74LVT16240A

3.3 V 16-bit inverting buffer/driver; 3-state

Rev. 4 — 1 October 2018

Product data sheet

1. General description

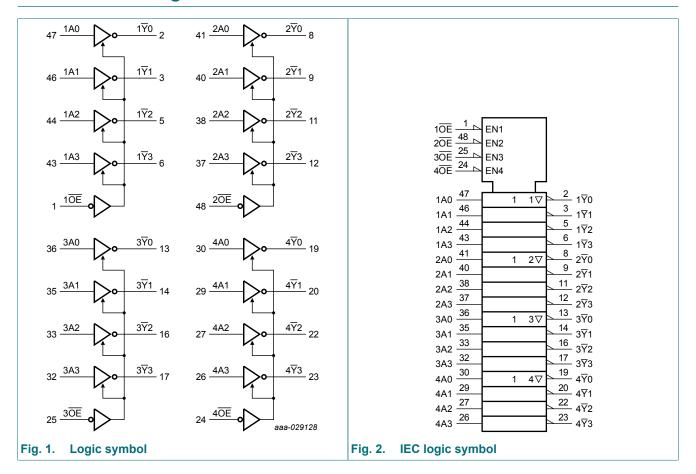
The 74LVT16240A is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V.

This device is an inverting 16-bit buffer that is ideal for driving bus lines. The device features four output enable inputs $(1\overline{OE}, 2\overline{OE}, 3\overline{OE}, 4\overline{OE})$, each controlling four of the 3-state outputs.

2. Features and benefits

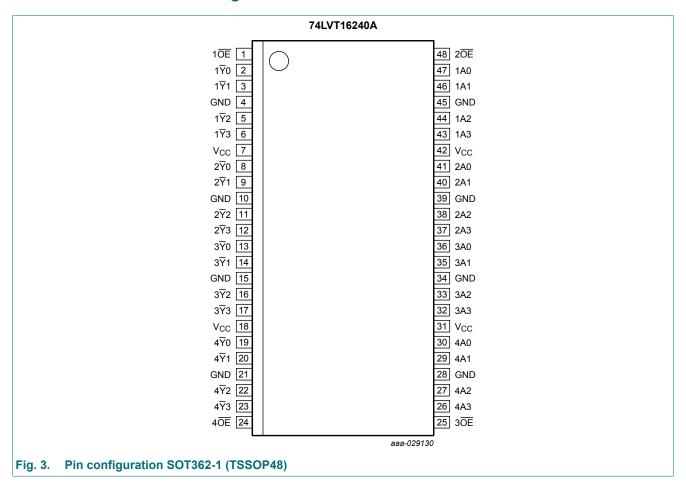
- · 16-bit bus interface
- 3-state buffers
- Output capability: +64 mA/–32 mA
- · TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- · Live insertion/extraction permitted
- Power-up 3-state
- · No bus current loading when output is tied to 5 V bus
- Latch-up protection:
 - JESD78B Class II exceeds 500 mA
- ESD protection:
 - HBM: JESD22-A114F exceeds 2000 V
 - MM: JESD22-A115-A exceeds 200 V

3. Ordering information


Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LVT16240ADGG	-40 °C to +85 °C	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1				

3.3 V 16-bit inverting buffer/driver; 3-state


4. Functional diagram

3.3 V 16-bit inverting buffer/driver; 3-state

5. Pinning information

5.1. Pinning

3.3 V 16-bit inverting buffer/driver; 3-state

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE , 3 OE , 4 OE	1, 48, 25, 24	output enable inputs (active LOW)
1A0, 1A1, 1A2, 1A3	47, 46, 44, 43	data inputs
2A0, 2A1, 2A2, 2A3	41, 40, 38, 37	data inputs
3A0, 3A1, 3A2, 3A3	36, 35, 33, 32	data inputs
4A0, 4A1, 4A2, 4A3	30, 29, 27, 26	data inputs
1₹0, 1₹1, 1₹2, 1₹3	2, 3, 5, 6	data outputs
2₹0, 2₹1, 2₹2, 2₹3	8, 9, 11, 12	data outputs
3₹0, 3₹1, 3₹2, 3₹3	13, 14, 16, 17	data outputs
4₹0, 4₹1, 4₹2, 4₹3	19, 20, 22, 23	data outputs
GND	4, 10, 15, 21, 28, 34, 39, 45	ground (0 V)
V _{CC}	7, 18, 31, 42	supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

Input nOE nAn		Output
nŌE	nAn	n₹n
L	L	Н
L	Н	L
Н	X	Z

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
VI	input voltage		[1]	-0.5	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	[1]	-0.5	+7.0	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Io	output current	output in LOW-state		-	128	mA
		output in HIGH-state		-64	-	mA
T _{stg}	storage temperature			-65	+150	°C
T _j	junction temperature		[2]	-	+150	°C

^[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

3.3 V 16-bit inverting buffer/driver; 3-state

8. Recommended operating conditions

Table 5. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C
Δt/ΔV	input transition rise and fall rate	outputs enabled	-	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
V _{IK}	input clamping voltage	V _{CC} = 2.7 V; I _{IK} = -18 mA		-	-0.85	-1.2	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V	
V _{IL}	LOW-level input voltage			-	-	0.8	V
V _{OH}	HIGH-level output voltage	V_{CC} = 2.7 V to 3.6 V; I_{OH} = -100 μ A		V _{CC} - 0.2	V _{CC}	-	V
		V _{CC} = 2.7 V; I _{OH} = -8 mA		2.4	2.5	-	V
		V _{CC} = 3.0 V; I _{OH} = -32 mA		2.0	2.3	-	V
V _{OL}	LOW-level output voltage	V _{CC} = 2.7 V; I _{OL} = 100 μA		-	0.07	0.2	V
		V _{CC} = 2.7 V; I _{OL} = 24 mA		-	0.3	0.5	V
		V _{CC} = 3.0 V; I _{OL} = 16 mA		-	0.25	0.4	V
		V _{CC} = 3.0 V; I _{OL} = 32 mA		-	0.3	0.5	V
		V _{CC} = 3.0 V; I _{OL} = 64 mA		-	0.4	0.55	V
I _{OH}	HIGH-level output current			-	-	-32	mA
I _{OL}	LOW-level output current			-	-	32	mA
		current duty cycle ≤ 50%; f ≥ 1kHz		-	-	64	mA
I _I	input leakage current	all input pins					
		V _{CC} = 0 V or 3.6 V; V _I = 5.5 V		-	0.4	10	μA
		control pins					
		V_{CC} = 3.6 V; V_I = V_{CC} or GND		-	±0.1	±1	μA
		data pins					
		V _{CC} = 3.6 V; V _I = V _{CC}	[2]	-	0.1	1	μA
		V _{CC} = 3.6 V; V _I = 0 V	[2]	-	-0.4	-5	μΑ
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 0 \text{ V to } 4.5 \text{ V}$		-	0.1	±100	μΑ
I _{BHL}	bus hold LOW current	nAn input; V _{CC} = 3 V; V _I = 0.8 V		75	135	-	μA
I _{BHH}	bus hold HIGH current	nAn input; V _{CC} = 3 V; V _I = 2.0 V		-75	-135	-	μΑ
I _{BHLO}	bus hold LOW overdrive current	nAn input; V_{CC} = 3.6 V; V_I = 0 V to 3.6 V	[3]	500	-	-	μΑ
I _{BHHO}	bus hold HIGH overdrive current	nAn input; $V_{CC} = 3.6 \text{ V}$; $V_I = 0 \text{ V}$ to 3.6 V	[3]	-	-	-500	μΑ
I _{CEX}	output high leakage current	output in HIGH-state when $V_O > V_{CC}$; $V_O = 5.5 \text{ V}$; $V_{CC} = 3.0 \text{ V}$		-	50	125	μA
I _{O(pu/pd)}	power-up/power-down output current	$V_{CC} \le 1.2 \text{ V}; V_O = 0.5 \text{ V to } V_{CC};$ $V_I = \text{GND or } V_{CC}; n\overline{\text{OE}} = \text{don't care}$	[4]	-	1	±100	μΑ

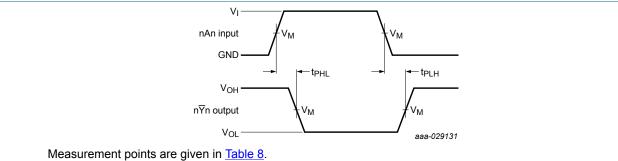
3.3 V 16-bit inverting buffer/driver; 3-state

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
l _{OZ}	OFF-state output current	V_{CC} = 3.6 V; V_I = V_{IL} or V_{IH}					
		output HIGH: V _O = 3.0 V		-	0.5	5	μA
		output LOW: V _O = 0.5 V		-	0.5	-5	μA
I _{CC}	supply current	V_{CC} = 3.6 V; V_I = GND or V_{CC} ; I_O = 0 A					
		outputs HIGH		-	0.07	0.12	mA
		outputs LOW		-	4.0	6	mA
		outputs disabled	[5]	-	0.07	0.12	mA
Δl _{CC}	additional supply current	per input pin; V_{CC} = 3 V to 3.6 V; one input at V_{CC} - 0.6 V and other inputs at V_{CC} or GND	[6]	-	0.1	0.2	mA
Cı	input capacitance	n OE ; V _I = 0 V or 3 V		-	3	-	pF
Co	output capacitance	Outputs disabled; V _O = 0 V or 3.0 V		-	9	-	pF

- All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C. Unused pins at V_{CC} or GND.
- This is the bus hold overdrive current required to force the input to the opposite logic state.
- This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V ± 0.3 [4] V a transition time of 100 μs is permitted. This parameter is valid for T_{amb} = 25 °C only.
- Measured with outputs pulled up to V_{CC} or GND.
- This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

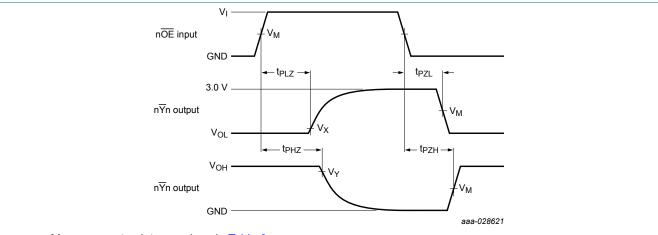
10. Dynamic characteristics

Table 7. Dynamic characteristics


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
t _{PLH}	LOW to HIGH	nAn to nYn; see Fig. 4				
	propagation delay	V _{CC} = 2.7 V	-	-	4.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	1.8	3.2	ns
t _{PHL}	HIGH to LOW	nAn to nYn; see Fig. 4				
	propagation delay	V _{CC} = 2.7 V	-	-	4.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	2.0	3.2	ns
t _{PZH}	OFF-state to HIGH	nOE to n∀n; see Fig. 5				
propagation delay	propagation delay	V _{CC} = 2.7 V	-	-	5.0	ns
	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.3	4.0	ns	
t _{PZL}	OFF-state to LOW	nOE to nYn; see Fig. 5				
	propagation delay	V _{CC} = 2.7 V	-	-	4.8	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.1	4.4	ns
t _{PHZ}	HIGH to OFF-state	nOE to nYn; see Fig. 5				
	propagation delay	V _{CC} = 2.7 V	-	-	5.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	3.2	4.5	ns
t_{PLZ}	LOW to OFF-state	nOE to n∀n; see Fig. 5				
	propagation delay	V _{CC} = 2.7 V	-	-	4.8	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	3.0	4.4	ns

^[1] Typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.


3.3 V 16-bit inverting buffer/driver; 3-state

10.1. Waveforms and test circuit

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Input (nAn) to output (n\overline{Y}n) propagation delay Fig. 4.

Measurement points are given in Table 8.

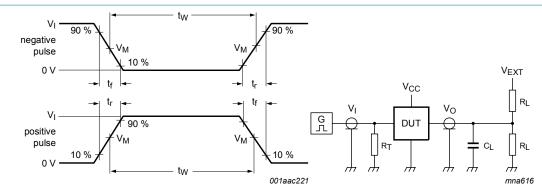

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig. 5. Enable and disable times of 3-state outputs

Table 8. Measurement points

Input		Output			
V _{CC}	V _M	V _M	V _X	V_{Y}	
2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V	

3.3 V 16-bit inverting buffer/driver; 3-state

Test data is given in Table 9.

Definitions test circuit:

 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 V_{EXT} = Test voltage for switching times.

Fig. 6. Test circuit for measuring switching times

Table 9. Test data

Input				Load	V _{EXT}			
V _I	f _i	t _W	t _r , t _f	CL	R_L	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7 V	≤ 10 MHz	500 ns	≤ 2.5 ns	50 pF	500 Ω	GND	6 V	open

3.3 V 16-bit inverting buffer/driver; 3-state

11. Package outline

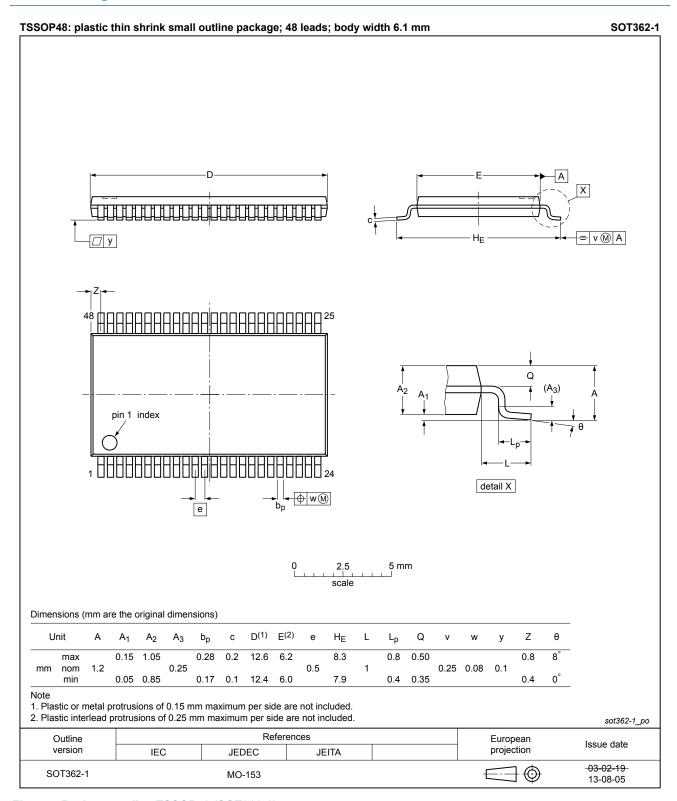


Fig. 7. Package outline TSSOP48 (SOT362-1)

3.3 V 16-bit inverting buffer/driver; 3-state

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74LVT16240A v.4	20181001	Product data sheet	-	74LVT16240A v.3			
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type number 74LVT16240ADL (SOT370-1) removed. 						
74LVT16240A v.3	20030221	Product data sheet	-	74LVT16240A v.2			
Modifications:	 Table 1 corrected: removed 'North America' column. Fig. 2 modified to correct pin names 						
74LVT16240A v.2	19980219	Product specification	-	74LVT16240A v.1			
74LVT16240A v.1	19941215	Product specification	-	-			

3.3 V 16-bit inverting buffer/driver; 3-state

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVT16240A

All information provided in this document is subject to legal disclaimers

© Nexperia B.V. 2018. All rights reserved

3.3 V 16-bit inverting buffer/driver; 3-state

Contents

1. (General description	. 1
2. I	Features and benefits	1
3. (Ordering information	. 1
4. I	Functional diagram	.2
5. I	Pinning information	. 3
5.1.	Pinning	. 3
5.2.	Pin description	. 4
6. F	Functional description	4
	Limiting values	
8. F	Recommended operating conditions	.5
	Static characteristics	
10.	Dynamic characteristics	6
10.1	. Waveforms and test circuit	7
11.	Package outline	9
	Abbreviations1	
	Revision history	
	Legal information1	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 1 October 2018

[©] Nexperia B.V. 2018. All rights reserved

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А