		
	LVDS_LP	_	Defaul							
	LVDS_CP	SEL	Defaul	lt O						
	LVDS_EN	l	0 1	LVDS Dis LVDS Ena						
	LVDS_FAB_TEST		0 1	Normal Operation LVDS Test Mode						
	LVDS_LCD_TEST		0 1	Normal 0 LCD Pane	peration el Test Mod	e				
	LVDS_SWAP_CH		1 0		DS channel vap LVDS c	0 and 1 hannel 0 a	nd 1			
	LVDS_9E	BIT_DC	0	Select 7 o chip	cycle DC ba	ilance, as u	sed in most	National		
			1	•	cycle DC ba	llance, as u	sed in MAX	IM chip		
	LVDS_NS_SEL		0 1	Output data mapping same as Maxim or THine LVDS interface protocol Output data mapping same as National interface						
	LVDS_DC	C_BAL	1 0	protocol DC Balance Enable DC Balance Disable						
	LVDS_BI	[PERPIXEL	0 1 2	6 bit data 8 bit data 10 bit da	output					
	LVDS_RE	V_DATA	0 1		ata output data output					
	LVDS_SE	L_LD	Load/S O 1	Shift signal Active lov Active hig	N	lection				
	LVDS_RE	V_DCB	1	Reverse I	DC balance	bit order				
	LVDS_DO	B_POL	1	Reverse I	DC balance	polarity				
	LVDS_M	AP_SEL	Chang 000 001 010 100 101 110	{DE, {VSYNC, {HSYNC, E {DE,	VS) HS' DE, HS' /SYNC, DE	YNC, HSYN YNC, DE VSYN YNC, VSYN	<pre>} C } C } C }</pre>	YNC signal		

LVDS_VOS_SEL	LVDS Driver Voltage Offset Select
--------------	-----------------------------------

LVDS_I_SEL LVDS Driver Output Swing Select

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xEB0		PPLL_F[7:0]							
OxEB1		PPLL_OD		PPLL_R					
0xEB2				EXT_PCLK_SEL			PPLL_OE	PPLL_BP	

PPLL is controlled with the following equation

FOUT = (FIN * 2 * F) / (R * NO)

With the following restriction:

	2 MHz < FIN / R < 8 MHz 200 MHz < FOUT * NO < 400 MHz 50 MHz < FOUT < 400 MHz
PPLL_F PPLL_R PPLL_OD	The F parameter in the equationThe R parameter in the equationOD of PLL, determines the NO in the equation0NOT ALLOWED1NO = 12NO = 23NO = 4
EXT_PCLK_SEL	Select the external PCLK, rather than using the internal PLL Clock
	3'b1xx Force pclk to 0 3'b000 Select PPLL_CLK 3'b010 Select PPLL_CLK/2 3'b0x1 Select P_EXT_PCLK
PPLL_OE	OE of PCLK PLL
PPLL_BP	Bypass of PCLK PLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0xEB4					MPLL_F[7:0]						
0xEB5	MPLL_F[8]	MPLL_OD		MPLL_R							
0xEB6						EXT_MCLK_SEL	MPLL_OE	MPLL_BP			

MPLL is controlled with the following equation

FOUT = (FIN * 2 * F) / (R * NO)

With the following restriction:

MPLL_BP

2 MHz < FIN / R < 8 MHz200 MHz < FOUT * NO < 400 MHz 50 MHz < FOUT < 400 MHz MPLL_F The F parameter in the equation MPLL_R The R parameter in the equation OD of PLL, determines the NO in the equation MPLL_OD 0 Not allowed 1 NO = 1NO = 2 2 3 NO = 4EXT_MCLK_SEL 1 Select the external MCLK signal rather than from PLL 0 Select the PLL output as MCLK MPLL_OE OE of MPLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0xEB8				SPLL_IREF	SPLL_	_CPX4	SPLL_	LPX4		
	SPLL_IREF		System clock PLL current control 0 Lower current (Default) 1 Higher current (30% more than setting to 0)							
	SPLL_CPX4			m clock PLI 1 uA 5 uA (De 10 uA 15 uA		mp select				
SPLL_LPX4			Syste 0 1 2 3	m clock PLI 80K Ohr 40K Ohr 30K Ohr 20K Ohr	ns ns (Default) ns					

Bypass of MPLL

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxEB9		SPLL_PD	MPLL_PD	PPLL_PD	DLL_DBG	SPLL_DBG	MPLL_DBG	PPLL_DBG		
	PPLL_PD		Powe	Power Down of PCLK PLL						
	MPLL_PD		Power Down of MPLL							
	SPLL_P	D	Power Down of SPLL							
	xPLL_DBG		Rese	Reserved for internal test purpose only						
DLL_DBG			Rese	Reserved for internal test purpose only						

Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxEBA						AIG	AIN1	
OxEBB	0	0	0	0	0	0	0	0
OxEBC	0	0	0	1	0	0	0	0
OxEBD	AIGAIN3				AIGAIN2			
OxEBE	0xEBE AIGAIN5				AIGAIN4			

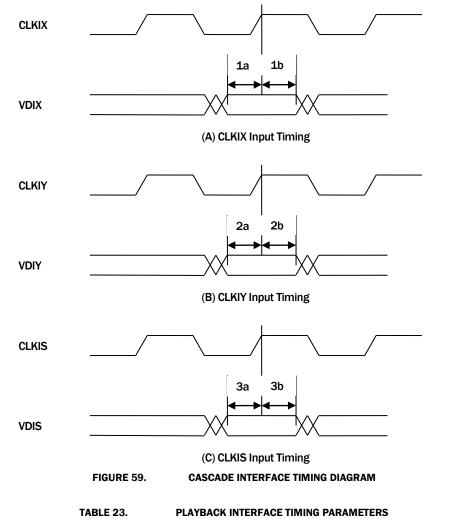
AIGAIN

Select the amplifier's gain for each analog audio input AIN1 \sim AIN5.

AINJ.	
0	0.25
1	0.31
2	0.38
3	0.44
4	0.50
5	0.63
6	0.75
7	0.88
8	1.00 (default)
9	1.25
10	1.50
11	1.75
12	2.00
13	2.25
14	2.50
15	2.75

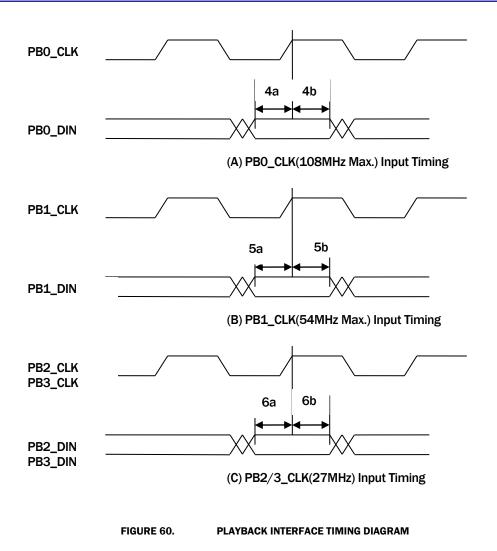
Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xEC0		VD0X_422	MPPVD0_SEL	RGBOUT_EN	VDOY_H_PD	VDOY_L_PD	VDOS_PD	VDOX_PD	
OxEC1		DAC1	_GAIN		DACO_GAIN				
0xEC2		DACR	_GAIN		DACG_GAIN				
0xEC3	V_DAC_PD V_DAC1_PD V_DAC0_PD RGB_DAC_PD				DACB_GAIN				
OxEC4	EXT_VADC	EXT_AADC	A_DAC_PD	A_ADC_PD		V_AD	C_PD		

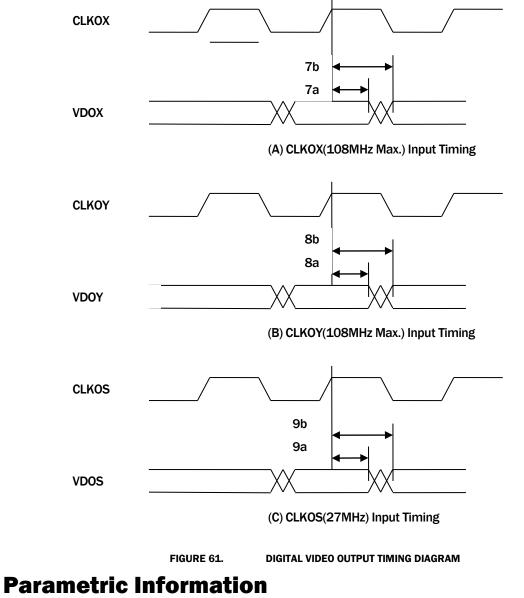
VDOX_PD	1 0	Set VDOX to 0 Enable VDOX Output
VDOS_PD	1 0	Set VDOS to 0 Enable VDOS Output
VDOY_L_PD	1 0	Set VDOY[7:0] to 0 Enable VDOY[7:0] Output
VDOY_H_PD	1 0	Set VDOY[15:8] to 0 Enable VDOY[15:8] Output
RGBOUT_EN	1 0	Enable RGB Output on PINs shared with LVDS Disable RGB Output on PINs shared with LVDS
MPPVDO_SEL	1 0	Set MPP PIN output as Digital B component Set MPP PIN output as VDOX[15:8]
VDOX_422	1 0	Select digital display output as 422 interlaced digital video output. The VS/HS/DE is through the VGA_VS / VGA_HS / VGA_DE pins. The Y component is through the MPP_VDO (VDOX[15:8]) pins. The UV component is through VDOX[7:0] pins. Select RGB output instead.
DACxx_GAIN	The vid	eo gain control for CVBS0/1 and RGB DACs.
xxx_PD	1	Power down the ADC / DACs to save power. This applies to V_DAC, V_DAC0, V_DAC1, A_DAC, RGB_DAC, A_ADC, V_ADC
EXT_AADC	Interna	I Testing feature
EXT_VADC	Interna	I Testing feature


Address	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xEC5					VGA_CLK_POL	VGA_DAC_CLK_POL	DAC0_CLK_POL	DAC1_CLK_POL
0xEC8		0			0		A_DAC_BIAS_SEL	

VGA_CLK_POL	Change the VGA output clock polarity
VGA_DAC_CLK_POL	Change the polarity of the clock used by the VGA DACs
DACO_CLK_POL	Change the polarity of the clock used by CVBSO DAC
DAC1_CLK_POL	Change the polarity of the clock used by CVBS1 DAC
A_DAC_BIAS_SEL	Bias Selection 0 Use AVDD33 as the reference voltage 1 Use bandgap voltage as the reference

AC Timing


TABLE 22.	CASCADE CLOCI	K TIMING PARAMETE	RS		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Setup from VDIX to CLKIX	1a	3			ns
Hold from CLKIX to VDIX	1b	3			ns
Setup from VDIY to CLKIY	2a	3			ns
Hold from CLKIY to VDIY	2b	3			ns
Setup from VDIS to CLKIS	За	3			ns
Hold from CLKIS to VDIS	3b	3			ns


PARAMETER	SYMBOL	MIN	TYP	ΜΑΧ	UNITS
Setup from PB0_DIN to PB0_CLK	4a	3			ns
Hold from PB0_CLK to PB0_DIN	4b	3			ns
Setup from PB1_DIN to PB1_CLK	5a	3			ns
Hold from PB1_CLK to PB1_DIN	5b	3			ns
Setup from PB2/3_DIN to PB2/3_CLK	6a	3			ns
Hold from PB2/3_CLK to PB2/3_DIN	6b	3			ns

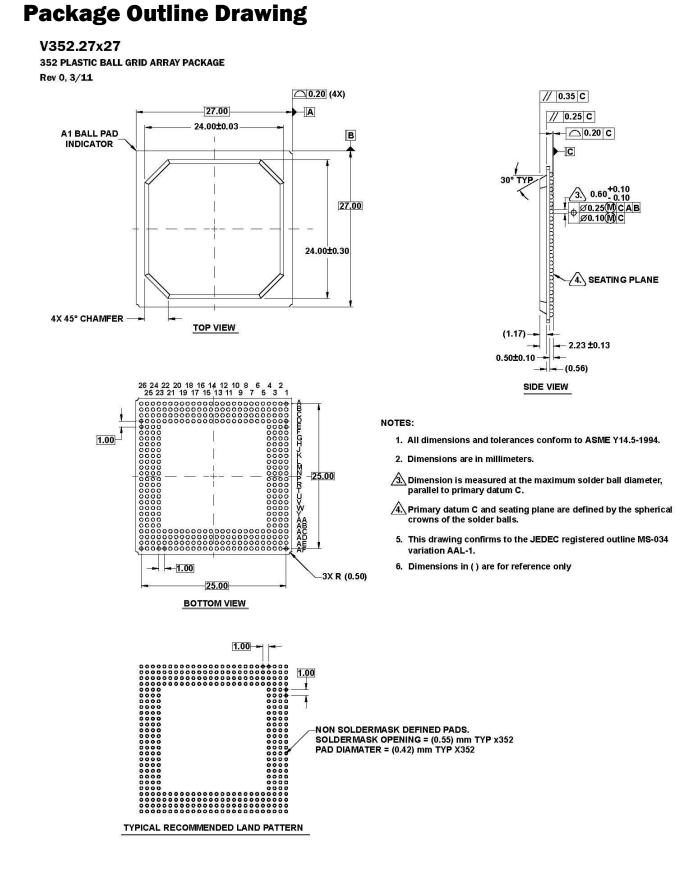
RENESAS

TABLE 24.	DIGITAL VIDEO OUT	PUT TIMING PARAM	ETERS		·
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Hold from CLKOX to VDOX	7a	2			ns
Delay from CLKOX to VDOX	7b			7.2	ns
Hold from CLKOY to VDOY	8a	2			
Delay from CLKOY to VDOY	8b			7.2	
Hold from CLKOS to VDOS	9a	5			
Delay from CLKOS to VDOS	9b			31.8	

AC/DC Electrical Parameters

TABLE 25.

CHARACTERISTICS


PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS
POWER SUPPLY					
Power Supply — Digital I/O	VVDDO	2.97	3.3	3.63	V
	Ivddo		120		mA
	Pvddo		396		mW
Power Supply – LVDS I/O, SPLL	Vlvddo, Vvddspll	2.97	3.3	3.63	v
	Ilvddo, Ivddspll		5		mA
	Plvddo, Pvddspll		16.5		mW
Power Supply — SSTL I/0	VVDDPSSTL	2.3	2.5	2.7	V
	IVDDPSSTL		130		mA
	PVDDPSSTL		325		mW
Power Supply — Analog CVBS A/D	VVDDVADC	2.97	3.3	3.63	V
	IVDDVADC		60		mA
	PVDDVADC	120 396 2.97 3.3 3.63 16.5 16.5 2.3 2.5 2.7 130 130 2.3 2.5 2.7 130 325 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 2.97 3.3 3.63 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.0000 4.000		mW	
Power Supply — Analog CVBS D/A	Vvdddvdac, Vvddavdac	2.97	3.3	3.63	v
			80		mA
	PVDDVDAC		264		mW
Power Supply — Analog RGB D/A	Vvdddrgb, Vvddargb	2.97	3.3	3.63	v
	IVDDRGB		60		mA
	PVDDRGB		198		mW
Power Supply — Audio Decoder A/D, D/A	Vvddaadc, Vvddadac,	2.97	3.3	3.63	v
	Ivddaadc, Ivddadac,		20		mA
	Pvddaadc, Pvddadac,		66		mW
Power Supply — DLL, SSTL Core, Digital Core, MPLL, PPLL	Vvdddll, Vvddsstl, Vvddi, Vvddmpll, Vvddppll	1.08	1.2	1.32	v
	Ivdd		320		mA
	Pvdd		384		mW
Voltage Reference for SSTL PAD	VVREFSSTL		1.25		V
	IVREFSSTL		2		mA
	PVREFSSTL		2.5		mW
Ambient Operating Temperature	Та	-40		+85	°C
DIGITAL INPUTS					
Input High Voltage (TTL)	Viн	2.0		3.6	V
Input Low Voltage (TTL)	VIL	-0.3		0.8	V

PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS
Input High Current (VIN = VDD)	Ін			10	μ Α
Input Low Current (VIN = VSS)	lı.			-10	μ Α
Input Capacitance (f =1 MHz, V IN = 2.4 V)	C IN		6		pF
DIGITAL OUTPUTS					
Output High Voltage (Іон = -4mA)	Vон	2.4		VDD33	V
Output Low Voltage (Io∟ = 4mA)	Vol			0.4	V
3-State Current	loz			10	μΑ
Output Capacitance	Co		6		рF
ANALOG INPUT	ł	•		•	•
Analog Pin Input Voltage at VIN1A, VIN1B, VIN2A, VIN2B, VIN3, VIN3B, VIN4A, VIN4B, AIN1, AIN2, AIN3, AIN4, AIN5 Input Range	Vi	0	1.0	2.0	Vpp
(AC Coupling Required)	•				
Analog Pin Input Capacitance	C A		6		pF
ADCS			10		hite
ADC Resolution	ADCR				bits LSB
ADC Integral Non-Linearity	ADNL		± 1		LSB
ADC Differential Non-Linearity ADC Clock Rate		24	±1 27	30	MHz
HORIZONTAL PLL	fadc	24	21	- 30	
Line Frequency (50Hz)	f _{LN}		15.625		KHz
Line Frequency (60Hz)	f _{LN}		15.025		KHZ
Static Deviation	Δfh		15.754	6.2	%
	ΔIH			0.2	70
Subcarrier Frequency (NTSC-M)	fsc		3579545		Hz
Subcarrier Frequency (PAL-BDGHI)	fsc		4433619		Hz
Subcarrier Frequency (PAL-M)	fsc		3575612		Hz
Subcarrier Frequency (PAL-N)	fsc		3582056		Hz
Lock In Range	Δf _H	± 450			Hz
CRYSTAL SPEC		_100			
Nominal Frequency (Fundamental)			27		MHz
Deviation				±50	ppm
Temperature Range	Та	-40		<u> </u>	°C
Load Capacitance	CL		20		pF
Series Resistor	RS		80		Ohm

NOTE:

1. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Life Support Policy

These products are not authorized for use as critical components in life support devices or systems.

Revision History

	REVISION	DATE	CHANGES NOTE
ĺ	FN7743.0	August 17, 2012	Initial release.

© Copyright Intersil Americas LLC 2012. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/product_tree

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at http://www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see http://www.intersil.com

FN7743 Rev.0.00 August 17, 2012

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А