24V 120W 1 Phase / DRP024V120W1B

Highlights & Features

- Universal AC input voltage range
- Power will not de-rate for the entire input voltage range
- Power Boost of 150% for 5 seconds
- Full corrosion resistant aluminium chassis
- Extreme low temperature cold start at -40°C
- Conformal coating on PCBA to protect against common dust and chemical pollutants
- Hazardous Locations approval to ATEX and Class I, Div 2 (DRP024V120W1BA)
- Certified according to IEC/EN/UL 62368-1

Safety Standards

CB Certified for worldwide use

Model Number: DRP024V120W1B□ **Unit Weight:** 0.72 kg (1.59 lb) **Dimensions (L x W x D):** 121 x 50 x 123.1 mm

(4.76 x 1.97 x 4.85 inch)

General Description

The CliQ II DIN rail power supply series from one of the world's leading power supply companies, Delta Electronics Group, offers output voltage of 24V. These products are encased in rugged yet lightweight full aluminium body that can withstand shock and vibration according to IEC 60068-2 standard. The series of single phase products can operate over a wide temperature range of -25°C to +80°C. These products also feature universal AC input voltage range from 85Vac to 264Vac and the power will not de-rate throughout the entire range. Another great feature is the conformal coating on the PCBA which allows selected models to be certified to ATEX and Class I, Div 2 for use in hazardous locations. The design conforms to harmonic current emission IEC/EN 61000-3-2, Class A.

Model Information

CliQ II DIN Rail Power Supply

Model Number	Input Voltage Range	Rated Output Voltage	Rated Output Current
DRP024V120W1B□	85-264Vac (120-375Vdc)	24Vdc	5.00A

Model Numbering

DR	Р	024V	120W	1	В	
DIN Rail	Power Supply	Output Voltage	Output Power	Single Phase	CliQ II Series	A - Metal Case, with Class I, Div 2 N - Metal Case, without Class I, Div 2

24V 120W 1 Phase / DRP024V120W1B

Specifications

Input Ratings / Characteristics

Nominal Input Voltage		100-240Vac		
Input Voltage Range		85-264Vac		
Nominal Input Frequency		50-60Hz		
Input Frequency Range		47-63Hz		
DC Input Voltage Range*		120-375Vdc		
Input Current		< 2.20A @ 115Vac, < 1.10A @ 230Vac		
Efficiency at 100% Load		> 89.0% @ 115Vac, > 90.0% @ 230Vac		
Max Power Dissipation	0% load	< 0.7W @ 115Vac, < 1.0W @ 230Vac		
100% load		< 15.0W @ 115Vac, < 13.5W @ 230Vac		
Max Inrush Current (Cold Start)		< 35A @ 115Vac & 230Vac		
Leakage Current		< 1mA @ 240Vac		

^{*}Fulfills the test conditions for DC input. DC input safety approval can be obtained upon request.

Output Ratings / Characteristics**

Nominal Output Voltage	24Vdc
Factory Set Point Tolerance	24Vdc ± 2%
Output Voltage Adjustment Range	24-28Vdc
Output Current	5.00A (continuously operating at 24V) 7.50A (Power Boost for 5 seconds at 24V, refer to the details in the Functions section)
Output Power	120W (continuously operating at 24V) 180W (Power Boost for 5 seconds at 24V, refer to the details in the Functions section)
Line Regulation	< 0.5% typ. (@ 85-264Vac input, 100% load)
Load Regulation	< 1% typ. (@ 85-264Vac input, 0-100% load)
PARD*** (20MHz)	< 150mVpp
Rise Time	< 100ms @ nominal input (100% load)
Start-up Time	< 1,000ms @ nominal input (100% load)
Hold-up Time	> 20ms @ 115Vac, > 115ms @ 230Vac (100% load)
Dynamic Response (Overshoot & Undershoot O/P Voltage)	± 5% @ 85-264Vac input, 0-100% load (Slew Rate: 0.1A/µs, 50% duty cycle @ 5Hz to 1KHz)
Start-up with Capacitive Loads	10,000µF Max

^{**}For power de-rating from 50°C to 80°C, see power de-rating on page 3.
***PARD is measured with an AC coupling mode, 5cm wires, and in parallel with 0.1µF ceramic capacitor & 47µF electrolytic capacitor.

24V 120W 1 Phase / DRP024V120W1B

Mechanical

Case Cover / Chassis		Aluminium		
Dimensions (L x W x D)		121 x 50 x 123.1 mm (4.76 x 1.97 x 4.85 inch)		
Unit Weight		0.72 kg (1.59 lb)		
Indicator Green LED		DC OK		
Cooling System		Convection		
Terminal	Input	3 Pins (Rated 300V/15A)		
	Output	4 Pins (Rated 300V/15A)		
Wire Input / Output		AWG 20-12		
Mounting Rail		Standard TS35 DIN Rail in accordance with EN 60715		
Noise (1 Meter from power supply)		Sound Pressure Level (SPL) < 40dBA		

Environment

Surrounding Air Temperature	Operating	-25°C to +80°C (Cold	Start at -40°C)	
	Storage	-40°C to +85°C		
Power De-rating	Vertical Mounting	> 50°C de-rate power by 2.5% / °C		
	Horizontal Mounting	> 50°C de-rate power by 2.5% / °C		
Operating Humidity		5 to 95% RH (Non-Co	ndensing)	
Operating Altitude		0 to 2,500 Meters (8,200 ft.)		
Shock Test Non-Operating		IEC 60068-2-27, 30G (300m/S²) for a duration of 18ms, 1 time per direction, 2 times in total		
Vibration Non-Operating		IEC 60068-2-6, 10Hz to 500Hz @ 30m/S² (3G peak); 60 min per axis for all X, Y, Z direction		
Over Voltage Category		III	According to IEC/EN 62477-1 EN 60204-1 (clearance and creepage distances) and IEC 62103 (safety part)	
Pollution Degree		2		

Protections

Overvoltage	< 32V, ±10%, SELV Output, Hiccup Mode, Non-Latching (Auto-Recovery)
Overload / Overcurrent	> 150% of rated load current, Hiccup Mode, Non-Latching (Auto-Recovery)
Over Temperature	< 80°C Surrounding Air Temperature @ 100% load, Non- Latching (Auto-Recovery)
Short Circuit	Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed)
Internal Fuse at L pin	T4AH
Degree of Protection	IP20
Protection Against Shock	Class I with PE* connection

^{*}PE: Primary Earth

24V 120W 1 Phase / DRP024V120W1B

Reliability Data

	> 800,000 hrs. as per Telcordia SR-332 I/P: 115Vac, O/P: 100% load, Ta: 25°C
Expected Cap Life Time	10 years (115Vac & 230Vac, 50% load @ 40°C)

Safety Standards / Directives

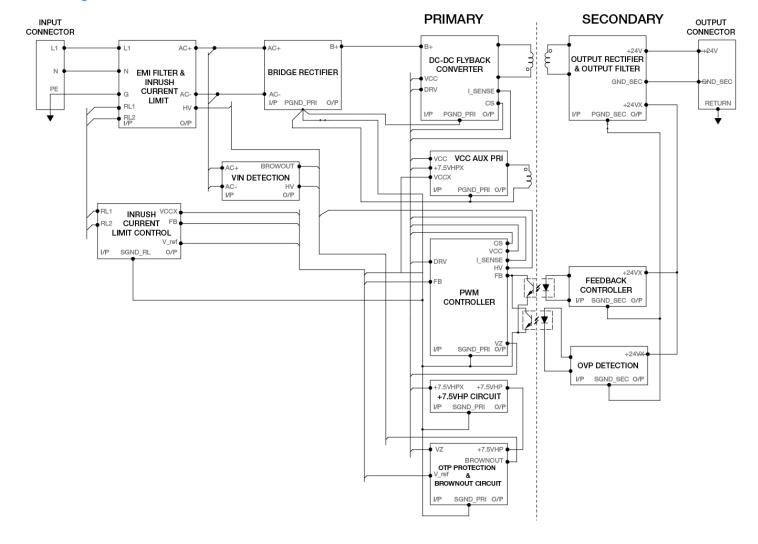
Electrical Equipment of Machines		EN 60204-1 (over voltage category III)		
Electrical Equipment for Use in Electrical	Power Installations	IEC/EN 62477-1 / IEC 62103		
Safety Entry Low Voltage		PELV* (EN 60204-1), SELV (EN 60950-1)		
Electrical Safety	SIQ Bauart	EN 60950-1, EN 62368-1		
	UL/cUL recognized	UL 60950-1, UL 62368-1, CSA C22.2 No. 60950-1 (File No. E191395)		
	CB Scheme	IEC 60950-1, IEC 62368-1		
Industrial Control Equipment	UL/cUL listed	UL 508 and CSA C22.2 No. 107.1-01 (File No. E315355)		
	CSA	CSA C22.2 No. 107.1-01 (File No. 181564)		
Hazardous Location / ATEX (For DRP024V120W1BA)	Hazardous Location	cCSAus to CSA C22.2 No. 213-M1987, ANSI / ISA 12.12.01:2011 [Class I, Division 2, Group A, B, C, D T4, Ta = -25°C to +80°C (> +50°C derating)]		
	ATEX	EN 60079-0:2009, EN 60079-15:2010 [
CCC		GB9254, GB17625.1 and GB4943.1 仅适用于海拔 2000m 以下地区安全使用		
CE		In conformance with EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU		
		For DRP024V120W1BA: In conformance with Equipment for explosive atmospheres (ATEX) directive 2014/34/EU		
Galvanic Isolation	Input to Output	4.0KVac		
	Input to Ground	1.5KVac		
	Output to Ground	1.5KVac		

^{*}Output must be earthed in the final unit in order to comply with PELV requirements according to standard EN 60204-1.

24V 120W 1 Phase / DRP024V120W1B

EMC

Emissions (CE & RE)		Generic Standards: CISPR 32, EN 55032, CISPR 11, EN 55011, FCC Title 47: Class B EN 61204-3 Generic Standards: EN 55024, EN 61000-6-1, EN 61000-6-2		
Component Power Supply for General Use				
Immunity				
Electrostatic Discharge	IEC 61000-4-2	Level 4 Criteria A ¹⁾ Air Discharge: 15kV Contact Discharge: 8kV		
Radiated Field	IEC 61000-4-3	Level 3 Criteria A ¹⁾ 80MHz-1GHz, 10V/M, 80% modulation (1kHz)		
Electrical Fast Transient / Burst	IEC 61000-4-4	Level 3 Criteria A ¹⁾ 2kV		
Surge	IEC 61000-4-5	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV		
Conducted	IEC 61000-4-6	Level 3 Criteria A ¹⁾ 150kHz-80MHz, 10Vrms		
Power Frequency Magnetic Fields	IEC 61000-4-8	Criteria A ¹⁾ 30A/Meter		
Voltage Dips and Interruptions	IEC 61000-4-11	100% dip; 1 cycle (20ms); Self Recoverable		
Low Energy Pulse Test (Ring Wave)	IEC 61000-4-12	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV		
Harmonic Current Emission		IEC/EN 61000-3-2, Class A		
Voltage Fluctuation and Flicker		IEC/EN 61000-3-3		

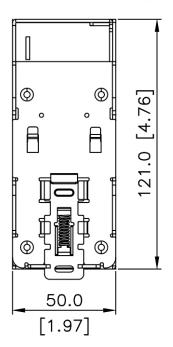

¹⁾ Criteria A: Normal performance within the specification limits

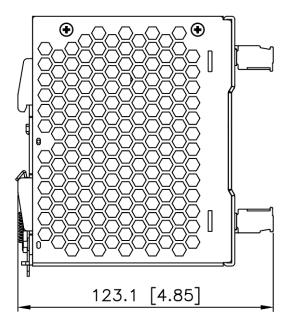
²⁾ Asymmetrical: Common mode (Line to earth) 3) Symmetrical: Differential mode (Line to line)

24V 120W 1 Phase / DRP024V120W1B

Block Diagram

24V 120W 1 Phase / DRP024V120W1B


Device Description



- 1) Input terminal block connector
- 2) Output terminal block connector
- 3) DC Voltage adjustment potentiometer
- DC OK control LED (Green)
- 5) Universal mounting rail system

Dimensions

L x W x D: 121 x 50 x 123.1 mm (4.76 x 1.97 x 4.85 inch)

24V 120W 1 Phase / DRP024V120W1B

Engineering Data

Output Load De-rating VS Surrounding Air Temperature

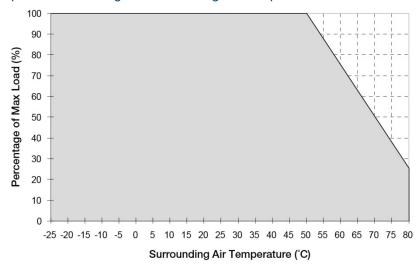
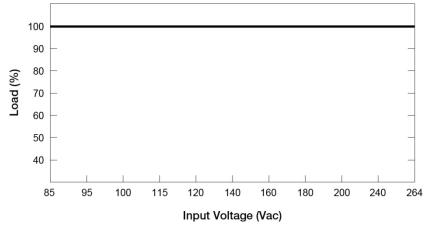



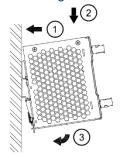
Fig. 1 De-rating for Vertical and Horizontal Mounting Orientation > 50°C de-rate power by 2.5% / °C

Note

- Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1.
- 2. If the output capacity is not reduced when the surrounding air temperature exceeds its specification as defined on Page 3 under "Environment", the device may run into Over Temperature Protection. When activated, the output voltage will go into bouncing mode and will recover when the surrounding air temperature is lowered or the load is reduced as far as necessary to keep the device in working condition.
- In order for the device to function in the manner intended, it is also necessary to keep a safety distance as recommended in the safety instructions while the device is in operation.
- Depending on the surrounding air temperature and output load delivered by the power supply, the device can be very hot!
- 5. If the device has to be mounted in any other orientation, please contact info@deltapsu.com for more details.

Output Load De-rating VS. Input Voltage

No output power de-rating across the entire input voltage range


24V 120W 1 Phase / DRP024V120W1B

Assembly & Installation

The power supply unit (PSU) can be mounted on 35mm DIN rails in accordance with EN 60715. The device should be installed with input terminal block at the bottom.

Each device is delivered ready to install.

Mounting

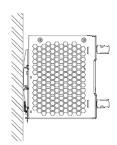
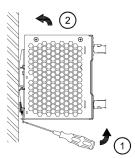



Fig. 2.1 Mounting

Snap on the DIN rail as shown in Fig. 2.1:

- 1. Tilt the unit upwards and insert it onto the DIN rail.
- 2. Push downwards until stopped.
- 3. Press against the bottom front side for locking.
- 4. Shake the unit slightly to ensure that it is secured.

Dismounting

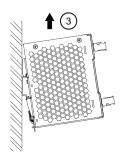
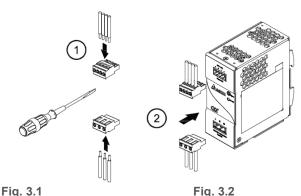
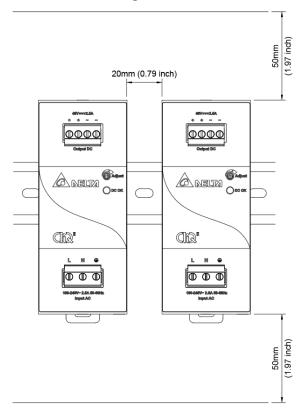



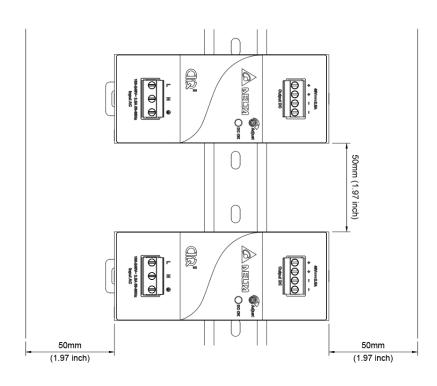
Fig. 2.2 Dismounting

To uninstall, pull or slide down the latch with screw driver as shown in Fig. 2.2. Then slide the power supply unit (PSU) in the opposite direction, release the latch and pull out the power supply unit (PSU) from the rail.

Connection

CAUTION: Must tighten wire to housing (Fig. 3.1) before plugging into the terminal block connection (Fig. 3.2).


In accordance to EN 60950 / UL 50950 and EN 62368 / UL 62368, flexible cables require ferrules. Use appropriate copper cables designed to sustain operating temperature of 60°C / 75° C or more to fulfill UL requirements.


24V 120W 1 Phase / DRP024V120W1B

Safety Instructions

Vertical Mounting

Horizontal Mounting

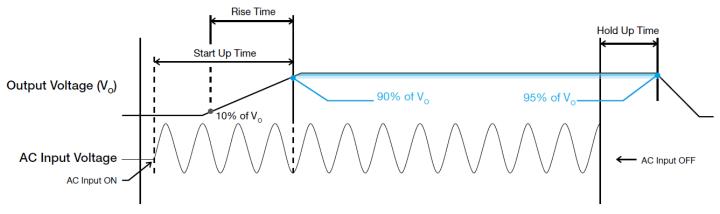
- ALWAYS switch mains of input power OFF before connecting and disconnecting the input voltage to the unit. If mains are not turned OFF, there is risk of explosion / severe damage.
- To guarantee sufficient convection cooling, please refer the following instructions to ensure sufficient clearance around the device.

<u>Vertical Mounting:</u> 50mm (1.97 inch) above and below the device as well as a lateral distance of 20mm (0.79 inch) to other units.

Horizontal Mounting: 50mm (1.97 inch) above and below the device as well as a lateral distance of 50mm (1.97 inch) to other units.

- Note that the enclosure of the device can become very hot depending on the surrounding air temperature and load of the power supply. Risk of burns!
- Only plug in and unplug connectors when power is turned off!
- DO NOT insert any objects into the unit.
- Hazardous voltages may be present for up to 5 minutes after the input mains voltage is disconnected. Do not touch the unit during this time.
- The power supplies are built in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
- CAUTION: "For use in a controlled environment".

For DRP024V120W1BA:


- The power supplies unit must be installed in an IP54 enclosure or cabinet in the final installation. The enclosure or cabinet must comply with EN 60079-0 or EN 60079-15.
- Warning: Explosion Hazard Substitution of components may impair suitability for Class I, Division 2.
- Warning: Explosion Hazard Do not disconnect equipment or adjust potentiometer unless the power has been switched off or the
 area is known to be non-hazardous.

24V 120W 1 Phase / DRP024V120W1B

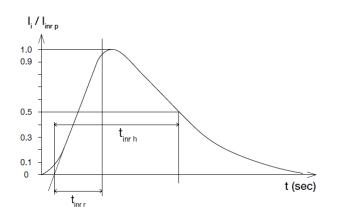
Functions

■ Graph illustrating the Start-up Time, Rise Time, and Hold-up Time

Start-up Time

The time required for the output voltage to reach 90% of its final steady state set value, after the input voltage is applied.

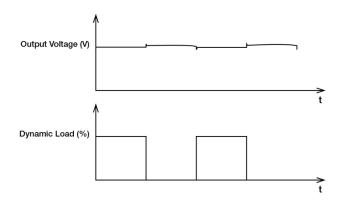
Rise Time


The time required for the output voltage to change from 10% to 90% of its final steady state set value.

Hold-up Time

Time between the collapse of the AC input voltage, and the output falling to 95% of its steady state set value.

Inrush Current


Inrush current is the peak, instantaneous, input current measured and, occurs when the input voltage is first applied. For AC input voltages, the maximum peak value of inrush current will occur during the first half cycle of the applied AC voltage. This peak value decreases exponentially during subsequent cycles of AC voltage.

Dynamic Response

The power supply output voltage will remains within ±5% of its steady state value, when subjected to a dynamic load from 0% to 100% of its rated current.

■ 50% duty cycle / 5Hz to 1KHz

24V 120W 1 Phase / DRP024V120W1B

Power Boost

Power Boost is the reserve power available constantly that allows reliable startup to support sudden and short spike of loads with high inrush current typically during turn on to remove the need of more expensive higher rated power supply unit. After the output has reached its steady state set value, the power supply can support surge loads with a higher short-term power demand up to 150% of maximum rated load (Io Max), for a maximum duration of 5 seconds. The Power Boost is also available to repeatedly basis with according to the condition of an average (R.M.S) output power shall not exceed continuous operating condition or refer to duty cycle calculation below.

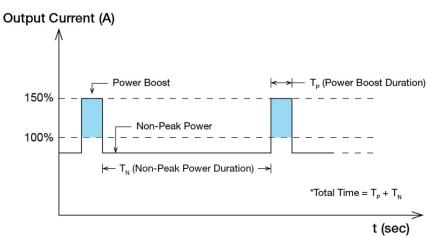


Fig. 4 Duty Cycle Calculation

$$Duty\ cycle\ (\%) = \frac{T_P}{Total\ Time}$$

$$Average \ Output \ Power \ (P_{Avg}) = \frac{(Power \ Boost \ \times T_P) + (Non-Peak \ Power \times T_N)}{Total \ Time}$$
 OR

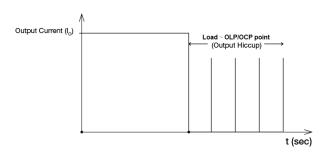
$$Non\text{-}Peak\ Power = \frac{\left(P_{Avg} \times Total\ Time\right) - \left(Power\ Boost\ \times T_P\right)}{T_N}$$

■ An example of Power Boost and Average Output Power

Power Boost	Peak Power (W _P)	Power Boost Duration (T _P)	Duty Cycle	Non-Peak Power (W _N)	Non-Peak Power Duration (T _N)	Total Time (T)
150%	180	5 sec	10%	113W	45 sec	50 sec
150%	180	5 sec	35%	88W	9.3 sec	14.3 sec
120%	144	10 sec	20%	114W	40 sec	50 sec
120%	144	10 sec	35%	107W	18.5 sec	28.5 sec

It is not recommended to prolong the duration of Power Boost to be longer than the specified duty cycle calculation, this may cause damage to the PSU.

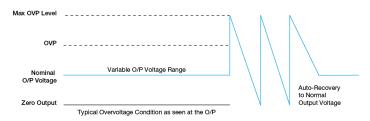
External Input Protection Device


The unit is protected at the L pin, with an internal fuse that cannot be replaced. The power supply has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or, utilized, please refer a minimum value of 10A B- or 6A C- characteristic breaker.

24V 120W 1 Phase / DRP024V120W1B

Overload & Overcurrent Protections (Auto-Recovery)

The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when output current (I_0) exceeds its specification as defined on Page 3 under "Protections". In such occurrence, the output voltage (V_0) will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and I_0 is back within the specifications.


It is not recommended to prolong the duration of $I_{\rm O}$ when it is less than OLP/OCP point, but greater than 100%, since it may cause damage to the PSU.

Short Circuit Protection (Auto-Recovery)

The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed.

Overvoltage Protection (Auto-Recovery)

The power supply's overvoltage circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 3 under "Protections".

Over Temperature Protection (Auto-Recovery)

As mentioned above, the power supply also has Over Temperature Protection (OTP). In the event of a higher operating temperature at 100% load, the power supply will run into OTP when the operating temperature is beyond what is recommended in the de-rating graph. When activated, the output voltage will go into bouncing mode until the temperature drops to its normal operating temperature as recommended in the de-rating graph.

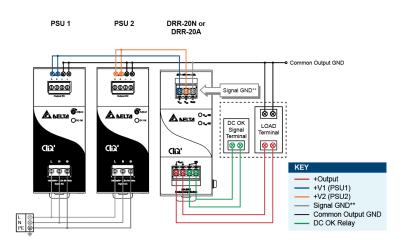
24V 120W 1 Phase / DRP024V120W1B

Operating Mode

■ Redundant Operation

In order to ensure proper redundant operation for the power supply unit (PSU), the output voltage difference between the two units must be kept at 0.45~0.50V for 24V supplies. Follow simple steps given below to set them up for the redundant operation:

Step 1.


Measure output voltage of PSU 1 and PSU 2. If PSU 1 is the master unit, then V_0 of PSU 1 must be higher than PSU 2. In order to set the output voltage, individually connect the power supply to 50% of rated load at any line voltage from 85-264Vac, and set the PSU 1 and PSU 2 output voltage.

Step 2.

Connect the power supply units PSU 1 and PSU 2 to Vin 1 & Vin 2, respectively, of the DRR-20N (or 20A) module shown on the diagram on the right.

Step 3.

Connect the system load from V_{out} . Please note that output voltage V_{out} from DRR module will be = V_{O} (output voltage of power supply) – V_{drop}^* (in DRR module).

**The Signal GND in the DRR module is for the built-in LED and DC OK signals. The Output GND terminals from the two PSU's do not need to be connected to the Signal GND terminal.

Fig. 5 Redundant Operation Connection Diagram

*V_{drop} will vary from 0.60V to 0.90V (Typical 0.65V) depending on the load current and surrounding air temperature.

Parallel Operation

The power supply units (PSUs) can also be used for parallel operation in order to increase the output power. The difference in output voltage between the two units must be kept to within 25mV of each other. This difference must be verified with the same output load connected independently to each unit.

Parameters such as EMI, inrush current, leakage current, PARD, start up time will be different from those on the datasheet, when two units are connected in parallel. The user will need to verify that any differences will still allow the two power supplies connected in parallel will work properly in their product/application.

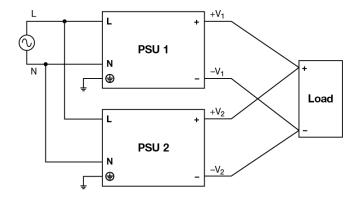


Fig. 6 Parallel Operation Connection Diagram

24V 120W 1 Phase / DRP024V120W1B

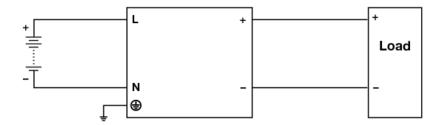


Fig. 7 DC Input Operation Connection Diagram

■ DC Input Operation

Step 1

Use a battery or similar DC source.

Step 2.

Connect +pole to L and -pole to N.

Step 3.

Connect the PE terminal to an earth wire or to the machine ground.

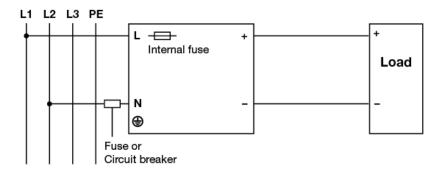


Fig. 8 2 of 3 Phase System Input Operation Connection Diagram

■ 2 of 3 Phase System Input Operation

Delta's CliQ II can use on 2 of 3 phase system. Please refer to the following step.

Step 1.

The input voltage applied from Line to Neutral is below the maximum rated input. The input voltage shall be below 240Vac +10%.

Step 2.

The external protector is needed on N (Neutral) input line to secure a safety. N line does not have internal fuse protection. An appropriate fuse or circuit breaker should be connected in series with N input line connection like the following.

24V 120W 1 Phase / DRP024V120W1B

Others

Conformal Coating

The Protective Coating Technology

Delta Electronics Group has designed the perfect dipping technique which penetrates everywhere including under device, and prevents leakage. The conformal coating dipping can be applied to PCBAs or circuit board. The coating preserves the performance of precision electronic primarily by preventing ionizable contaminants such as salt from reaching circuit nodes, where the material slumps around sharp edges. This can be a problem especially in highly conversing atmosphere.

PFC - Norm EN 61000-3-2

Line Current Harmonic content

Typically, the input current waveform is not sinusoidal due to the periodical peak charging of the input capacitor. In industrial environment, complying with EN 61000-3-2 is only necessary under special conditions. Complying to this standard can have some technical drawbacks, such as lower efficiency as well as some commercial aspects such as higher purchasing costs. Frequently, the user does not profit from fulfilling this standard, therefore, it is important to know whether it is mandatory to meet this standard for a specific application.

Attention

Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer to **www.DeltaPSU.com** for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta.

Delta reserves the right to make changes to the information described in the datasheets without notice.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А