

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

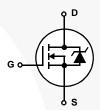
Data Sheet

September 2013

N-Channel Power MOSFET 50V, 16A, 47 $m\Omega$

The RFD16N05 and RFD16N05SM N-channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA09771.


Ordering Information

PART NUMBER	PACKAGE	BRAND
RFD16N05SM9A	TO-252AA	D16N05

Features

- 16A, 50V
- $r_{DS(ON)} = 0.047\Omega$
- Temperature Compensating PSPICE[®] Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-252AA

RFD16N05SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFD16N05SM9A	UNITS
Drain to Source Voltage (Note 1)	50	V
Drain to Gate Voltage (Note 1)V _{DGR}	50	V
Continuous Drain Current	16	Α
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	
Gate to Source Voltage	±20	V
Pulsed Avalanche RatingE _{AS}	Refer to Figure 5	
Power Dissipation	72	W
Derate above 25°C	0.48	W/oC
Operating and Storage Temperature	-55 to 175	οС
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sTL	300	οС
Package Body for 10s, See Techbrief 334	260	οС

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0$	V (Figure 11)	50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250$)μΑ	2	-	4	V
Zero Gate Voltage Drain Current I_{DSS} V_{DS} = Rated BV_{DSS} , V_{GS}		s, V _{GS} = 0V	-	-	1	μΑ	
	V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V, T_{C} = 150°C		V_{DSS} , $V_{GS} = 0V$,	-	-	25	μА
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 16A, V _{GS} = 10\	/ (Figure 9)	-	-	0.047	Ω
Turn-On Time	t(ON)	$V_{DD} = 25V$, $I_D = 8A$, $R_L = 3.125\Omega$,	-	-	65	ns	
Turn-On Delay Time	t _d (ON)	$V_{GS} = 10V$, $R_{GS} = 25\Omega$ (Figure 13)		-	14	-	ns
Rise Time	t _r	(inguic 10)	-	30	-	ns	
Turn-Off Delay Time	t _{d(OFF)}			-	55	-	ns
Fall Time	t _f			<i>/</i> -	30	-	ns
Turn-Off Time	t(OFF)			-	-	125	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 20V	$V_{DD} = 40V, I_{D} \approx 16A,$	-	-	80	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0V to 10V	$R_L = 2.5\Omega$ $I_{g(REF)} = 0.8\text{mA}$ (Figure 13)	-	-	45	nC
Threshold Gate Charge	Q _(TH)	V _{GS} = 0V to 2V		-	-	2.2	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 12)		-	900	-	pF
Output Capacitance	Coss			-	325	-	pF
Reverse Transfer Capacitance	C _{RSS}			- /	100	-	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$			-	- //	2.083	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	TO-251 and TO-252		-	-	100	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	I _{SD} = 16A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 16A$, $dI_{SD}/dt = 100A/\mu s$	-	-	125	ns

NOTES:

- 2. Pulse test: pulse width \leq 250 μ s, duty cycle \leq %.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3) and Peak Current Capability Curve (Figure 5).

©2003 Fairchild Semiconductor Corporation

Typical Performance Curves Unless Otherwise Specified

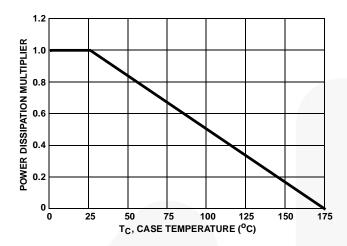


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TENPERATURE

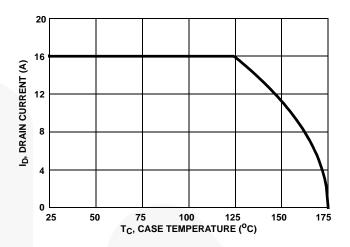


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

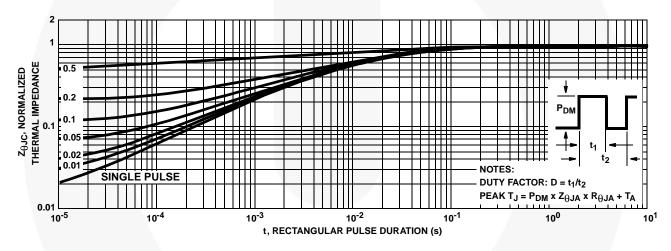


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

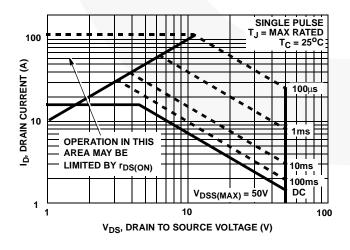


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

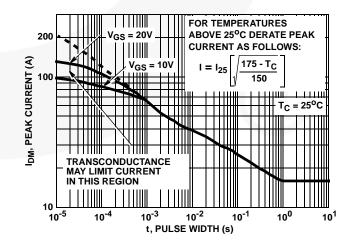
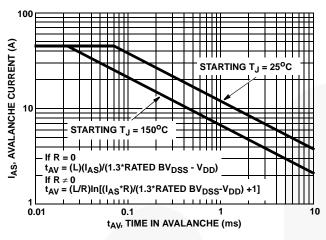



FIGURE 5. PEAK CURRENT CAPABILITY

Typical Performance Curves Unless Otherwise Specified (Continued)

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

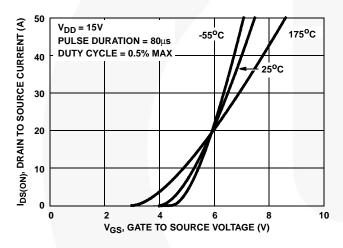


FIGURE 8. TRANSFER CHARACTERISTICS

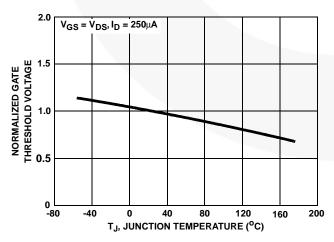


FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

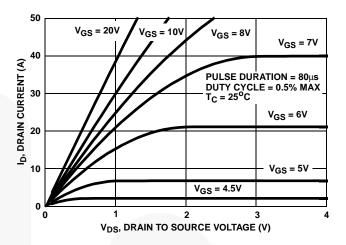


FIGURE 7. SATURATION CHARACTERISTICS

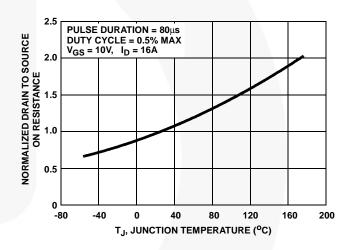


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

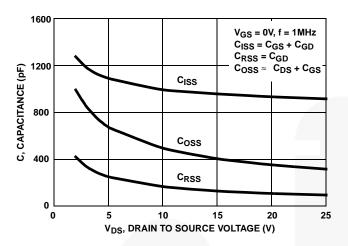
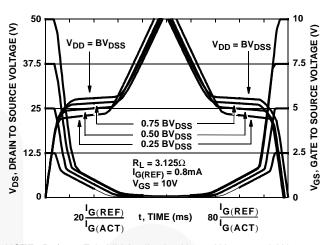



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

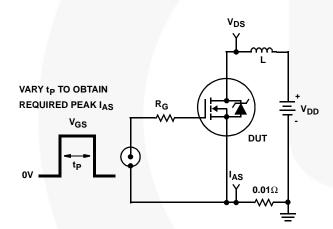


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

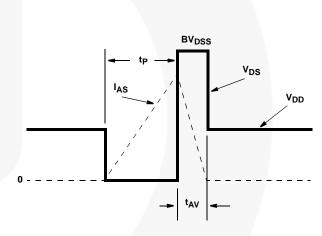


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

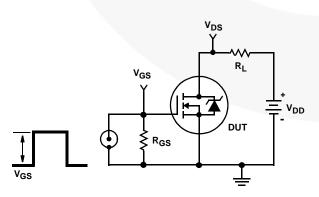


FIGURE 16. SWITCHING TIME TEST CIRCUIT



FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (Continued)

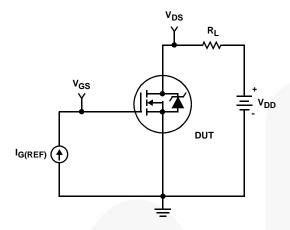


FIGURE 18. GATE CHARGE TEST CIRCUIT

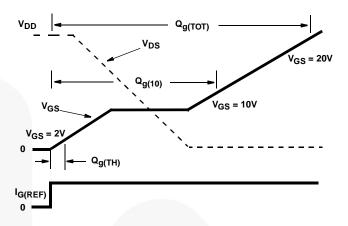


FIGURE 19. GATE CHARGE WAVEFORM

PSPICE Electrical Model

```
.SUBCKT RFD16N05 2 1 3 :
                                 rev 10/31/94
CA 12 8 1.788e-10
CB 15 14 1.875e-10
CIN 6 8 8.33e-10
                                                                   DPLCAP
                                                                                                                 DRAIN
                                                                                                        LDRAIN
DBODY 7 5 DBDMOD
                                                            10
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
                                                                                RSCL1
                                                                                        DBREAK
                                                                               <sub>+</sub> 51
                                                                 RSCL2
EBREAK 11 7 17 18 64.89
                                                                                 ESCL
EDS 14 8 5 8 1
EGS 13 8 6 8 1
                                                                                50
ESG 6 10 6 8 1
                                                                                                         DBODY
                                                                                RDRAIN
                                                                                              11
                                                         ESG (
EVTO 20 6 18 8 1
                                                                           16
                                                                                        EBREAK(
                                                                      VTO
IT 8 17 1
                                                                                 21 |
                                                                                        MOS<sub>2</sub>
                                                       EVTO
                                    GATE
                                         <del>مس</del>_9
                                                   20
                                                        18
LDRAIN 2 5 1e-9
                                                                               MOS1
                                                                           i←
                                                         8
                                       LGATE RGATE
LGATE 1 9 4.56e-9
LSOURCE 3 7 4.13e-9
                                                                RIN >
                                                                         CIN
                                                                                        RSOURCE
                                                                                                       LSOURCE
                                                                                  8
                                                                                                   7
MOS1 16 6 8 8 MOSMOD M = 0.99
                                                                                                           ∽⊸ 3
SOURCE
MOS2 16 21 8 8 MOSMOD M = 0.01
                                                        S1A 6
                                                                 S2A
RBREAK 17 18 RBKMOD 1
                                                                                                  RBREAK
                                                           13
RDRAIN 50 16 RDSMOD 0.4e-3
                                                                                              17
                                                                                                            18
                                                           8
                                                                  13
RGATE 9 20 3.0
RIN 6 8 1e9
                                                                 PS2B
                                                                                                           > RVTO
                                                                  13
RSCL1 5 51 RSCLMOD 1e-6
                                                                                                            19
                                                       CA
                                                                         CB
                                                                                                1
                                                                                                   IT
RSCL2 5 50 1e3
RSOURCE 8 7 RDSMOD 21.5e-3
                                                                                                             VBAT
                                                           EGS
                                                                      EDS
RVTO 18 19 RVTOMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.82
ESCL 51 50 VALUE = \{(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/94,7))\}
.MODEL DBDMOD D (IS = 2.5e-13 RS = 7.1e-3 TRS1 = 3.04e-3 TRS2 = -10e-6 CJO = 1.12e-9 TT = 5.6e-8)
.MODEL DBKMOD D (RS = 2.51e-1 TRS1 = -6.57e-4 TRS2 = 1.66e-6)
.MODEL DPLCAPMOD D (CJO = 6.1e-10 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 3.96 KP = 16.68 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -7.19e-7)
.MODEL RDSMOD RES (TC1 = 5.45e-3 TC2 = 1.66e-5)
.MODEL RSCLMOD RES (TC1 = 1.25e-3 TC2 = 17e-6)
.MODEL RVTOMOD RES (TC1 = -5.15e-3 TC2 = -4.83e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.25 VOFF= -3.25)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.25 VOFF= -5.25)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.56 VOFF= 5.56)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 5.56 VOFF= 0.56)
```

.ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; written by William J. Hepp and C. Frank Wheatley.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower[™] AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™

CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™

ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT®** FAST® FastvCore™ FETBench™

F-PFS™ FRFFT®

Global Power ResourceSM GreenBridge™ Green FPŠ™ Green FPS™ e-Series™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ **OPTOLOGIC®** OPTOPLANAR® (1)_® PowerTrench® PowerXS™

Programmable Active Droop™

QFET⁰ QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves t make changes at any time without notice to improve the design.		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: RFD16N05SM9A

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А