
HIGH-SPEED 16K X 16 DUAL-PORT STATIC RAM

Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed access
 - Commercial: 15/20/25/35ns (max.)
 - Industrial: 20ns (max.)
 - Military: 25/35ns (max.)
- Low-power operation
 - IDT7026S
 - Active: 750mW (typ.) Standby: 5mW (typ.)
 - IDT7026L
 Active: 750mW (typ.)
 Standby: 1mW (typ.)
- Separate upper-byte and lower-byte control for multiplexed bus compatibility

- IDT7026 easily expands data bus width to 32 bits or more using the Master/Slave select when cascading more than one device
- M/S = H for BUSY output flag on Master, M/S = L for BUSY input on Slave
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- TTL-compatible, single 5V (±10%) power supply
- Available in 84-pin PGA and 84-pin PLCC
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

NOTES:

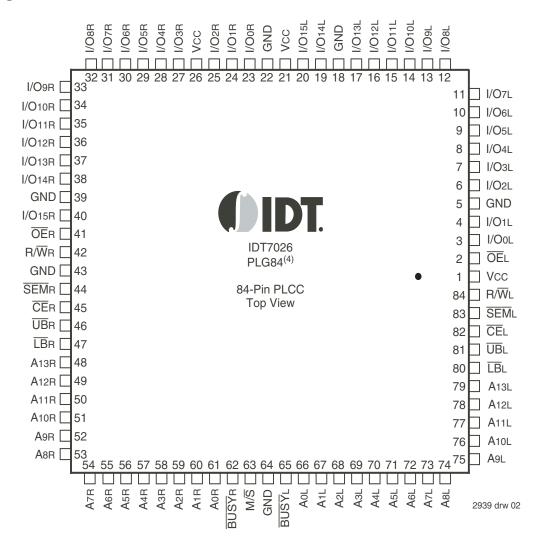
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.

2. BUSY outputs are non-tri-stated push-pull.

AUGUST 2019

Military, Industrial and Commercial Temperature Ranges

Description


The IDT7026 is a high-speed 16K x 16 Dual-Port Static RAM. The IDT7026 is designed to be used as a stand-alone Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 32-bit-or-more word systems. Using the IDTMASTER/SLAVE Dual-Port RAM approach in 32-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by \overline{CE} permits the on-chip circuitry of each port to enter a very low standby power mode.

Fabricated using CMOS high-performance technology, these devices typically operate on only 750mW of power.

The IDT7026 is packaged in a ceramic 84-pin PGA, and a 84-pin PLCC. Military grade product is manufactured in compliance with MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. Package body is approximately 1.15 in x 1.15 in x .17 in.
- 4. This package code is used to reference the package diagram.

Pin Configurations^(1,2,3) (con't.)

	63	61	60	58	55	54	51	48	46	45	42		
11	I/O7L	I/O5L	I/O4L	I/O2L	I/Ool	OEL	SEML	LBL	A12L	A11L	A8L		
	66	64	62	59	56	49	50	47	44	43	40		
10	I/O10L	I/O8L	I/O6L	I/O3L	I/O1L	UBL	CEL	A13L	A10L	A9L	A6L		
	67	65			57	53	52			41	39		
09	I/O11L	I/O9L			GND	Vcc	R/₩L			A7L	A5L		
	69	68	1					1		38 37			
08	I/O13L	I/O12L						A4L	A3L				
	72	71	73					33	35	34			
07	I/O15L	I/O14L	Vcc					BUSYL	A1L	Aol			
	75	70	74			IDT7026 GU84 ⁽⁴⁾	32	31	36				
06	I/Oor	GND	GND			84-Pin PG	GND	M/S	A2L				
	76	77	78		-	Top View	28	29	30				
05	I/O1R	I/O2R	Vcc						A1R	AOR	BUSYR		
	79	80								26	27		
04	I/O3R	I/O4R								Азв	A2R		
	81	83	1		7	11	12]		23	25		
03	I/O5R	I/O7R			GND	GND	SEMR			A6R	A4R		
	82	1	2	5	8	10	14	17	20	22	24		
02	I/O6R	I/O9R	I/O10R	I/O13R	I/O15R	R/WR	UBR	A12R	A9R	A7R	A5R		
	84	3	4	6	9	15	13	16	18	19	21		
01	I/O8R	I/O11R	I/O12R	I/O14R	ŌĒR	LBR	CER	A13R	A11R	A10R	A8R		
/	A	В	С	D	E	F	G	Н	J	ĸ	L		
/ dex											2939 drv		

NOTES:

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. Package body is approximately 1.12 in x 1.12 in x .16 in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names			
CEL	CE R	Chip Enable			
R/WL	R/Wr	Read/Write Enable			
ŌĒL	ŌĒR	Output Enable			
Aol - A13l	Aor - A13r	Address			
I/Ool - I/O15L	I/Oor - I/O15r	Data Input/Output			
SEML	SEM R	Semaphore Enable			
ŪBL	ŪBR	Upper Byte Select			
LB L	LB R	Lower Byte Select			
BUSYL	BUSYR	Busy Flag			
Μ	/ S	Master or Slave Select			
V	CC	Power			
G	ND	Ground			

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to+125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

NOTES:

2939 tbl 02a

1. This is the parameter TA. This is the "instant on" case temperature.

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0mhz)

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit					
Cin	Input Capacitance	VIN = 3dV	9	pF					
Соит	Output Capacitance	Vout = 3dV	10	pF					
2939 tbl									

NOTES:

1. This parameter is determined by device characterization but is not production tested.

2. 3dV represents the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V.

2939 tbl 01

Military, Industrial and Commercial Temperature Ranges

Truth Table I - Non-Contention Read/Write Control

		Inpu	uts ⁽¹⁾			Out	puts	
Ē	R/W	ŌĒ	ŪB	LΒ	SEM	I/O8-15	I/O0-7	Mode
Н	Х	Х	Х	Х	Н	High-Z	High-Z	Deselected: Power-Down
Х	Х	Х	Н	Н	Н	High-Z	High-Z	Both Bytes Deselected
L	L	Х	L	Н	Н	DATAIN	High-Z	Write to Upper Byte Only
L	L	Х	Н	L	Н	High-Z	DATAIN	Write to Lower Byte Only
L	L	Х	L	L	Н	DATAIN	DATAIN	Write to Both Bytes
L	Н	L	L	Н	Н	DATAOUT	High-Z	Read Upper Byte Only
L	Н	L	Н	L	Н	High-Z	DATAOUT	Read Lower Byte Only
L	Н	L	L	L	Н	DATAOUT	DATAOUT	Read Both Bytes
Х	Х	Н	Х	Х	Х	High-Z	High-Z	Outputs Disabled

NOTE:

1. AOL — A13L \neq AOR — A13R.

2939 tbl 04

Truth Table II – Semaphore Read/Write Control⁽¹⁾

		Inp	outs			Outputs		
Ē	R/W	ŌĒ	ŪB	LB	SEM	I/O8-15	I/O0-7	Mode
Н	Н	L	Х	Х	L	DATAOUT	DATAOUT	Read Data in Semaphore Flag
Х	Н	L	Н	Н	L	DATAOUT	DATAOUT	Read Data in Semaphore Flag
Н	\uparrow	Х	Х	Х	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
Х	\uparrow	Х	Н	Н	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
L	Х	Х	L	Х	L			Not Allowed
L	Х	Х	Х	L	L			Not Allowed

NOTE:

1. There are eight semaphore flags written to via I/Oo and read from all I/O's (I/Oo-I/O15). These eight semaphores are addressed by Ao - A2.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	٥C
Tstg	Storage Temperature	-55 to +125	-65 to +150	٥C
Ιουτ	DC Output Current	50	50	mA

2939 tbl 06a

2939 tbl 05

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 10%.

2939 tbl 08

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit					
Vcc	Supply Voltage	4.5	5.0	5.5	V					
GND	Ground	0	0	0	V					
V⊪	Input High Voltage	2.2		6.0 ⁽²⁾	V					
VIL	Input Low Voltage	-0.5(1)		0.8	V					
	2939 tbl 07									

NOTES:

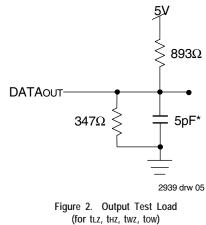
1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ($Vcc = 5.0V \pm 10\%$)

			7026S		702		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	-	10	-	5	μA
Ilo	Output Leakage Current	\overline{CE} = VIH, Vout = 0V to Vcc		10		5	μA
Vol	Output Low Voltage	Iol = 4mA		0.4		0.4	V
Vон	Output High Voltage	Ioh = -4mA	2.4	-	2.4		V

NOTE:


1. At Vcc = 2.0V, input leakages are undefined.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2
	2939 tbl 09

DATAOUT BUSY 347Ω 2939 drw 04

* Including scope and jig.

2939 tbl 11

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ (con't.) (Vcc = $5.0V \pm 10\%$)

					7026X15 Com'l Only		7026X20 Com'l, Ind & Military.		7026X25 Com'l, Ind & Military		
Symbol	Parameter	Test Condition	Versi	on	Тур. ⁽²⁾	Max.	Тур. ⁽²⁾	Max.	Тур. ⁽²⁾	Max.	Unit
Icc	Dynamic Operating Current (Both Ports Active)			S L	190 190	325 285	180 180	315 275	170 170	305 265	mA
		T = IMAX ^(v)	MIL & IND	S L			180 180	355 315	170 170	345 305	
ISB1	Standby Current (Both Ports - TTL Level	$\overline{\underline{CEL}} = \overline{\underline{CER}} = \underline{VH}$ SEMR = SEML = VH	COM'L	S L	35 35	95 70	30 30	85 60	25 25	85 60	mA
	Inputs)		MIL & IND	S L			30 30	100 80	25 25	100 80	
ISB2	Standby Current (One Port - TTL Level Inputs) $\overline{CE}^*A^* = VIL$ and $\overline{CE}^*B^* = VIH^{(5)}$ Active Port Outputs Disabled, $f=f_MAX^{(6)}$	COM'L	S L	125 125	220 190	115 115	210 180	105 105	200 170	mA	
		$\frac{1-1MAX^{(4)}}{SEMR} = \frac{SEML}{SEML} = VIH$	MIL & IND	S L			115 115	245 210	Com'l, Ind & Military Typ. ⁽²⁾ Max 170 305 170 345 170 305 25 60 25 60 25 80 25 80 25 80 25 20		
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports CEL and CER ≥ Vcc - 0.2V Vi⊵ Vcc - 0.2V or	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5			mA
	inputs)	$VIN \le VCC - 0.2V OT$ $VIN \le 0.2V$, f = 0 ⁽⁴⁾ SEMR = SEML \ge VCC - 0.2V	MIL & IND	S L			1.0 0.2	30 10			
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\overline{CE}^{*}A^{*} \leq 0.2V \text{ and} \\ \overline{CE}^{*}B^{*} \geq VCC + 0.2V^{(5)} \\ \overline{SEMR} = \overline{SEML} > VCC + 0.2V$	COM'L	S L	120 120	195 170	110 110	185 160			mA
	ուխսե <i>յ</i>	SETVIR = SETVIL \geq VCC - 0.2V VIN \geq VCC - 0.2V or VIN \leq 0.2V Active Port Outputs Disabled, f=fmax ⁽³⁾	MIL & IND	S L			110 110	210 185			

					7026 Com' & Mil	, Ind	7026X55 Com'l, Ind & Military		
Symbol	Parameter	neter Test Condition		Version		Мах.	Тур. (2)	Мах.	Unit
ICC	Dynamic Operating Current (Both Ports Active)	$\overline{CE} = V_{IL}, Outputs DisabledSEM = V_{IH} f = f_{MAX}^{(0)}$	COM'L	S L	160 160	295 255	150 150	270 230	mA
		T = IMAX*'	MIL & IND	S L	160 160	335 295	150 150	310 270	
ISB1	Standby Current (Both Ports - TTL Level	$\overline{CEL} = \overline{CER} = VH$ $\overline{SEMR} = \overline{SEML} = VH$ $f = Max^{(3)}$	COM'L	S L	20 20	85 60	13 13	85 60	mA
	Inputs)	T = IMAX ^{ey}	MIL & IND	S L	20 20	100 80	13 13	100 80	
ISB2	(One Port - TTL Level Ac	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	COM'L	S L	95 95	185 155	85 85	165 135	mA
	Inputs)		MIL & IND	S L	95 95	215 185	85 85	195 165	
ISB3	Full Standby Current (Both Ports - All CMOS	Both Ports CEL and CER ≥ Vcc - 0.2V ViN ≥ Vcc - 0.2V, or	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	mA
		$\frac{VIN \ge VCC + 0.2V \text{ of }}{SEMR} = \frac{O^{(4)}}{SEMR} \ge VCC - 0.2V$	MIL & IND	S L	1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\frac{\overline{CE}^{*}A^{*}}{\overline{CE}^{*}B^{*}} \ge \frac{0.2V}{2CC} + 0.2V^{(5)}$	COM'L	S L	90 90	160 135	80 80	135 110	mA
	Lever inputs)	$ \begin{array}{l} \overline{SEMR} = \overline{SEML} \geq Vcc - 0.2V \\ Vin \geq Vcc - 0.2V \\ or Vin \leq 0.2V \\ Active Port Outputs Disabled \\ f=fmx^{(3)} \end{array} $	MIL & IND	S L	90 90	190 165	80 80	175 150	

NOTES:

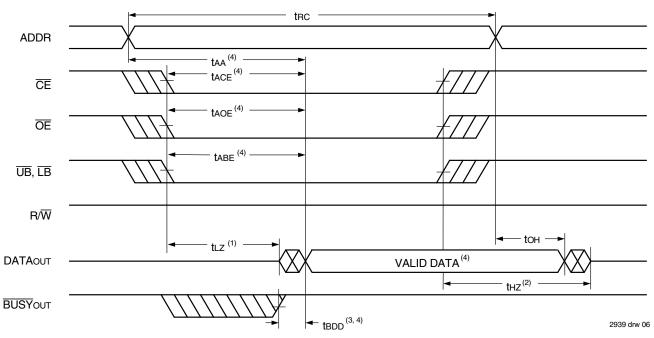
1. 'X' in part numbers indicates power rating (S or L).

Vic = 5V, Ta = +25°C, and are not production tested. Icccc = 120mA (Typ.)
 At f = fMax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions" of input levels of GND to 3V.
 f = 0 means no address or control lines change.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage ${\rm Range}^{\rm (4)}$

			6X15 I Only	7026X20 Com'l, Ind & Military		7026X25 Com'l, Ind & Military			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYCLE					-		-	-	
trc	Read Cycle Time	15		20		25		ns	
taa	Address Access Time		15		20		25	ns	
tace	Chip Enable Access Time ⁽³⁾		15		20		25	ns	
tabe	Byte Enable Access Time ⁽³⁾		15		20		25	ns	
taoe	Output Enable Access Time	—	10		12		13	ns	
toн	Output Hold from Address Change	3	_	3		3		ns	
t∟z	Output Low-Z Time ^(1,2)	3	_	3		3		ns	
tHZ	Output High-Z Time ^(1,2)	-	10		12		15	ns	
tPU	Chip Enable to Power Up Time ⁽²⁾	0		0		0		ns	
tPD	Chip Disable to Power Down Time ⁽²⁾	—	15		20		25	ns	
tsop	Semaphore Flag Update Pulse (OE or SEM)	10		10		12		ns	
tsaa	Semaphore Address Access Time	—	15		20		25	ns	

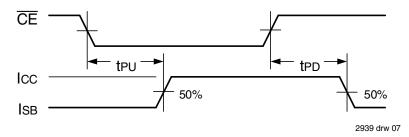
						2939 tbl 12a
		7026X35 Com'l, Ind & Military		Com	6X55 'I, Ind litary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
READ CYCLE						
trc	Read Cycle Time	35		55		ns
taa	Address Access Time		35		55	ns
tace	Chip Enable Access Time ⁽³⁾		35		55	ns
T ABE	Byte Enable Access Time ⁽³⁾		35		55	ns
taoe	Output Enable Access Time	_	20		30	ns
toн	Output Hold from Address Change	3		3		ns
tLz	Output Low-Z Time ^(1,2)	3		3		ns
tHZ	Output High-Z Time ^(1,2)		15		25	ns
tPU	Chip Enable to Power Up Time ⁽²⁾	0		0	_	ns
tpd	Chip Disable to Power Down Time ⁽²⁾		35		50	ns
tsop	Semaphore Flag Update Pulse (OE or SEM)	15		15		ns
tsaa	Semaphore Address Access Time		35		55	ns


2939 tbl 12b

1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). 2. This parameter is guaranteed by device characterization, but is not production tested. 3. To access RAM, $\overline{CE} = VIL$ and $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ and $\overline{SEM} = VIL$.

4. 'X' in part numbers indicates power rating (S or L).

Military, Industrial and Commercial Temperature Ranges


WAVEFORM OF READ CYCLES⁽⁵⁾

NOTES:

- 1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.
- 2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.
- 3. tbob delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.
- 5. $\overline{\text{SEM}} = \text{VIH}.$

Timing of Power-Up Power-Down

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage^(5,6)

Symbol	Parameter		7026X15 Com'l Only		7026X20 Com'l, Ind & Military		7026X25 Com'l, Ind & Military	
.,		Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCL	E		-					-
twc	Write Cycle Time	15		20	_	25		ns
tew	Chip Enable to End-of-Write ⁽³⁾	12		15	_	20		ns
taw	Address Valid to End-of-Write	12		15		20		ns
tas	Address Set-up Time ⁽³⁾	0		0		0		ns
twp	Write Pulse Width	12		15	_	20	_	ns
twr	Write Recovery Time	0		0		0		ns
tow	Data Valid to End-of-Write	10		15		15		ns
tHZ	Output High-Z Time ^(1,2)	—	10	-	12		15	ns
tDH	Data Hold Time ⁽⁴⁾	0		0		0		ns
twz	Write Enable to Output in High-Z ^(1,2)		10	—	12		15	ns
tow	Output Active from End-of-Write ^(1,2,4)	0		0		0		ns
tswrd	SEM Flag Write to Read Time	5		5	—	5		ns
tsps	SEM Flag Contention Window	5		5		5		ns
			•		•		•	3199 tbl 13
				702	6835	702	6855	

Symbol	Parameter	Com	6X35 'I, Ind litary	7026X55 Com'l, Ind & Military			
,		Min.	Max.	Min.	Max.	Unit	
WRITE CYCL	E						
twc	Write Cycle Time	35		55		ns	
tew	Chip Enable to End-of-Write ⁽³⁾	30		45		ns	
taw	Address Valid to End-of-Write	30		45		ns	
tas	Address Set-up Time ⁽³⁾	0		0		ns	
twp	Write Pulse Width	25		40		ns	
twR	Write Recovery Time	0		0	_	ns	
tow	Data Valid to End-of-Write	15		30		ns	
tHZ	Output High-Z Time ^(1,2)		15		25	ns	
tDH	Data Hold Time ⁽⁴⁾	0		0		ns	
twz	Write Enable to Output in High-Z ^(1,2)		15		25	ns	
tow	Output Active from End-of-Write ^(1,2,4)	0		0		ns	
tswrd	SEM Flag Write to Read Time	5		5		ns	
tsps	SEM Flag Contention Window	5		5		ns	

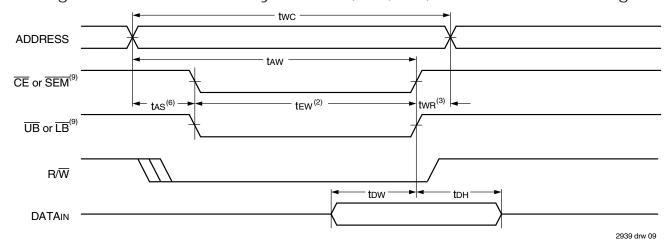
2939 tbl 13b

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).

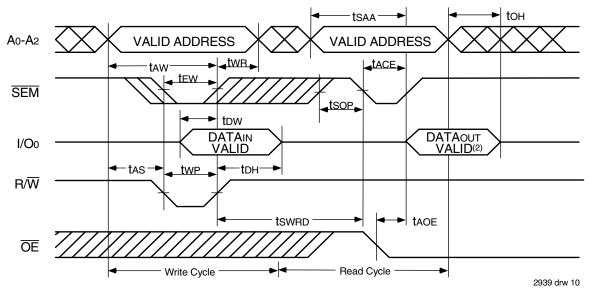
2. This parameter is guaranteed by device characterization, but is not production tested. 3. To access RAM, $\overrightarrow{CE} = V_{IL}$ and $\overrightarrow{SEM} = V_{IH}$. To access semaphore, $\overrightarrow{CE} = V_{IH}$ and $\overrightarrow{SEM} = V_{IL}$. Either condition must be valid for the entire tew time.

4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual t_H will always be smaller than the actual tow.


5. 'X' in part numbers indicates power rating (S or L).

Military, Industrial and Commercial Temperature Ranges

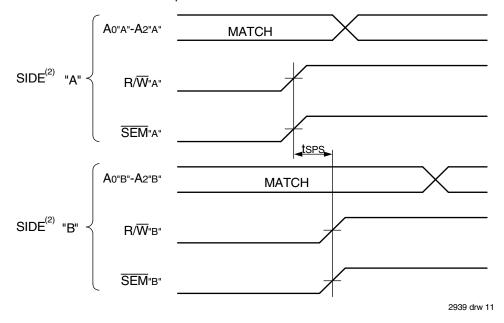
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)



Timing Waveform of Write Cycle No. 2, **CE**, **UB**, **LB** Controlled Timing^(1,5)

- 1. R/\overline{W} or \overline{CE} or \overline{UB} and $\overline{LB} = V_{IH}$ during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a VIL \overline{CE} = VIL and R/W = VIL for memory array writing cycle.
- 3. twe is measured from the earlier of CE or R/W (or SEM or R/W) going VIH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the CE or SEM = VIL transition occurs simultaneously with or after the RIW = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} or R/\overline{W} .
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If \overline{OE} = VIL during RW controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} = VIH during an RW controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tew must be met for either condition.

Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾



NOTES:

1. $\overline{CE} = V_{IH}$ or \overline{UB} and $\overline{LB} = V_{IH}$ for the duration of the above timing (both write and read cycle).

2. "DATAOUT VALID" represents all I/O's (I/Oo-I/O15) equal to the semaphore value.

Timing Waveform of Semaphore Write Contention^(1,3,4)

- 1. Dor = Dol = VIL, \overline{CE} r = \overline{CE} l = VIH, or both \overline{UB} & \overline{LB} = VIH.
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 3. This parameter is measured from $R\overline{W}^{a'}a''$ or $\overline{SEM}^{a}a''$ going HIGH to $R\overline{W}^{a''}b''$ or $\overline{SEM}^{a''}B''$ going HIGH.
- 4. If tsps is not satisfied, there is no guarantee which side will be granted the semaphore flag.

2939 tbl 14b

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(6,7)

			7026X15 Com'l Only		7026X20 Com'l, Ind & Military		7026X25 Com'l, Ind & Military	
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
BUSY TIMING	(M/Ś=VIH)							
tbaa	BUSY Access Time from Address Match	—	15		20		20	ns
tbda	BUSY Disable Time from Address Not Matched	—	15		20		20	ns
t BAC	BUSY Access Time from Chip Enable Low		15		20		20	ns
tBDC	BUSY Access Time from Chip Enable High		15		17		17	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5		5		5		ns
tBDD	BUSY Disable to Valid Data		18		30		30	ns
twн	Write Hold After BUSY ⁽⁵⁾	12		15		17		ns
BUSY TIMING	(M/Ś=V⊫)							
twв	BUSY Input to Write ⁽⁴⁾	0	_	0		0		ns
twн	Write Hold After BUSY ⁽⁵⁾	12		15		17		ns
PORT-TO-POF	RT DELAY TIMING	-	-	-	-	•		
twdd	Write Pulse to Data Delay ⁽¹⁾		30		45		50	ns
todd	Write Data Valid to Read Data Delay ⁽¹⁾		25		30		35	ns
	·	-	-	-	-	-	- 20	339 tbl 1

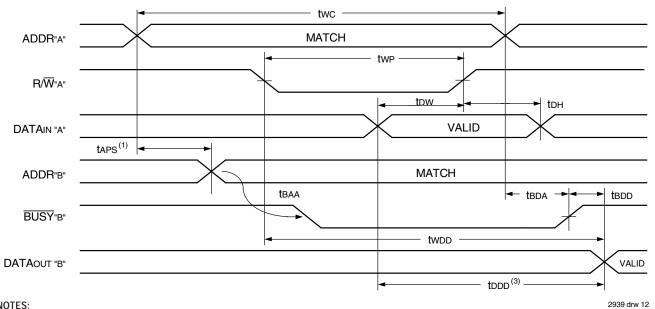
Parameter S=VIH)	Min.				
<u></u> <u></u> <u></u>		Мах.	Min.	Max.	Unit
JSY Access Time from Address Match		20		45	ns
JSY Disable Time from Address Not Matched	_	20	_	40	ns
JSY Access Time from Chip Enable Low	_	20		40	ns
JSY Access Time from Chip Enable High	_	20		35	ns
bitration Priority Set-up Time ⁽²⁾	5		5		ns
JSY Disable to Valid Data ⁽³⁾	_	35		40	ns
ite Hold After BUSY ⁵⁾	25		25		ns
S=VIL)					
JSY Input to Write ⁽⁴⁾	0		0	_	ns
ite Hold After BUSY ⁶⁾	25		25		ns
ELAY TIMING					
ite Pulse to Data Delay ⁽¹⁾		60		80	ns
ite Data Valid to Read Data Delay ⁽¹⁾		45		65	ns
	SY Access Time from Address Match SY Disable Time from Address Not Matched SY Access Time from Chip Enable Low SY Access Time from Chip Enable High itration Priority Set-up Time ⁽²⁾ SY Disable to Valid Data ⁽³⁾ te Hold After BUSY ⁽⁶⁾ SY Input to Write ⁽⁴⁾ te Hold After BUSY ⁽⁶⁾ ELAY TIMING	SY Access Time from Address Match — SY Disable Time from Address Not Matched — SY Access Time from Chip Enable Low — SY Access Time from Chip Enable High — itration Priority Set-up Time ⁽²⁾ 5 SY Disable to Valid Data ⁽³⁾ — te Hold After BUSY ⁽⁵⁾ 25 SY Input to Write ⁽⁴⁾ 0 te Hold After BUSY ⁽⁵⁾ 25 SI Input to Write ⁽⁴⁾ 0 te Hold After BUSY ⁽⁵⁾ 25 SI Input to Write ⁽⁴⁾ 0 te Hold After BUSY ⁽⁵⁾ 25	SY Access Time from Address Match — 20 SY Disable Time from Address Not Matched — 20 SY Access Time from Chip Enable Low — 20 SY Access Time from Chip Enable High — 20 SY Access Time from Chip Enable High — 20 itration Priority Set-up Time ⁽²⁾ 5 — SY Disable to Valid Data ⁽³⁾ — 35 te Hold After BUSY ⁽⁵⁾ 25 — SY Input to Write ⁽⁴⁾ 0 — te Hold After BUSY ⁽⁵⁾ 25 — SY Input to Write ⁽⁴⁾ 0 — te Hold After BUSY ⁽⁵⁾ 25 — EVIL) 25 —	SY Access Time from Address Match — 20 — SY Disable Time from Address Not Matched — 20 — SY Access Time from Chip Enable Low — 20 — SY Access Time from Chip Enable High — 20 — SY Access Time from Chip Enable High — 20 — SY Access Time from Chip Enable High — 20 — itration Priority Set-up Time ⁽²⁾ 5 — 5 SY Disable to Valid Data ⁽³⁾ — 35 — te Hold After BUSY ⁽⁵⁾ 25 — 25 SY Input to Write ⁽⁴⁾ 0 — 0 te Hold After BUSY ⁽⁵⁾ 25 — 25 SY Input to Write ⁽⁴⁾ 0 — 0 te Hold After BUSY ⁽⁵⁾ 25 — 25 St LAY TIMING — 60 —	SY Access Time from Address Match 20 45 SY Disable Time from Address Not Matched 20 40 SY Access Time from Chip Enable Low 20 40 SY Access Time from Chip Enable Low 20 40 SY Access Time from Chip Enable High 20 35 itration Priority Set-up Time ⁽²⁾ 5 5 SY Disable to Valid Data ⁽³⁾ 35 40 te Hold After BUSY ⁽⁵⁾ 25 25 SY Input to Write ⁽⁴⁾ 0 0 te Hold After BUSY ⁽⁵⁾ 25 25 SY Input to Write ⁽⁴⁾ 0 25 te Hold After BUSY ⁽⁵⁾ 25 25 EVL) 25 25 25 te Hold After BUSY ⁽⁵⁾ 25 25 25 te Hold After BUSY ⁽⁵⁾ 60

NOTES:

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VI-)".

2. To ensure that the earlier of the two ports wins.

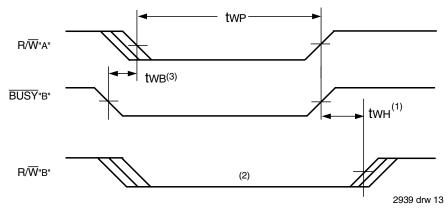
3. tBDD is a calculated parameter and is the greater of 0, twDD - twp (actual), or tDDD - tDw (actual).


4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".

5. To ensure that a write cycle is completed on port "B" after contention on port "A".

6. 'X' in part numbers indicates power rating (S or L).

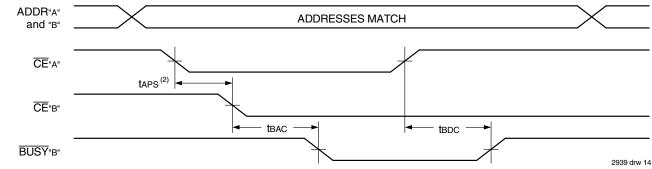
7. Industrial temperature: for other speeds, packages and powers contact your sales office.


Timing Waveform of Write with Port-to-Port Read and **BUSY** $(M/S = VIH)^{(2,4,5)}$

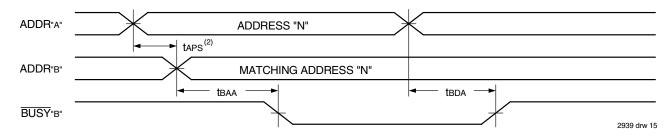
NOTES:

- 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = V_{IL}$ (slave).
- $2. \quad \overline{CE}_L = \overline{CE}_R = VIL.$
- 3. $\overline{OE} = VIL$ for the reading port.
- 4. If $M/\overline{S} = V_{IL}$ (slave), \overline{BUSY} is an input. Then for this example $\overline{BUSY}^*A^* = V_{IH}$ and \overline{BUSY}^*B^* input is shown above.
- 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

Timing Waveform of Write with **BUSY** (M/ \overline{S} = VIL)


- 1. twH must be met for both BUSY input (SLAVE) and output (MASTER).
- 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.
- 3. twb is only for the "SLAVE" version.

14


7026S/L High-Speed 16K x 16 Dual-Port Static RAM

c RAM Military, Industrial and Commercial Temperature Ranges

Waveform of **BUSY** Arbitration Controlled by \overline{CE} Timing (M/ \overline{S} = VIH)⁽¹⁾

Waveform of **BUSY** Arbitration Cycle Controlled by Address Match Timing $(M/\overline{S} = VIH)^{(1)}$

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".

2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.

Truth Table III — Example of Semaphore Procurement Sequence^(1,2,3)

Functions	Do - D15 Left	Do - D15 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7026.

2. There are eight semaphore flags written to via I/Oo and read from all I/O's (I/Oo-I/O15). These eight semaphores are addressed by Ao - A2.

3. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.

2939 tbl 15

Truth Table IV — Address **BUSY** Arbitration

Inputs			Out	puts	
ĒĒ∟	ĊĒr	Aol-A13l Aor-A13r	BUS YL ⁽¹⁾	BUSY R ⁽¹⁾	Function
Х	Х	NO MATCH	Н	Н	Normal
Н	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

 Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYx outputs on the IDT7026 are push pull, not open drain outputs. On slaves the BUSYx input internally inhibits writes.

2939 tbl 16

- LOW if the inputs to the opposite port were stable prior to the address and enable inputs of this port. HIGH if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.
- Writes to the left port are internally ignored when BUSYL outputs are driving LOW
 regardless of actual logic level on the pin. Writes to the right port are internally
 ignored when BUSYR outputs are driving LOW regardless of actual logic level
 on the pin.

Functional Description

The IDT7026 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7026 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{CE} = VIH$). When a port is enabled, access to the entire memory array is permitted.

BusyLogic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a BUSY indication, the write signal is gated internally to prevent the write from proceeding.

The use of BUSY logic is not required or desirable for all applications. In some cases it may be useful to logically OR the BUSY outputs together and use any BUSY indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of BUSY logic is not desirable, the BUSY logic can be disabled by placing the part in slave mode with the M/S pin. Once in slave mode the BUSY pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the BUSY pins HIGH. If desired, unintended write operations can be prevented to a port by tying the BUSY pin for that port LOW.

The BUSY outputs on the IDT 7026 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

Width Expansion with **BUSY** Logic Master/Slave Arrays

When expanding an IDT7026 RAM array in width while using $\overline{\text{BUSY}}$ logic, one master part is used to decide which side of the RAM array will receive a $\overline{\text{BUSY}}$ indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master use the $\overline{\text{BUSY}}$ signal as a write inhibit signal. Thus on the IDT7026 RAM the $\overline{\text{BUSY}}$ pin is an output if the part used as a master (M/ $\overline{\text{S}}$ pin = VIH), and the BUSY pin is an input if the part used as a slave (M/ $\overline{\text{S}}$ pin = VIL) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating BUSY on one side of the

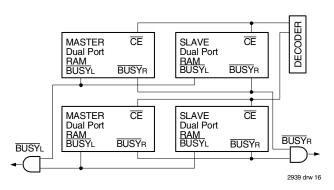


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7026 RAMs.

array and another master indicating BUSY on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The BUSY arbitration on a master is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a \overline{BUSY} flag to be output from the master before the actual write pulse can be initiated with either the R/\overline{W} signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

The IDT7026 is an extremely fast Dual-Port 16K x 16 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or written to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a nonsemaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts

7026S/L

Military, Industrial and Commercial Temperature Ranges

in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by \overline{CE} , the Dual-Port RAM enable, and \overline{SEM} , the semaphore enable. The \overline{CE} and \overline{SEM} pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where \overline{CE} and $\overline{SEM} = VIH$.

Systems which can best use the IDT7026 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7026's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT7026 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very highspeed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7026 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a LOW input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/W) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0 – A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If a low level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Table III). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (SEM) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (SEM or \overline{OE}) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Table III). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that

Military, Industrial and Commercial Temperature Ranges

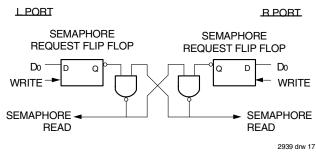


Figure 4. IDT7026 Semaphore Logic

semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Using Semaphores—Some Examples

Perhaps the simplest application of semaphores is their application as resource markers for the IDT7026's Dual-Port RAM. Say the 16K x 16 RAM was to be divided into two 8K x 16 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined as the indicator for the upper section of memory.

To take a resource, in this example the lower 8K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 8K. Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 8K

section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side.

Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore request and perform other tasks until it was able to write, then read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 8K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the Dual-Port RAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices has determined which memory area was "off-limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states.

Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure.

7026S/L High-Speed 16K x 16 Dual-Port Static RAM Military, Industrial and Commercial Temperature Ranges Ordering Information XXXXX 999 А А А A A Device Power Speed Package Process/ Temperature Туре Range Blank Tray Tape and Reel 8 Commercial (0°C to +70°C) Industrial (-40°C to + 85°C) Military (-55°C to + 125°C) Compliant to MIL-PRF-38535 QML Blank I(1) В G⁽²⁾ Green 84-pin PGA (G84) G 84-pin PLCC (J84) J 15 Commercial Only 20 Commercial & Industrial Speed in nanoseconds 25 Commercial & Military 35 Commercial & Military S Standard Power L Low Power 7026 256K (16K x 16) Dual-Port RAM 2939 drw 18

NOTES:

1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office.

2. Green parts available. For specific speeds, packages and powers contact your local sales office

LEAD FINISH (SnPb) parts are Obsolete excluding PGA. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	7026L15JG	PLG84	PLCC	С
	7026L15JG8	PLG84	PLCC	С
20	7026L20G	GU84	PGA	С
	7026L20JGI	PLG84	PLCC	I
	7026L20JGI8	PLG84	PLCC	I
25	7026L25G	GU84	PGA	С
	7026L25GB	GU84	PGA	М
35	7026L35G	GU84	PGA	С
	7026L35GB	GU84	PGA	М

Orderable	Part	Information
Uluelable	ган	πησιπατισπ

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
20	7026S20G	GU84	PGA	С
25	7026S25G	GU84	PGA	С
35	7026S35G	GU84	PGA	С

Datasheet Document History

Initiated datasheet document history
Converted to new format
Cosmetic and typographical corrections
Pages 2 and 3 Added additional notes to pin configurations
Changed drawing format
Page 1 Corrected DSC number
Added Industrial Temperature Ranges and removed related notes
Replaced IDT logo
Page 1 Fixed format in Features
Changed ±200mV to 0mV in notes
Page 3 Clarified TA parameter
Page 6 DC Electrical parameters-changed wording from "open" to "disabled"
Page 1 & 18 Verified accuracy of Industrial temp information throughout datasheet and updated with registered logo
Page 2 & 3 Added date revision for pin configurations
Page 18 Removed "IDT" from orderable part number
Page 1 In Features: Added text: "Green parts available, see ordering information".
Page 2 In Descriptions: Removed IDT in reference to fabrication
Page 2 &18 The package code J84-1 changed to J84 to match standard package codes
Page 3 &18 The package code G84-1 changed to G84 to match standard package codes
Page 18 Added Green and Tape & Reel indicators to the Ordering Information and updated footnotes
Product Discontinuation Notice - PDN# SP-17-02
Last time buy expires June 15, 2018
Page 1 & 18 Deleted obsolete speed grades
Page 2 Rotated PLG84 PLCC pin configuration to accurately reflect pin 1 orientation
Page 18 Added Orderable Part Information tables

CORPORATE HEADQUARTERS

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

 7026L35GB
 7026S20J8
 7026S25J8
 7026L25GB
 7026L25J8
 7026L20JI8
 7026S20J
 7026S20G
 7026S25G

 7026S25J
 7026S35J
 7026S35J
 7026S35G
 7026S15J
 7026L55J
 7026L25G
 7026L25J
 7026L15J
 7026L35G

 7026L35J
 7026L35J8
 7026S35J
 7026S35J
 7026S35J8
 7026L20G
 7026S55JI
 7026L20J8
 7026S55JI8
 7026L55J8

 7026S55J8
 7026L20JI
 7026S35J8
 7026S15J8
 7026L20JGI
 7026S55JI8
 7026L55J8

 7026S55J8
 7026L20JI
 7026S15J8
 7026S15J8
 7026L15JG8
 7026L20JGI8
 7026L20JGI
 7026L15JG

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А