

SNLS260C - DECEMBER 2007 - REVISED MAY 2011

DS10BR254 1.5 Gbps 1:4 LVDS Repeater

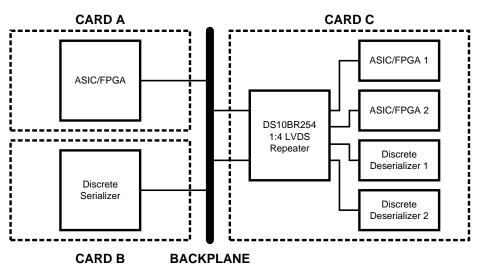
Check for Samples: DS10BR254

FEATURES

- DC 1.5 Gbps Low Jitter, Low Skew, Low Power Operation
- Wide Input Common Mode Voltage Range Allows for DC-Coupled Interface to LVDS, CML and LVPECL Drivers
- Redundant Inputs
- LOS Circuitry Detects Open Inputs Fault Condition
- Integrated 100Ω Input and Output Terminations
- 8 kV ESD on LVDS I/O Pins Protects Adjoining Components
- Small 6 mm x 6 mm WQFN-40 Space Saving Package

APPLICATIONS

- Clock Distribution
- Clock and Data Buffering and Muxing
- OC-12 / STM-4
- SD/HD SDI Routers

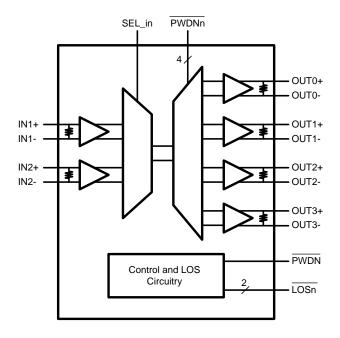

Typical Application

DESCRIPTION

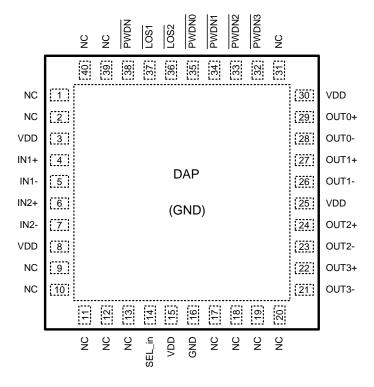
The DS10BR254 is a 1.5 Gbps 1:4 LVDS repeater optimized for high-speed signal routing and distribution over FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity.

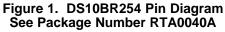
The device has two different LVDS input channels and a select pin determines which input is active. A loss-of-signal (\overline{LOS}) circuit monitors both input channels and a unique LOS pin is asserted when no signal is detected at that input.

Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower device return losses, reduce component count and further minimize board space.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNLS260C - DECEMBER 2007 - REVISED MAY 2011




www.ti.com

Block Diagram

Connection Diagram

SNLS260C - DECEMBER 2007 - REVISED MAY 2011

PIN DESCRIPTIONS									
Pin Name	Pin Number	I/O, Type	Pin Description						
IN1+, IN1-, IN2+, IN2-,	4, 5, 6, 7,	I, LVDS	Inverting and non-inverting high speed LVDS input pins.						
OUT0+, OUT0-, OUT1+, OUT1-, OUT2+, OUT2-, OUT3+, OUT3-	29, 28, 27, 26, 24, 23, 22, 21	O, LVDS	Inverting and non-inverting high speed LVDS output pins.						
SEL_in	14	I, LVCMOS	This pin selects which LVDS input is active.						
LOS1, LOS2	37, 36	O, LVCMOS	Loss Of Signal output pins, $\overline{\text{LOSn}}$ report when an open input fault condition is detected at the input, INn. These are open drain outputs. External pull up resistors are required.						
PWDN0, PWDN1, PWDN2, PWDN3	35, 34 33, 32	I, LVCMOS	Channel output power down pin. When the PWDNn is set to L, the channel output OUTn is in the power down mode.						
PWDN	38	I, LVCMOS	Device power down pin. When the PWDN is set to L, the device is in the power down mode.						
VDD	3, 8, 15,25, 30	Power	Power supply pins.						
GND	16, DAP	Power	Ground pin and a pad (DAP - die attach pad).						
NC	1, 2 9, 10, 11, 12, 13, 17, 18, 19, 20, 31, 39, 40	NC	NO CONNECT pins. May be left floating.						

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

	<u> </u>	
Supply Voltage		-0.3V to +4V
LVCMOS Input Voltage		-0.3V to (V _{CC} + 0.3V)
LVCMOS Output Voltage		-0.3V to (V _{CC} + 0.3V)
LVDS Input Voltage		-0.3V to +4V
Differential Input Voltage VID		1V
LVDS Output Voltage		-0.3V to (V _{CC} + 0.3V)
LVDS Differential Output Volt	age	0.0V to +1V
LVDS Output Short Circuit C	Irrent Duration	5 ms
Junction Temperature		+150°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature Range	Soldering (4 sec.)	+260°C
Maximum Package Power	SQA Package	4.65W
Dissipation at 25°C	Derate SQA Package	37.2 mW/°C above +25°C
Package Thermal	θ _{JA}	+26.9°C/W
Resistance	ent Duration oldering (4 sec.) QA Package erate SQA Package JA JC BM ⁽³⁾ IM ⁽⁴⁾	+3.8°C/W
ESD Susceptibility	HBM ⁽³⁾	≥8 kV
	MM ⁽⁴⁾	≥250V
	CDM ⁽⁵⁾	≥1250V

"Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of (1) device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and (2) specifications.

Human Body Model, applicable std. JESD22-A114C (3)

(4) (5) Machine Model, applicable std. JESD22-A115-A

Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Receiver Differential Input Voltage (VID)	0		1	V
Operating Free Air Temperature (T _A)	-40	+25	+85	°C

SNLS260C - DECEMBER 2007 - REVISED MAY 2011

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (1)(2)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVCMO	S DC SPECIFICATIONS					
VIH	High Level Input Voltage		2.0		V _{DD}	V
VIL	Low Level Input Voltage		GND		0.8	V
I _{IH}	High Level Input Current	V _{IN} = 3.6V V _{CC} = 3.6V		0	±10	μA
I _{IL}	Low Level Input Current	$V_{IN} = GND$ $V_{CC} = 3.6V$		0	±10	μA
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}, V_{CC} = 0 \text{V}$		-0.9	-1.5	V
V _{OL}	Low Level Output Voltage	I _{OL} = 4 mA		0.26	0.4	V
LVDS IN	IPUT DC SPECIFICATIONS					
V _{ID}	Input Differential Voltage		0		1	V
V _{TH}	Differential Input High Threshold	V_{CM} = +0.05V or V_{CC} -0.05V		0	+100	mV
V _{TL}	Differential Input Low Threshold		-100	0		mV
V _{CMR}	Common Mode Voltage Range	V _{ID} = 100 mV	0.05		V _{CC} - 0.05	V
I _{IN}	Input Current	V _{IN} = +3.6V or 0V V _{CC} = 3.6V or 0V		±1	±10	μA
C _{IN}	Input Capacitance	Any LVDS Input Pin to GND		1.7		pF
R _{IN}	Input Termination Resistor	Between IN+ and IN-		100		Ω
LVDS O	UTPUT DC SPECIFICATIONS					
V _{OD}	Differential Output Voltage		250	350	450	mV
ΔV_{OD}	Change in Magnitude of V _{OD} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV
V _{OS}	Offset Voltage		1.05	1.2	1.375	V
ΔV _{OS}	Change in Magnitude of V _{OS} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV
los	Output Short Circuit Current ⁽⁴⁾	OUT to GND		-35	-55	mA
		OUT to V _{CC}		7	55	mA
C _{OUT}	Output Capacitance	Any LVDS Output Pin to GND		1.2		pF
R _{OUT}	Output Termination Resistor	Between OUT+ and OUT-		100		Ω
SUPPLY	CURRENT					
I _{CC}	Supply Current	PWDN = H		113	135	mA
I _{CCZ}	Power Down Supply Current	$\overline{PWDN} = L$		50	60	mA

(1) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and ΔV_{OD}.

(3) Typical values represent most likely parametric norms for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

(4) Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

SNLS260C - DECEMBER 2007 - REVISED MAY 2011

www.ti.com

ISTRUMENTS

EXAS

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

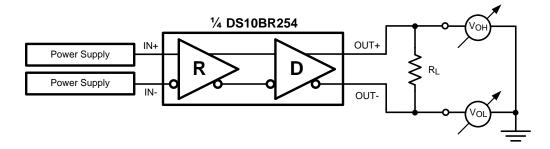
Symbol	Parameter	Cond	Min	Тур	Мах	Units	
LVDS OUTPUT	AC SPECIFICATIONS	L.					
t _{PLHD}	Differential Propagation Delay Low to High $^{\rm (1)}$	P 1000			440	650	ps
t _{PHLD}	Differential Propagation Delay High to Low ⁽¹⁾	— R _L = 100Ω			400	650	ps
t _{SKD1}	Pulse Skew t _{PLHD} - t _{PHLD} (1)(2)				40	100	ps
t _{SKD2}	Channel to Channel Skew				40	125	ps
t _{SKD3}	Part to Part Skew				50	200	ps
t _{LHT}	Rise Time ⁽¹⁾	D 4000	B 1000			300	ps
t _{HLT}	Fall Time ⁽¹⁾	$R_{L} = 100\Omega$		150	300	ps	
t _{ON}	Any PWDN to Output Active Time			8	20	μs	
t _{OFF}	Any PWDN to Output Inactive Time				5	12	ns
t _{SEL}	Select Time				5	12	ns
JITTER PERFO	DRMANCE ⁽¹⁾						
t _{RJ1}		V _{ID} = 350 mV	135 MHz		0.5	1	ps
t _{RJ2}	Random Jitter	V _{CM} = 1.2V Clock (RZ)	311 MHz		0.5	1	ps
t _{RJ3}	(RMS Value) ⁽⁵⁾		503 MHz		0.5	1	ps
t _{RJ4}			750 MHz		0.5	1	ps
t _{DJ1}		V _{ID} = 350 mV	270 Mbps		6	22	ps
t _{DJ2}	Deterministic Jitter	V _{CM} = 1.2V K28.5 (NRZ)	622 Mbps		6	21	ps
t _{DJ3}	(Peak to Peak Value) ⁽⁶⁾		1.0625 Gbps		9	18	ps
t _{DJ4}			1.5 Gbps		9	17	ps
t _{TJ1}		$V_{ID} = 350 \text{ mV}$	270 Mbps		0.01	0.03	UI _{P-P}
t _{TJ2}	— Total Jitter ⁽⁷⁾	V _{CM} = 1.2V PRBS-23 (NRZ)	622 Mbps		0.01	0.03	UI _{P-P}
t _{TJ3}			1.0625 Gbps		0.01	0.04	UI _{P-P}
t _{TJ4}			1.5 Gbps		0.01	0.06	UI _{P-P}

(1) Specification is guaranteed by characterization and is not tested in production.

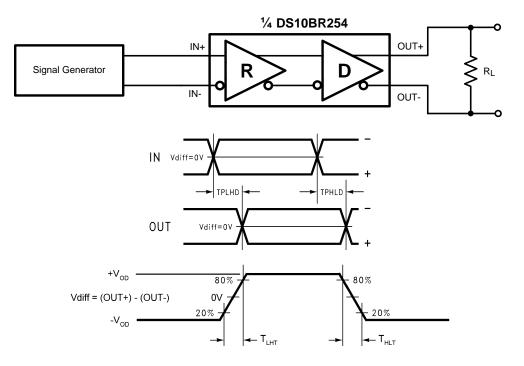
(2) t_{SKD1}, |t_{PLHD} - t_{PHLD}|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

(3) t_{SKD2}, Channel to Channel Skew, is the difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels in Broadcast mode (any one input to all outputs).

(4) t_{SKD3}, Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.


(5) Measured on a clock edge with a histogram and an accumulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically.
(6) Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically.

(7) Measured on an eye diagram with a histogram and an accumulation of 3500 histogram hits. Input stimulus jitter is subtracted.



SNLS260C - DECEMBER 2007 - REVISED MAY 2011

DC Test Circuits

AC Test Circuits and Timing Diagrams

FUNCTIONAL DESCRIPTION

The DS10BR254 is a 1.5 Gbps 1:4 LVDS repeater optimized for high-speed signal routing and distribution over lossy FR-4 printed circuit board backplanes and balanced cables.

Table	1.	Input	Select	Truth	Table
-------	----	-------	--------	-------	-------

CONTROL Pin (SEL_in) State	Input Selected
0	IN1
1	IN2

Input Interfacing

The DS10BR254 accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS10BR254 can be DC-coupled with all common differential drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS10BR254 inputs are internally terminated with a 100 Ω resistor.

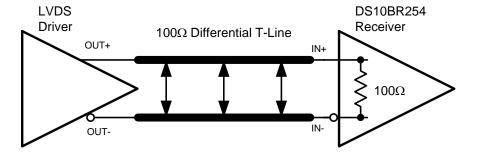


Figure 2. Typical LVDS Driver DC-Coupled Interface to an DS10BR254 Input

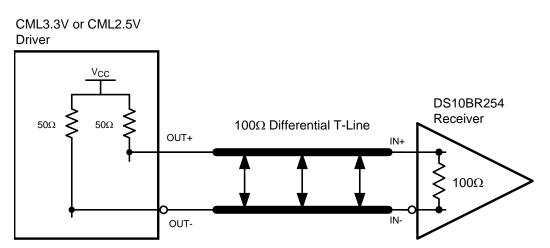


Figure 3. Typical CML Driver DC-Coupled Interface to an DS10BR254 Input

Submit Documentation Feedback

Figure 4. Typical LVPECL Driver DC-Coupled Interface to an DS10BR254 Input

Output Interfacing

The DS10BR254 outputs signals compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation.

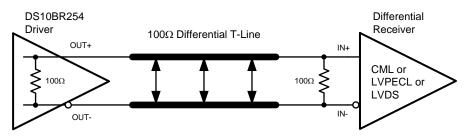
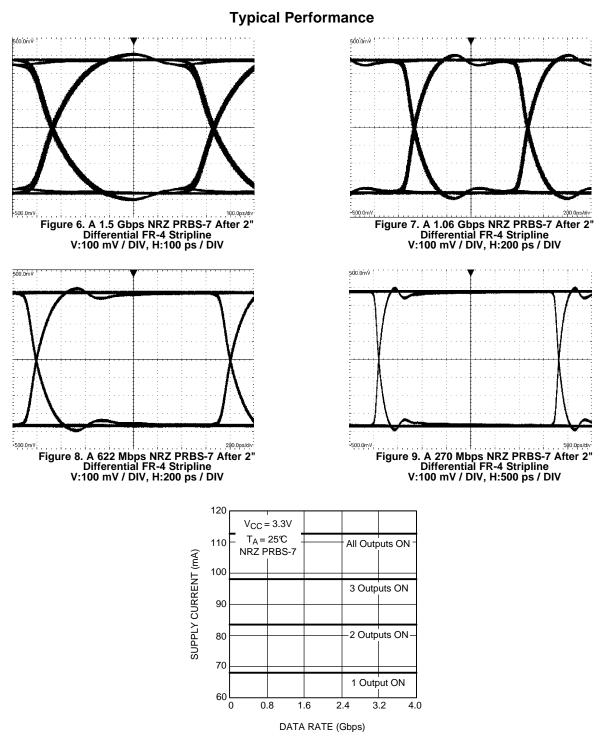



Figure 5. Typical DS10BR254 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver

SNLS260C - DECEMBER 2007 - REVISED MAY 2011

www.ti.com

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
DS10BR254TSQ/NOPB	ACTIVE	WQFN	RTA	40	250	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR	-40 to 85	1BR254SQ	Samples
DS10BR254TSQX/NOPB	ACTIVE	WQFN	RTA	40	2500	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR	-40 to 85	1BR254SQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between

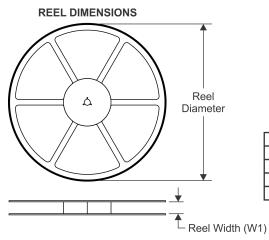
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

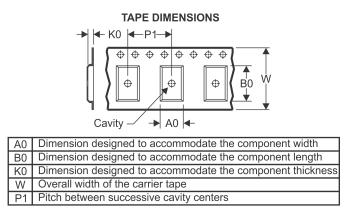
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

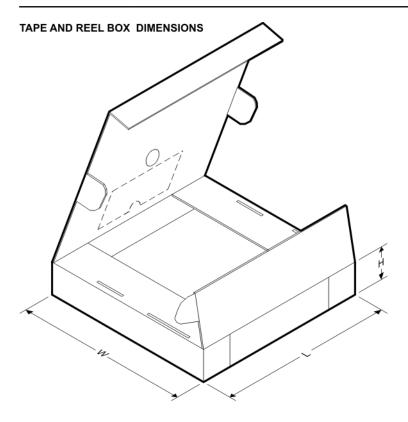

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

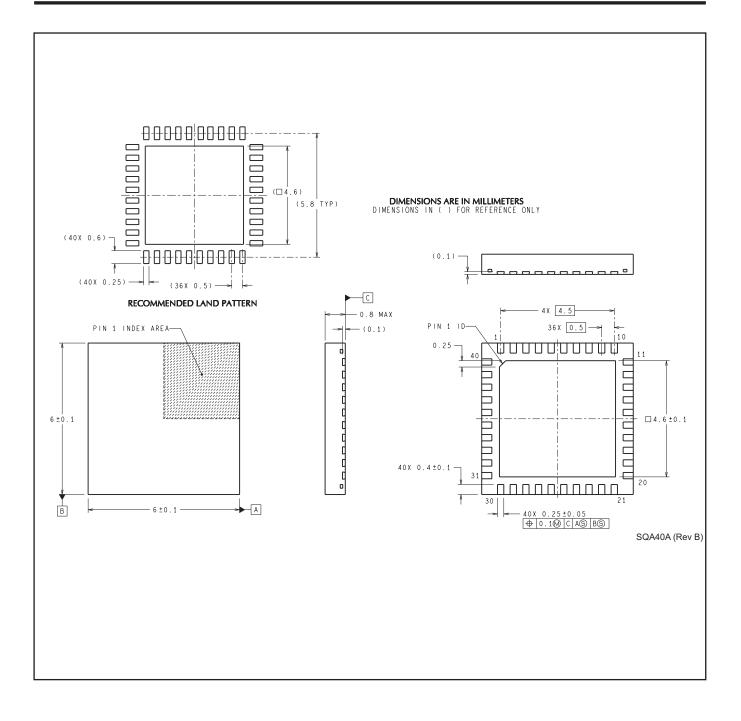

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS10BR254TSQ/NOPB	WQFN	RTA	40	250	178.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1
DS10BR254TSQX/NOPB	WQFN	RTA	40	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Mar-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS10BR254TSQ/NOPB	WQFN	RTA	40	250	213.0	191.0	55.0
DS10BR254TSQX/NOPB	WQFN	RTA	40	2500	367.0	367.0	38.0

MECHANICAL DATA

RTA0040A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А