
Microcontrollers

XMC1200
Microcontroller Series
for Industrial Applications

Board Manual
V1.0 2014-11

RGB LED Light ing Shield with
XMC1202 for Arduino
 Introduction
 Board Description
 Getting Started
 I²C Master-Slave Communication
 Programming a master Arduino board

to control the RGB LED Lighting Shield
 Setting the Parameters for YOUR LED Lamp

Edition 2014-11

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.

RGB LED Lighting Shield with XMC1202 for Arduino

Revision History

Revision History

Page or Item Subjects (major changes since previous revision)

V1.0, 2014-11

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™,
HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™,
OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™,
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.).
EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique
Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL
ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of
MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™
Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited.
TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™,
PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated.
VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

RGB LED Lighting Shield with XMC1202 for Arduino

Table of Contents

Board Manual 4 V1.0, 2014-11

Table of Contents

Revision History ..3

Table of Contents ..4

About this document...5

1 Introduction ..7
1.1 Key Features ..7
1.2 Key Features of the XMC1200 MCU series...10
1.3 Getting started..10

2 Board Description ..12
2.1 Specifications ...12
2.2 Programming Access ...12
2.3 Schematics and Layout ..13

3 Getting Started ...16

4 I
2
C Master-Slave Communication Protocol ...18

4.1 Brief Description of I
2
C Functions ..18

2.1.1 Command Overview Table...19
4.2 Command Description..20
4.2.1 Colour Intensity (INTENSITY_RED, INTENSITY_GREEN, INTENSITY_BLUE, INTENSITY_RGB)20
4.2.2 Peak Current Reference (CURRENT_RED, CURRENT_GREEN, CURRENT_BLUE)....................22
4.2.3 Off-Time (OFFTIME_RED, OFFTIME_GREEN, OFFTIME_BLUE) ..23
4.2.4 Walk time (WALKTIME) ...25
4.2.5 Dimming (DIMMINGLEVEL) ..26
4.2.6 Fade Rate (FADERATE)..31
4.2.7 DMX512 Control Commands ...32
4.2.8 Changing the RGB LED Shield’s Address (CHANGEADDRESS)...33
4.2.9 Configuring the RGB LED Shield (SAVEPARAMETERS) ...34
4.2.10 Request for Data (I2CREAD commands) ..34
4.2.11 Directly Accessing Registers..35

5 Arduino Compatibility..38
5.1 Simple Test Program ...38
5.2 Safe Configuration (DEFAULT)..40
5.3 Configuring the RGB LED Shield ...41
5.4 Parameters optimized for Traxon Nano Liner XB-9 with 24V Input Voltage......................................42
5.5 Parameters optimized for Traxon Nano Liner XB-18 with 48V Input Voltage....................................46

6 Parameter Setup for YOUR LED Lamp...49

7 Appendix ...52
7.1 Description of the I

2
C Functions Provided ...52

7.1.1 I2CWRITE2BYTES (ADDRESS, COMMAND, DATA)...52
7.1.2 I2CWRITE6BYTES (ADDRESS, COMMAND, DATA, DATA, DATA) ...52
7.1.3 I2CWRITE12BYTES (ADDRESS, COMMAND, DATA, DATA, DATA, DATA, DATA, DATA)53
7.1.4 I2CREAD (ADDRESS, COMMAND)..54
7.1.5 I2CREAD_DIRECTACCESS (ADDRESS, REGISTER ADDRESS) ...54
7.1.6 I2CWRITE_DIRECTACCESS (ADDRESS, COMMAND, REGISTER ADDRESS, DATA)55
7.1.7 I2CCHANGEADDRESS (ADDRESS, NEW ADDRESS)...56
7.1.8 I2CDMX (ADDRESS, DMXCOMMAND)..56
7.1.9 I2CSAVEPARAM (ADDRESS) ..57

RGB LED Lighting Shield with XMC1202 for Arduino

Table of Contents

Board Manual 5 V1.0, 2014-11

About this document

Scope and purpose

This document describes how to use the RGB LED Shield with XMC1202 for Arduino.

Intended audience

Engineers, hobbyists and students who want to add flicker-free LED control to Arduino projects.

Related information

Table 1 Supplementary links and document references

Reference Description

XMC Microcontrollers 32-bit Industrial Microcontroller based on ARM®
Cortex™-M from Infineon

XMC1000 Reference Manuals Documents section contains reference information for
XMC1000 microcontrollers

XMC Development Support XMC Development Tools

Arduino Home Page All information on Arduino

Arduino Uno Product Page Arduino Uno R3 description

Infineon Arduino Page Boards offered by Infineon for Arduino

DAVE™ Development Platform All details on DAVE™ IDE

J-Link Debug Probes Product Page Contains information on J-Link Debug Probes

http://www.infineon.com/xmc
http://www.infineon.com/xmc1000
http://www.infineon.com/xmc-dev
http://www.arduino.cc/
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.infineon.com/arduino
http://www.infineon.com/dave
http://www.segger.com/jlink-debug-probes.html

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 6 V1.0, 2014-11

RGB LED Lighting Shield
Introduction

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 7 V1.0, 2014-11

1 Introduction

The RGB LED Lighting Shield adds brilliant flicker-free light control to Arduino projects. The Shield
communicates with a master board via the I2C protocol as a slave. Either an Arduino Uno R3 or the
XMC1100 Boot Kit from Infineon can be used as the master.

On board the RGB LED Shield is an XMC1202 microcontroller, featuring a dimming control peripheral
for LED lighting applications, known as the Brightness and Colour Control Unit (BCCU). It contains 3
independent dimming engines and 9 independent Pulse Density Modulated (PDM) channels.
1 dimming engine and 6 channels are used in this shield.

There are 10 basic sets of I2C commands to control the shield from the master board, and so control
the connected LED Lamp with various lighting effects. There are 22 user configurable parameters
and the freedom to connect different LED Lamps.

The RGB LED Lighting Shield can be easily connected to any Arduino board or the XMC1100 boot Kit
via headers and DMX512 control is enabled as a mounting option using an interface chip.

Figure 1 RGB LED Shield photo

1.1 Key Features

The RGB LED Shield has the following features:

 Behaves as an I2C slave.

− An Arduino Uno R3, XMC1100 Boot Kit, or similar board connected to the shield can
communicate via the SDA and SCL pins as the master.

 Drives and dims up to 3 LED strings with constant current.

 Able to change the colour of a connected LED lamp(if the strings are of different colours; for
example red, green, blue).

 High speed flicker-free modulation dimming on each string with Pulse-Density Modulation (PDM).

 Very high power density due to high switching frequency, leading to a small area.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 8 V1.0, 2014-11

 Up to 48VDC input.

− The RGB LED Shield is a DC-DC buck LED driver so the input voltage must be higher than the
forward voltage of the LED strings.

 Configurable current amplitude.

 Up to 700mA average current on each string.

 Configurable current ripple.

 I²C interface with configurable 10-bit slave address (with a default value of 0x15E)
to increases the range of devices that can be connected to the bus line.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 9 V1.0, 2014-11

RGB LED Shield driving an LED wall washer

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 10 V1.0, 2014-11

1.2 Key Features of the XMC1200 MCU series

 32-bit ARM® Cortex™-M0, 32MHz.

 Hardware Interconnect Matrix.

 16kB ~ 200kB Flash with ECC and 16kB RAM.

 Peripherals running up to 64MHz.

 Timer/PWM: CCU4, CCU8, POSIF.

 Analog-mixed Signal: 12-bit ADCs, 12-bit DACs, ACMPs.

 Communication: I2C, SPI, Dual-/Quad-SPI, SCI, I2S, LIN.

 Application specific: LED Color Control Engine, Touch.

 AES 128-bit secure loader for SW IP protection.

 Operating: 1.8 ~ 5.5Volt and -40° ~ 105°C.

 Free DAVE™ IDP and DAVE Apps (code library) open to 3rd party tools and the wide ARM®

ecosystem.

1.3 Getting started

The RGB LED Shield uses high frequency peak-current control with fixed off-times to generate DC
LED currents. Although this is highly efficient, low cost, and is suitable for high-speed dimming, it
results in the output current being dependent on the input and output voltage ratio. The output current
can be adjusted by configuring the peak-current reference and off-time parameters.

A virgin RGB LED Shield is pre-configured with safe peak-current reference and off-time parameters.
With the safe parameters, the LED current will not be ‘too high’ at high input voltages.

The safe parameter values have been tested with LED loads that have a forward voltage of 6V at
input voltages up to 48V. At this input, the pre-configured average LED current is measured up to
300mA.

Note: LED strings that have a forward voltage lower than 6V and current capability lower than 300mA
should not be connected without re-configuring the shield first.

The safe parameters will however result in a discontinuous current with most LED strings and input
voltages. For low-ripple continuous current, the off-time and peak-current reference parameters must
be configured by the user once the LED lamp and input voltages have been selected.

Generally, the current in any of the strings should never exceed 1A, the peak-current reference
parameters should be kept below 0x80, and off-time parameters should be kept above 0x10.

Attention: Improper configuration may result in permanent damage.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 11 V1.0, 2014-11

RGB LED Lighting Shield
Board Description

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 12 V1.0, 2014-11

2 Board Description

The RGB LED Shield can be controlled by programming a master Arduino board, such as the Arduino
Uno R3 or the XMC1100 Boot Kit.

Figure 2 RGB LED Shield Interfaces

2.1 Specifications

Dimensions 2.7 x 2.1 inches (standard Arduino footprint)

Input voltage up to 48V

Output Current per string up to 1A peak and 700mA average

Order Number KIT_LED_XMC1202_AS_01

2.2 Programming Access

The on-board XMC1202 microcontroller can be programmed over SWD via the debug interfaces
using a J-Link debug probe from Segger that supports ARM® Cortex™-M0 (Figure 3).

Flash content can be updated over SWD using the TASKING debugger integrated in DAVE™.

Figure 3 Segger J-Link debug probe connected to the RGB LED Shield

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 13 V1.0, 2014-11

2.3 Schematics and Layout

Figure 4 RGB LED Shield – Schematics

Figure 5 RGB LED Shield – Top and Bottom Layers

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 14 V1.0, 2014-11

Figure 6 RGB LED Shield – Components

Figure 7 RGB LED Shield – BOM

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 15 V1.0, 2014-11

Getting Started

RGB LED Lighting Shield with XMC1202 for Arduino

Getting Started

Board Manual 16 V1.0, 2014-11

3 Getting Started

You can bring YOUR LED lamp to life in seven simple steps.

STEP 1. Choose a high-power light engine

a. Maximum three channels (e.g. RGB)

b. Minimum 300mA LED current rating

NOTE: If the current rating is <300mA you can easily configure your RGB LED
Lighting Shield using the instructions in chapter 6 (Parameter Setup for YOUR LED
Lamp).

c. Maximum 48V forward voltage per LED channel

STEP 2. Choose a DC adapter

a. Input voltage to the RGB LED Lighting Shield: 12V ~ 48V DC

b. Maximum 48V forward voltage per LED channel

NOTE: DC input voltage to the RGB LED Lighting Shield should be higher than the
forward voltage of the LED channels.

STEP 3. Solder pin headers on the RGB LED Lighting Shield

STEP 4. Connect the RGB LED Lighting Shield to

a. Arduino Uno R3

b. XMC1100 Boot Kit

STEP 5. Program Arduino Uno R3 or XMC1100 Boot Kit

a. Example Sketches and projects: www.infineon.com/arduino

i. Upload RGBLED_2_SAFE.ino to Arduino Uno R3

ii. Upload RGBLED_2_Safe_XMC11.zip to XMC1100 Boot Kit

STEP 6. Connect the DC adapter to the RGB LED Lighting Shield

STEP 7. Turn on the power

http://www.infineon.com/arduino

RGB LED Lighting Shield with XMC1202 for Arduino

Getting Started

Board Manual 17 V1.0, 2014-11

I2C Master-Slave
Communication Protocol

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 18 V1.0, 2014-11

4 I2C Master-Slave Communication Protocol

Command words have been defined in software. Parameters can be changed by sending these
commands from the master to the RGB LED Lighting Shield. These commands can be sent to the
shield from the master board using pre-defined functions.

4.1 Brief Description of I2C Functions

The I2C commands together with the required data can be sent to the RGB LED Lighting Shield from
the master board using the functions provided. These functions encapsulate the data in the necessary
format for transfer via the I2C communication protocol.

The functions are provided for the Arduino Uno R3 and the XMC1100 Boot Kit.

The RGB LED Shield’s I2C address is a 10-bit address and is pre-configured to be 0x15E. To address
it, the master will send 2 bytes of address:

 The first 7 bits of the first byte are 11110XX, of which XX are the two most significant bytes of the
10-bit address. The 8th bit determines the read or write direction of the data transfer.

 The second byte is the lower 8-bits of the address.

Write functions

I2CWRITE2BYTES, I2CWRITE6BYTES, I2CWRITE9BYTES, I2CWRITE_DIRECTACCESS,
I2CCHANGEADDRESS, I2CDMX and I2CSAVEPARAM

 The I2C START condition is sent, followed by the 1st byte of the RGB LED Shield address byte, a
‘zero’ bit to indicate a transmission request and the 2nd address byte.

 The appropriate command word is then sent, followed by the data and a STOP condition to
terminate the transfer. Data is always put on the SDA line as a byte that is 8-bits long. 16-bit data
is sent as 2 bytes and 32-bit data as 4 bytes.

Read functions

I2CREAD, I2CREAD_DIRECTACCESS

 The I2C START condition is sent, followed by the 1st byte of the RGB LED Shield address byte, a
‘zero’ bit to indicate a transmission request and the 2nd address byte.

 The appropriate command word is then sent.

 A repeated START condition is then sent followed by the 1st byte of the RGB LED Shield address
byte, a ‘zero’ bit, the 2nd address byte and the 1st address byte with a ‘one’ bit to request for data.

 Acknowledge pulses are subsequently sent.

 A STOP condition is sent to terminate the transfer.

Note: A detailed description of each function can be found in the Appendix.

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 19 V1.0, 2014-11

2.1.1 Command Overview Table

The following tables provides a short description of the commands that can be sent with the functions.

Table 2 Commands and Functions

I
2
C Commands Description I

2
C Function used

INTENSITY_RED Change relative colour intensity of red channel I2CWRITE2BYTES

INTENSITY_GREEN Change relative colour intensity of green channel I2CWRITE2BYTES

INTENSITY_BLUE Change relative colour intensity of blue channel I2CWRITE2BYTES

INTENSITY_RGB Change relative colour intensity of red, green and blue
channels

I2CWRITE6BYTES

CURRENT_RED Change peak-current reference of red channel I2CWRITE2BYTES

CURRENT_GREEN Change peak-current reference of green channel I2CWRITE2BYTES

CURRENT_BLUE Change peak-current reference of blue channel I2CWRITE2BYTES

OFFTIME_RED Change off-time of red channel I2CWRITE2BYTES

OFFTIME_GREEN Change off-time of green channel I2CWRITE2BYTES

OFFTIME_BLUE Change off-time of blue channel I2CWRITE2BYTES

WALKTIME Change walktime of red, green and blue channels I2CWRITE2BYTES

DIMMINGLEVEL Change brightness level I2CWRITE2BYTES

FADERATE Change time taken to dim to 0% I2CWRITE2BYTES

CHANGEADDRESS Change address of RGB LED Shield I2CWRITE2BYTES

DMXOFF Disable DMX512 control I2CDMX

DMXON Enable DMX512 control I2CDMX

DMXSLOT Change first relevant slot of DMX512 control I2CWRITE2BYTES

DMX8BIT Read 8-bits of colour information from each DMX512 slot I2CWRITE6BYTES

DMX16BIT Read 16-bits of colour information from each DMX512 slot I2CWRITE12BYTES

READ_CONFIG Query if RGB LED Shield has been configured I2CREAD

READ_INTENSITY_RED Request for relative colour intensity of red channel I2CREAD

READ_INTENSITY_GREEN Request for relative colour intensity of green channel I2CREAD

READ_INTENSITY_BLUE Request for relative colour intensity of blue channel I2CREAD

READ_CURRENT_RED Request for peak current reference of red channel I2CREAD

READ_CURRENT_GREEN Request for peak current reference of green channel I2CREAD

READ_CURRENT_BLUE Request for peak current reference of blue channel I2CREAD

READ_OFFTIME_RED Request for off-time of red channel I2CREAD

READ_OFFTIME_GREEN Request for off-time of green channel I2CREAD

READ_OFFTIME_BLUE Request for off-time of blue channel I2CREAD

READ_WALKTIME Request for linear walk time I2CREAD

READ_DIMMINGLEVEL Request for dimming level I2CREAD

READ_FADERATE Request for rate of dimming I2CREAD

READ_DMX Query if DMX512 control is enabled I2CREAD

READ_DMXSLOT Request for first relevant slot in DMX512 control I2CREAD

READ_DMXBIT Request for number of bits of colour information expected
from DMX512 control

I2CREAD

READ_DMXREDH Request for slot which stores upper 8-bits of red colour
information

I2CREAD

READ_DMXREDL Request for slot which stores lower 8-bits of red colour
information

I2CREAD

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 20 V1.0, 2014-11

I
2
C Commands Description I

2
C Function used

READ_DMXGREENH Request for slot which stores upper 8-bits of green colour
information

I2CREAD

READ_DMXGREENL Request for slot which stores lower 8-bits of green colour
information

I2CREAD

READ_DMXBLUEH Request for slot which stores upper 8-bits of blue colour
information

I2CREAD

READ_DMXBLUEL Request for slot which stores lower 8-bits of blue colour
information

I2CREAD

DIRECTACCESS_READ Request for value contained in a specific register I2CREAD_DIRECTA
CCESS

DIRECTACCESS_MOVE Move value into a specific register I2CWRITE_DIRECT
ACCESS

DIRECTACCESS_AND Bitwise AND operation on a user specified value and the
value in a specific register

I2CWRITE_DIRECT
ACCESS

DIRECTACCESS_OR Bitwise OR operation on a user specified value and the
value in a specific register

I2CWRITE_DIRECT
ACCESS

SAVEPARAMETERS Save current parameters to Flash memory I2CSAVEPARAM

4.2 Command Description

4.2.1 Colour Intensity (INTENSITY_RED, INTENSITY_GREEN, INTENSITY_BLUE,
INTENSITY_RGB)

The colour intensities of the Red, Green and Blue colour channels on the RGB LED Lighting Shield
can be changed.

Three of the 9 available BCCU channels on the XMC1202 microcontroller on-board the RGB LED
Shield are used to control the colour intensities. A change in the relative colour intensity in any of
three channels will change the colour of the lamp attached to the shield. Colour intensities are 12-bit
values. The maximum intensity of each channel is 0xFFF.

Figure 8 PDM Channels in the microcontroller on board the RGB LED Shield

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 21 V1.0, 2014-11

INTENSITY_RED

Changes the relative colour intensity of the red channel.

To set the red channel to maximum intensity, send the following from the master:

I2CWRITE2BYTES(INTENSITY_RED, 0xFFF);

INTENSITY_GREEN

Changes the relative colour intensity of the green channel.

To set the green channel to maximum intensity, send the following from the master:

I2CWRITE2BYTES(INTENSITY_GREEN, 0xFFF);

INTENSITY_BLUE

Changes the relative colour intensity of the blue channel.

To set the blue channel to maximum intensity, send the following from the master

I2CWRITE2BYTES(INTENSITY_BLUE, 0xFFF);

INTENSITY_RGB

Changes the relative colour intensities of the red, green and blue channel.

To enable white light, send the following from the master

I2CWRITE2BYTES(INTENSITY_RGB, 0xFFF);

Recommended Colour Scheme

To ensure constant lamp brightness for different colors, keep the sum of intensities of the three
channels constant.

Table 3

Colour Channel Intensity Possible commands to be sent from the master

Red Green Blue

Red 0xFFF 0x000 0x000 I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0xFFF);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0x000);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0xFFF,
0x000, 0x000);

Green 0x000 0xFFF 0x000 I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0xFFF);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0x000);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,
0xFFF, 0x000);

Blue 0x000 0x000 0xFFF I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0xFFF);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,
0x000, 0xFFF);

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 22 V1.0, 2014-11

Colour Channel Intensity Possible commands to be sent from the master

Red Green Blue

Yellow 0x800 0x800 0x000 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x800,
0x800, 0x000)

Cyan 0x000 0x800 0x800 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,
0x800, 0x800)

Magenta 0x800 0x000 0x800 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x800,
0x000, 0x800)

White 0x555 0x555 0x555 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x555,
0x555, 0x555)

4.2.2 Peak Current Reference (CURRENT_RED, CURRENT_GREEN,
CURRENT_BLUE)

The LED current can be controlled by the RGB LED shield. When attached to the shield, the LED
lamp is connected to a 3-channel DCDC buck LED driver.

An inductor, Schottky diode and MOSFET are used, in an inverted buck topology, to control the LED
current with high efficiency. As with every DC-DC buck driver, this design results in ripples in the LED
current. In the RGB LED shield, the ripple frequency is approximately 1-1.5 MHz to support fast
modulation dimming and achieve high power density.

Figure 9 Peak Current Control

To adjust the LED current, the potential before the shunt resistor is fed into an on-chip comparator.
The inductor in the setup causes the LED current to increase linearly and proportionately to the input
voltage. As the current increases, the potential before the shunt resistor increases. When this
potential exceeds the peak current reference value, the MOSFET is switched off by the MOSFET
control output signal which switches to 0V. Current will continue to flow through the free-wheeling
diode as the inductor’s magnetic field collapses. During this time, the current decreases linearly and
proportionately to the forward voltage of the LED string. The process restarts when the MOSFET is
switched on after a fixed off-time.

The RGB LED Shield will change the peak current reference parameter when the CURRENT_RED,
CURRENT_GREEN or CURRENT_BLUE commands and the 12-bit peak-current reference
parameter are sent from the master. A reference value of 0xFFF corresponds to 5V, and 0x000
corresponds to 0V.

To calculate the reference voltage, use:

Reference Value / 4096 * 5V

The maximum peak current reference value that can be set is 0x80, which is approximately 0.15625V.
Should a value greater than this be sent to the RGB LED Shield, the value will be ignored and peak

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 23 V1.0, 2014-11

current reference set to 0x80. This corresponds to a theoretical peak current of 781mA flowing
through the MOSFET.

CURRENT_RED

Changes the peak current reference parameter of the red channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_RED, 0x64); // 0.12 = 100 / 4096 * 5

CURRENT_GREEN

Changes the peak current reference parameter of the green channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_GREEN, 0x64);

CURRENT_BLUE

Changes the peak current reference parameter of the blue channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_BLUE, 0x64);

4.2.3 Off-Time (OFFTIME_RED, OFFTIME_GREEN, OFFTIME_BLUE)

This parameter adjusts the ripple of the LED current.

When the comparator in the shield detects that the current in the lamp has reached the peak current
reference, the MOSFET is switched off. This off-state is extended for a fixed duration determined by
the off-time parameter value. In this off-state, the circuit is switched off and the LED current
decreases.

The smaller the off-time value, the shorter the off-state, the less the LED current decreases, leading
to a valley current which is closer in value to the peak current. As a result, the ripple in the current is
reduced.

Conversely, when the off-state is extended for a longer duration, the LED current falls more, resulting
in a smaller valley current, and a larger ripple.

Ideally, the LED current should not exceed the peak-current reference.

Figure 10 LED Current Ripple

Due to non-negligible propagation delays in the comparator and the connected on-chip circuits, the
LED current peaks invariably exceed the peak-current reference. There is a time delay between the
LED current reaching the peak-current reference value and the comparator detecting it. A short off-
state can result in the current not dropping enough before the MOSFET is switched on again. The
comparator may no longer be able to accurately detect the peak current reference, leading to

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 24 V1.0, 2014-11

exceedingly high currents. To avoid catastrophically high currents, the off-state is generated after the
LED current has dropped below the peak reference level.

Figure 11 Propagation Delay leading to LED Current Over-shooting Peak Current Reference

The MOSFET will remain off while a counter counts up to the off-time parameter value. When the off-
time value is reached, the counter resets and the MOSFET is switched on.

The counter counts at a frequency of 64MHz (resolution of 15.625ns).

The circuit will be in the generated off-state for 1μs when the off-time value is set to:

0x40 (1 / 64M * 64)

OFFTIME_RED

Changes the fixed off-time parameter of the red channel.

To change the off-time to 1μs, send the following from the master:

I2CWRITE2BYTES(ADDRESS, OFFTIME_RED, 0x40);

OFFTIME_GREEN

Changes the fixed off-time parameter of the green channel.

To change the off-time to 1μs, send the following from the master:

I2CWRITE2BYTES(ADDRESS, OFFTIME_GREEN, 0x40);

OFFTIME_BLUE

Changes the fixed off-time parameter of the blue channel.

To change the off-time to 1μs, send the following from the master:

I2CWRITE2BYTES(ADDRESS, OFFTIME_BLUE, 0x40);

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 25 V1.0, 2014-11

4.2.4 Walk time (WALKTIME)

A linear walk is used to smoothly change the colour intensities. The intensities change linearly over
time. The time taken for the channels to reach their target intensities is called the linear walk time.
The linear walk time can be adjusted.

The RGB LED Shield calculates the actual linear walk time with the formula:

Linear Walk Time = WALKTIME * 0.01024

A WALKTIME value of 0x10 means that the actual linear walk time is 164ms. The channels will take
164ms to reach their target intensities.

Figure 12 Walk time – Time taken for channels to reach their target intensities

WALKTIME

This command can only be used to change the WALKTIME parameter for all three channels together.

To change the linear walk time to 164ms, send the following from the master:

I2CWRITE2BYTES(ADDRESS, WALKTIME, 0x10);

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 26 V1.0, 2014-11

4.2.5 Dimming (DIMMINGLEVEL)

The dimming engine in the XMC1202 microcontroller on-board the RGB LED Shield performs
dimming along a pseudo-exponential curve so that the change appears natural to the human eye.
This compensates for the eye’s logarithmic sensitivity to light.

The curve is quantized into 4095 steps, giving the user 4096 dimming levels to choose from.

Figure 13 Exponential dimming curve

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 27 V1.0, 2014-11

Figure 14 Piece-wise exponential dimming curve

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 28 V1.0, 2014-11

The brightness value of a channel and therefore the brightness of the connected LED string, is the
product of the intensity of the respective channel and the dimming level divided by 4096.

The dimming engine which controls the dimming level is separate from the BCCU channels. This
enables the RGB LED shield to control the colour of the LED strings separately from the lamp
brightness. The brightness level of the lamp can stay the same while its colour changes. Changes in
brightness do not affect the colour of the lamp either.

Figure 15 Dimming and Colour Control

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 29 V1.0, 2014-11

Dimming and Colour Control examples

If the lamp is to have green colour at 50% brightness, the colour intensity of the green channel can
remain at 4096. The 50% brightness level is achieved by changing the dimming level to 2048 (50%).

Table 4 Green colour at 50% brightness

Channel Lamp Dimming Level Channel Intensity Channel Brightness

RED

2048

0 0

GREEN 4096 2048

BLUE 0 0

If the lamp colour is to be changed to yellow colour at 50% brightness, the dimming level can remain
the same at 2048, while only the relative colour intensity changes. The overall lamp brightness
remains constant despite changes in colour.

Table 5 Yellow colour at 50% brightness

Channel Lamp Dimming Level Channel Intensity Channel Brightness

RED

2048

2048 1024

GREEN 2048 1024

BLUE 0 0

The lamp colour can be changed to cyan at 25% brightness for example. The dimming level is set to
1024 (25%) and the intensities are changed following the recommended colour scheme.

Table 6 Cyan at 25% brightness

Channel Lamp Dimming Level Channel Intensity Channel Brightness

RED

1024

0 0

GREEN 2048 512

BLUE 2048 512

The brightness level of the lamp is changed by modulation dimming in the RGB LED shield. The
brightness value in each LED string is converted to a PDM ON-OFF signal by a sigma-delta
modulator, which turns the string on and off fast. The switching rate of this signal is high to avoid
flicker. The switching rate is however still lower than the ripple frequency of the MOSFET control
signal for current control. The higher the brightness value, the longer the signal from the sigma-delta
modulator is ON for. For example, if a 50% brightness value is expected, the signal will be ON for
50% of the time. If a 70% brightness value is expected, the signal will be ON for 70% of the time, and
so on. Ideally, the current should have a square waveform. However, the switching circuit results in a
ripple in the LED current.

Figure 16 Ideal Modulation Dimming with ideal current control

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 30 V1.0, 2014-11

Figure 17 Actual Modulation Dimming with DC-DC current control

Figure 18 Typical LED Current Waveform with Pulse-Density Modulation (~30% brightness)

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 31 V1.0, 2014-11

Figure 19 Peak Current Control

DIMMINGLEVEL

Changes the Dimming Level as controlled by the Dimming Engine.

To change the dimming level to 50%, send the following from the master:

I2CWRITE2BYTES(ADDRESS, DIMMINGLEVEL, 0x7FF); // or 2048 in place of 0x7FF

4.2.6 Fade Rate (FADERATE)

The RGB LED Shield can adjust how fast the lamp can change its brightness value. This is adjusted
through the 10-bit FADERATE parameter. The time taken for the brightness to change also depends.
Based on Figure 14, the fade time can be calculated:

Fade Time 0 100%

 It takes 20479 dimming clocks for the lamp to dim up from 0 to 100% brightness. The dimming
clock frequency is 292.237kHz. Hence, 20479 dimming clock last approximately 0.07001s.

 Fade Time = FADERATE * 0.07001s

 A FADERATE value of 0xA leads to a fade time of approximately 700ms.

Fade Time 0 50%

 It takes 18432 dimming clocks for the lamp to dim up from 0 to 50% brightness. This leads to:

 Fade Time = FADERATE * 0.0630721s

 A FADERATE value of 0xA leads to a fade time of approximately 630ms.

The time taken for the lamp to dim from 0 to 100% brightness is not twice the time taken for the lamp
to dim from 0 to 50%. This is due to the exponential nature of the dimming curve. The pseudo-
exponential curve is used because the human eye perceives brightness logarithmically, resulting in an
observed linear change in brightness.

FADERATE

Changes the time the lamp takes to change the dimming level.

To change the fade time to 700ms, send the following to the master:

I2CWRITE2BYTES(ADDRESS, DIMMINGLEVEL, 0xA); // or 10 in place of 0xA

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 32 V1.0, 2014-11

4.2.7 DMX512 Control Commands

If an RS485 transceiver chip is mounted on the RGB LED Shield, DMX512 related commands can be
sent to the shield to change the way it is expected to behave.

DMX OFF / ON

The DMXOFF command disables the DMX512 control of the RGB LED Shield

The DMXON command enables the control.

To disable the command, send the following from the master:

I2CDMX(ADDRESS, DMXOFF);

To enable the command, send the following from the master:

I2CDMX(ADDRESS, DMXON);

DMX Starting Slot

The DMXSTART command changes the first relevant slot that the RGB LED Shield uses to read
colour information when DMX control is enabled.

To change the first relevant slot to slot 1, send the following from the master:

I2CWRITE2BYTES (ADDRESS, DMXSTART, 0x1);

DMX8BIT

The DMX8BIT command sets the RGB LED Shield’s DMX input to be three bytes. The shield will
expect 8-bit colour information to be available in 3 relevant slots, one for each colour. Together with
the DMX8BIT command, the slot numbers for red, green and blue in order, have to be sent to the
shield.

For example, if the relevant slots in the DMX512 control slot 3, slot 4 and slot 5 (Table 7), and the first
relevant slot has been configured to slot 1, send the following to the master:

I2CWRITE6BYTES (ADDRESS, DMX8BIT, 0x2, 0x3, 0x4);

// red channel is at offset 2, green at offset 3 and blue at offset 4

Table 7

Red Green Blue

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 33 V1.0, 2014-11

DMX16BIT

The DMX16BIT command sets the RGB LED Shield’s DMX input to be six 8-bit slots. The shield
expects 16-bit colour information to be available in 6 relevant slots, with 2 bytes for each channel.
Together with the DMX16BIT command, the slot numbers for red, green and blue in order, has to be
sent to the shield.

To set the shield’s DMX input configuration to be for 8-bits information, use the I2CWRITE12BYTES
function:

For example, if the relevant slots in the DMX512 control slot 3, slot 4, slot 5, slot 6, slot 7, slot 8, and
the first relevant slot has been configured to slot 1, send the following to the master:

I2CWRITE12BYTES (ADDRESS, DMX8BIT, 0x2, 0x3, 0x4, 0x5, 0x6, 0x8);

// red channel is at offset 2 and 3, green at offset 4 and 5 and blue at
offset 6 and 7

Table 8

Red

High

Red

Low

Green
High

Green
Low

Blue

High

Blue

Low

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

4.2.8 Changing the RGB LED Shield’s Address (CHANGEADDRESS)

The 10-bit I2C address of the RGB LED Shield can be changed with the CHANGEADDRESS
command. The pre-configured address is 0x15E, but if there are address conflicts with other I2C
devices on the bus, the LED Shield’s address can be changed.

To change the address of the shield to 0x147 for example, send the following from the master:

CHANGEADDRESS (ADDRESS, 0x147);

This is not a permanent change in the RGB LED Shield’s address. On the next start-up, the shield’s
address will be that of the previous address again. If the address should be permanently changed, the
SAVEPARAMETERS command can be used to re-configure the shield.

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 34 V1.0, 2014-11

4.2.9 Configuring the RGB LED Shield (SAVEPARAMETERS)

The RGB LED Shield can be configured with values for each of these parameters:

 INTENSITY_RED, INTENSITY_GREEN, INTENSITY_BLUE, INTENSITY_RGB

 CURRENT_RED, CURRENT_GREEN, CURRENT_BLUE

 WALKTIME

 FADERATE

 DIMMINGLEVEL

 OFFTIME

 DMXOFF/ON, DMX8BIT/DMX16BIT, DMXSLOT

 ADDRESS

SAVEPARAMETERS

The SAVEPARAMETERS command instructs the RGB LED Shield to save all current values for the
parameters to flash memory.

The parameters are saved to a flash page from address 0x10004F000 to 0x10004FFF. On start-up,
these values will be used by default.

To save the current parameters, send the following from the master:

I2CSAVEPARAM (ADDRESS);

4.2.10 Request for Data (I2CREAD commands)

Any parameter that can be written with I2C commands can be read back from the RGB LED Shield.
The requested information is returned as a 16-bit unsigned integer. The following are the commands
to be sent:

READ_INTENSITY_RED, READ_INTENSITY_GREEN, READ_INTENSITY_BLUE

 Request for intensity data for red, green and blue channels.

READ_CURRENT_RED, READ_CURRENT_GREEN, READ_CURRENT_BLUE

 Request for peak-current reference data for red, green and blue channels.

READ_WALKTIME

 Request for Walktime.

READ_FADERATE

 Request for Fade Rate.

READ_DIMMINGLEVEL

 Request for dimming level.

READ_OFFTIME_RED, READ_OFFTIME_GREEN, READ_OFFTIME_BLUE

 Request for off-time for red, green and blue channels.

READ_DMX

 Query if DMX is off or on.

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 35 V1.0, 2014-11

READ_DMXBIT

 Query if DMX is set to 8 or 16-bits.

READ_DMXSLOT

 Request for starting relevant slot.

READ_DMXREDH, READ_DMXREDL, READ_DMXGREENH, READ_DMXGREENL,
READ_DMXBLUEH, READ_DMXBLUEL

 Request for the relevant slots for red, green and blue channels.

 If DMX is set to 8-bits, READ_DMXREDL, READ_DMXGREENL and READ_DMXBLUEL will
return 0 as they are not in use.

READ_CONFIG

 Queries whether the RGB LED Shield has already been configured.

 If the READ_CONFIG command returns a 0, no values have been saved to the flash memory
before. All shields shipped have already been configured with safe parameters. This query should
never return 0.

To request for the peak current reference value of the red channel, send the following from the
master:

redcurr = I2CREAD (ADDRESS, READ_CURRENT_RED);

Writing this line in the Arduino sketch will command the shield to send back the value of the peak
current reference value of the red channel. The I2CREAD function returns the received data, and
prints it to the serial monitor as a hexadecimal value. To read the other parameters, replace
READ_CURRENT_RED with the appropriate command.

4.2.11 Directly Accessing Registers

Registers in the XMC1202 microcontroller on board the RGB LED Lighting Shield can also be
accessed directly without the use of the pre-defined I2C commands. It is therefore possible to access
registers which may not be accessible with the I2C commands.

Note: This is an advanced way of accessing registers and is only recommended for experienced
users. Detailed information on the XMC1202 microcontroller can be found at
www.infineon.com/XMC1000.

DIRECTACCESS_READ

The DIRECTACCESS_READ command is used to read the value in a register.

To read the value contained in a register, send the following from the master:

Data = I2CREAD_DIRECTACCESS (SHIELD_ADDRESS, REGISTER_ADDRESS);

Entering this line in an Arduino Sketch will return the value in the register at REGISTER_ADDRESS
as a 32-bit unsigned integer.

http://www.infineon.com/XMC1000

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 36 V1.0, 2014-11

DIRECTACCESS_MOVE, DIRECTACCESS_AND, DIRECTACCESS_OR

These are the 3 commands that can be used to write to a register.

Attention: Ensure that the register being written to is safe to be overwritten. Otherwise,
unpredictable behaviour or permanent damage to the RGB LED Shield may occur.

 DIRECTACCESS_MOVE

This command replaces the value in the register specified in REGISTER_ADDRESS, with a different
value.

If the replacement value is 0x50 for example, send the following from the master:

I2CWRITE_DIRECTACCESS (ADDRESS, DIRECTACCESS_MOVE, REGISTER_ADDRESS, 0x50);

 DIRECTACCESS_AND

This command implements a bitwise AND of the contents of a specified value and the current value in
REGISTER_ADDRESS.

To perform a bitwise AND on the register’s value with 0x11001100, send the following from the
master:

I2CWRITE_DIRECTACCESS (ADDRESS, DIRECTACCESS_AND, REGISTER_ADDRESS,
0x11001100);

If the register value is 0x11110000 for example, a bitwise AND with 0x11001100 would result in a
value of 0x11000000.

 DIRECTACCESS_OR

This command implements a bitwise OR of the contents of a specified value with the current value in
REGISTER_ADDRESS.

To perform a bitwise OR on the register’s value with 0x11005100, send the following from the master:

I2CWRITE_DIRECTACCESS (ADDRESS, DIRECTACCESS_AND, REGISTER_ADDRESS,
0x11005100);

If the register value is 0x11110000 for example, the OR with 0x11005100 would result in a value of
0x11115100.

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 37 V1.0, 2014-11

Programming a master
Arduino board to control the
RGB LED Lighting Shield

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 38 V1.0, 2014-11

5 Arduino Compatibility

The RGB LED Shield can be controlled by programming a master Arduino Board.

5.1 Simple Test Program

A simple Arduino sketch with only minimal coding is needed to start the operation of the attached LED
lamp.

Figure 20 Test Program Code

The loop routine is an infinite ‘while’ loop that runs for as long as the Arduino board is powered.

After writing the code, save the sketch and click on the "Upload" button in the Arduino editor while the
Arduino Uno board is connected to the computer.

The Arduino board and the RGB LED Shield should be connected as shown in Figure 21.

Note: Do not connect a lamp which has a forward voltage of less than 6V or a current rating lower than
300mA.

Power-up the shield and the attached lamp should flash red for 0.5s, then green for 0.5s, and then
blue for 0.5s. This routine repeats itself indefinitely.

If no light is seen, check whether the channels are connected to the correct terminals. Ensure that no
DMX master is connected to the shield. If a DMX master is connected, turn the DMX512 support off
via software with “I2CDMX(DMXOFF)” and re-upload the sketch to the Arduino Uno board.

The colours of the lamp can be changed by simply changing the intensity value parameters using the
I2CWRITE2BYTES function.

This sketch does not change any parameters other than the channel intensities, and is therefore
probably not optimized for the lamp attached to the shield. The current intensities and off-times used
are the default values of the RGB LED Shield. A lamp that has a current rating higher than 300mA
and forward voltage higher than 6V will be functional, but the LED current may not be optimized. If
these parameters are to be changed, further adjustments to the sketch have to be made.

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 39 V1.0, 2014-11

Figure 21 Connecting the master and the Shield

Figure 22 Photo of a connected master and Shield

Figure 23 Connecting the Shield to an XMC1100 Boot Kit

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 40 V1.0, 2014-11

5.2 Safe Configuration (DEFAULT)

Every RGB shield is shipped with pre-configured safe parameters. In a safe configuration, the master
sends I2C commands to setup the shield’s current intensity and off-time such that almost any attached
light engine operates safely at input voltages up to 48V. The important parameters for this basic safe
configuration are:

 Peak-current references of red, green and blue channels at 0x15 around 300mA average
current depending on the input voltage and the LED forward voltage

 Off-time of red channel: 0x38 large ripple with most input voltages and LED forward voltages

 Off-time of green channel: 0x39 large ripple with most input voltages and LED forward voltages

 Off-time of blue channel: 0x38 large ripple with most input voltages and LED forward voltages

In the following code snippet, the master board waits for the shield to be powered on before any
commands are sent to set up the safe configuration. DMX512 support is turned off, fading is
immediate and the dimming level is 0% to ensure that no excessive current flows through the shield
and lamp. If the RGB LED Shield responds to the read command, a flag is set (message). If the
dimming level in the shield is also at 0% then the shield is considered to be on and ready for new
commands.

Figure 24 Wait for shield to turn on

Figure 25 Code to set Safe Configuration

With the settings in Figure 25, an LED lamp with an output voltage of 6V will still be functional with
approximately 300mA average current. The average LED load will be functional with these settings,
the peak current will not be exceedingly high, and the ripple not too small to cause problems.

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 41 V1.0, 2014-11

These are also the default values in the RGB LED Shield. If the RGB LED Shield is powered on
without an Arduino UNO R3 connected to it, and before any configurations are made with the
SAVEPARAMETERS command, these values will be used.

The same block of code can be used to achieve optimized current for the LED lamp. Change the
peak-current references and off-times to appropriate values that give an optimized current waveform.

5.3 Configuring the RGB LED Shield

The LED Shield can be programmed to always start up with configured values.

By writing the I2CSAVEPARM (ADDRESS), the master Arduino Board instructs the RGB LED Shield
to save the most recent values for off-times, peak-current references, channel intensities, DMX
controls, walk time, fade rate and dimming level, to non-volatile memory.

On the next start-up, even without a master Arduino Board, the RGB LED Shield will start with these
values loaded into the appropriate registers.

The safe parameters are intended to work with most LED light engines and most input voltages. The
drawback is that these parameters are then not optimized. Typically the ripple is too high and the
average current is too low.

Figure 26 Configuring the LED Shield

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 42 V1.0, 2014-11

Figure 27 Typical LED current with safe configuration parameters (48VDC input, Traxon Nano
Liner XB-9)

5.4 Parameters optimized for Traxon Nano Liner XB-9 with 24V Input Voltage

In this example, the master Arduino board sends I2C commands to optimize peak-current references
and off-times for a Traxon NANO Liner XB-9 linear fixture with high intensity LEDs
(http://www2.traxontechnologies.com/products/product_details/620).

The NANO Liner XB-9 has forward voltages of 9.1V for the red channel, 8.65V for the green channel
and 8.8V for the blue channel.

The important parameters for this configuration are:

 Peak current reference value of Red channel: 0x29

 Peak current reference value of Green channel: 0x30

 Peak current reference value of Blue channel: 0x30

 Off-time of Red channel: 0x18

 Off-time of Green channel: 0x20

 Off-time of Blue channel: 0x20

These parameters result in minimum ripple and 350mA average current, when the Nano Liner XB-9 is
used.

Note: Do not use these values for any other LED lamp without checking the current rating and forward
voltages.

http://www2.traxontechnologies.com/products/product_details/620

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 43 V1.0, 2014-11

Figure 28 System Block Diagram with Nano Liner XB-9

Figure 29 System Photo with Nano Liner XB-9

Figure 30 Optimized Parameters for NANO Liner XB-9

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 44 V1.0, 2014-11

Figure 31 Optimized LED current (red channel, ~40% brightness)

To read values back from the RGB LED shield, send the I2CREAD function. The function itself will
print the values to the serial monitor.

To see the values on the serial monitor, initialize the serial port with:

Serial.begin(9600)

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 45 V1.0, 2014-11

Figure 32 Reading values from the RGB LED shield

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 46 V1.0, 2014-11

5.5 Parameters optimized for Traxon Nano Liner XB-18 with 48V Input Voltage

http://www2.traxontechnologies.com/products/product_details/620

The NANO Liner XB-18 has forward voltages of 16.3V for the red channel, 17.6V for the green
channel and 17.6V for the blue channel.

The important parameters for this configuration are:

 Peak current reference value of Red channel: 0x27

 Peak current reference value of Green channel: 0x29

 Peak current reference value of Blue channel: 0x29

 Off-time of Red channel: 0x8

 Off-time of Green channel: 0x8

 Off-time of Blue channel: 0x7

These parameters result in minimum ripple at 350mA average current when the Nano Liner XB-18 is
used.

Note: Do not use these values for any other LED lamp without checking the current rating and forward
voltages.

Figure 33 System Block Diagram with Nano Liner XB-18

Figure 34 Optimized Parameters for NANO Liner XB-18

http://www2.traxontechnologies.com/products/product_details/620

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 47 V1.0, 2014-11

Figure 35 Optimized LED current (red channel, ~35% brightness)

RGB LED Lighting Shield with XMC1202 for Arduino

Arduino Compatibility

Board Manual 48 V1.0, 2014-11

Setting the Parameters for
YOUR LED Lamp

RGB LED Lighting Shield with XMC1202 for Arduino

Parameter Setup for YOUR LED Lamp

Board Manual 49 V1.0, 2014-11

6 Parameter Setup for YOUR LED Lamp

For small ripple and accurate average current, the two main parameters have to be carefully set up
for every LED channel. By default these parameters are safe values that, while functional with most
light engines and input voltages, produce a large ripple and typically an average current that is too
low.

To ensure the correct values are used:

1. Decide what LED light engine will be used.

− Read the manual carefully.
− Check the forward voltage of every LED channel. Any value between 6V and 48V should be

fine.
− Check the optimum forward current of every LED channel. The average value can be maximum

700mA and the peak can be maximum 1A.

2. Decide what DC input voltage will be used.

− It has to be higher than the highest forward voltage of the LED channels.
− Any value between 12V and 48V should be fine but values higher than four times the LED

forward voltages should be avoided if small ripple is desired.
− Generally, the higher the ratio between the input voltage and the forward voltage, the more

difficult it is to set up the peak-current reference and the off-time.

3. If the light engine allows an average current of at least 300mA, try using the safe parameters.

4. Get an oscilloscope with a current probe and measure the current of one LED string at a time.

5. Roughly set up the peak current by increasing the peak-current reference in small steps.

6. Decrease the ripple by decreasing the off-time in small steps.

7. Repeat steps 5 and 6 until the ripple is acceptable and the average current is accurate.

8. Repeat steps 5, 6 and 7 until all channels are configured.

9. Enjoy the light.

Table 9 Parameters optimized for different light engines, LED currents, and input voltages

Input
Voltage

Light
Engine

Average
LED
Current

Channel Forward
Voltage

Peak-
Current
Reference
Parameter

Peak-
Current
Reference*

Off-Time
Parameter

Generated
Off-Time**

12-48
VDC

Safe
parameters

~300 mA,
depending
on the input
voltage

Red ? V 0x15 128 mA 0x38 875 ns

Green ? V 0x15 128 mA 0x39 891 ns

Blue ? V 0x15 128 mA 0x38 875 ns

24 VDC LedEngin
LZC-
83MC00

500 mA Red 9.4 V 0x46 427 mA 0x07 109 ns

550 mA Green 16.8 V 0x51 494 mA 0x05 78 ns

700 mA Blue 14.0 V 0x72 696 mA 0x04 63 ns

48 VDC LedEngin
LZC-
83MC00

700 mA Red 9.4 V 0x35 323 mA 0x19 391 ns

Green 16.8 V 0x43 409 mA 0x12 281 ns

Blue 14.0 V 0x61 592 mA 0x10 250 ns

24 VDC Traxon Nano
Liner XB-9

350 mA Red 9.1 V 0x29 250 mA 0x08 125 ns

Green 8.7 V 0x28 244 mA 0x07 109 ns

RGB LED Lighting Shield with XMC1202 for Arduino

Parameter Setup for YOUR LED Lamp

Board Manual 50 V1.0, 2014-11

Input
Voltage

Light
Engine

Average
LED
Current

Channel Forward
Voltage

Peak-
Current
Reference
Parameter

Peak-
Current
Reference*

Off-Time
Parameter

Generated
Off-Time**

Blue 8.8 V 0x29 250 mA 0x07 109 ns

24 VDC Traxon Nano
Liner XB-18

350 mA Red 16.3 V 0x39 348 mA 0x03 47 ns

Green 17.6 V 0x39 348 mA 0x03 47 ns

Blue 17.6 V 0x39 348 mA 0x03 47 ns

48 VDC Traxon Nano
Liner XB-18

350 mA Red 16.3 V 0x27 238 mA 0x08 125 ns

Green 17.6 V 0x29 250 mA 0x08 125 ns

Blue 17.6 V 0x29 250 mA 0x07 109 ns

* The LED current always overshoots the peak-current reference so the actual peak current is higher
than the peak-current reference.

** The actual off-time is longer than the generated off-time due to propagation delay and the fact that
the fixed off-time starts to get generated only after the LED current falls below the peak-current
reference.

RGB LED Lighting Shield with XMC1202 for Arduino

Parameter Setup for YOUR LED Lamp

Board Manual 51 V1.0, 2014-11

APPENDIX

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 52 V1.0, 2014-11

7 Appendix

7.1 Description of the I2C Functions Provided

The functions provided for use with the Arduino Uno R3 board and XMC1100 Boot Kit are described.

7.1.1 I2CWRITE2BYTES (ADDRESS, COMMAND, DATA)

This function is used when only one Word of data is to be sent.

The function parameters are:

 The RGB LED Shield’s address

 A command

 An unsigned 16-bit integer, sent as 2 bytes

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. Upper 8-bit of word

6. Lower 8-bit of word

7. STOP condition

7.1.2 I2CWRITE6BYTES (ADDRESS, COMMAND, DATA, DATA, DATA)

This function is used when three Words of data are to be sent.

The function parameters are:

 The RGB LED Shield’s address

 A command

 An unsigned 16-bit integer sent as 2 bytes

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. Upper 8-bit of first data

6. Lower 8-bit of first data

7. Upper 8-bit of second word

8. Lower 8-bit of second word

9. Upper 8-bit of third word

10.Lower 8-bit of third word

11.STOP condition

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 53 V1.0, 2014-11

7.1.3 I2CWRITE12BYTES (ADDRESS, COMMAND, DATA, DATA, DATA, DATA,
DATA, DATA)

This function is used when six Words of data are to be sent.

The function parameters are:

 The RGB LED Shield’s address

 A command

 An unsigned 16-bit integer sent as 2 bytes

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. Upper 8-bit of first word

6. Lower 8-bit of first word

7. Upper 8-bit of second word

8. Lower 8-bit of second word

9. Upper 8-bit of third word

10.Lower 8-bit of third word

11.Upper 8-bit of fourth word

12.Lower 8-bit of fourth word

13.Upper 8-bit of fifth word

14.Lower 8-bit of fifth word

15.Upper 8-bit of sixth word

16.Lower 8-bit of sixth word

17.STOP condition

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 54 V1.0, 2014-11

7.1.4 I2CREAD (ADDRESS, COMMAND)

This function is used to read a parameter value. 16-bits of data will be received as 2 bytes and
returned by the function.

The function parameters are:

 The RGB LED Shield’s address

 A command

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. Repeated START condition

6. 1st Address byte with ‘Zero’ for a transmission request

7. 2nd Address byte

8. 1st Address byte with ‘One’ for a request for data

9. Acknowledge

10.Not-acknowledge

11.STOP condition

7.1.5 I2CREAD_DIRECTACCESS (ADDRESS, REGISTER ADDRESS)

This function is used when a value in a specific register is to be read. With this function it is possible
to access any value contained in the RGB LED Shield registers which may not already be accessible
by the provided commands.

The function parameters are:

 The RGB LED Shield’s address

 The address of the target register

− The register address is a 32-bit value and will be sent in 4 bytes.

32-bits of data will be received in 4 bytes and returned by the function.

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command: READ_DIRECTACCESS

5. Bits 0 – 7 of register address

6. Bits 8 – 15 of register address

7. Bits 16 – 23 of register address

8. Bits 24 – 31 of register address

9. Repeated START condition

10.1st Address byte with ‘Zero’ for a transmission request

11.2nd Address byte

12.1st Address byte with ‘One’ for a request for data

13.Acknowledge

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 55 V1.0, 2014-11

14.Acknowledge

15.Acknowledge

16.Not-acknowledge

17.STOP condition

7.1.6 I2CWRITE_DIRECTACCESS (ADDRESS, COMMAND, REGISTER ADDRESS,
DATA)

This function should be used when a value in a specific register is to be read.

Any of the RGB LED Shield registers can be accessed with this function.

The function parameters are:

 The RGB LED Shield’s address

 A command

 The address of the target register

Both the register address and data are 32-bit values and will each be sent in 4 bytes.

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. Bits 0 – 7 of register address

6. Bits 8 – 15 of register address

7. Bits 16 – 23 of register address

8. Bits 24 – 31 of register address

9. Repeated START condition

10.1st Address byte with ‘Zero’ for a transmission request

11.2nd Address byte

12. ‘One’ for a request for data

13.Bits 0 – 7 of data

14.Bits 8 – 15 of data

15.Bits 16 – 23 of word

16.Bits 24 – 31 of word

17.STOP condition

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 56 V1.0, 2014-11

7.1.7 I2CCHANGEADDRESS (ADDRESS, NEW ADDRESS)

This function is used to change the 10-bit address of the RGB LED Shield.

Using this function by itself will only result in a temporary change in address. On the next startup the
RGB LED Shield’s address will revert to the default 0x15E.

To permanently change the address, this command must be used in conjunction with the
I2CSAVEPARAM function.

The function parameters are:

 The RGB LED Shield’s address

 The new address

− The new address is a 10-bit value, but the function will send it as 111100XX, where XX are the 2
most significant bits of the new address as one byte, and the lower 8-bits as a second byte. This
format follows the I2C specification for 10-bit addressing.

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. CHANGEADDRESS command

5. 111100XX, where XX is the 2 most significant bits of the new address

6. Lower 8-bits of address

7. STOP condition

7.1.8 I2CDMX (ADDRESS, DMXCOMMAND)

This function enables or disables the DMX control.

The function parameters are:

 The RGB LED Shield’s address

 A DMX Control related command

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. 8-bit command

5. STOP condition

RGB LED Lighting Shield with XMC1202 for Arduino

Appendix

Board Manual 57 V1.0, 2014-11

7.1.9 I2CSAVEPARAM (ADDRESS)

This function saves the current parameters in the shield to its Flash memory. The function will send a
read request for the shield to respond when the Flash access operation is finished.

The function parameter is the RGB LED Shield’s address.

The data transfer sequence is:

1. START condition

2. 1st Address byte with ‘Zero’ for a transmission request

3. 2nd Address byte

4. SAVEPARAMETERS command

5. Repeated START condition

6. 1st Address byte with ‘Zero’ for a transmission request

7. 2nd Address byte

8. 1st Address byte with ‘One’ for a request for data

9. Acknowledge

10.Not-acknowledge

11.STOP condition

Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

Океан Электроники
Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при

поставках импортных электронных компонентов на взаимовыгодных условиях!

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным
представителем в России одного из крупнейших производителей разъемов военного и
аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и
эксклюзивным представителем в России производителя высокотехнологичных и надежных
решений для передачи СВЧ сигналов «FORSTAR».

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки,
Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более
30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит
испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества
(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics и др.);

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического
назначения:
(Применяются в военной, авиационной, аэрокосмической,
морской, железнодорожной, горно- и нефтедобывающей
отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели,
кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и
специального назначения, в средствах связи, РЛС, а так же
военной, авиационной и аэрокосмической отраслях
промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

