

60V N-CHANNEL SELF-PROTECTED ENHANCEMENT MODE IntelliFET MOSFET

Product Summary

Continuous Drain Source Voltage: 60V

On-State Resistance: 200mΩ

Nominal Load Current (V_{IN} = 5V): 2.8A

Clamping Energy: 490mJ

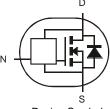
Description

The ZXMS6005N8 is a self-protected low side MOSFET with logic level input. It integrates over-temperature, overcurrent, overvoltage (active clamp) and ESD protected logic level functionality. The ZXMS6005N8 is ideal as a general purpose switch driven from 3.3V or 5V microcontrollers in harsh environments where standard MOSFETs are not rugged enough.

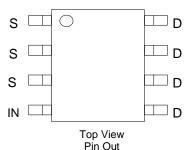
Applications

- Especially Suited for Loads with a High In-Rush Current such as Lamps and Motors
- All Types of Resistive, Inductive and Capacitive Loads in Switching Applications
- μC Compatible Power Switch for 12V and 24V DC Applications
- Replaces Electromechanical Relays and Discrete Circuits
- Linear Mode Capability the current-limiting protection circuitry is designed to deactivate at low V_{DS} to minimize on-state power dissipation. The maximum DC operating current is therefore determined by the thermal capability of the package/board combination, rather than by the protection circuitry. This does not compromise the product's ability to self-protect at low VDS.

Features and Benefits

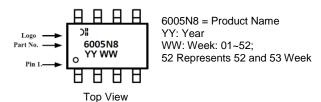

- Low Input Current
- Logic Level Input (3.3V and 5V)
- Short Circuit Protection with Auto Restart
- Overvoltage Protection (Active Clamp)
- Thermal Shutdown with Auto Restart
- Overcurrent Protection
- Input Protection (ESD)
- High Continuous Current Rating
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Mechanical Data


- Case: SO-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish @3
- Weight: 80.2 mg (Approximate)

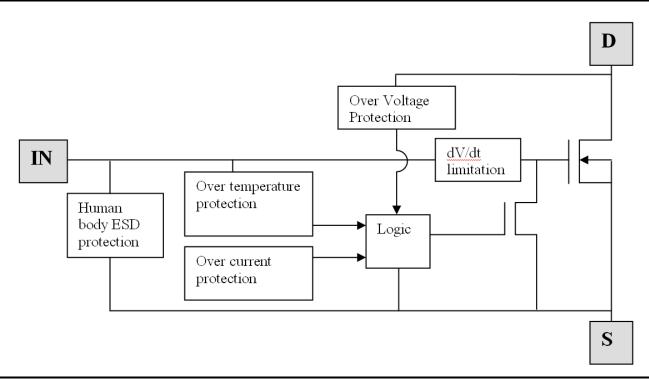
Top View

Device Symbol


Ordering Information

Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
ZXMS6005N8-13	6005N8	13	12	2,500 Units

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/guality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

Functional Block Diagram

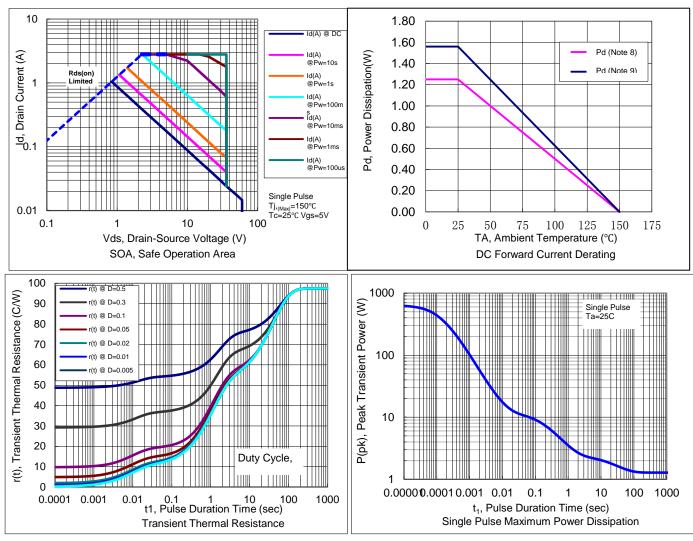
Absolute Maximum Ratings (@T_A = +25°C, unless otherwise stated.)

Characteristic	Symbol	Value	Units
Continuous Drain-Source Voltage	V _{DS}	60	V
Drain-Source Voltage for Short Circuit Protection	V _{DS(SC)}	36	V
Continuous Input Voltage	V _{IN}	-0.5 to +6	V
Continuous Input Current @-0.2V \leq V _{IN} \leq 6V Continuous Input Current @V _{IN} $<$ -0.2V or V _{IN} $>$ 6V	I _{IN}	No Limit │ I _{IN} │ ≤2	mA
Pulsed Drain Current @V _{IN} = 3.3V	I _{DM}	5	A
Pulsed Drain Current @V _{IN} = 5V	I _{DM}	6	A
Continuous Source Current (Body Diode) (Note 5)	Is	2.5	A
Pulsed Source Current (Body Diode)	I _{SM}	10	A
Unclamped Single Pulse Inductive Energy, $T_J = +25$ °C, $I_D = 0.5A$, $V_{DD} = 24V$	E _{AS}	490	mJ
Electrostatic Discharge (Human Body Model)	V _{НВМ}	4,000	V
Charged Device Model	V _{CDM}	1,000	V

Thermal Resistance (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Units
Power Dissipation @T _A = +25°C (Note 5) Linear Derating Factor	P _D	1.28 10	W mW/°C
Power Dissipation @T _A = +25°C (Note 6) Linear Derating Factor	P _D	1.65 12.4	W mW/°C
Thermal Resistance, Junction to Ambient (Note 5)	R _{0JA}	98	°C/W
Thermal Resistance, Junction to Ambient (Note 6)	$R_{\theta JA}$	76	°C/W
Thermal Resistance, Junction to Case (Note 7)	Rejc	12	°C/W
Operating Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{STG}	-55 to +150	°C

 Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout
 Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.
 Thermal resistance between junction and the mounting surfaces of drain and source pins. Notes:



Recommended Operating Conditions

The ZXMS6005N8 is optimized to use with μC operating from 3.3V and 5V supplies.

Characteristic	Symbol	Min	Max	Unit
Input Voltage Range	V _{IN}	0	5.5	٧
Ambient Temperature Range	T _A	-40	+125	°C
High Level Input Voltage for MOSFET to be On	V _{IH}	3	5.5	V
Low Level Input Voltage for MOSFET to be Off	V _{IL}	0	0.7	V
Peripheral Supply Voltage (Voltage to which Load is Referred)	V_{P}	0	36	V

Thermal Characteristics

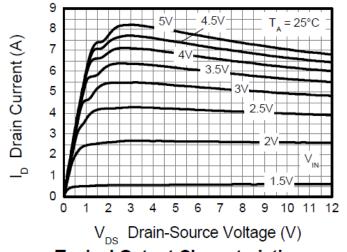
Notes: 8. Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

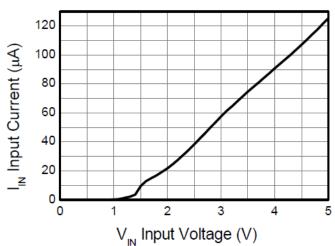
9. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

Electrical Characteristics (@T_A = +25°C, unless otherwise stated.)

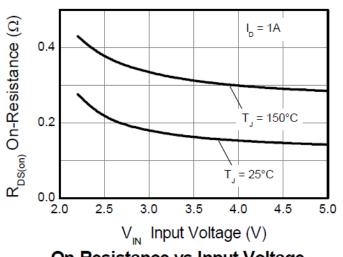
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Static Characteristics						
Drain-Source Clamp Voltage	V _{DS(AZ)}	60	65	70	V	$I_D = 10mA$
Off-State Drain Current	I _{DSS}	_	_	1	μΑ	$V_{DS} = 12V$, $V_{IN} = 0V$
On-State Drain Current		_	_	2		V _{DS} = 36V, V _{IN} = 0V
Input Threshold Voltage	V _{IN(TH)}	0.7	1	1.5	V	$V_{DS} = V_{GS}$, $I_D = 1mA$
Input Current	L	-	60	100	μA	$V_{IN} = +3V$
Imput Current	I _{IN}	l	120	200		$V_{IN} = +5V$
Input Current while Overtemperature Active	_	-	_	300	μA	$V_{IN} = +5V$
Static Drain-Source On-State Resistance	R _{DS(ON)}	_	170	250	mΩ	$V_{IN} = +3V, I_D = 0.5A$
Static Dialii-Source On-State Resistance		1	150	200	11177	$V_{IN} = +5V, I_D = 0.5A$
Continuous Proin Current (Note 5)	- I _D	1.4	_	_		$V_{IN} = 3V$; $T_A = +25^{\circ}C$
Continuous Drain Current (Note 5)		1.6	_	_	А	$V_{IN} = 5V$; $T_A = +25$ °C
Continuous Prais Current (Note 6)		1.9	_	_		V _{IN} = 3V; T _A = +25°C
ontinuous Drain Current (Note 6)		2.0	_	_		V _{IN} = 5V; T _A = +25°C
Current Limit (Note 10)	I _{D(LIM)}	2.2	5	_	А	$V_{IN} = +3V$
Carrent Limit (Note 10)		3.3	7	_		$V_{IN} = +5V$
Dynamic Characteristics						
Turn-On Delay Time	t _{D(ON)}	1	5	_		
Rise Time	t _R	l	14	_	0	10)/ 1 0 5 1 // 5 //
Turn-Off Delay Time	t _{D(OFF)}	_	34	_	μs	$V_{DD} = 12V$, $I_D = 0.5A$, $V_{GS} = 5V$
Fall Time	t _F	l	19	_		
Overtemperature Protection						
Thermal Overload Trip Temperature (Note 11)	T _{JT}	+150	+175	_	°C	_
Thermal Hysteresis (Note 11)	ΔT_{JT}	_	+10	_	°C	_

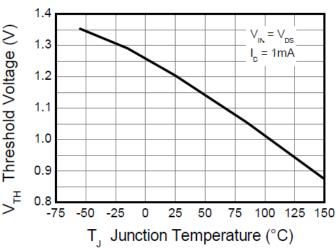
Notes:


^{10.} The drain current is restricted only when the device is in saturation (see Typical Output Characteristic graph). This allows the device to be used in the fully on state without interference from the current limit. The device is fully protected at all drain currents, as the low power dissipation generated outside saturation makes current limit uppecessary.

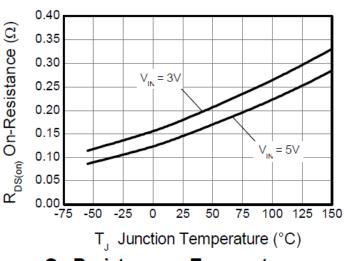

saturation makes current limit unnecessary.

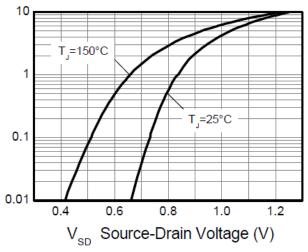
11. Overtemperature protection is designed to prevent device destruction under fault conditions. Fault conditions are considered as "outside" normal operating range, so this part is not designed to withstand overtemperature for extended periods.


Typical Characteristics



Typical Output Characteristic

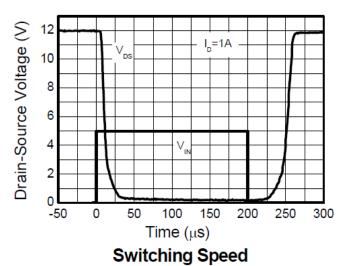

Input Current vs Input Voltage



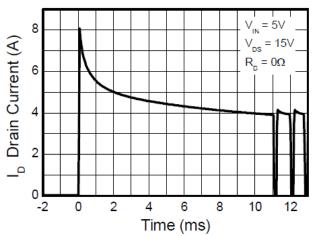
On-Resistance vs Input Voltage

Threshold Voltage vs Temperature


On-Resistance vs Temperature

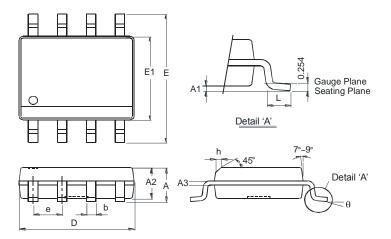

Reverse Diode Characteristic

Source Curent (A)



Typical Characteristics (Continued)

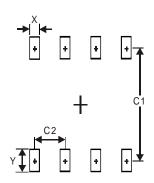
Switching Speed


Typical Short Circuit Protection

Package Outline Dimensions

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

SO-8



SO-8						
Dim	Min	Max				
Α	-	1.75				
A1	0.10	0.20				
A2	1.30	1.50				
А3	0.25					
b	0.5					
D	D 4.85					
Е	5.90 6.10					
E1 3.85 3.95						
e 1.27 Typ						
h	h – 0.35					
L 0.62 0.82						
θ	8°					
All Dimensions in mm						

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

SO-8

Dimensions	Value (in		
Dilliensions	mm)		
Х	0.60		
Y	1.55		
C1	5.4		
C2	1 27		

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2015, Diodes Incorporated

www.diodes.com

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А