

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

Preface		5
	. Product Overview	
•	1.1 Introduction	9
	1.2 What is the MCP3905A/06A Evaluation Board?	9
	1.3 What the MCP3905A/06A Evaluation Board Kit Includes	
Chapter 2	. Installation and Operation	
-	2.1 Introduction	11
	2.2 Features	12
	2.3 Getting Started	12
	2.4 MCP3905A/06A Evaluation Board Overview	14
	2.5 Functional Block Descriptions	15
Appendix	A. Schematics and Layouts	
	A.1 Introduction	19
	A.2 Schematics and PCB Layout	19
	A.3 Board Schematic	20
	A.4 Board Layout - Top Layer and Silk-screen	21
	A.5 Board Layout – Bottom Layer	22
Appendix	B. Bill Of Materials (BOM)	
Worldwid	e Sales and Service	26

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP3905A/06A Evaluation Board. Items discussed in this chapter include:

- Document Layout
- · Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP3905A/06A Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. "Product Overview" Important information about the MCP3905A/06A Evaluation Board.
- Chapter 2. "Installation and Operation" Includes a detailed description of each block and instructions on how to get started with this board.
- Appendix A. "Schematics and Layouts" Shows the schematic and board layout diagrams for the MCP3905A/06A Evaluation Board.
- Appendix B. "Bill Of Materials (BOM)" Lists the parts used to build the MCP3905A/06A Evaluation Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples
Arial font:		
Italic characters	Referenced books	MPLAB [®] IDE User's Guide
	Emphasized text	is the only compiler
Initial caps	A window	the Output window
	A dialog	the Settings dialog
	A menu selection	select Enable Programmer
Quotes	A field name in a window or dialog	"Save project before build"
Underlined, italic text with right angle bracket	A menu path	File>Save
Bold characters	A dialog button	Click OK
	A tab	Click the Power tab
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>
Courier New font:		
Plain Courier New	Sample source code	#define START
	Filenames	autoexec.bat
	File paths	c:\mcc18\h
	Keywords	_asm, _endasm, static
	Command-line options	-0pa+, -0pa-
	Bit values	0, 1
	Constants	0xFF, 'A'
Italic Courier New	A variable argument	file.o, where file can be any valid filename
Square brackets []	Optional arguments	mcc18 [options] file [options]
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>
	Represents code supplied by user	<pre>void main (void) { }</pre>

RECOMMENDED READING

This user's guide describes how to use MCP3905A/06A Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

MCP3905A Data Sheet, "Energy Metering IC with Active Real Power Pulse Output" (DS21948)

This data sheet provides detailed information regarding the MCP3905 device.

AN994 "IEC Compliant Active Energy Meter Design Using The MCP3905A/06A" (DS00994)

This application note documents the design decisions associated with this reference design.

MCP3905A/06A Energy Meter Reference Design (DS51565)

This reference design is a stand-alone, low-cost energy meter. It can act as either a stand-alone energy meter, or as the analog front-end design for LCD microcontroller-based meters. This reference design is compliant with EMC requirements per energy metering standards IEC62053 and legacy IEC61036, IEC1046 and IEC687.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

DOCUMENT REVISION HISTORY

Revision B (August 2009)

• Update from MCP3905/06 to MCP3905A/06A devices.

Revision A (August 2005)

• Initial Release of this Document.

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP3905A/06A Evaluation Board and covers the following topics:

- What is the MCP3905A/06A Evaluation Board?
- What the MCP3905A/06A Evaluation Board kit includes

1.2 WHAT IS THE MCP3905A/06A EVALUATION BOARD?

The MCP3905A/06A Evaluation Board is designed to test a variety of meter designs using the MCP3905A/06A energy metering Integrated Circuit (IC). Stand-alone MCP3905A energy meter designs, as well as those using a PICmicro[®] Microcontroller Unit (MCU), are easily designed using this evaluation board as the prototype Analog Front-End (AFE).

1.3 WHAT THE MCP3905A/06A EVALUATION BOARD KIT INCLUDES

This MCP3905A/06A Evaluation Board Kit includes:

- The MCP3905A/06A Evaluation Board (with MCP3905A installed)(102-00057)
- Important Information Sheet

NOTES:			

Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP3905A/06A Evaluation Board provides easy evaluation of the MCP3905A energy-metering IC to metering customers. High-voltage AC input line and load connections, including the necessary space for current shunt or Current Transformer (CT) evaluation, are all included. Jumpers with shunts and a reset switch are connected to the MCP3905A/06A device to further facilitate device evaluation and meter design. Multiple input channel configuration circuits are included for both differential and single-ended signals. LEDs for evaluating the MCP3905A/06A output visually are on-board. A standard 14-pin PICtail™ daughter board header is included for a connection to a variety of Microchip PICmicro® microcontroller demonstration (demo) boards, allowing for PIC16, PIC18 and dsPIC® DSC development system meter designs. This connection can also be isolated using an on-board, optical-isolation IC.

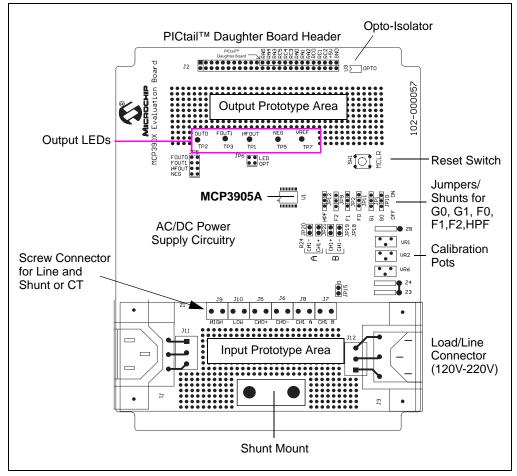
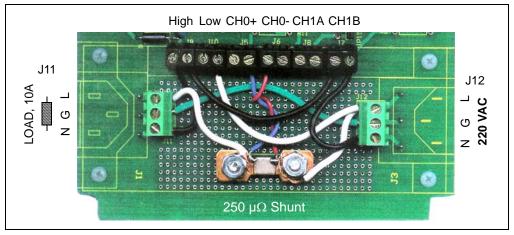


FIGURE 2-1: MCP3905A/06A Evaluation Board.

2.2 FEATURES

The MCP3905A/06A Evaluation Board has the following features:


- Large space for easy connection to AC line and loads provide area for experiments using different current-sensing elements
- Easy connection to both PICDEM™ demonstration boards for a variety of PICmicro® MCU-based meter designs
- Jumpers and shunts for simple device configuration
- On-board, low-cost AC-to-DC power supply circuitry to demonstrate the low-cost MCP3905 AFE design used in the MCP3905A/06A Energy Meter Reference Design (DS51565)
- EMC immunity and Printed Circuit Board (PCB) design as used in the MCP3905A/06A Energy Meter Reference Design (DS51565)
- Designed to fit inside recommended plastic enclosure for safe, high-voltage demonstrations and experiments (enclosure is optional and is not included)

2.3 GETTING STARTED

The following example is given to describe how to use this evaluation board using a current-sensing shunt, 220 VAC line voltage and a 10A load. All connections described in this section are dependent on the choice of current-sensing element. A 250 $\mu\Omega$ shunt is selected as the current-sensing element.

2.3.1 Step 1: Install Current-Sensing Element and Make Appropriate Input Connections

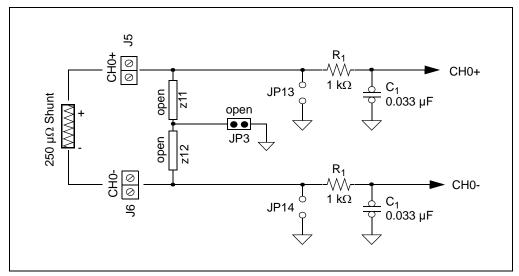

Use the input prototype area to connect the line/load and current-sensing elements to the appropriate screw-type connector. An example of connecting the shunt is shown in Figure 2-2. Please note that the phase-side of the line should be used as the GND reference to the MCP3905A/06A Evaluation Board when using the AC/DC power supply circuit in shunt examples like the one in Figure 2-2.

FIGURE 2-2: Example Input Prototype Area Connections Using Shunt. The system is biased to the line-side of the two-wire power supply.

2.3.2 Step 2: Select Channel 0 Input Method

Resistor sockets R_{11} and R_{12} should be left open when using a shunt. JP3, JP13 and JP14 should also be open. This configuration puts the shunt across the channel inputs differentially with the users option of a RC filter.

FIGURE 2-3: Channel 0 Jumpers for 250 $\mu\Omega$ Shunt Selection.

2.3.3 Step 3: Select Channel 1 Input Method

Using JP19, JP20 and JP21, select if Channel 1 will be single-ended or differential, and which input will be tied to the voltage divider and potentiometer. In Figure 2-4, the voltage divider and potentiometer are connected to the positive input, while the negative input is connected to $A_{\mbox{\footnotesize GND}}$ through the RC.

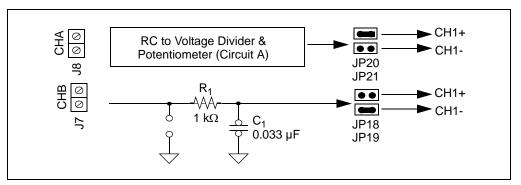


FIGURE 2-4: Channel 1 Input Method Example.

2.3.4 Step 4: Select desired output evaluation method

Jumpers JP5 and JP6 select the output evaluation method. In this example, we are selecting HF_{OLIT} connected to the LED for blink.

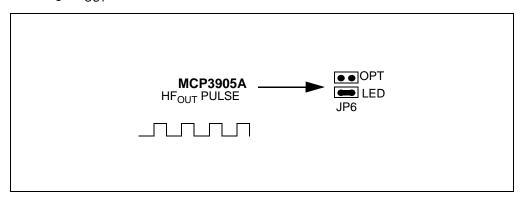


FIGURE 2-5: Connecting the MCP3905A High-Frequency Output to the LED.

2.3.5 Step 5: Select +5V Source

With the connections for J9 and J11 made in Figure 2-2, the 220V AC/DC power supply circuit can be used as the +5V supply. Here we put JP4 in the "INT" position for internal connection.

2.3.6 Step 6: Connect Line and Load and Observe MCP3905A Output

Once all jumper positions have been selected, connecting 220V with the correct L,G,N connections and an appropriate load (10A in this example) will power both the MCP3905A/06A Evaluation Board and create the MCP3905A output (LED, BLINKING) in Figure 2-5.

2.4 MCP3905A/06A EVALUATION BOARD OVERVIEW

The functional blocks of the MCP3905A/06A Evaluation Board will be described in this section. For more detailed information regarding design decisions and approaches to IEC1036 compliance, refer to AN994, "IEC Compliant Active Energy Meter Design Using The MCP3905A/06A" (DS00994). For a detailed circuit schematic, refer to Appendix A. "Schematics and Layouts" and Appendix B. "Bill Of Materials (BOM)" for a list of the parts used to build the MCP3905A/06A Evaluation Board.

2.5 FUNCTIONAL BLOCK DESCRIPTIONS

2.5.1 Input Prototype Area

All line/load, shunt and CT connections are to be made next to the screw-type connectors J5-J12. This area includes two mounting holes for a standard shunt connector. All high-voltage connections go onto this prototype area.

2.5.2 High-Voltage Input Connections (J5-12)

These screw-type connections are for shunts, CTs, line and load. The shunt resistance should be placed in parallel with J5 and J6. A variety of experiments using shunts and CTs can be performed here in conjunction with the input prototype area.

J9 and J10 feed the AC/DC power supply circuitry. J10 is the reference connection to the entire board. Shunt-type meters should be connected to the line-side. One example is given in the figure below.

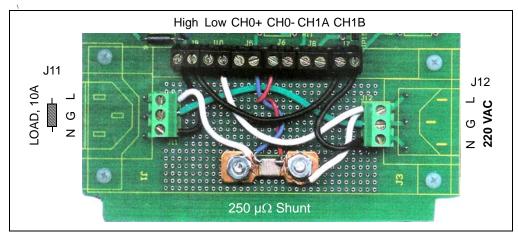
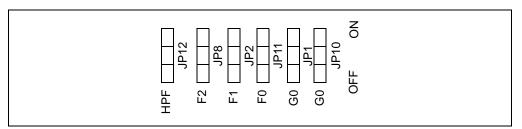
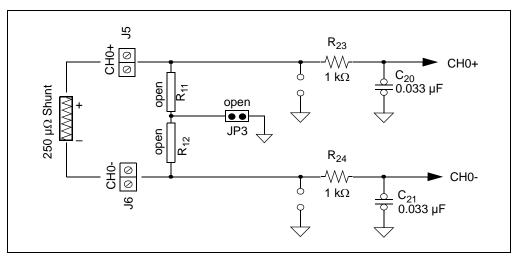
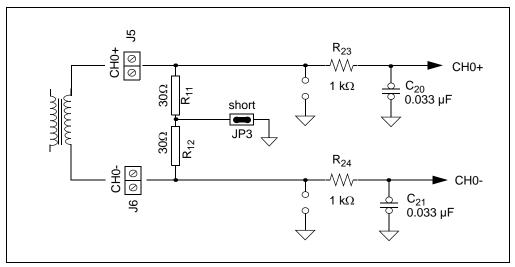


FIGURE 2-6: Example Wiring Using Two-Wire System with Shunt.

2.5.3 Jumpers and Shunts for MCP3905 Gain and Frequency Constant F_C Selection (JP1, 2, 9-12)

Jumpers and shunts for both logic-high and logic-low are included for all gain and frequency constant selections, with filter options Off and On columns being clearly labelled.


FIGURE 2-7: MCP3905A Jumper Selections.

2.5.4 Jumpers and Shunts for MCP3905A Channel 0 Input Configurations (JP5, JP6, ZN-N)

Channel 0 is a differential input to the MCP3905A device and is intended for the current-sensing channel of the energy meter. Channel 0 on this evaluation board contains resistor sockets for CT burden resistors, as well as a RC filter on each input, with the option of shorting either input to ground. Two examples of jumper configuration are given in Figure 2-8 and Figure 2-9.

FIGURE 2-8: Channel 0 Jumpers for 250 $\mu\Omega$ Shunt Selection.

FIGURE 2-9: Example of Channel 0 Jumpers with 60Ω Burden Resistor for Connection to Current Transformer.

2.5.5 Channel 1 RC Circuit with A_{GND} Option – Circuit A

Channel 1 is a differential input with two possible circuit selections for each single-ended input (circuit A and circuit B). Using the MCP3905A/06A Evaluation Board, either of the inputs can be connected to the RC or to $A_{\mbox{\footnotesize{GND}}}$, allowing single-ended or differential experiments. JPX should be shorted to ground for all single-ended input configurations.

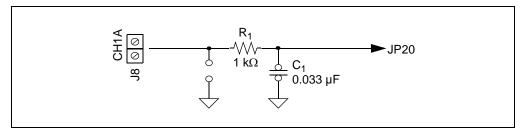
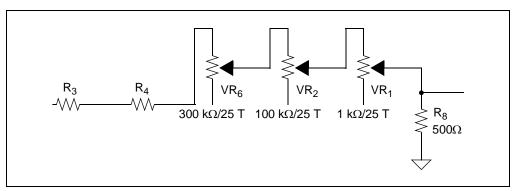



FIGURE 2-10: Channel 1 RC Circuit A.

2.5.6 Channel 1 Voltage Divider Circuit and Calibration Potentiometer – Circuit B

Circuit B includes 4 resistor sockets and a mechanical potentiometer. This allows for experiments calibrating the output of the MCP3905A by changing Channel 1's input signal amplitude.

FIGURE 2-11: Voltage Divider on Channel 1 Including Potentiometers VR_1 , VR_2 and VR_6 for Calibration Experiments, Labeled Circuit B on the PCB Silk-Screen.

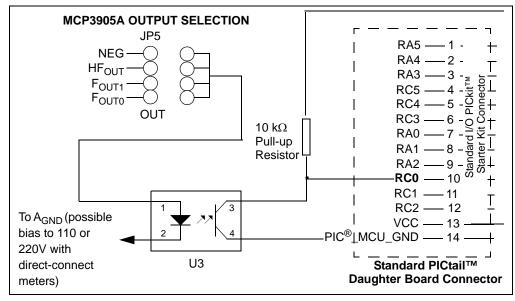
2.5.7 MCP3905A

Center-of-board, 24-lead surface-mount package. Refer to the MCP3905A Data Sheet, "Energy Metering IC with Active Real Power Pulse Output" (DS21948) for a detailed description.

2.5.8 DC Power Supply

A low-cost DC power supply circuit is included on the MCP3905A/06A Evaluation Board. This is the same DC power supply circuit used in the MCP3905A/06A Energy Meter Reference Design. The DC power supply is created from a half-wave zener diode-limited AC signal feeding a 7805 +5V regulator.

 C_{17} and C_{16} divide the AC signal coming directly from the line, with their values depending on the AC source expected. The board comes populated with a series capacitor of 0.47 μ F, designed to divide down an AC line voltage of 220 V_{RMS} . If the DC power supply is to be used with a 120 V_{RMS} AC source capacitor, C_{16} should change to 1 μ F. Refer to **Appendix B. "Bill Of Materials (BOM)"** for detailed part information.


For more detail on this circuit design, as well as for 120V circuit specifications, refer to AN994 "IEC Compliant Active Energy Meter Design Using The MCP3905A/06A" (DS00994).

2.5.9 Output Prototype Area

A second prototype area is included for experiments using the MCP3905A output. All MCP3905A outputs (F_{OUT0} , F_{OUT1} , HF_{OUT} , REVP) are brought out to the prototype area.

2.5.10 Connecting the MCP3905A/06A Evaluation Board to a PICDEM™ Demonstration Board

A standard 14-pin PICtail™ daughter board connector is included on this board, as shown in Figure 2-12. Any number of MCP3905A with PICmicro MCU meter designs can be developed. An optical isolator is included with the MCP3905A/06A Energy Meter Reference Design as an additional level of protection for direct-connect meters using a shunt. It is connected to the selected output of the MCP3905A via JP5. A pull-up resistor is required on the output of the optical isolator to allow the selected logic signal to appear on the PICmicro MCU-based demo board, which is isolated entirely from the MCP3905A/06A Evaluation Board. The output of the optical isolator is connected to RC0 on this connector, as shown in Figure 2-12. RC0 was chosen to be the default output due to the timer1 clock input on many PICmicro® MCUs.

FIGURE 2-12: Optical isolation of the MCP3905A outputs to the PICkitTM header. The output is connected to RC0 using a 10 kΩ pull-up resistor to the PICtailTM daughter board header +5V and the PICmicro[®] MCU header, GND.

Appendix A. Schematics and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP3905A/06A Evaluation Board User's Guide:

- Board Schematic
- Board Top Layer and Silk-Screen
- Board Bottom Layer

A.2 SCHEMATICS AND PCB LAYOUT

The layer order is shown in Figure A-1.

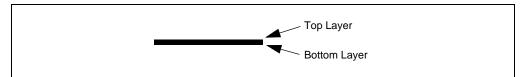
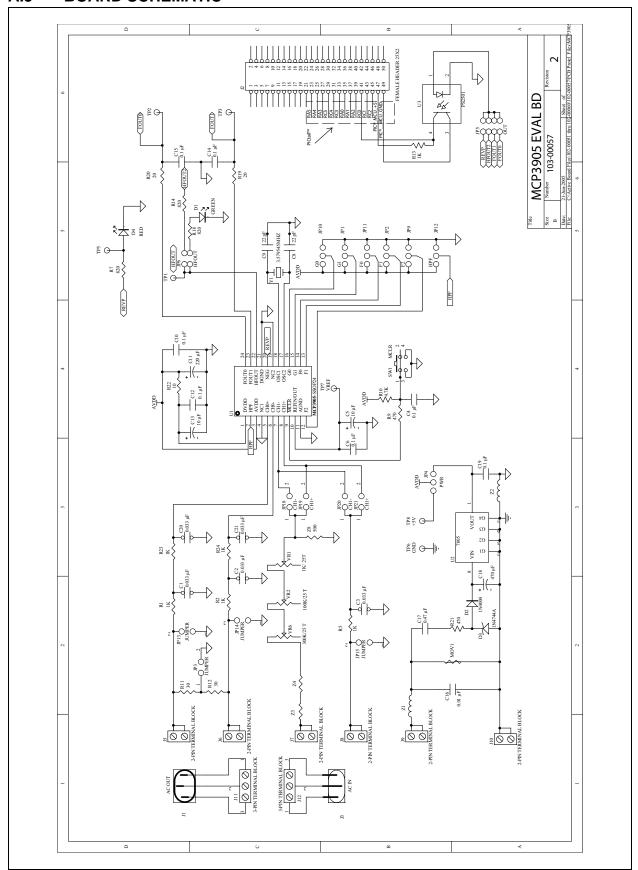
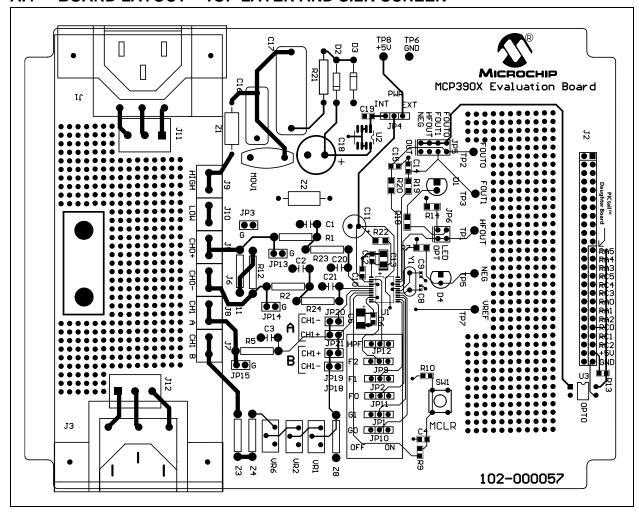
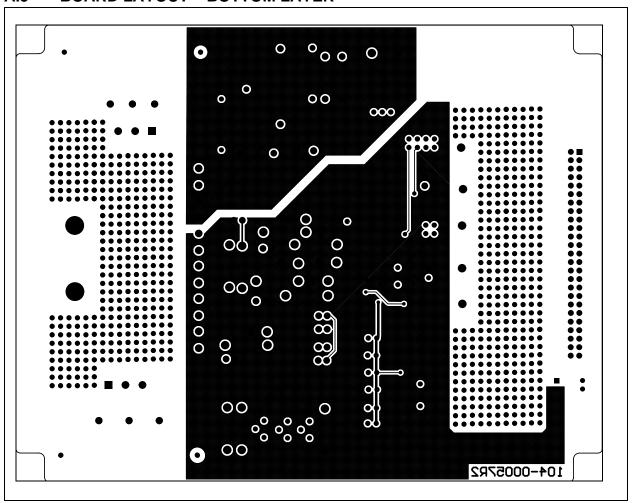




FIGURE A-1: Layer Order.


A.3 BOARD SCHEMATIC

A.4 BOARD LAYOUT - TOP LAYER AND SILK-SCREEN

A.5 BOARD LAYOUT – BOTTOM LAYER

Appendix B. Bill Of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (BOM)

Qty	Reference	Description	Manufacturer	Part Number
5	C1, C2, C3, C20, C21	033 μF 100V 10% MONOLIT CERM CAP	EPCOS	B37987M1333K000
7	C4, C6, C10, C12, C14, C15, C19	CAP .1 μF 16V CERAMIC X7R 0805	Panasonic [®] - ECG	ECJ-2VB1C104K
2	C5, C13	CAPACITOR TANT 10 µF 6.3V 20% SMD	Nichon	F930J106MAA
2	C8, C9	CAP 22 PF 50V CERAMIC 0402 SMD	Panasonic - ECG	ECJ-0EC1H220J
1	C11	CAP 220 µF 10V ELECT FC RADIAL	Panasonic - ECG	EEU-FC1A221S
1	C16	01 µF INTERFERFENCE METAL CAP	Panasonic - ECG	ECQ-U2A103MN
1	C17	.47 μF/630VDC METAL POLY CAP	Panasonic - ECG	ECQ-E6474KF
1	C18	CAP 470 µF 35V ELECT FC RADIAL	Panasonic - ECG	EEU-FC1V471
30	C1, C2, C3, C20, C21, R1, R2, R5, R11, R12, R23, R24, Z3, Z4, Z8	PIN RECPT .015/.025 DIA 0252 SER Note* - 2 Pins per Location	Mill-Max [®] Manufacturing Corp.	0252-0-15-15-30-27-10-0
1	D1	LED GREEN CLEAR 5MM ROUND	Panasonic - SSG	LN31GCPH
1	D2	RECTIFIER GPP 400V 1A DO-41	Diodes Inc	1N4004-T
1	D3	DIODE ZENER 15V 1W 5% DO-41	Diodes Inc	1N4744A-T
1	D4	LED RED CLEAR 5MM ROUND	Panasonic - SSG	LN21RCPH
1	J1	AC OUTPUT CONN Top or Bottom placement	SCHURTER	4300.0251
1	J2	"DO NOT INSTALL"	_	_
1	J3	AC INPUT CONN Top or Bottom placement	SCHURTER	GSP1.8101.1
6	J5, J6, J7, J8, J9, J10	TERMINAL BLOCK 5MM VERT 2POS PCB	Jameco Valuepro	TERM BLK-R
4	J1 & J3	SCREW MACH PHIL 4-40X3/8 NYLON	Building Fasteners	NY PMS 440 0038 PH
4	J1 & J3	NUT HEX 4-40 NYLON	Building Fasteners	NY HN 440
7	JP1, JP2, JP4, JP9, JP10, JP11, JP12	HEADER, .1"ST MALE, 1RW, 3PIN, (10) .025"PST, .23"GOLDTAIL	Jameco Valuepro	7000-1X3SG-R
8	JP3, JP15, JP13, JP14, JP18, JP20, JP21, JP19	"HEADER, .1""ST MALE, 1RW, 2PIN, (10) .025""PST, .21""GOLDTAIL	Jameco Valuepro	7000-1X2SG-R
1	JP5	HEADER,.1"ST MALE,2RW,8PIN, .025"PST,.23"GOLDTAIL (10)	Jameco Valuepro	0-2X4SG-R

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED)

Qty	Reference	Description	Manufacturer	Part Number
1	JP6	HEADER, ST MALE, 2RW, 4PIN, .1""CTR, .025 PST,	Jameco Valuepro	2X2SG-R
2	J11, J12	TERMINAL BLOCK 5MM VERT 3POS PCB	Jameco Valuepro	DT128V3P-R
15	JP1, JP2, JP3, JP4, JP5, JP6, JP9, JP10, JP11, JP12, JP13, JP14, JP15, JP19, JP20	.100" Shorting Block with Handle	Jameco Valuepro	2012JH-R
1	MOV1	Suppressors;Clamping Voltage Max.:710V; Peak Surge	EPCOS	SIOV-S20K275
1	PCB	RoHS Compliant Bare PCB, MCP3905A/06A Evaluation Board	Microchip Technology Inc.	104-00057
5	R1, R2, R5 R23, R24	RES 1.00K OHM 1/4W 1% METAL FILM	Yageo [®] America	MFR-25FBF-1K00
3	R7, R14, R18	RES 820 OHM 1/4W 5% 1206 SMD	Yageo America	RC1206JR-07820RL
1	R9	RES 475 OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF4750V
1	R10	RES 4.75K OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF4751V
2	R11, R12	RES 30.1 OHM 1/4W 1% METAL FILM	Yageo America	MFR-25FBF-30R1
1	R13	RES 10.0K OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF1002V
2	R19, R20	RES 20.0 OHM 1/8W 1% 1206 SMD	Panasonic - ECG	ERJ-8ENF20R0V
1	R21	RES 470 OHM 1W 5% METAL OXIDE	Yageo America	RSF100JB-470K
1	R22	RES 10 OHM 1/8W 1% 1206 SMD	Panasonic - ECG	ERJ-8ENF10R0V
1	SW1	SWITCH TACT 6MM MOM 100GF	Omron Electronics Inc.	B3F-1000
7	TP1, TP2, TP3, TP5, TP6, TP7, TP8	"DO NOT POPULATE"	Keystone Electronics [®]	5012
1	U1	MCP3905A PWR Meter Chip	Microchip Technology Inc.	MCP3905A-I/SS
1	U2	IC VOLT REG 5V 100MA 8-SOIC	Fairchild Semiconductor®	KA78L05AD
1	U3	1 CHANNEL OPTO COUPLER TRANS DIP	NEC	PS2501-1-A
1	VR1	POT 1.0K OHM 3/8" SQ CERM SL MT	Bourns Inc.	3296Y-1-102LF
1	VR2	POT 100K OHM 3/8" SQ CERM SL MT	Bourns Inc.	3296Y-1-104LF
1	VR6	POT 500K OHM 3/8" SQ CERM SL MT	Bourns Inc.	3296Y-1-504LF
1	Y1	CRYSTAL 3.579545MHZ 17PF HC49/US	ECS Inc.	ECS-35-17-4X
2	Z1, Z2	BEAD CORE SINGLE 3.5X9MM AXIAL	Panasonic - ECG	EXC-ELSA39
2	Z3, Z4	RES332KOHM1/4W1%METALFILM Socket	Yageo America	MFR-25FBF-332K
1	Z8	RES 499 OHM 1/4W 1% METAL FILM	Yageo America	MFR-25FBF-499R
5	EA corner of PCB and on in the middle	BUMPON TALL TAPER SQ .50X.23 BK	3M/ESM	SJ-5518 (BLACK)

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

Bill Of Materials	(BOM)
-------------------	-------

	Dili Oi Materiais (BOM)
NOTES:	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Roston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Tel: 852-2401-1200 Fax: 852-2401-3431

Hong Kong

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung

Tel: 886-7-536-4818

Fax: 886-7-536-4803 Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А